指数指数函数重难点解析
第5节 指数与指数函数--2025年高考数学复习讲义及练习解析
第五节指数与指数函数1.根式(1)如果x n =a ,那么01x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)式子na 叫做02根式,其中n 叫做根指数,a 叫做被开方数.(3)(na )n =03a.当n 为奇数时,na n =04a ;当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂正数的正分数指数幂,a mn =na m (a >0,m ,n ∈N *,n >1).正数的负分数指数幂,a-m n =1a m n=1n a m(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于050,0的负分数指数幂没有意义.3.指数幂的运算性质a r a s =06a r +s ;(a r )s =07a rs ;(ab )r =08a r b r (a >0,b >0,r ,s ∈R ).4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R ,a 是底数.(2)指数函数的图象与性质a>10<a <1图象定义域R 值域09(0,+∞)性质图象过定点10(0,1),即当x=0时,y =1当x >0时,11y >1;当x <0时,120<y <1当x <0时,13y >1;当x >0时,140<y <1在(-∞,+∞)上是15增函数在(-∞,+∞)上是16减函数(1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数.(2)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1)1(3)如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大.(4)指数函数y =a x 与y (a >0,且a ≠1)的图象关于y 轴对称.1.概念辨析(正确的打“√”,错误的打“×”)(1)4(-4)4=-4.()(2)2a·2b=2ab.()(3)na n=(na)n=a.()(4)6(-3)2=(-3)13.()(5)函数y=2x-1是指数函数.()答案(1)×(2)×(3)×(4)×(5)×2.小题热身(1)(人教A必修第一册习题4.1T1改编)下列运算中正确的是()A.(2-π)2=2-πB.a-1a=-aC.(m 14n-38)8=m2n3D.(x3-2)3+2=x9答案C解析对于A,因为2-π<0,所以(2-π)2=π-2,故A错误;对于B,因为-1a>0,所以a<0,则a-1a=-(-a)·1-a=--a,故B错误;对于C,因为(m14n-38)8=(m14)8·(n-38)8=m2n3,故C正确;对于D,因为(x3-2)3+2=x9-2=x7,故D错误.(2)已知指数函数y=f(x)的图象经过点(-1,2),那么这个函数也必定经过点()21C.(1,2)答案D(3)函数y=2x+1的图象是()答案A(4)若函数y=a x(a>0,且a≠1)在区间[0,1]上的最大值与最小值之和为3,则a的值为________.答案2考点探究——提素养考点一指数幂的运算例1(1)(2024·湖北宜昌高三模拟)已知x,y>03x-34y12-14x14y-1y__________.答案-10y解析原式=3x -34y12-3 10 x -34y-12=-10y.(2)-0.752+6-2-23=________.答案1解析+136×-23=32-+136×2=32-916+136×94=1.【通性通法】【巩固迁移】-12·(4ab-1)3(0.1)-1·(a3·b-3)12(a>0,b>0)=________.答案85解析原式=2·432a 32b -3210a 32b-32=85.2.若x 12+x -12=3,则x 2+x -2=________.答案47解析由x 12+x -12=3,得x +x -1=7,再平方得x 2+x -2=47.考点二指数函数的图象及其应用例2(1)(2024·安徽合肥八中月考)函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,3,13,12中的一个,则a ,b ,c ,d 的值分别是()A.54,3,13,12 B.3,54,13,12C.12,13,3,54 D.13,12,54,3答案C解析由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而3>54>12>13,故选C.(2)(2024·江苏南京金陵高三期末)若直线y =3a 与函数y =|a x -1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围为________.答案解析当0<a <1时,y =|a x -1|的图象如图1所示,由已知得0<3a <1,∴0<a <13;当a >1时,y =|a x -1|的图象如图2所示,由已知可得0<3a <1,∴0<a <13,结合a >1可得a 无解.综上可知,a【通性通法】(1)根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.(2)对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.【巩固迁移】3.(2024·广东深圳中学高三摸底)函数y =e -|x |(e 是自然对数的底数)的大致图象是()答案C解析y =e -|x |,x ≥0,x <0,易得函数y =e -|x |为偶函数,且图象过(0,1),y =e -|x |>0,函数在(-∞,0)上单调递增,在(0,+∞)上单调递减,故C 符合题意.故选C.4.(多选)若实数x ,y 满足4x +5x =5y +4y ,则下列关系式中可能成立的是()A .1<x <yB .x =yC .0<x <y <1D .y <x <0答案BCD解析设f (x )=4x +5x ,g (x )=5x +4x ,则f (x ),g (x )都是增函数,画出函数f (x ),g (x )的图象,如图所示,根据图象可知,当x =0时,f (0)=g (0)=1;当x =1时,f (1)=g (1)=9,依题意,不妨设f (x )=g (y )=t ,则x ,y 分别是直线y =t 与函数y =f (x ),y =g (x )图象的交点的横坐标.当t >9时,若f (x )=g (y ),则x >y >1,故A 不正确;当t =9或t =1时,若f (x )=g (y ),则x =y =1或x =y =0,故B 正确;当1<t <9时,若f (x )=g (y ),则0<x <y <1,故C 正确;当t <1时,若f (x )=g (y ),则y <x <0,故D 正确.故选BCD.考点三指数函数的性质及其应用(多考向探究)考向1比较指数式的大小例3(2023·天津高考)若a =1.010.5,b =1.010.6,c =0.60.5,则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >b >cD .b >a >c答案D解析解法一:因为函数f (x )=1.01x 是增函数,且0.6>0.5>0,所以1.010.6>1.010.5>1,即b >a >1.因为函数φ(x )=0.6x 是减函数,且0.5>0,所以0.60.5<0.60=1,即c <1.综上,b >a >c .故选D.解法二:因为函数f (x )=1.01x 是增函数,且0.6>0.5,所以1.010.6>1.010.5,即b >a .因为函数h (x )=x 0.5在(0,+∞)上单调递增,且1.01>0.6>0,所以1.010.5>0.60.5,即a >c .综上,b >a >c .故选D.【通性通法】比较两个指数式的大小时,尽量化成同底或同指.(1)当底数相同,指数不同时,构造同一指数函数,然后利用指数函数的性质比较大小.(2)当指数相同,底数不同时,构造两个指数函数,利用图象比较大小;或构造同一幂函数,然后利用幂函数的性质比较大小.(3)当底数不同,指数也不同时,常借助1,0等中间量进行比较.【巩固迁移】5.(2023·福建泉州高三质检)已知a -13,b -23,c ()A .a >b >cB .c >b >aC .c >a >bD .b >a >c答案C解析-13-23,y 在R 上是增函数,-13-23,即c >a >b .考向2解简单的指数方程或不等式例4(1)(多选)若4x -4y <5-x -5-y ,则下列关系式正确的是()A .x <yB .y -3>x -3C.x >y <3-x答案AD解析由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f (x )=4x -5-x ,则f (x )<f (y ).因为g (x )=4x ,h (x )=-5-x 在R 上都是增函数,所以f (x )在R 上是增函数,所以x <y ,故A 正确;因为G (x )=x -3在(0,+∞)和(-∞,0)上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y 在R 上是减函数,且x <y ,,<3-x ,故D 正确.故选AD.(2)已知实数a ≠1,函数f (x )x ,x ≥0,a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.答案12解析当a <1时,41-a =21,解得a =12;当a >1时,2a -(1-a )=4a -1,无解.故a 的值为12.【通性通法】(1)解指数方程的依据:a f (x )=a g (x )(a >0,且a ≠1)⇔f (x )=g (x ).(2)解指数不等式的思路方法:对于形如a x >a b (a >0,且a ≠1)的不等式,需借助函数y =a x 的单调性求解,如果a 的取值不确定,则需分a >1与0<a <1两种情况讨论;而对于形如a x >b 的不等式,需先将b 转化为以a 为底的指数幂的形式,再借助函数y =a x 的单调性求解.【巩固迁移】6.函数y =(0.5x-8)-12的定义域为________.答案(-∞,-3)解析因为y =(0.5x -8)-12=10.5x -8,所以0.5x -8>0,则2-x >23,即-x >3,解得x <-3,故函数y =(0.5x-8)-12的定义域为(-∞,-3).7.当0<x <12时,方程a x =1x (a >0,且a ≠1)有解,则实数a 的取值范围是________.答案(4,+∞)解析依题意,当x ,y =a x 与y =1x 的图象有交点,作出y =1x的部分图象,如图所示,>1,12>2,解得a>4.考向3与指数函数有关的复合函数问题例5(1)函数f(x)=3-x2+1的值域为________.答案(0,3]解析设t=-x2+1,则t≤1,所以0<3t≤3,故函数f(x)的值域为(0,3].(2)函数yx-+17的单调递增区间为________.答案[-2,+∞)解析设t>0,又y=t2-8t+17=(t-4)2+1在(0,4]上单调递减,在(4,+∞)上单调递增.≤4,得x≥-2,>4,得x<-2,而函数t在R上单调递减,所以函数yx-+17的单调递增区间为[-2,+∞).【通性通法】涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.【巩固迁移】8.(多选)已知定义在[-1,1]上的函数f(x)=-2·9x+4·3x,则下列结论中正确的是() A.f(x)的单调递减区间是[0,1]B.f(x)的单调递增区间是[-1,1]C.f(x)的最大值是f(0)=2D.f(x)的最小值是f(1)=-6答案ACD解析设t=3x,x∈[-1,1],则t=3x是增函数,且t∈13,3,又函数y=-2t2+4t=-2(t-1)2+2在13,1上单调递增,在[1,3]上单调递减,因此f(x)在[-1,0]上单调递增,在[0,1]上单调递减,故A正确,B错误;f(x)max=f(0)=2,故C正确;f(-1)=109,f(1)=-6,因此f (x )的最小值是f (1)=-6,故D 正确.