组合数的性质

合集下载

组合数常用公式

组合数常用公式

组合数常用公式摘要:一、组合数定义二、组合数公式1.二项式定理2.阶乘与组合数的关系3.组合数的性质4.组合数公式推导三、组合数的应用1.组合数的计算2.组合数的应用场景四、组合数的递推关系1.递推关系的一般形式2.常见递推关系举例五、组合数的性质与公式总结正文:一、组合数定义组合数(Combination)是离散数学中的一个概念,它表示从n 个元素中取出m 个元素的不同组合方式数量。

用符号表示为C(n, m),即n 个元素中取m 个元素的组合数。

二、组合数公式1.二项式定理二项式定理是组合数计算的基础,它表示如下:(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + ...+ C(n, n)a^0 b^n其中,C(n, 0), C(n, 1), ..., C(n, n) 即为组合数。

2.阶乘与组合数的关系组合数与阶乘(n!)之间存在如下关系:C(n, m) = n! / [m!(n-m)!]3.组合数的性质组合数具有以下几个性质:- C(n, m) = C(n, n-m)- C(n, 0) = 1- C(n, n) = 1- C(n, m) = C(n-1, m-1) + C(n-1, m)4.组合数公式推导根据阶乘与组合数的关系,可以推导出组合数的计算公式。

三、组合数的应用1.组合数的计算组合数的计算是组合数学中的基本操作,可以通过递推关系、二项式定理等方法进行计算。

2.组合数的应用场景组合数在实际生活中有很多应用场景,例如概率论、组合优化、密码学等。

四、组合数的递推关系1.递推关系的一般形式根据组合数的性质,可以得到递推关系的一般形式:C(n, m) = C(n-1, m-1) + C(n-1, m)2.常见递推关系举例常见的组合数递推关系有:- C(n, 0) = 1- C(n, 1) = n- C(n, n) = 1- C(n, m) = C(n-1, m-1) + C(n-1, m)五、组合数的性质与公式总结组合数是组合数学中的基本概念,它表示从n 个元素中取出m 个元素的不同组合方式数量。

组合数定理

组合数定理

组合数定理组合数定理是组合数学中的重要定理之一。

在数学中,组合数是从给定集合中选择出特定个数的元素组成的集合的个数,通常用C(n, k)表示。

组合数定理主要研究的是这些组合数的性质和计算方法。

首先,我们需要了解一下组合数的定义。

给定一个n 元素的集合,从中选取k个元素,组成一个无序的集合,这样的集合个数即为组合数。

组合数的计算方法可以通过以下公式进行计算:C(n, k) = n! / (k! * (n - k)!)其中n!表示n的阶乘,即n * (n - 1) * (n - 2) * ... * 1,0的阶乘定义为1。

组合数的计算方法还可以通过递推公式进行计算:C(n, k) = C(n-1, k-1) + C(n-1, k)这个递推公式的意思是,要么选择n作为组合的一部分,那么剩下的k-1个元素就要从剩下的n-1个元素中选择;要么不选择n,那么k个元素就要从剩下的n-1个元素中选择。

通过递推公式,我们可以通过计算相对较小的组合数,迭代地计算出较大的组合数。

组合数定理具有以下几个重要的性质:1. 对任意整数n和k,组合数C(n, k)满足对称性质:C(n, k) = C(n, n-k)。

这是由组合数的定义以及递推公式可以得到的结论。

2. 组合数满足递推关系:C(n, k) = C(n-1, k-1) + C(n-1, k)。

这个递推关系可以用来计算较大的组合数,通过计算较小的组合数,不断迭代得到结果。

3. 组合数的性质可以帮助我们解决很多实际问题。

比如,在排列组合数的计算中,组合数可以用来解决从n个元素中选择k个元素的问题;在概率论中,组合数可以用来计算事件的发生概率。

除了上述性质外,组合数定理还有一些重要的应用:1. 组合公式的应用:组合数定理可以用来简化复杂的组合公式,使得计算更加方便。

比如,通过组合数定理,我们可以证明等式(1+x)^n = C(n, 0)*x^0 + C(n, 1)*x^1 + ... + C(n, n)*x^n。

选修2-3《组合数的性质》辅导与练习(带答案)

