第二节 动量守恒定律 碰撞 爆炸 反冲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节动量守恒定律碰撞爆炸反冲
[学生用书P112]
【基础梳理】
一、动量守恒定律
1.守恒条件
(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.
(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.
(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.
2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.
二、碰撞爆炸反冲
1.碰撞
(1)碰撞现象:物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.
(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.
(3)分类
2.爆炸过程中内力远大于外力,爆炸的各部分组成的系统总动量守恒.
3.反冲运动
(1)物体在内力作用下分裂为两个不同部分并且这两部分向相反方向运动的现象.
(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理.
【自我诊断】
判一判
(1)两物体相互作用时若系统不受外力,则两物体组成的系统动量守恒.()
(2)动量守恒只适用于宏观低速.()
(3)当系统动量不守恒时无法应用动量守恒定律解题.()
(4)物体相互作用时动量守恒,但机械能不一定守恒.()
(5)若在光滑水平面上两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相同.()
(6)飞船做圆周运动时,若想变轨通常需要向前或向后喷出气体,该过程中动量守
恒.()
提示:(1)√(2)×(3)×(4)√(5)√(6)√
做一做
(2018·安徽名校联考)如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是()
A.男孩和木箱组成的系统动量守恒
B.小车与木箱组成的系统动量守恒
C.男孩、小车与木箱三者组成的系统动量守恒
D.木箱的动量增量与男孩、小车的总动量增量不相同
提示:选C.当把男孩、小车与木箱看做整体时水平方向所受的合外力才为零,所以选项C正确.
想一想
碰撞过程除了系统动量守恒之外,还需要满足什么条件?碰撞与爆炸在能量转化方面有何不同?
提示:碰撞过程除了系统动量守恒之外,还要满足的条件:系统动能不增加;碰撞结果要符合实际情况.碰撞系统动能不增加,而爆炸系统动能增加,这是二者最大的不同.
对动量守恒定律的理解和应用[学生用书P113]
【知识提炼】
1.动量守恒定律常用的四种表达形式
(1)p=p′:即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同.
(2)Δp=p′-p=0:即系统总动量的增加量为零.
(3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量.
(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等.
2.动量守恒定律的“五性”
(2016·高考全国卷Ⅱ)
如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面 3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3 m(h 小于斜面体的高度).已知小孩与滑板的总质量为m 1=30 kg ,冰块的质量为m 2=10 kg ,小孩与滑板始终无相对运动.取重力加速度的大小g =10 m/s 2.
(1)求斜面体的质量;
(2)通过计算判断,冰块与斜面体分离后能否追上小孩?
[审题指导] 在人与冰块分离、冰块与斜面体作用过程中水平方向都满足动量守恒条件,结合能量守恒可得出三者之间的速度关系.
[解析] (1)规定向右为速度正方向.冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v ,斜面体的质量为m 3,由水平方向动量守恒和机械能守恒定律得
m 2v 20=(m 2+m 3)v
① 12m 2v 220=12(m 2+m 3)v 2+m 2gh ② 式中v 20=-3 m/s 为冰块推出时的速度,联立①②式并代入题给数据得m 3=20 kg .③
(2)设小孩推出冰块后的速度为v 1,由动量守恒定律有
m 1v 1+m 2v 20=0
④ 代入数据得v 1=1 m/s ⑤
设冰块与斜面体分离后的速度分别为v 2和v 3,由动量守恒和机械能守恒定律有
m 2v 20=m 2v 2+m 3v 3
⑥ 12m 2v 220=12m 2v 22+12
m 3v 23 ⑦
联立③⑥⑦式并代入数据得v 2=1 m/s
由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.
[答案](1)20 kg(2)见解析
1.应用动量守恒定律的解题步骤
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程).
(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒).
(3)规定正方向,确定初末状态动量.
(4)由动量守恒定律列出方程.
(5)代入数据,求出结果,必要时讨论说明.
2.爆炸现象的三个规律
(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.
(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加.
(3)位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动.
3.“人船模型”:若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v-1=m2v-2得m1x1=m2x2.该式的适用条件是:
(1)系统的总动量守恒或某一方向上的动量守恒.
(2)构成系统的两物体原来静止,因相对作用而反向运动.
(3)x1、x2均为沿动量方向相对于同一参考系的位移.
【迁移题组】
迁移1动量守恒的条件判断
1.
一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统()
A.动量守恒,机械能守恒
B.动量不守恒,机械能守恒
C.动量守恒,机械能不守恒
D.无法判定动量、机械能是否守恒