故选ACD.9.若函数f (x )2+2x +3,19,则f (x )的单调递增区间是________.答案(-∞,-1]解析∵y 是减函数,且f (x ),19,∴t =ax 2+2x +3有最小值2,则a >0且12a -224a =2,解得a =1,因此t =x 2+2x +3的单调递减区间是(-∞,-1],故f (x )的单调递增区间是(-∞,-1].课时作业一、单项选择题1.(2024·内蒙古阿拉善盟第一中学高三期末)已知集合A ={x |32x -1≥1},B ={x |6x 2-x -2<0},则A ∪B =()A.12,-12,12-12,+∞答案D解析集合A ={x |32x -1≥1}=12,+B ={x |6x 2-x -2<0}={x |(3x -2)(2x +1)<0}=-12,所以A ∪B -12,+故选D.2.(2024·山东枣庄高三模拟)已知指数函数y =a x 的图象如图所示,则y =ax 2+x 的图象顶点横坐标的取值范围是()-12,-12,+∞答案A解析由图可知,a ∈(0,1),而y =ax 2+x =-14a (a ≠0),其顶点横坐标为x =-12a,所以-12a∈∞,故选A.3.已知函数f (x )=11+2x ,则对任意实数x ,有()A .f (-x )+f (x )=0B .f (-x )-f (x )=0C .f (-x )+f (x )=1D .f (-x )-f (x )=13答案C解析f (-x )+f (x )=11+2-x +11+2x =2x 1+2x +11+2x =1,故A 错误,C 正确;f (-x )-f (x )=11+2-x-11+2x =2x 1+2x -11+2x =2x -12x +1=1-22x +1,不是常数,故B ,D 错误.故选C.4.已知a =243,b =425,c =513,则()A .c <b <aB .a <b <cC .b <a <cD .c <a <b答案A 解析因为a =243=423,b =425,所以a =423>425=b ,因为b =425=(46)115=4096115,c =513=(55)115=3125115,所以b >c .综上所述,a >b >c .故选A.5.(2024·江苏连云港海滨中学高三学情检测)若函数f (x )=a x (a >0,且a ≠1)在[-1,2]上的最大值为4,最小值为m ,则实数m 的值为()A.12B.1142C.116D.12或116答案D解析当a >1时,f (x )=a x 在[-1,2]上单调递增,则f (x )max =f (2)=a 2=4,解得a =2,此时f (x )=2x ,m =f (x )min =2-1=12;当0<a <1时,f (x )=a x 在[-1,2]上单调递减,所以f (x )max =f (-1)=a -1=4,解得a =14,此时f (x ),m =f (x )min =f (2)=116.综上所述,实数m 的值为12或116.故选D.6.(2023·新课标Ⅰ卷)设函数f (x )=2x (x -a )在区间(0,1)上单调递减,则a 的取值范围是()A .(-∞,-2]B .[-2,0)C .(0,2]D .[2,+∞)答案D解析函数y =2x 在R 上单调递增,而函数f (x )=2x (x -a )在区间(0,1)上单调递减,则函数y =x (x -a )-a 24在区间(0,1)上单调递减,因此a2≥1,解得a ≥2,所以a 的取值范围是[2,+∞).故选D.7.(2023·辽宁名校联盟联考)已知函数f (x )满足f (x )x -2,x >0,-2-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是()A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)∪(0,1)答案B解析当x >0时,-x <0,f (-x )=2-2x =-(2x -2)=-f (x );当x <0时,-x >0,f (-x )=2-x-2=-(2-2-x )=-f (x ),则函数f (x )为奇函数,所以f (a )>f (-a )=-f (a ),即f (a )>0,作出函数f (x )的图象,如图所示,由图象可得,实数a 的取值范围为(-1,0)∪(1,+∞).故选B.8.(2024·福建漳州四校期末)已知正数a ,b ,c 满足2a -1=4,3b -1=6,4c -1=8,则下列判断正确的是()A .a <b <cB .a <c <bC .c <b <aD .c <a <b答案A解析由已知可得a =2,b =2,c =2,则a ,b ,c 可分别看作直线y =2-x 和y ,y ,y 的图象的交点的横坐标,画出直线y =2-x 和y ,y ,y 的大致图象,如图所示,由图象可知a <b <c .故选A.二、多项选择题9.下列各式中成立的是()=n 7m 17(n >0,m >0)B .-1234=3-3C.39=33D .[(a 3)2(b 2)3]-13=a -2b -2(a >0,b >0)答案BCD解析=n 7m7=n 7m -7(n >0,m >0),故A 错误;-1234=-3412=-313=3-3,故B 正确;39=332=332=33,故C 正确;[(a 3)2(b 2)3]-13=(a 6b 6)-13=a -2b -2(a >0,b >0),故D 正确.故选BCD.10.已知函数f (x )=3x -13x +1,下列说法正确的是()A .f (x )的图象关于原点对称B .f (x )的图象关于直线x =1对称C .f (x )的值域为(-1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0答案AC解析由f (-x )=3-x -13-x +1=-3x -13x +1=-f (x ),可得函数f (x )为奇函数,所以A 正确;因为f (0)=0,f (2)=45,f (0)≠f (2),所以B 错误;设y =3x -13x +1,可得3x =1+y 1-y ,所以1+y 1-y >0,即1+y y -1<0,解得-1<y <1,即函数f (x )的值域为(-1,1),所以C 正确;f (x )=3x -13x +1=1-23x +1为增函数,所以D 错误.故选AC.三、填空题11.0.25-12-(-2×160)2×(2-23)3+32×(4-13)-1=________.答案3解析原式=[(0.5)2]-12-(-2×1)2×2-2+213×2231-4×14+2=2-1+2=3.12.不等式10x -6x -3x ≥1的解集为________.答案[1,+∞)解析由10x -6x -3x ≥1,≤1.令f (x ),因为y =,y ,y 均为R 上的减函数,则f (x )在R 上单调递减,且f (1)=1,所以f (x )≤f (1),所以x ≥1,故不等式10x -6x -3x ≥1的解集为[1,+∞).13.若函数f (x )=|2x -a |-1的值域为[-1,+∞),则实数a 的取值范围为________.答案(0,+∞)解析令g (x )=|2x -a |,由题意得g (x )的值域为[0,+∞),又y =2x 的值域为(0,+∞),所以-a <0,解得a >0.14.已知函数f (x )x -a ,x ≤0,x +a ,x >0,关于x 的不等式f (x )≤f (2)的解集为I ,若I(-∞,2],则实数a 的取值范围是________.答案(-∞,-1)解析当a ≥0时,结合图象可得f (x )≤f (2)的解集是(-∞,2],不符合题意.当a <0时,2-a>2a ,由于f (x )在区间(-∞,0]和(0,2]上单调递增,所以要使f (x )≤f (2)的解集I 满足I(-∞,2],则2-a >f (2)=22+a ,解得a <-1.综上,实数a 的取值范围是(-∞,-1).四、解答题15.(2024·辽宁沈阳东北育才学校高三月考)已知函数f (x )是定义在R 上的奇函数,且函数g (x )=f (x )+e x 是定义在R 上的偶函数.(1)求函数f (x )的解析式;(2)求不等式f (x )≥34的解集.解(1)∵g (x )=f (x )+e x 是定义在R 上的偶函数,∴g (-x )=g (x ),即f (-x )+e -x =f (x )+e x ,∵f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴-f (x )+e -x =f (x )+e x ,∴f (x )=e -x -e x2.(2)由(1),知e -x -e x 2≥34,得2e -x -2e x -3≥0,即2(e x )2+3e x -2≤0,令t =e x ,t >0,则2t 2+3t -2≤0,解得0<t ≤12,∴0<e x ≤12,∴x ≤-ln 2,∴不等式f (x )≥34的解集为(-∞,-ln 2].16.(2024·山东菏泽高三期中)已知函数f (x )3+x.(1)解关于x 的不等式f (x 3+ax +1,a ∈R ;(2)若∃x ∈(1,3),∀m ∈(1,2),f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0,求实数n 的取值范围.解(1)3+x3+ax +1,得x 3+x <x 3+ax +1,即(1-a )x <1.当1-a =0,即a =1时,不等式恒成立,则f (x 3+ax +1的解集为R ;当1-a >0,即a <1时,x <11-a,则f (x 3+ax +1|x 当1-a <0,即a >1时,x >11-a,则f (x 3+ax +1|x 综上所述,当a =1时,不等式的解集是R ;当a <1时,|x当a >1时,|x (2)因为y =x 3和y =x 均为增函数,所以y =x 3+x 是增函数,因为y 是减函数,所以f (x )是减函数,则g (x )=f (x )-x 是减函数.由f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0可得,g (2mnx -4)=f (2mnx -4)-(2mnx -4)≤f (x 2+nx )-(x 2+nx )=g (x 2+nx ),所以2mnx -4≥x 2+nx ,所以2mn -n ≥x +4x ,又x +4x≥2x ·4x =4,当且仅当x =4x,即x =2时,不等式取等号,即∀m ∈(1,2),2mn -n ≥4恒成立,由一次函数性质可知n -n ≥4,n -n ≥4,解得n ≥4,所以实数n 的取值范围是[4,+∞).17.(多选)已知函数f (x )=a |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则下列说法正确的是()A .a +b =0B .若f (x )=f (y ),且x ≠y ,则x +y =0C .若x <y <0,则f (x )<f (y )D .f (x )的值域为[0,2)答案ABD解析∵函数f (x )=a |+b 的图象过原点,∴a +b =0,即b =-a ,则f (x )=a |-a ,又f (x )的图象无限接近直线y =2,但又不与该直线相交,∴b =2,a =-2,f (x )=-|+2,故A 正确;由于f (x )为偶函数,且f (x )在[0,+∞)上单调递增,故若f (x )=f (y ),且x ≠y ,则x =-y ,即x +y =0,故B 正确;由于f (x )=2-|在(-∞,0)上单调递减,故若x <y <0,则f (x )>f (y ),故C 错误;|∈(0,1],∴f (x )=-|+2∈[0,2),故D 正确.故选ABD.18.