选修2-3《组合数的性质》辅导与练习(带答案)

选修2-3《组合数的性质》辅导与练习知识方法:1. 组合数的性质1:mn nm n C C -=. 一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn nm n C C -=.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想。

证明:∵)!(!!)]!([)!(!m n m n m n n m n n C m n n -=---=- 又)!(!!m n m n C m n -=,∴n n m n C C -= 说明:①规定:10=n C ;②等式特点:等式两边下标同,上标之和等于下标;③此性质作用:当2n m >时,计算m n C 可变为计算m n n C -,能够使运算简化.例如20012002C =200120022002-C =12002C =2002; ④y n x n C C =y x =⇒或n y x =+。

2.组合数的性质2:m n C 1+=m n C +1-m nC . 一般地,从121,,,+n a a a 这n+1个不同元素中取出m 个元素的组合数是mn C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m -1个元素与1a 组成的,共有1-m n C 个;不含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m 个元素组成的,共有m n C 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.证明:)]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n )!1(!!)1(+-++-=m n m n m m n )!1(!)!1(+-+=m n m n m n C 1+= ∴m n C 1+=m n C +1-m n C 。

组合和组合数公式

组合和组合数公式

组合和组合数公式组合是组合数学中的一个重要概念,用来计算从n个元素中选取r个元素的方式数。

组合数公式是用来计算组合数的公式。

本文将详细介绍组合和组合数公式,并说明其应用和性质。

1.组合的定义组合由n个元素中选取r个元素所组成的集合,称为从n个元素中选取r个元素的组合。

组合中的元素是无序的,即选取的元素的顺序对组合没有影响。

2.组合的表示方法组合通常用C(n,r)来表示,其中n是总的元素个数,r是选取的元素个数。

例如,从4个元素中选取2个元素的组合可以表示为C(4,2)。

组合数公式用于计算从n个元素中选取r个元素的方式数。

常用的组合数公式有以下几种:3.1乘法法则根据乘法法则,从n个元素中选取r个元素的方式数等于从n中选择1个元素的方式数乘以从n-1个元素中选取r-1个元素的方式数。

这一公式可以表示为:C(n,r)=C(n-1,r-1)*n/r3.2递推公式根据递推关系,可以通过前一项的组合数计算后一项的组合数。

递推公式可以表示为:C(n,r)=C(n-1,r-1)+C(n-1,r)3.3组合公式组合公式是计算组合数的一种常用方法。

组合公式可以表示为:C(n,r)=n!/(r!(n-r)!)其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*14.组合的性质组合具有以下几个重要的性质:4.1对称性组合数具有对称性,即C(n,r)=C(n,n-r)。

这是因为从n个元素中选取r个元素的方式数与从n个元素中选取n-r个元素的方式数是一样的。

4.2递推性组合数具有递推性,即可以通过递推公式计算组合数。

这使得计算大规模组合数变得更加高效。

4.3性质的递推公式组合数的性质也可以通过递推公式计算。

例如,根据乘法法则和递推公式可以推导出组合数的对称性。

5.组合数的应用组合数在组合数学、概率论和统计学等领域具有广泛的应用。

以下是几个常见的应用:5.1排列组合组合数可以用于计算排列组合的方式数。

排列是组合的一种特殊情况,它要求选取的元素有序。

组合数的性质

组合数的性质

组合数的性质组合导学案课题:组合数的性质课型:新授执笔:韩春冬审核: 使用时间:一、学习目标1、了解组合数的性质2、会应用组合数的性质解决计算问题二、重点难点1、组合数的性质2、组合数的性质应用三、学习内容 1、对偶法则因为从n 个元素中选取k 个元素的组合数,与从n 个元素中选留n -k 个元素的组合数是相等的,因此有等式:2、增一法则:我们来做一个练习:2399989871202!3!C C ???+=+=, 31010981203!C ??==, 于是有 2339910C C C +=,这是巧合还是具有一般性?把这个浅显的道理,推广到一般的情况,就得到组合数的第二个重要性质:四、探究分析1、计算:(1)4850C ; (2)296300C ;(3)239999C C +.方法总结:2、若1105102-+=x x CC,求x 的值方法总结:课堂训练1、计算:(1)97100C ; (2)198200C ;(3)9798100100C C +.2、若42020-=n n C C ,求n课后作业1、计算:(1)2830C (2)58605760C C +2、求证:(1)5105958575655C C C C C =++++ (2)1212++-+=++m n m n m n m n CC C C3、解方程:112315---=+X x x x x C C C教学后记相关文档:更多相关文档请访问:。

组合数的性质和应用

组合数的性质和应用

4.已知C C C C C K
0 n 1 n 2 n n n
化简 : C 2C 3C (n 1)C
1 n 2 n 3 n
n 1 n
变式(1)已知 C n = Cn ,求n的值
3n-6 (2)已知 C18 = C18 ,求n的值 n
13
7
巩固练习
1.方程 C C
(1)
例1 计算 198
( 2 )
C C
200
;
2
C
ห้องสมุดไป่ตู้2 200

200 199 21
19900
3 99
C 99;
C
3
3
3
100

2
100 99 98 3 21
161700
( 3 )
2C
3 8
C 9 C 8 .
3 2 2 3
2C 8 (C 8 C 8 ) C 8 C 8 56
n! A n(n 1)(n 2) (n m 1) m Cn C A m! m !(n m)!
m n m n m m
新课引入
引例1:利用组合数公式考察:
与 C11 ; C10 与 的关系,并发现什么规律?
11
C
9
2
7
C
3 10
;
C 11 11! 11 10 9!2! 2! 2 11 10 11 2!
元素中取出m个的组合数是C n 1
m
含有a1的
元素与a1 组成, 有 C n 个
m 1
不含有a1的
m
从 a2 , a3, an 1中取出m 1个 从 a2 , a3, an 1中取出m个

组合数公式大全

组合数公式大全

组合数公式大全组合数是数学中的一个重要概念,用于表示从n个元素中选取r个元素的组合的数量。

在组合数的计算中,有多种公式和方法可供选择。

本文将介绍一些常用的组合数公式,帮助读者理解和计算组合数。

1. 乘法公式:组合数的一个基本性质是乘法公式。

当n和r为非负整数时,组合数C(n, r)可以通过以下公式计算:C(n, r) = n! / ((n-r)! * r!)其中,n!表示n的阶乘。

2. 递推公式:递推公式是一种常见的计算组合数的方法,通过逐步递推得到结果。

C(n, r) = C(n-1, r-1) + C(n-1, r)如果r为0或r等于n,则C(n, r)为1。

3. Pascal三角形:Pascal三角形是一种展示组合数的图形表示方法,利用递推公式来计算组合数。

Pascal三角形的第n行第r个数表示C(n, r)。

例如,Pascal三角形的第4行为:1 3 3 1,表示C(4,0)=1, C(4,1)=4, C(4,2)=6, C(4,3)=4, C(4,4)=1。

4. 二项式定理:二项式定理是组合数的一个重要公式,将一个二项式展开为一系列项的和。

(x + y)^n = C(n, 0) * x^n + C(n, 1) * x^(n-1) * y + ... + C(n, n-1) * x * y^(n-1) + C(n, n) * y^n5. 组合数的性质:- C(n, r) = C(n, n-r),即从n个元素中选择r个等于从n个元素中选择n-r个。