(多选)已知实数a ,b 满足3a =6b ,则下列关系式可能成立的是()A .a =bB .0<b <aC .a <b <0D .1<a <b答案ABC解析由题意,在同一坐标系内分别画出函数y =3x 和y =6x 的图象,如图所示,由图象知,当a =b =0时,3a =6b =1,所以A 可能成立;作出直线y =k ,当k >1时,若3a =6b =k ,则0<b <a ,所以B 可能成立;当0<k <1时,若3a =6b =k ,则a <b <0,所以C 可能成立.故选ABC.19.(2023·广东珠海一中阶段考试)对于函数f (x ),若其定义域内存在实数x 满足f (-x )=-f (x ),则称f (x )为“准奇函数”.若函数f (x )=e x -2e x +1,则f (x )________(是,不是)“准奇函数”;若g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,则实数m 的取值范围为________.答案不是-54,-1解析假设f (x )为“准奇函数”,则存在x 满足f (-x )=-f (x ),∴e -x -2e -x +1=-e x -2e x +1有解,整理得e x =-1,显然无解,∴f (x )不是“准奇函数”.∵g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,∴2-x+m =-2x -m 在[-1,1]上有解,∴2m =-(2x +2-x)在[-1,1]上有解,令2x =t ∈12,2,∴2m t ∈12,2上有解,又函数y =t +1t在12,,在(1,2]上单调递增,且t =12时,y =52,t =2时,y =52,∴y min =1+1=2,y max =52,∴y =t +1t 的值域为2,52,∴2m ∈-52,-2,解得m ∈-54,-1.。
《指数函数》的优秀教案最新9篇
《指数函数》的优秀教案最新9篇高一数学《指数函数》优秀教案篇一我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。
我将尝试运用新课标的理念指导本节课的教学。
新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。
我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
一、教材分析1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。
本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。
因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
二、教学目标分析基于对教材的理解和分析,我制定了以下的教学目标:1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。
2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的'能力。
3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。
三、教法学法分析1、教学策略:首先从实际问题出发,激发学生的学习兴趣。
第二步,学生归纳指数的图像和性质。
第三步,典型例题分析,加深学生对指数函数的理解。
2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。
3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。
高中数学难点解析教案指数函数、对数函数问题
高中数学难点解析教案——指数函数、对数函数问题一、教学目标1. 理解指数函数、对数函数的定义及性质。
2. 掌握指数函数、对数函数的图象和性质。
3. 学会运用指数函数、对数函数解决实际问题。
4. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 指数函数的定义与性质2. 对数函数的定义与性质3. 指数函数、对数函数的图象4. 指数函数、对数函数的应用5. 难点解析与例题讲解三、教学重点与难点1. 教学重点:指数函数、对数函数的定义、性质、图象及应用。
2. 教学难点:指数函数、对数函数的图象特点,以及实际问题的解决方法。
四、教学方法1. 采用问题驱动法,引导学生主动探究指数函数、对数函数的性质。
2. 利用数形结合法,让学生直观地理解指数函数、对数函数的图象。
3. 运用实例讲解法,培养学生运用数学知识解决实际问题的能力。
4. 组织小组讨论,提高学生的合作交流能力。
五、教学过程1. 导入:通过回顾初中阶段学习的指数函数、对数函数知识,引发学生对高中阶段深入学习这些内容的兴趣。
2. 新课讲解:(1)讲解指数函数的定义与性质,让学生通过实例理解指数函数的单调性、奇偶性等性质。
(2)讲解对数函数的定义与性质,让学生了解对数函数与指数函数的互化关系,以及对数函数的单调性、奇偶性等性质。
(3)结合图象,讲解指数函数、对数函数的图象特点,以及它们之间的关系。
3. 应用拓展:通过实例让学生学会运用指数函数、对数函数解决实际问题,如人口增长、放射性衰变等。
4. 难点解析:针对学生在学习过程中遇到的难点,如指数函数、对数函数的图象特点,以及实际问题的解决方法,进行详细讲解和分析。
5. 课堂练习:布置相关练习题,让学生巩固所学知识,提高解题能力。
6. 总结:对本节课的主要内容进行总结,强调指数函数、对数函数的性质和应用。
7. 课后作业:布置适量作业,让学生进一步巩固所学知识。
六、教学评价1. 课堂讲解:观察学生在课堂上的参与程度、提问回答情况,了解学生对指数函数、对数函数概念和性质的理解程度。
4.2.2指数函数的图象和性质
4.2.2指数函数的图象和性质(人教A版普通高中教科书数学必修第一册第四章)一、教学目标1.类比研究幂函数性质的过程和方法,通过指数函数图象得出其性质;2.利用指数函数的图象研究指数函数的性质,并用所得性质进一步理解指数函数的图象;3.通过信息技术手段更好地理解指数函数的图象和性质。
二、教学重难点1.教学重点:指数函数的图象和性质2.教学难点:指数函数性质的理解三、教学过程师生活动:从简单的函数2x y =入手,教师引导学生分析函数的性质,包括定义域,值域,奇偶性,单调性.由概念知定义域为R ,根据指数运算,分析值域为(0,)+∞,进而分析出函数的图象应该都在x 轴上方.通过特殊点的分析,得出函数不具有奇偶性.单调性需要借助图象研究.学生在列表时,分析x 的取值,要兼顾正值和负值,在性质指导下画出函数的图象.问题4:请同学们画出指数函数1()2x y =的图象,观察函数的图象.师生活动:教师布置任务,学生自己选择方法作图,观察图象,探究函数的性质.问题5:你是如何画出函数1()2x y =的图象?描点法还是利用对称性?请讲出选择的理由.师生活动:教师询问学生作图的方法,学生反馈自己用的是描点法还是利用了函数之间的对称性.因为1()22x x y -==,点(x ,y )与点(-x ,y )关于y 轴对称,所以函数2x y =图象上任意一点(,)P x y 关于y 轴的对称点1(,)P x y -都在函数1()2x y =的图象上,反之亦然.根据这种对称性,可以利用函数2x y =的图象,画出1()2xy =的图象.并将此结论推广:底数互为倒数的两个指数函数的图象关于y 轴对称,所以利用这种对称性,可以由一个函数的图象得到另一个函数的图象.设计意图:根据函数的解析式先初步分析函数的性质,再选择合适的点,利用描点法画出函数的图象,然后由图象概括出函数的性质,这是我们研究具体函数的过程.让学生观察两个具体的指数函数的图象,对指数函数的图象和性质有一个初步的认知.学生在作图的过程中得出结论:底数互为倒数的两个指数函数的图象关于y 轴对称.根据这种对称性,我们将指数函数x y a =的图象按底数a 的取值,分作1a >和01a <<两种类型进行研究.让学生学会用联系的观点看待问题.问题6:我们将指数函数x y a =的图象按底数a 的取值,分作1a >和01a <<两种类型进行研究.为了得到指数函数x y a =的性质,我们还需要画出更多的具体的指数函数的图象进行观察.问题7:画出指数函数3x y =和4x y =的图象,分析它们的性质.画出指数函数1()3x y =和1()4xy =的图象,分析它们的性质.师生活动:学生动手操作,观察分析,师生共同评价.教师指导学生先研究底数1a >的情况,可追问学生在1a >的范围内是否还需要进一步分类,为什么?引导学生还是要从具体的指数函数进行研究.学生画出指数函数3x y =和4x y =的图象,教师借助几何画板呈现多个函数的图象.观察图象,师生共同总结出图象的直观性质;当1a >时,底数越大越靠近y 轴,而当01a <<,底数越小越靠近y 轴,故底数互为倒数的两个指数函数图象关于y 轴对称。
《指数函数的概念》教案
《指数函数的概念》教案一、教学目标:1. 理解指数函数的定义和基本性质。
2. 学会运用指数函数解决实际问题。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容:1. 指数函数的定义与表达式2. 指数函数的性质3. 指数函数的应用三、教学重点与难点:1. 重点:指数函数的定义、性质及应用。
2. 难点:指数函数在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究指数函数的定义和性质。
2. 用实例讲解指数函数在实际问题中的应用,提高学生的学习兴趣。
3. 利用数形结合法,帮助学生直观地理解指数函数的性质。
五、教学过程:1. 引入:通过生活中的实例,如细胞分裂、放射性衰变等,引导学生思考指数增长的特点。
2. 讲解:介绍指数函数的定义、表达式,并通过PPT展示指数函数的图像,让学生直观地感受指数函数的性质。
3. 实践:让学生分组讨论,每组选取一个实际问题,运用指数函数进行解决,并分享解题过程和答案。
4. 总结:对本节课的内容进行总结,强调指数函数的性质和应用。
5. 作业:布置相关练习题,巩固所学内容。
教案仅供参考,具体实施时可根据实际情况进行调整。
六、教学评价:1. 评价指标:学生对指数函数定义的理解、指数函数性质的掌握以及实际问题中的应用能力。
2. 评价方法:课堂练习、小组讨论、课后作业和考试。
3. 评价内容:a. 指数函数的定义及其表达式;b. 指数函数的单调性、奇偶性、周期性等性质;c. 运用指数函数解决实际问题的能力。
七、教学资源:1. PPT课件:展示指数函数的图像、实例及应用;2. 练习题:涵盖指数函数的定义、性质和应用;3. 实际问题案例:用于引导学生运用指数函数解决实际问题;4. 小组讨论工具:如白板、彩笔等。
八、教学进度安排:1. 课时:2课时(90分钟);2. 教学环节:引入(10分钟)、讲解(40分钟)、实践(25分钟)、总结(10分钟)、作业布置(5分钟)。
高中数学《指数函数及其性质》教学案例分析
高中数学《指数函数及其性质》教学案例分析一、教学目标:通过本节课的学习,学生能够掌握指数函数及其性质的概念和基本性质,理解指数函数和反函数的图像和性质,并能够应用指数函数解决实际问题。
二、教学内容:指数函数及其性质三、教学重点、难点:难点:指数函数的反函数的导出,指数函数应用实际问题的解决。
四、教学方法:1.启发式引导法:通过讨论学生关心的问题、提出有针对性的问题,激发学生学习的兴趣和动力,引导学生主动思考问题。
2.比较法:通过比较指数函数与一次函数、二次函数等其他函数的特点,加深学生对指数函数的理解。
3.演示法:通过展示指数函数和反函数的图像和性质,直观生动地呈现指数函数的特点。
4.探究法:通过引导学生自己发现指数函数和反函数的性质,激发学生的学习兴趣和动力。
五、教学资源:1.多媒体课件2.实物举例3.黑板、彩笔六、教学过程:1.引出主题(1)现实应用:为什么贷款利率涉及到指数函数?(2)提问:如何表示在贷款过程中每个月的利息?(3)引出概念:指数函数的概念2.概念讲解(1)定义:$f(x)=a^x(a>0,a\neq1)$ ,其中 $a$ 为底数,$x$ 为自变量,$a^x$ 为函数值。
(2)分类讨论:$\qquad$ $a>1$ 时函数单调递增,$0<a<1$ 时函数单调递减。
(3)基本性质:$\qquad$ ①定义域为实数集 $R$,值域为 $(0,+\infty)$;$\qquad$ ②过点 $(0,1)$,与 $y$ 轴交于点 $(0,a^0=1)$,在 $x<0$ 的区间上单调递减,在 $x>0$ 的区间上单调递增;$\qquad$ ③满足如下运算法则:$\qquad\qquad$ $\because$ $a^xa^y=a^{x+y}$$\qquad$ ④导数公式:$f'(x)=a^x\ln{a}$。
3.图像展示(1)给出 $a>1$ 时的函数图像,并讨论其性质。
指数与指数幂的运算教案
指数与指数幂的运算教案一、教学目标:知识与技能目标:1. 理解指数与指数幂的概念。
2. 掌握指数幂的运算性质和运算法则。
3. 能够运用指数幂的运算性质解决实际问题。
过程与方法目标:1. 通过观察、分析和归纳,培养学生发现和提出问题的能力。
2. 利用同底数幂的乘法、除法、乘方和积的乘方等运算法则,提高学生的逻辑思维能力。
情感态度与价值观目标:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生勇于探索、合作的科学精神。
二、教学重点与难点:重点:1. 指数与指数幂的概念。
2. 指数幂的运算性质和运算法则。
难点:1. 理解指数幂的运算性质和运算法则。
2. 运用指数幂的运算性质解决实际问题。
三、教学准备:教师准备:1. 指数与指数幂的相关教学素材。
2. 教学课件或板书设计。
学生准备:1. 预习指数与指数幂的相关知识。
2. 准备好笔记本,用于记录重点知识和练习。
四、教学过程:1. 导入:教师通过引入日常生活中的实际问题,如“银行的复利计算”,引导学生思考指数与指数幂的概念。
2. 新课讲解:教师讲解指数与指数幂的概念,通过示例和图示,帮助学生理解指数幂的运算性质和运算法则。
3. 课堂练习:教师给出一些指数幂的运算题目,要求学生独立完成,并及时给予指导和反馈。
4. 应用拓展:教师提出一些实际问题,引导学生运用指数幂的运算性质解决,培养学生的应用能力。
五、课后作业:教师布置一些有关指数与指数幂的练习题目,要求学生在课后完成,巩固所学知识。
教学反思:教师在课后对自己的教学进行反思,了解学生的学习情况,针对存在的问题,调整教学方法和策略,以提高教学效果。
六、教学评估1. 课堂提问:教师通过提问了解学生对指数与指数幂概念的理解程度,以及学生对指数幂运算性质和运算法则的掌握情况。
2. 课堂练习:教师观察学生在练习过程中的表现,评估学生对指数幂运算的熟练程度。
3. 课后作业:教师批改课后作业,了解学生对课堂所学知识的掌握情况,发现问题及时给予反馈。
指数函数教案
指数函数教案指数函数教案(通用3篇)指数函数教案1教材分析(一)本课时在教材中的地位及作用:指数函数的教学共分两个课时完成。
第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。
指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
(二)教学目标:1、知识目标:掌握指数函数的概念,图像和性质。
2、能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。
3、德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。
(三)教学重点,难点和关键:1、重点:指数函数的定义、性质和图象。
2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。
3、关键:能正确描绘指数函数的图象。
教学基本思路:在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。
一、学法指导:1、学情分析:大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。
2、学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。
并逐步学会独立提出问题、解决问题。
总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
指数函数教案2教学目标:1、进一步理解指数函数的性质。
《指数函数的概念》教案
《指数函数的概念》教案一、教学目标1. 理解指数函数的定义和性质。
2. 掌握指数函数的图像和特征。
3. 能够运用指数函数解决实际问题。
二、教学内容1. 指数函数的定义:指数函数是一种形式的函数,形如f(x) = a^x,其中a 是底数,x 是指数。
2. 指数函数的性质:底数a > 1 时,函数随着x 的增大而增大;底数0 < a < 1 时,函数随着x 的增大而减小。
3. 指数函数的图像:指数函数的图像通常是一条曲线,当底数a > 1 时,曲线向上凸起;当底数0 < a < 1 时,曲线向下凸起。
4. 指数函数的应用:解决实际问题中涉及增长、衰减、人口增长等方面的问题。
三、教学重点与难点1. 重点:指数函数的定义和性质。
2. 难点:指数函数的图像和应用。
四、教学方法1. 讲授法:讲解指数函数的定义、性质和图像。
2. 案例分析法:分析实际问题,运用指数函数解决。
3. 互动讨论法:引导学生提问、思考、交流。
五、教学过程1. 引入:通过生活实例,如人口增长、放射性衰变等,引导学生思考指数函数的应用。
2. 讲解:讲解指数函数的定义、性质和图像,结合实例进行分析。
3. 练习:让学生绘制指数函数的图像,观察和分析函数特征。
4. 应用:运用指数函数解决实际问题,如人口增长预测、放射性物质衰减等。
六、教学评价1. 评价指标:学生对指数函数定义、性质和图像的理解程度,以及运用指数函数解决实际问题的能力。
2. 评价方法:课堂提问、练习题、小组讨论、课后作业等。
3. 评价结果:根据学生的表现,给予及时反馈,鼓励优点,指出不足,促进学生的学习进步。
七、教学资源1. 教材:指数函数的相关章节。
2. 课件:用于展示指数函数的定义、性质和图像。
3. 练习题:用于巩固所学知识,提高解题能力。
4. 实际问题案例:用于引导学生运用指数函数解决实际问题。
八、教学进度安排1. 第一课时:介绍指数函数的定义和性质。
幂函数、指数函数和对数函数·对数及其运算法则·教案
幂函数、指数函数和对数函数·对数及其运算法则·教案一、教学目标:1. 理解幂函数、指数函数和对数函数的概念及其性质。
2. 掌握对数的定义及其运算法则。
3. 能够运用幂函数、指数函数和对数函数解决实际问题。
二、教学内容:1. 幂函数:定义、性质及应用。
2. 指数函数:定义、性质及应用。
3. 对数函数:定义、性质及应用。
4. 对数的运算法则:乘法法则、除法法则、幂法则、对数换底公式。
三、教学重点与难点:1. 重点:幂函数、指数函数和对数函数的概念及其性质,对数的运算法则。
2. 难点:对数函数的应用,对数的运算法则的推导和应用。
四、教学方法:1. 采用讲授法,讲解幂函数、指数函数、对数函数的定义、性质和对数运算法则。
2. 利用例题和练习题,让学生通过自主学习和合作交流,巩固所学知识。
3. 运用信息技术辅助教学,展示函数图像,增强学生对函数性质的理解。
五、教学过程:1. 导入:通过复习幂函数、指数函数的概念和性质,引出对数函数的概念。
2. 新课讲解:讲解对数函数的定义、性质和对数运算法则,结合实例进行解释。
3. 例题讲解:分析并解决有关对数函数的例题,让学生掌握对数函数的解题方法。
4. 练习与讨论:学生自主完成练习题,合作交流解题心得,教师进行点评和指导。
6. 课后作业:布置相关练习题,让学生巩固所学知识。
六、教学评估:1. 课堂提问:通过提问了解学生对幂函数、指数函数、对数函数概念及其性质的掌握情况。
2. 练习题完成情况:检查学生对对数函数及其运算法则的应用能力。
3. 课后作业:评估学生对课堂所学知识的巩固程度。
七、教学反思:2. 针对学生的薄弱环节,调整教学策略,提高教学效果。
3. 探索更多有效的教学方法,激发学生的学习兴趣。
八、拓展与延伸:1. 引导学生思考实际生活中的幂函数、指数函数和对数函数现象,提高学生运用所学知识解决实际问题的能力。
2. 介绍对数函数在其他学科领域的应用,如物理学、生物学等,拓宽学生的知识视野。
高中数学解题技巧之指数函数求解
高中数学解题技巧之指数函数求解在高中数学中,指数函数是一个重要的内容,也是学生们经常遇到的难点之一。
指数函数的求解需要掌握一些基本的解题技巧,本文将介绍一些常见的指数函数求解方法,并通过具体题目进行说明和分析,帮助高中学生和家长更好地理解和应用这些技巧。
一、指数函数的基本性质在开始讲解指数函数的求解技巧之前,我们首先需要了解一些指数函数的基本性质。
指数函数的一般形式为f(x) = a^x,其中a为底数,x为指数。
指数函数的特点是底数a大于0且不等于1,且函数图像是递增的。
在解题过程中,我们需要利用指数函数的性质来进行计算和推导。
二、指数函数的求解技巧1. 指数函数的幂运算在指数函数的求解中,我们经常需要进行幂运算。
当底数相同,指数相加或相减时,可以利用指数运算的性质进行简化。
例如,计算2^3 * 2^4,可以将底数相同的两个指数相加,得到2^(3+4) = 2^7。
这样,我们可以简化计算过程,得到最终的结果。
2. 指数函数的对数运算对数是指数函数的逆运算,可以帮助我们解决一些指数函数的求解问题。
当我们需要求解指数函数的指数时,可以利用对数运算来简化计算。
例如,对于方程2^x = 8,我们可以将其转化为对数方程log2(8) = x。
通过对数运算,我们可以得到x = 3。
因此,指数函数的求解可以转化为对数方程的求解,从而简化计算过程。
3. 指数函数的性质运用在指数函数的求解中,我们还可以利用指数函数的性质来进行推导和计算。
例如,当指数函数的底数为e时,我们可以利用自然对数的性质来求解问题。
自然对数的底数e约等于2.71828,它具有很多特殊的性质。
例如,e^x = e^(x+y)可以简化为e^x = e^x * e^y,从而得到e^y = 1。
通过利用自然对数的性质,我们可以简化指数函数的计算过程。
三、具体题目的解析为了更好地理解和应用指数函数的求解技巧,我们来看几个具体的题目,并进行详细的解析和分析。
指数函数的图像和性质教案设计
指数函数的图像和性质教案设计一、教学目标1. 让学生理解指数函数的概念,掌握指数函数的图像和性质。
2. 培养学生运用指数函数解决实际问题的能力。
3. 提高学生对数学知识的兴趣,培养学生的逻辑思维能力。
二、教学内容1. 指数函数的定义与性质2. 指数函数的图像特点3. 指数函数的实际应用4. 指数函数的图像和性质的综合运用三、教学重点与难点1. 教学重点:指数函数的定义、图像特点和性质。
2. 教学难点:指数函数图像和性质的运用。
四、教学方法1. 采用问题驱动法,引导学生探索指数函数的图像和性质。
2. 利用多媒体课件,直观展示指数函数的图像,帮助学生理解。
3. 结合实际例子,让学生体验指数函数在实际生活中的应用。
4. 开展小组讨论,培养学生的合作能力和解决问题的能力。
五、教学过程1. 引入:通过回顾幂函数的知识,引导学生思考指数函数的定义和特点。
2. 讲解:讲解指数函数的定义,引导学生掌握指数函数的基本性质。
3. 展示:利用多媒体课件,展示指数函数的图像,引导学生观察和分析图像特点。
4. 实践:让学生绘制指数函数的图像,观察和分析图像的性质。
5. 应用:结合实际例子,让学生运用指数函数解决实际问题。
6. 总结:对本节课的内容进行总结,强调指数函数的图像和性质。