- C(n, r) = C(n-1, r-1) + C(n-1, r),符合递推公式的性质。

- 对于任意正整数n,有C(n, 0) + C(n, 1) + ... + C(n, n) = 2^n,表示从n个元素中选择0个到n个元素的所有组合数之和等于2的n次方。

6. Lucas定理:Lucas定理是组合数的一个重要定理,用于计算模p的组合数。

对于非负整数n和p,设n = nk * pk + ... + n1 * p + n0,其中0 <= ni < p,0 <= i <= k。

组合数的性质教案

组合数的性质教案

组合数的性质教案教案标题:组合数的性质教案教案目标:1. 理解组合数的概念和计算方法。

2. 掌握组合数的性质,包括乘法原理、加法原理和二项式定理。

3. 能够应用组合数的性质解决相关问题。

教案步骤:引入活动:1. 引入组合数的概念,通过举例说明组合数的应用场景,如从一组物品中选择若干个物品的可能性等。

知识讲解:2. 介绍组合数的计算方法,包括排列和组合的区别,以及组合数的计算公式。

3. 讲解组合数的性质:a. 乘法原理:如果一个事件发生的方式有m种,另一个事件发生的方式有n 种,则两个事件同时发生的方式有m * n种。

b. 加法原理:如果一个事件发生的方式有m种,另一个事件发生的方式有n 种,且这两个事件不可能同时发生,则这两个事件发生的方式有m + n种。

c. 二项式定理:展开二项式(a + b)^n,可以得到一系列组合数。

示例演练:4. 给出一些实际问题,要求学生利用组合数的性质解决问题。

例如:a. 从10个人中选出3个人组成小组,共有多少种可能的组合?b. 从一副扑克牌中随机抽取5张牌,共有多少种可能的抽取方式?c. 展开二项式(x + y)^4,写出各项系数。

巩固练习:5. 提供一些练习题,让学生巩固对组合数的理解和应用。

鼓励学生积极参与讨论和解答问题。

总结:6. 总结本节课所学内容,强调组合数的概念和性质,并提醒学生在实际问题中运用组合数的方法。

拓展活动:7. 鼓励学生在日常生活中寻找更多与组合数相关的问题,并尝试解决,以提高他们的综合应用能力。

教学资源:- 白板/黑板和可擦笔- 教学课件或投影仪- 练习题和答案评估方法:- 教师观察学生的参与度和讨论质量。

- 练习题的完成情况和答案的正确性。

注意事项:- 确保学生已经掌握了排列和组合的基本概念。

- 鼓励学生多思考和动手实践,培养解决问题的能力。

- 根据学生的学习进度和理解情况,适当调整教学内容和难度。

组合数的性质

组合数的性质
C(n-1, k-1)
组合数的性质与特点
组合数的性质
• 对称性:C(n, k) = C(n, n-k)
• 交换性:C(n, k) = C(n, k'),其中k' = n-k
• 加法性:C(n, k) + C(n, k-1) = C(n+1, k)
组合数的特点
• 组合数与排列数的关系:C(n, k) = P(n, k) / k!,其中P(n, k)为排列数
组成的组合数,记为C(n, k)
k)!)
• 当k=0时,C(n, 0) = 1
• 即C(n, k) = n! / (k!(n-k)!)
• 递推法:C(n, k) = C(n-1, k-1) +
• 当k=n时,C(n, n) = 1
C(n-1, k)
• 迭代法:C(n, k) = C(n-1, k) +
• 计算多项式分布的置信区间:P(X=k) = C(n, k)p_1^k * p_2^k * ... * p_n^k
组合数在假设检验中的应用
假设检验的定义
• 对总体参数θ进行假设检验,检验H_0:θ=θ_0是否成立
组合数在假设检验中的应用
• 计算二项分布的假设检验:P(X=k) = C(n, k)p^k(1-p)^(n-k)
组合数的递推关系
• C(n, k) = C(n-1, k-1) + C(n-1, k)
组合数的性质
• 对称性:C(n, k) = C(n, n-k)
• 交换性:C(n, k) = C(n, k'),其中k' = n-k
• 加法性:C(n, k) + C(n, k-1) = C(n+1, k)