7. 作业:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问,了解学生对指数函数概念和性质的理解程度。
2. 练习题:布置针对性的练习题,检验学生对指数函数图像和性质的掌握情况。
3. 小组讨论:评估学生在小组讨论中的参与程度和合作能力。
七、拓展与延伸1. 引导学生思考:指数函数在实际生活中的应用场景有哪些?2. 探讨:如何利用指数函数解决实际问题?3. 布置研究性学习任务:让学生研究指数函数在其他领域的应用。
八、教学反思1. 教师总结本节课的教学效果,反思教学过程中的优点和不足。
2. 学生反馈学习感受,提出改进建议。
3. 针对教学不足,制定改进措施,为下一节课的教学做好准备。
指数函数的图象和性质教案
4.2.2 指数函数的图象和性质4号一、【教学目标】1.采用“疑、探、导、练”教学法,根据观察指数函数底数对指数函数图象的影响,并通过图象归纳指数函数的性质;2.通过画指数函数图象、归纳指数函数性质与运用过程,培养学生的观察能力及数形结合、特殊--一般、分类讨论的数学思想。
3.让学生感受数学问题探索的乐趣,体验成功的喜悦,发展学生逻辑推理、直观想象的核心素养。
二、【教学重、难点】教学重点:理解指数函数的图象及性质。
教学难点:指数函数性质的归纳与运用。
三、【教学方法】我校学生数学基础比较薄弱,学生对数学普遍不感兴趣。
本节课探究性比较强,而且突出数学图形的运用,这恰是学生学习的弱项,但是思想比较活跃的他们对新事物具有强烈的好奇心,动手能力、观察能力比较强。
因此本节课通过结合计算机软件工具,让学生更直观形象地理解指数函数的图象和性质,让学习成为一种愉悦的主动认知过程,切实做到将数学课堂还给学生。
四. 【教学过程设计】二、合作探究,探索新知6、将这四个函数图象放在同一个坐标系中图象关于和xxayay)1(== y轴对称7、归纳指数函数的性质:通过前面对图象特征的充分认识,引导学生一起将这些图象特征转化成数学语言,即得到指数函数的性质。
xy a=a>1 0<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1非奇非偶函数非奇非偶函数在R上是增函数在R上是减函数教师:现在我把刚刚画的四个函数放在同一个坐标系,你有什么发现?教师:引导学生去观察底数互为倒数的两个指数函数图象关于Y轴对称。
教师:观察上面函数图象,你能归纳出指数函数y=a x(a>0,且a≠1)的图象特征和性质吗?教师引导学生观察图象,填写表格,讨论交流,概括总结出指数函数的基本性质。
通过让学生动眼观察、动脑思考,并引导他们对所发现的知识进行归纳、分类,目的在于让学生成为数学课堂的主人,在这一过程中不仅让学生的主体意识得以充分的体现,也让学生经历知识的产生和发展过程,感受数学问题探索的乐趣,体验成功的喜悦,体会数形结合及分类讨论的数学思想,从而有效的达到对知识的理解,进一步发展学生的数学抽象、直观想象的数学核心素养。
《指数函数》教学设计
《指数函数》教学设计句容市第三中学 余东云一、教材分析(一)教材的地位和作用“指数函数”的教学共分三个课时完成,第1课时为指数函数的概念,具体指数函数的图像和性质;第2课时为指数函数的图像和性质及简单应用;第三课时为指数函数的性质应用。
本课时主要通过对指数函数图像的研究归纳其性质,并进行简单的应用。
“指数函数”是函数中的一个重要基本初等函数,是后续知识——对数函数(指数函数的反函数)的准备知识。
通过这部分知识的学习进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识并体会研究函数较为完整的思维方法,此外还可类比学习后面的其它函数。
(二)教学目标1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质,会进行指数函数性质的简单应用。
质,会进行指数函数性质的简单应用。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
力和分析问题、解决问题的能力。
3、情感目标:通过探究体会通过探究体会“数形结合”“数形结合”“数形结合”的思想;的思想;的思想;体会研究函数由特殊到一般再到特殊的体会研究函数由特殊到一般再到特殊的研究学习过程;研究学习过程;体验研究函数的一般思维方法。
体验研究函数的一般思维方法。
体验研究函数的一般思维方法。
通过学生的参与过程,通过学生的参与过程,通过学生的参与过程,培养他们培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
(三)教学重点和难点1、重点:指数函数的性质和图像,指数函数性质的简单应用。
2、难点:指数函数性质的归纳。
、难点:指数函数性质的归纳。
二、教法分析 (一)教学方式直接讲授与启发探究相结合直接讲授与启发探究相结合(二)教学手段借助多媒体,展示学生的做图结果;演示指数函数的图像 三、教学过程 (一)复习旧知函数的三要素是什么?函数的单调性反映了函数哪方面的特征?答:函数的三要素包括:定义域、值域、对应法则。
指数函数教案:轻松掌握数学难点
指数函数教案:轻松掌握数学难点教学目标:1. 理解指数函数的定义和性质;2. 学会运用指数函数解决实际问题;3. 提高数学思维能力和解决问题的能力。
教学内容:一、指数函数的定义与性质1. 引入指数函数的概念;2. 讲解指数函数的性质;二、指数函数的图像与性质1. 绘制常见指数函数的图像;2. 分析指数函数图像的性质;3. 引导学生通过图像理解指数函数的单调性、奇偶性等性质。
三、指数函数的实际应用1. 引入实际应用问题;2. 讲解如何运用指数函数解决实际问题;3. 引导学生练习运用指数函数解决实际问题。
四、指数函数的求解与变换1. 讲解指数函数的求解方法;2. 讲解指数函数的变换规律;3. 引导学生运用求解和变换方法解决实际问题。
五、巩固练习与拓展提高1. 设计针对性练习题;2. 引导学生进行小组讨论和合作解答;教学资源:1. 教学PPT;2. 指数函数图像资料;3. 练习题和答案。
教学过程:1. 引入新课:通过生活实例或问题引入指数函数的概念;2. 讲解与演示:讲解指数函数的定义与性质,展示指数函数的图像;3. 练习与讨论:设计练习题,引导学生进行自主学习和小组讨论;5. 拓展提高:引导学生运用指数函数解决实际问题,提高解决问题的能力。
教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习题解答:评估学生练习题的完成情况,检查理解程度;3. 实际问题解决:评估学生在解决实际问题时的运用能力;4. 小组讨论:评估学生在小组讨论中的合作意识和解决问题的能力。
六、指数函数的求解与变换(续)1. 进一步讲解指数函数的求解方法,包括指数方程和指数不等式的求解;2. 引导学生掌握指数函数的变换规律,如复合函数的求解和函数图像的平移;3. 通过例题和练习题,巩固学生对指数函数求解与变换的掌握。
七、指数函数与对数函数的关系1. 介绍指数函数与对数函数的互为反函数的关系;2. 讲解指数函数和对数函数在数学和实际应用中的相互转化;3. 引导学生通过举例理解指数函数和对数函数的联系与区别。
高一数学指数函数重点知识点解析:指数函数、函数奇偶性
高一数学指数函数重点知识点解析:指数函数、函数奇偶性高一数学指数函数重点知识点解析:指数函数、函数奇偶性【】为了帮助考生们了解高中学习信息,查字典数学网分享了高一数学指数函数重点知识点解析:指数函数、函数奇偶性,供您参考!高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。
指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
高中数学教案《指数函数》
教学计划:《指数函数》一、教学目标1.知识与技能:学生能够理解指数函数的概念,掌握指数函数的一般形式及其性质。
学生能够识别并绘制指数函数的图像,理解图像与函数性质之间的关系。
学生能够运用指数函数解决简单的实际问题,如增长率、衰减率等。
2.过程与方法:通过观察、比较、归纳等方法,引导学生发现指数函数的特征和规律。
通过动手实践(如绘制函数图像),加深学生对指数函数性质的理解。
通过案例分析,培养学生将实际问题抽象为数学问题的能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。
培养学生的逻辑思维能力和严谨的科学态度。
引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。
二、教学重点和难点重点:指数函数的概念、一般形式、性质及其图像特征。
难点:理解指数函数图像与函数性质之间的关系,以及运用指数函数解决实际问题。
三、教学过程1. 引入新课(5分钟)生活实例引入:通过展示细胞分裂、人口增长、放射性物质衰减等实际问题的例子,引导学生思考这些现象背后的数学规律。
提出问题:引导学生观察这些现象的共同点,即都涉及到了“基数”和“指数”的概念,进而引出指数函数的概念。
明确目标:介绍本节课将要学习的内容——指数函数,并说明学习目标。
2. 讲授新知(15分钟)定义讲解:详细讲解指数函数的概念、一般形式(如,其中且)及其基本性质(如定义域、值域、单调性等)。
图像展示:利用多媒体设备展示不同底数下指数函数的图像,引导学生观察图像特征,如底数大于1时函数图像上升,底数在0和1之间时函数图像下降等。
性质归纳:引导学生根据图像特征归纳出指数函数的性质,如单调性、过定点(如)等。
3. 案例分析(10分钟)例题讲解:选取一两个具有代表性的例题(如计算复利、分析人口增长趋势等),详细讲解如何运用指数函数模型解决问题。
思路展示:通过板书或PPT展示解题思路和步骤,引导学生理解如何将实际问题抽象为数学问题并求解。
高一数学第4章 指数函数与对数函数 章末重难点归纳总结(解析版)
第4章指数函数与对数函数章末重难点归纳总结重点一 指数对数的运算【例1】(2022·江苏)化简与求值: (1)123(31)(3)8π-(2)23log 3312514log 8lg lg25lg e 162-⎛⎫+-+-- ⎪⎝⎭(1)213102270.00210(51)8π---⎛⎫-+-+ ⎪⎝⎭.(2)2lg25lg2lg50(lg2)+⋅+ 【答案】(1)π; (2)1121551918;(4)2 【解析】(1)原式1331π3(2)=+-+π=.(2)原式232log 32252log 8lg +lg25lg8ln e 16=----161393lg(25)582=-+⨯⨯-36lg102=+-112=.(3)213102270.00210(51)8π---⎛⎫-+-+ ⎪⎝⎭()2313125150010123---⎡⎤+⎛⎫=-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦45555192=++1551918=; (4)2lg25lg2lg50(lg2)+⋅+()22lg5lg21lg5(lg2)=+++()2lg5lg2lg2lg2lg5=+++()2lg2lg5=+2=【一隅三反】1.(2022·全国·高一课时练习)计算:(1)7lg142lg lg 7lg183-+-;(2)()2lg53lg 22lg5lg 2lg5+++⨯;(3)()()223666661log 2log 33log 2log 18log 23⎛⎫++⨯ ⎪⎝⎭.(4)7log 237log 27lg 25lg 47log 1++++;lg 10lg 0.1⨯【答案】(1)0 (2)3 (3)1 (4)7 (5)4-【解析】(1)方法一:(直接运算)原式227147lg14lg lg 7lg18lg lg1037183⎛⨯⎛⎫=-+-==⎫⎪⎝⎭= ⎪⎝⎭⨯. 方法二:(拆项后运算)原式()()()2lg 272lg7lg3lg7lg 32=⨯--+-⨯lg 2lg72lg72lg3lg72lg3lg 20=+-++--=.