第2课时 组合数的性质

第2课时 组合数的性质
解析 由 C31n8+6=C41n8-2, 得3n+6=4n-2或3n+6+4n-2=18, 解得n=2或n=8(舍去), 故 C28=28.
反思感悟 性质“Cnm=Cnn-m”的意义及作用
二、组合数的性质2
知识梳理
组合数的性质 2:Cmn+1=Cmn +Cmn -1. 注意点: (1)下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标 与大的相同的一个组合数; (2)体现了“含”与“不含”的分类思想.
第六章 6.2.3 组合
学习目标
1.掌握组合数公式和组合数的性质. 2.能运用组合数的性质进行计算. 3.会用组合数公式解决一些简单的组合问题.
一、组合数的性质1
知识梳理
组合数的性质 1:Cmn =_C__nn-_m__. 注意点: (1)体现了“取法”与“剩法”是一一对应的思想; (2)两边下标相同,上标之和等于下标.
例 2 (1)已知 m≥4,C3m-C4m+1+C4m等于
A.1 B.m
√ C.m+1
D.0
解析 C3m-C4m+1+C4m=C3m+C4m-C4m+1=C4m+1-C4m+1=0.
(2)C04+C14+C25+C36+…+C22 002129等于
A.C22 020
B.C32 021
C.C32 022
解析 C7n+1=C7n+C8n=C8n+1,∴n+1=7+8,n=14.
(2)C22+C23+C24+…+C218等于
A.C318
√B.C319
C.C318-1
D.C319-1
解析 C22+C23+C24+…+C218=C33+C23+C24+…+8=C34+C24+…+C218 =C35+C25+…+C218=…=C319.

组合数的性质(2)

组合数的性质(2)
1 2 C2 • C98 = 9506
C C
1 2 2 98
100件产品中, 98件合格品,2件次品. 例 在100件产品中,有98件合格品,2件次品.从这 100件产品中任意抽出3 100件产品中任意抽出3件 (3)抽出的3件中至少有1件是次品的抽法有多 少种? 法1 含1件次品或含2件次品 1 2 2 1 C2 • C98 + C2 • C98 = 9604(种)
一般地,从a1 , a2 ,L , an +1这n + 1个不同的元素 中取 出 m个 元 素 的 组 合 数 是 C , 这些组合可分成两类:一类含有a1,一类不含有a1,
m n +1
含 有 a 1的 组 合 是 从 a 2 , a 3 , L , a n + 1 这 n个 元 素 中 取 出
m m − 1个 元 素 与 a 1 组 成 的 , 共 有 C n − 1 个 ;
8
= C7 + C7
2
3
对上面的发现(等式 作怎样解释 对上面的发现 等式)作怎样解释? 等式 作怎样解释?
C
3 8
=C + C
2 7
3 7
我们可以这样解释: 我们可以这样解释:从口袋内的 8个球中所取出的 个球,可以分为 个球中所取出的3个球 个球中所取出的 个球, 两类:一类含有 个黑球,一类不含 两类:一类含有1个黑球, 含有 有黑球.因此根据分类计数原理, 有黑球.因此根据分类计数原理, 上述等式成立. 上述等式成立.
法2 100件中抽3件减98件合格品中抽3件 3 3 C100 − C98 = 9604(种)
例 计算
(1)
; C200
198
C
2