(2)原式()()lg5lg5lg22lg2lg5lg2=⨯++++()lg5lg102lg10lg22lg5lg23=⨯++=++=. (3)原式()()3226666318log 2log 33log 2log 2=++⨯()()2236666log 2log 33log 2log 9=++⨯()()226666log 2log 32log 2log 3=++⨯()626log 2log 31=+=. (4)原式()3lg 2542527=+⨯+=+=;(5)原式()21128125lg lg1025411lg10lg102-⨯⨯===-⨯-⨯. 2.(2022·湖北)计算下列各式的值: (1)已知13x x -+=,求:221122x x x x--+-.(2)721163log 0.253432927211.58223lg25lg4()log3?4637-⎛⎫⎛⎫⨯++++ ⎪ ⎪⎝⎭⎝⎭【答案】(1)7±(2)115【解析】(1)因为()22212927x x x x--+=+-=-=,而21112221x x x x --⎛⎫-=-+= ⎪⎝⎭,所以11221x x --=±,所以2211227x x x x--+=±-.(2)原71111313333log 223442332222223lg1007log 3log 224272212333-⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯-+++=++⨯-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭115=. 3.(2022·全国·高一课时练习(理))(1)计算:())()242233330.123331228-⎛⎫⎛⎫-+⨯-= ⎪⎭- ⎪⎝⎝⎭________;(2)化简:12112133265a b a b a b---⎛⎫⋅⋅⋅ ⎪⎝⎭=⋅________. 【答案】221a【解析】(1)())()242233330.123331228-⎛⎫⎛⎫-+⨯-- ⎪ ⎪⎝⎭⎝⎭421331322431332192⎡⎤⎡⎤⎛⎫⎛⎫⎢⎥=+⨯-⨯⎢⎥ ⎪⎪⎢⎥⎝⎭⎢⎥⎝⎭⎣⎦⎢⎥⎣⎦4913212294=+⨯-=.(2)原式111111111533221032623615661a b ababa b aa b-----+--⋅⋅⋅==⋅=⋅=⋅.故答案为22,1a重点二 指数函数【例2】(2022·广东·深圳市)已知函数()()240,12x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值;(2)求函数()f x 的值域;(3)当()1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.【答案】(1)2a =(2)()1,1-(3)10,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)因为()f x 是定义在R 上的奇函数,所以()002420022a a a f a a a -+-===++,解得2a =, 当2a =时,()2121x x f x -=+,此时()()21122112x x x x f x f x -----===-++,所以2a =时,()2121x x f x -=+是奇函数.所以2a =;(2)由(1)可得()2121221212121x x x x x f x -+-===-+++,因为20x >,可得211x +>,所以10121x <<+,所以22021x -<-<+,所以211121x -<-<+,所以函数()f x 的值域为()1,1-;(3)由()220xmf x +->可得()22x mf x >-,即122221x x xm ->+-⋅,可得()()212122x xx m +->-对于()1,2x ∈恒成立, 令()211,3xt -=∈,则()()2121t t tt m t-=-++>,函数21y t t =-+在区间()1,3单调递增,所以221013133t t -+<-+=,所以103m ≥,所以实数m 的取值范围为10,3⎡⎫+∞⎪⎢⎣⎭.【一隅三反】1.(2022·贵州·黔西南州金成实验学校高一期末)已知函数4()12x f x a a=-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围. 【答案】(1)证明过程见解析;(2)()(),41,-∞-+∞(3)()(),11,k ∈-∞-+∞【解析】(1)由题意得:()40102f a=-=+,解得:2a =,142()112221x x f x +=-=-++, 任取12,x x R ∈,且12x x <,则()()()()()1212122121211111122222222222()112121212121212121x x x x x x x x x x xx f x f x +++++----=--+=-==++++++++因为12,x x R ∈,且12x x <,所以1211220x x ++-<,12210,210x x +>+>,所以()()()1221111222()02121x x x x f x f x ++--=<++,故()12()f x f x <所以函数()f x 在R 上单调递增; (2)()22(4)0f x x f x ++->,即()22(4)f x x f x +>--,因为2()121x f x =-+为定义在R 上的奇函数,所以()22(4)(4)f x x f x f x +>--=-, 因为2()121xf x =-+为定义在R 上单调递增,所以224x x x +>-,解得:1x >或4x <-,所以解集为:()(),41,-∞-+∞;(3)()()211121x g x kf x k ⎛⎫=-=-- ⎪+⎝⎭有零点,当0k =时,()()11g x kf x =-=-,没有零点,不合题意,舍去; 当0k ≠时,即21121xk-=+有根, 其中当0x >时,21x >,212x +>,20121x <<+, 故()2()10,121x f x =-∈+, 又因为2()121x f x =-+在R 上为奇函数, 所以当0x <时,()2()11,021xf x =-∈-+,且()00f =, 所以2()121x f x =-+在R 上的值域为()1,1-,故()()11,00,1k ∈-⋃, 解得:()(),11,k ∈-∞-+∞,所以实数k 的取值范围为()(),11,k ∈-∞-+∞.2.(2022·全国·高一课时练习)已知函数x f xb a (,a b 为常数,0a >,且1a ≠)的图象经过点()1,6A ,3,24B .(1)试确定函数()f x 的解析式;(2)若关于x 的不等式110x xm a b ⎛⎫⎛⎫+-≥ ⎪ ⎪⎝⎭⎝⎭在区间(],1-∞上恒成立,求实数m 的取值范围.【答案】(1)()32xf x =⨯(2)5,6⎛⎤-∞ ⎥⎝⎦【解析】(1)因为函数x f xb a 的图象经过点()1,6A 和3,24B ,可得3624ab b a =⎧⎨⋅=⎩,结合0a >,且1a ≠,解得2,3a b ==, 所以函数()f x 的解析式为()32xf x =⨯.(2)要使1123xxm 在区间(],1-∞上恒成立,只需保证函数1123x xy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在区间(],1-∞上的最小值不小于m 即可,因为函数1123xxy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在区间(],1-∞上单调递减,所以当1x =时,1123xxy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭取得最小值,最小值为56,所以只需56m即可,即实数m 的取值范围为5,6⎛⎤-∞ ⎥⎝⎦.3.(2020·广西·兴安县第二中学高一期中)已知定义域为R 的函数 2()2xxb f x a-=+ 是奇函数. (1)求a 、b 的值;(2)证明f (x )在(-∞,+∞)上为减函数;(3)若对于任意t ∈R ,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的范围 【答案】(1)1a =,1b =;(2)证明见解析;(3)13k <-【解析】(1)由已知1(0)01b f a -==+,1b =,12()21x x f x -=+, 121(1)22f a a -==-++,1112(1)1122f a a --==++,所以110221a a -+=++,解得1a =, 12()21x x f x -=+,此时()f x 定义域是R ,1221()()2112x xxxf x f x -----===-++,()f x 为奇函数. 所以1a =,1b =;(2)由(1)12()21x x f x -=+2121x=-++, 设任意两个实数12,x x ,12x x <,则1202121x x <+<+,12222121x x >++,所以1222112121x x -+>-+++,即12()()f x f x >,所以()f x 是减函数;(3)不等式22(2)(2)0f t t f t k -+-<化为22(2)(2)f t t f t k -<--, ()f x 是奇函数,则有22(2)(2)f t t f t k -<-+, ()f x 是减函数,所以2222t t t k ->-+,所以2211323()33k t t t <-=--恒成立,易知2113()33t --的最小值是13-,所以13k <-.重点三 对数函数【例3】(2022·甘肃定西·高一阶段练习)已知函数()()32log 2axf x a R x -=∈-的图象关于原点对称. (1)求a 的值;(2)当[]3,5x ∈时,()()3log 2f x x k <+恒成立,求实数k 的取值范围. 【答案】(1)1a =-(2)()1,+∞【解析】(1)函数()32log 2axf x x -=-的图象关于原点对称,则函数()32log 2axf x x -=-为奇函数,有()()f x f x -=-, 即3322log log 22ax ax x x +-=----,即322log 022ax ax x x +-⎛⎫⋅= ⎪---⎝⎭,即222414a x x 解得1a =±,当1a =时,不满足题意,∴1a =-. (2)由()()3log 2f x x k <+,得()332log log 22xx k x +<+-,即222x k x x +>--,令()24122x g x x x x x +=-=+---,易知()g x 在[]3,5x ∈上单调递减, 则()g x 的最大值为()32g =.又∴当[]3,5x ∈时,()()3log 2f x x k <+恒成立, 即222x k x x +>--在[]3,5x ∈恒成立,且20x k +>,∴22k >,1k >, 即实数k 的取值范围为()1,+∞. 【一隅三反】1.(2022·全国·高一课时练习)已知函数()()212log 23f x x ax =-+.(1)若函数()f x 的定义域为()(),13,-∞⋃+∞,求实数a 的值; (2)若函数()f x 的定义域为R ,值域为(],1∞--,求实数a 的值; (3)若函数()f x 在(],1-∞上单调递增,求实数a 的取值范围. 【答案】(1)2a =(2)实数a 的值为1或1-(3)[)1,2 【解析】(1)令()223u x x ax =-+,则由题意可知1,3为方程2230x ax -+=的两个根,所以函数()u x 的图像的对称轴方程为213222a x -+===-,即2a =. (2)由题意,对于方程2230x ax -+=,()224130a ∆=--⨯⨯<,即33a <<由函数()f x 的值域为(],1-∞-,可得当x a =时,()()212log 231f a a a a =-⨯+=-,解得1a =或1-.故实数a 的值为1或1-. (3)函数()f x 在(],1∞-上单调递增,则()223u x x ax =-+在(],1∞-上单调递减.易知函数()u x 的图像的对称轴为直线x a =,所以1a ≥. 易知()u x 在1x =时取得最小值,当1x =时,有()11230u a =-+>,得2a <, 所以实数a 的取值范围是[)1,2.2.(2022·全国·高一单元测试)已知函数()()log 1a f x bx =+(0a >且1a ≠),()11f =,()32f =. (1)求函数()f x 的解析式;(2)请从∴()()y f x f x =--,∴()()y f x f x =--,∴()()y f x f x =+-这三个条件中选择一个作为函数()g x 的解析式,指出函数()g x 的奇偶性,并证明. 注:若选择多个条件分别解答,按第一个解答计分. 【答案】(1)()()2log 1f x x =+;(2)答案见解析.【解析】(1)依题意,()()log 11log 132a a b b ⎧+=⎪⎨+=⎪⎩,2113a ba b =+⎧⎨=+⎩,而0a >且1a ≠,解得21a b =⎧⎨=⎩,所以函数()()2log 1f x x =+.(2)选择∴,()()()22log 1log 1g x x x =+--,则有1010x x +>⎧⎨->⎩,解得11x -<<,即()g x 的定义域为()1,1-, 又()()()()()()2222log 1log 1[log 1log 1]g x x x x x g x -=--+=-+--=-, 所以函数()g x 是定义在()1,1-上的奇函数. 选择∴,()()()22log 1log 1g x x x =--+,则有1010x x +>⎧⎨->⎩,解得11x -<<,即()g x 的定义域为()1,1-,又()()()()()()2222log 1log 1[log 1log 1]g x x x x x g x -=+--=---+=-, 所以函数()g x 是定义在()1,1-上的奇函数.选择∴,()()()22log 1log 1g x x x =++-,则有1010x x +>⎧⎨->⎩,解得11x -<<,即()g x 的定义域为()1,1-,又()()()22log 1log 1()g x x x g x -=-++=, 所以函数()g x 是定义在()1,1-上的偶函数. 3.(2022·全国·高一课时练习)已知函数()141log 1axf x x -=-的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)当()1,x ∈+∞时,()()14log 1f x x m +-<恒成立,求实数m 的取值范围;(3)若关于x 的方程()()14log f x x k =+在[]2,3上有解,求实数k 的取值范围.【答案】(1)1a =-(2)[)1,-+∞(3)[]1,1- 【解析】(1)因为函数()141log 1axf x x -=-的图象关于原点对称,所以()()0f x f x +-=,即114411log log 011ax axx x -++=---, 所以1411log 011ax ax x x -+⎛⎫⨯= ⎪---⎝⎭恒成立, 所以11111ax ax x x -+⨯=---恒成立, 即22211a x x -=-恒成立,即()2210a x -=恒成立,所以210a -=,解得1a =±,又1a =时,()141log 1axf x x -=-无意义,故1a =-.(2)因为()1,x ∈+∞时,()()14log 1f x x m +-<恒成立,所以()11441log log 11x x m x ++-<-恒成立, 所以()14log 1x m +<在()1,x ∈+∞上恒成立,因为()14log 1y x =+是减函数,所以当()1,x ∈+∞时,()()14log 1,1x +∈-∞-,所以1m ≥-,所以实数m 的取值范围是[)1,-+∞. (3)因为()114412log log 111x f x x x +⎛⎫==+ ⎪--⎝⎭在[]2,3上单调递增,()()14log g x x k =+在[]2,3上单调递减,因为关于x 的方程()()14log f x x k =+在[]2,3上有解,所以()()()()22,33,f g f g ⎧≤⎪⎨≥⎪⎩即()()11441144log 3log 2,log 2log 3,k k ⎧≤+⎪⎨≥+⎪⎩ 解得11k -≤≤,所以实数k 的取值范围是[]1,1-.重难点四 零点定理【例4-1】(2022·课时练习)函数223,(0)y ax ax a =++≠的一个零点为1,则其另一个零点为______. 【答案】3-【解析】解法一:因为函数223,(0)y ax ax a =++≠的一个零点为1, 将(1,0)代入得230a a ++=,解得1a =-. 所以223y x x =--+.令2x 2x 30--+=,解得11x =,23x =-, 所以函数的另一个零点为3-.解法二:由函数223,(0)y ax ax a =++≠的一个零点为1,可得方程2230,(0)ax ax a ++=≠的一个根为1,根据根与系数的关系可得1222ax x a+=-=-,所以另一个根为3-.故函数的另一个零点为3-. 故答案为:3-.【例4-2】(2022·山东)方程ln 42x x =-的根所在的区间是( )A .()01,B .()12,C .()23,D .()34,【答案】B【解析】令()ln 24f x x x =+-,显然()ln 24f x x x =+-单调递增, 又因为()12420f =-=-<,()2ln 244ln 20f =+-=>,由零点存在性定理可知:()ln 24f x x x =+-的零点所在区间为()12,, 所以ln 42x x =-的根所在区间为()12,. 故选:B【例4-3】(2022·全国·高一课时练习)函数()sin 21f x x x π=-在区间(0,3]上的零点个数为( ) A .6 B .5 C .4 D .3【答案】C【解析】函数()sin 21f x x x π=-在(]0,3上零点的个数即方程sin 210x x π-=在(]0,3x ∈上解的个数, 方程sin 210x x π-=化简可得sin 2x π=1x, 所以方程方程sin 210x x π-=的解的个数为函数sin 2y x π=与函数y =1x的图象交点的个数,其中(0,3]x ∈,在同一坐标系中作出函数sin 2y x π=与函数y =1x的图象如图所示, 由图可知在区间(]0,3上,两函数图象有4个交点, 故函数()sin 21f x x x π=-在区间(0,3]上的零点个数为4, 故选:C .【例4-4】(2021·全国·高一期末)已知函数2,()5,x x x af x x x a ⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( ) A .(0,1)[5,)+∞ B .6(0,)[5,)5+∞C .(1,5]D .6(,5]5【答案】A【解析】()()4g x f x x =-有三个零点()y f x ∴=与4||y x =的图象有三个交点. 因为0a >,所以当0x ≤时,24x x x -=-,得3x =-或0x =,所以()y f x =与4||y x =的图象有两个交点,则当0x >时,()y f x =与4||y x =的图象有1个交点. 当0x >时,令45x x =-,得1x =,所以01a <<符合题意;令24x x x =-,得5x =,所以5a 符合题意.综上,实数a 的取值范围是()[)0,15,+∞.故选:A.【一隅三反】1.(2022·浙江·余姚市实验高中高一开学考试)函数3()ln f x x x=-的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,5【答案】B【解析】因为3ln ,==-y x y x 为()0,x ∈+∞上的单调递增函数,所以3()ln f x x x=-为()0,x ∈+∞上的单调递增函数,因为()31ln1301=-=-<f ,()32ln 202=-<f ,()33ln 303=->f ,由零点存在定理,(2,3)上必有唯一零点.故选:B .2.(2022·江苏·金沙中学高一阶段练习)函数sin sin()13y x x π=-+-在区间(0,2)π上的零点所在的区间为( )A .(0,)2πB .(,)2ππC .3(,)2ππ D .3(,2)2ππ 【答案】B【解析】sin sin()13y x x π=-+-,13sin 12=-x x ,sin()13x π=--,令sin()13x π-=,得232x k ππ-=+π,Z k ∈,526x k ππ∴=+,Z k ∈,()f x ∴在(0,2)π上的零点为5.6π故选:B3.(2022·北京大兴·高一期末)若函数2,1()(),1x a x f x x x a x ⎧-<=⎨-≥⎩恰有2个零点,则a 的取值范围是 ( )A .(1)-∞,B .(02),C .(0)+∞,D .[12),【答案】D【解析】因为()(),1f x x x a x =-≥时至多有一个零点,单调函数()2,1x f x a x =-<至多一个零点,而函数2,1()(),1x a x f x x x a x ⎧-<=⎨-≥⎩恰有2个零点,所以需满足()(),1f x x x a x =-≥有1个零点,()2,1x f x a x =-<有1个零点,所以2log 11a a <⎧⎨≥⎩,解得12a ≤<,故选:D4.(2021·广西·上林县中学高一期末)已知函数()||3f x x a =--,若函数(())f f x 无零点,则实数a 的取值范围为( ) A .(,6)-∞- B .(,6]-∞- C .(,0)-∞ D .(,0]-∞【答案】A【解析】令()t f x =,则()||30f t t a =--=的解为:3t a =±,由题意可知:()f x t =无解, 又()||33f x x a =--≥-,即min ()t f x <,又min ()3f x =-,即3333a a +<-⎧⎨-<-⎩,解得:6a <-.故选:A.5.(2022·全国·高一课时练习)函数()2ln 3f x x x =+-的零点个数为________.【答案】1【解析】解法一:令()0f x =,可得方程2ln 30x x +-=,即2ln 3x x =-, 故原函数的零点个数即为函数ln y x =与23y x =-图象的交点个数. 在同一平面直角坐标系中作出两个函数的大致图象(如图).由图可知,函数23y x =-与ln y x =的图象只有一个交点,故函数()2ln 3f x x x =+-只有一个零点,故答案为:1解法二:∴()21ln11320f =+-=-<,()22ln 223ln 210f =+-=+>,∴()()120f f <,又()2ln 3f x x x =+-的图象在()1,2上是不间断的,∴()f x 在()1,2上必有零点,又()2ln 3f x x x =+-在()0,∞+上是单调递增的,∴函数()f x 的零点有且只有一个, 故答案为:16.(2022·全国·高一课时练习)已知函数()()22,2,1,2,x x f x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程()f x k =有三个不同的实数根,则实数k 的取值范围是________.【答案】()0,1【解析】作出函数()f x 的图像和直线y k =,如图所示:由图可知,当()0,1k ∈时,函数()f x 的图像和直线y k =有三个交点,所以()0,1k ∈. 故答案为:()0,1或01k <<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提示:f(x)是偶函数作出图象观察.