组合数的性质

组合数的性质

不 含 a 1的 组 合 是 从 a 2 , a 3 , L , a n + 1 这 n个 元 素 中 取 出
m m个 元 素 组 成 的 , 共 有 C n 个
由分类计数原理,得
组合数性质2 组合数性质
Cn+1 = Cn +Cn
m m
m−1
性质2 性质
证明:
m n
C +C
= cn + cn c n +1
n−m n m n
作业: 作业:习题 10.3 1,9,11(B本) , , 本
本讲到此结束,请同学们课 后再做好复习. 谢谢!
再见!
王新敞 王新敞 王新敞 王新敞 特级教师 特级教师 特级教师 特级教师 源源 头学子小屋 头学子小屋 源 /:源 .c 38 23 0 .oc m 头学子小屋 头学子小屋 hp x t w
(2) C
m+1 n m−1 n m n m+1 n+ 2
一、等分组与不等分组问题
本不同的书, 例3、6本不同的书,按下列条件,各有多少种不同的分法; 、 本不同的书 按下列条件,各有多少种不同的分法; (1)分给甲、乙、丙三人,每人两本; )分给甲、 丙三人,每人两本; (2)分成三份,每份两本; )分成三份,每份两本; (3)分成三份,一份 本,一份 本,一份 本; )分成三份,一份1本 一份2本 一份3本 (4)分给甲、乙、丙3人,一人 本,一人 本,一人 本; )分给甲、 人 一人1本 一人2本 一人3本 (5)分给甲、乙、丙3人,每人至少一本; )分给甲、 人 每人至少一本; (6)分给5个人,每人至少一本; )分给 个人,每人至少一本; 个人 本相同的书, (7)6本相同的书,分给甲乙丙三人,每人至少一本。 ) 本相同的书 分给甲乙丙三人,每人至少一本。

组合数性质

组合数性质
组合数及其运算性质
序言
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语 课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,想了 解不同课件格式和写法,敬请下载!
Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!
(3)从口袋里取出6个球,使其中不含黑球 共有多少种取法?
从上述计算结果可 中以 我发 们现
c c c 6 6 5
9
8
8
组合数的性质及应用
性 2 。 质 c cc mm m 1 n 1 n n
例2计算
c c (1) 2 3
19
19
c c c c c (2) 1 2 3 4 5
3
3
4
表示方法 Cmn
复习
组合数公式
C
m n
=
A
m n
A
m m

组合数及其性质和证明

组合数及其性质和证明

组合数及其性质和证明组合数从n n 个不同元素中,任取m(m≤n)m(m≤n) 个元素并成⼀组,叫做从n n 个不同元素中取出m m 个元素的⼀个组合;从n n 个不同元素中取出m(m≤n)m(m≤n) 个元素的所有组合的个数,叫做从n n 个不同元素中取出m m 个元素的组合数,记作C m n Cnm。

注意:1. 线性⽂本中的C(n,m)C(n,m) 等价于本⽂中的C m n Cnm。

2. 特别地,∀n>0∀n>0 有C0n=0=1.组合数的性质1. (定义式)∀m,n∈N∀m,n∈N 有C m n=n!m!(n−m)!Cnm=m!(n−m)!n!2. ∀m,n∈N∗∀m,n∈N∗且m≠n m=n 有C m n=C n−mnCnm=Cnn−m 证明:由定义式易得。

3. ∀m,n∈N∗∀m,n∈N∗有C m n=C m−1n−1+C m n−1Cnm=Cn−1m−1+Cn−1m证明:右边=(n−1)!(m−1)!(n−m)!+(n−1)!m!(n−m−1)!=(n−1)!×mm!(n−m)!+(n−1)!×(n−m)m!(n−m)!=(n−1)!×(m+n−m)m!(n−m)!=n!m!(n−m)!=C m n.右边=(m−1)!(n−m)!(n−1)!+m!(n−m−1)!(n−1)!=m!(n−m)!(n−1)!×m+m!(n−m)!(n−1)!×(n−m)=m!(n−m)!(n−1)!×(m+n−m)= m!(n−m)!n!=Cnm.Q.E.D..Q.E.D..Lucas 定理Lucas 定理是⽤来求Unexpected text node: '&ThinSpace;&ThinSpace;'Cnm mod p,p p 是素数的值,Unexpected text node: '&ThinSpace;&ThinSpace;'CNm mod p=Cpnpm×Cn mod pm mod p mod pLoading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计数问题知识网络
复杂的计数问题 简单的计数问题
组合数的性质
对称性 拆并性 增减性 可和性
计数原理型 排列组合型 十大题型
计数问题总述: 两理两数四原则 十大题型递推法





注①:分类加法及分步乘法计数原理:
化大为小是共性 顾名思义是区分
注②:排列数与组合数: 注③:①○先理后数②○先组后排③○特殊优先④○正难则反
类似于物理中的串联电路
说明
最终结果“分类” 用“加 法 最”终结果“ 分步”用“乘 “法分”类”要不重不漏;各类间要互斥独立
“分步”要连续完整;各步间要关联独立
两理两数四原则 十大题型递推法
1.阶乘: n!1 23 n
A 2.排列数: m n! n • (n 1) • (n 2) (n m 1) n (n m)!
C
3 4
C
4 4
C
3 5
C
4 5
C
5 5
C10 C11
C
0 2
C12
C
2 2
C
0 3
C13
C
2 3
C
3 3
C
0 4
C14
C
2 4
C
3 4
C
4 4
C
0 5
C15
C
2 5
C
3 5
C
4 5
C
5 5
左右对称抛物线
C10 C11
C
0 2
C12
C
2 2
C13
C
2 3
C
0 3
C14
C
2 4
C
3 3
C
3 4
C
0 4
注2:上下前后及某项 知四有一两头同(中间差)
§249 组合数的性质
一、对称性:
Cnr
C nr n
二、增减性:
左右对称抛物线 左增右减中间大
三、拆并性: 拆并要连同 上大下+1
1.
Cnr
Cnr1
C r1 n1
2. Crr
Cr r 1
Cr r2
Cr n-1
Cr1 n
四、可和性: 系数求和赋值法 方法要熟正负1
C
2 5
C
3 5
C
4 5
C
5 5
幂的运算性质
③ amn am an
④ amn am an
⑤ amn (am )n (an )m
特殊幂
① a0
1②
an
1 an
⑦ an bn (当n 2,3时,背诵之)

(a b)n
当 当nn
42时,3时, 二,项背式诵定之理
⑨ (a b)n an bn
3.在与不在 4.含与不含 5.至多与至少
——
特殊优先直接法 正难则反间接法
6.错排:①背诵法:a2=1;a3=2;a4=9;a5=44……
②递推法: ①〇 an (n 1)(an1 an2 )
②〇 Ann Cn0a1 Cn1a1 Cn2a2 Cnnan
7.定序:
①倍缩法(等概率法):N n! m!
m
⑥ a n n am
同底幂

( a )n b
an bn
异底幂
二项式定理——通项公式
Tr1 Cnr anrbr
T上1 C下上前下上后上
(a b)n Cn0an Cn1an1b Cnra b nr r Cnnbn
注1:相关概念: ①项与项数: 类似于学号与同学的关系
②系数与二项式系数:Cnr 称为二项式系数 ;容斥关系
C r1 n1
其中含A元素的组合数是 Cnr 不含A元素的组合数是 Cnr 1
所以
Cnr
C r1 n
C r1 n1
三、拆并性: 拆并要连同 上大下+1
1. Cnr
C r1 n
C r1 n1
2. Crr
Cr r 1
Cr r2
Cr n-1
Cr1 n
(6)
C10 2014
C11 2014
CC1?1 2?015
C
2 5
C
3 5
C
4 5
C
5 5
C10 C11
C
0 2
C12
C
2 2
C
0 3
C
1 3
C
2 3
C
3 3
C
0 4
C14
C
2 4
C
3 4
C
4 4
C
0 5
C15
C
2 5
C
3 5
C
4 5
C
5 5
C
0 1
C11
C
0 2
C12
C
2 2
C
0 3
C
1 3
C
2 3
C
0 4
C14
C
2 4
C
0 5
C
1 5
C
2 5
C
3 3
法2:由题意得x2的系数是
C32
C42
C52
C2 n2
1 (C33 C32 ) C42 C52 Cn22
1 C43
C42
C52
C2 n2
1
C3 n3
n(n2 6n 11)
6
实际上,由
Crr
Crr1
Cr r2
Cr n-1
Cr1 n