7.D
提示:
8.B
提示:c<0, ,0<a<3.
9.B
提示:
五、
1.{x|x>0}
2.{x|x≥0}
提示: .
3.
提示: , 无解.
4.
提示:-1≤x≤2,则 .
5.
提示: 且a>0
六、
1.解:
当 时,
∴
∴ .
2.解:∵
∴原不等式化为:
当a>1时,函数 是增函数
解:
(1)
∴函数 的定义域是[2,+∞)
∵x∈[2,+∞)时,x-2≥0
∴
∵3>1,以3为底数的指数函数是增函数
∴
∴函数 的值域是[1,+∞).
(2)∵ 中x≠0
∴函数 的定义域是{x|x≠0且x∈R}
∵x≠0时,
∴ ,而
∴函数 的值域是{y|y>0且y≠1}.
例5求下列关于x的不等式的解集.
(1) ;
∴
∴-2<x<4
当0<a<1时, 是减函数
∴
∴x<-2或x>4
∴当a>1时,x值集合是{x|-2<x<4};当0<a<1时,x值的集合是{x|x<-2或x>4}.
8.C
9.B
提示:底数满足0<a+1<1.
二、
1.(-∞,5]
2.2
提示:
3.
4.
提示:
5.9
三、
证明:设 是区间(-∞,0]上的任意两个值,
∴
∵
函数 是增函数
∴ ,
,
∴
∴
即
∴f(x)在区间(-∞,0]上是减函数.
四、
1.A
提示: , .
2.D
3.A
提示: .
4.D
提示: .
5.A
提示:作函数 图象,看y=10时的图象上的点的x值.
C. D.以上答案均不正确
6.函数 (其中a>1)( )
A.在(-∞,0)上是增函数B.在[0,+∞)上是增函数
C.增函数D.减函数
7.若 ,则实数a、b间应该有的关系是( )
A.a>bB.a=b
C.a<bD.以上答案都可能成立
8.三个数 ,则a、b、c的关系是( )
A.a<b<cB.a<c<b
C.b<a<cD.b<c<a
A.-18B.18
C.-2D.2
2.函数 的定义域是( )
A.(-1,2]B.(-∞,2]
C.(-∞,-1)∪(-1,2]D.(-∞,-1)
3.代数式 的值是( )
A. B.
C. D.
4.已知 ,则m、n的关系是( )
A.1>m>n>0B.1>n>m>0
C.m>nD.m<n
5.代数式 的值是( )
A.1B.
解:
(1)
当a>b≥0时,
∴
当b≥a≥0时,
∴
=0.
(2)解法一:
.
解法二:
设 ,
∴Байду номын сангаас
∴
=m-n-(m+n)
=-2n
.
点评不要认为设辅助未知数只是一种可有可无的运算技巧,其实设辅助未知数是对数学问题的“层次性”的深刻认识的表现,是把复杂问题转化为两个或多个基本问题的重要的分析思维的具体表达.
例3化简下列各式:
∵
∴
∴-2<x<1
∴不等式的解集为{x|-2<x<1}.
(2)∵
当a>1时,以a为底的指数函数是增函数
∴
⊿=
∴不等式的解集为R.
当0<a<1时,以a为底的指数函数是减函数
∴
⊿=
∴
∴a>1时不等式的解集是R,
0<a<1时,不等式的解集是 .
例6设 (a为实数)
(1)x∈R,试讨论f(x)的单调性,并且用单调性定义给出证明;
(1) ;
(2) ;
(3) .
思路分析
用根式计算时,必须将根式化为同次根式才能进行乘、除、幂的计算,若式子中有重根式(根号套根号)的形式,化同次根式更难更容易出错;如果逐层将根号处理为分指数,再用指数的运算性质运算既简捷又方便.
解:
(1)
.
(2)
=1.
(3)
=1.
点评重根式化简只需作1~3个题,通过具体演算达到了解方法的目的即可.
指数指数函数
【重点难点解析】
1.本单元的知识结构
2.指数概念由特殊乘法运算定义,是乘法运算的发展,是人类探索化简运算的过程中,创造并发展的数学知识;它由正整数指数开始,到负整数指数、零指数,再到分式指数(根式),最后到实数指数.
3.指数运算的特点是强概念性及性质使用而弱计算性,所以指数的运算性质及方根表示既是重点也是难点.
4.若 ,则x=____________________.
5. =____________________.
三、解答题
用定义证明:函数 在区间(-∞,0]上是减函数.
四、选择题
1.若 ,则a+b的值是( )
A.1B.5
C.-1D.2π-5
2.函数 的定义域是( )
A.[4,+∞)B.(-∞,2)
C.(2,4]D.(-∞,2)∪[4,+∞)
例4求下列函数的定义域和值域:
(1) ;
(2) .
思路分析
因为一般指数函数 (a>0且a≠1)的定义域是一切实数,值域是(0,+∞),所以复杂的与指数函数有关的定义域、值域问题,主要考虑与自变量有关的代数式的运算限制和取值范围,就可以解出定义域;但值域问题一方面考虑指数函数的单调性,同时必须兼顾“指数函数”的值域是(0,+∞).
C.常数D.有时是增函数有时是减函数
五、填空题
1.已知 ,使 的x的值的集合是____________________.
2.函数 的定义域是集合____________________.
3.满足 的x的值的集合是____________________.
4.函数 的定义域是[-1,2],则函数f(x)的定义域是____________________.
(2)在函数y=g(x)的图象上取一点P(x,y),点P关于直线x=1的对称点
从而,得:
∵函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称
∴ 在y=f(x)的图象上
也就是:
从而,可得:
也就是: .
点评函数f(x)不是单调函数 存在 , ,但有 .
【同步达纲练习】
一、选择题
1.若 ,则a+b的值是( )
(2)a>0且a≠1时, .
思路分析
因为不等式中的变量x在指数部分,所以这类不等式(称指数不等式)的解法是:利用指数函数的单调性,将各不等式先转化为一般的一元一次不等式,一元二次不等式及不等式组求解,由此看来,函数的单调性是用来处理与函数有关的量大小比较的有力工具.
解:
∵6>1,则以6为底的指数函数是增函数
5.指数函数 的图象经过点(2, ),则底数a的值是____________________.
六、解答题
1.当 , 时,求代数式 的值.
2.求使不等式 成立的x值的集合.(其中a>0且a≠1)
参考答案
【同步达纲练习】
一、
1.D
2.C
提示: 要求x≠-1即可.
3.A 4.D 5.D
6.D
提示:
7.D
提示:a>b>0时, 可能成立,当a<b<0时, 可能成立,当a=b=0时,
(2)当a=0时,若函数y=g(x)的图象与y=f(x)的图象关于直线x=1对称.求函数y=g(x)的解析式.
解:
(1)(i)a=0时,
任取 ,
∵
∵ ,
∴
∴
∴函数f(x)是增函数.
(ii)a<0时,f(x)是增函数,下面给出证明:
任取 ,
∵
∵ ,
∴
又∵a<0,
∴
∴
从而得:函数f(x)是增函数.
(iii)令 ,
4.指数函数的概念及性质是重点,指数函数的值域易被忽视而成为难点.
【考点】
1.指数运算一般结合其他知识在应用中进行考查.
2.根式及方根运算与指数函数的图象和性质,几乎每年高考都要涉及.
【典型热点考题】
例1完成下列计算:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) .
思路分析
运算时,一般将根式化为分指数,运用指数运算性质进行化简计算,但要注意的是分指数的运算实质是方根的化简,必须依照方根运算的要求进行,即注意根指数(分指数的分母)的奇偶性来决定结果,一般偶次方根化简时尤须注意.
3.代数式 的值是( )
A. B.
C. D.
4.若 且m>n>1,则实数a的取值范围是( )
A.(1,+∞)B.(1,π)
C.(0,π-1)D.(-∞,π-1)
5.已知 ,则这样的x值( )
A.存在且有且只有一个B.存在且不只一个
C.存在且x<2D.根本不存在
6.函数 (其中a>0且a≠1),若对m<n<0有f(m)>f(n)成立,则a的取值范围是( )
9.若指数函数 在(-∞,+∞)上是减函数,那么( )
A.0<a<1B.-1<a<0