x2的系数是
Cn33
1
n(n2
6n 6
11)
9.分配:
(1)不同元素的分配: 先分组后分配
(2)相同元素的分配(分组):0—1法
10.染色问题:
(1)条型域:
如图,1 2 3 … n ,用k种颜色染n块区域,相邻
区域不能同色, 则共有 tn k(k 1)n1 种染法
注1:染色基础是条型 方法多多随爱好 从头到尾逐个染 乘法原理显神功
注2:隐含了颜色有剩余
§249 组合数的性质
一、对称性:
Cnr
C nr n
二、增减性:
左右对称抛物线 左增右减中间大
三、拆并性: 拆并要连同 上大下+1
1.
Cnr
Cnr1
C r1 n1
2. Crr
Cr r 1
Cr r2
Cr n-1
Cr1 n
四、可和性: 系数求和赋值法 方法要熟正负1
1. C0n C1n C2n C3n Cnn 2n 2. C0n C2n C4n C1n C3n C5n 2n-1
⑦分配
均匀分配 非均匀分配
先分组后分配
⑧错排:二元1种;三元2种;四元9种……
⑨定序——倍缩法(等概率法);插空法
⑩染色——递推法
1.相邻问题捆绑法:
先捆可邻成大元 次变个数全排列
2.不邻(相离)问题插空法:
先排可邻后插空 多元切忌间接法
二元可用间接法 亮灯空位是变式
引:相间问题位置法
相邻相离综合体 一般解法位置法
四、可和性: 系数求和赋值法 方法要熟正负1
1. C0n C1n C2n C3n Cnn 2n 2. C0n C2n C4n C1n C3n C5n 2n-1
练习4.可和性:
(8)赋值法证:C0n C1n C2n C3n Cnn 2n
证明①:令a=b=1,代入
② 先组后排:排列可以看作是先取组合,再做全排列
Anm Cnm m!
两理两数四原则 十大题型递推法
①先理后数 ②先组后排 ③特殊优先 ④正难则反
两理两数四原则 十大题型递推法
①相邻——捆绑法
②不邻(相离) ——插空法
③在与不在
④含与不含 ⑤至多与至少
——
特殊优先直接法 正难则反间接法
⑥分组
相同元素——0-1法 不同元素——公式法
1. C0n C1n C2n C3n Cnn 2n 2. C0n C2n C4n C1n C3n C5n 2n-1
一、对称性:
Cnr
C nr n
与首末两端“等距离”的两个二项式系数相等
二、增减性:
n
1.当n为偶数时,展开式中间的一项
C2 n
取得最大
n 1
n 1
2.当n为奇数时,展开式中间的两项
hn (k 2)hn1 (k 1)hn2 (n 4)
注:二三环型点算法 四块以上递推法
异色插入第一类 同色剪开第二类
二项式的展开式
(a b)n Cn0an Cn1an1b Cnranrbr Cnnbn
注1:(前项)后n 项C“n0+n”相Cn1连n1 展开共 C有nrn n+rr Cnnn
C2 n
,Cn 2
相等
且同时取得最大
一、对称性: 二、增减性:
左右对称抛物线 左增右减中间大
杨辉三角形——二项式系数表
11 121 1331 14641 1 5 10 10 5 1
C10 C11
C
0 2
C12
C
2 2
C
0 3
C
1 3
C
2 3
C
3 3
C
0 4
C14
C
2 4
C
3 4
C
4 4
C
0 5
C15
C
2 5
C15
C
3 5
C
4 4
C
4 5
C
0 5
C
5 5
左增右减中间大
练习1.对称性:
(1)对称性
Cnr
相关文档
最新文档