(完整版)正弦定理余弦定理应用实例练习含答案
正弦定理和余弦定理的应用举例(解析版)
正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。
3三角恒等变换与正余弦定理(含答案)
例1:在 中, ,解此三角形。
习题1:已知 的三个内角的比是 ,那么对应的三边之比 =()
A B C D
例2、在 中,AC=2,BC=1,
(1)求AB的值。(2)求
习题2(1)在 中, 分别为A,B,C的对边, , ,则 =
(2)在 中, ,则
例3、(判断三角形形状)在 中,已知角A,B,C的对边分别为 ,且 ,是判断 的形状。
15、(1)2(2)
(1)、求函数 的解析式和定义域;(2)求 的最大值
11、已知在 中,A,B,C的对边分别为 , ,
(1)求角C的大小(2)若 求 的面积。
12、已知函数 的最小正周期为 ,
(1)求 的单调递增区间
(2)在 中,A,B,C的对边分别为 ,满足 ,求函数 的取值范围。
13、在 中, ;(1)求 的值。(2)设 ,求 的面积
14、在 中,A,B,C的对边分别为 ,
(1)求C;(2)若 求 。
15、在 中,A,B,C的对边分别为 ,且满足
(1)求 的面积(2)若 ,求a的值。
答案:
基础题:1-5DBAБайду номын сангаасC 6、
中档题:1-6AADBAD 7、 8、 9、2、
10、(1) (2)
11、(1) (2) 12、(1) (2)
13、(1) (2) 14、(1) (2)
②已知一个三角形的两边及其夹角,求其他两个边和角
③已知两边及一边的对角,求第三边
(3)余弦定理的变形:
3、三角形面积公式:
4、几个重要的结论:
5、仰角和俯角
与目标视线在同一铅垂线平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角。
正弦定理和余弦定理的应用举例(解析版)
正弦定理和余弦定理的应用举例考点梳理1. 用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角(侧角和俯角与目标线在同一铅垂平面内的水平■视线和目标视线的火角,目标视线在水平■视线白勺角叫仰角,目标视线在水平■视线下方的角叫俯角(如图①).(2) 方向角:相对丁某正方向的水平■角,如南偏东30°,北偏西45°,西偏北60等;(3) 方位角指从正北方向顺时针转到目标方向线的水平■角,如B点的方位角为g如图②).(4) 坡度:坡面与水平■面所成的二面角的度数.【助学微博】解三角形应用题的一般步骤(1) 阅读理解题意,弄活问题的实际背景,明确已知与未知,理活量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2汁艮据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3汁艮据题意选择正弦定理或余弦定理求解.(4)#三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1) 实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2) 实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1. (2012江苏金陵中学)已知^ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等丁 -解析记三角形三边长为a-4, a, a+ 4,则(a + 4)2 = (a-4)2 + a2— 2a(a-4)cos1120,解得a= 10,故S= 2 X 10x 6X sin 120 = 15寸3.答案15 32. 若海上有A, B, C三个小岛,测得A, B两岛相距10海里,/ BAC= 60°,/ ABC= 75°,则B, C问的距离是__________ 渔里................................. BC AB -解析由正弦正理,知sin 60° = sin 1800-60°-75°.解侍BC= 5V6(海里)•答案5 63. (2013日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75。
正弦定理、余弦定理的应用举例练习题(基础、经典、好用)
正弦定理、余弦定理的应用举例一、选择题图3-8-91.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A,B(如图3-8-9),要测算A,B两点的距离,测量人员在岸边定出基线BC,测得BC=50 m,∠ABC=105°,∠BCA =45°,就可以计算出A,B两点的距离为()A.50 2 m B.50 3 mC.25 2 m D.2522m2.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时()A.5海里B.53海里C.10海里D.103海里图3-8-103.(2013·广州模拟)一艘海轮从A处出发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,那么B、C两点间的距离是() A.102海里B.103海里C.202海里D.203海里图3-8-114.如图3-8-11所示,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B处营救,则sin θ的值为()A.217 B.22 C.32 D.5714图3-8-125.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 6 m(如图3-8-12所示),则旗杆的高度为()A.10 m B.30 m C.10 3 m D.10 6 m二、填空题6.甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则乙楼的高是________米.7.在地上画一个∠BDA=60°,某人从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点B,则B与D之间的距离为________米.图3-8-138.如图3-8-13,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB=________.三、解答题图3-8-149.(2013·佛山调研)如图3-8-14,某观测站C在城A的南偏西20°的方向,从城A出发有一条走向为南偏东40°的公路,在C处观测到距离C处31 km的公路上的B处有一辆汽车正沿公路向A城驶去,行驶了20 km后到达D处,测得C,D两处的距离为21 km,这时此车距离A城多少千米?图3-8-1510.如图3-8-15,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C 处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D间的距离(计算结果精确到0.01 km,2≈1.414,6≈2.449).图3-8-1611.(2013·惠州模拟)某城市有一块不规则的绿地如图3-8-16所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC、△ABD,经测量AD=BD=14,BC=10,AC=16,∠C=∠D.(1)求AB的长度;(2)若建造环境标志的费用与用地面积成正比,不考虑其他因素,小李、小王谁的设计使建设费用最低,请说明理由.解析及答案一、选择题1.【解析】在△ABC中,由正弦定理BCsin 30°=ABsin 45°,AB=50 2.【答案】 A2.【解析】如图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在直角三角形ABC中,得AB=5,于是这艘船的速度是50.5=10(海里/小时).【答案】 C3.【解析】由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45°.在△ABC中,由正弦定理,得BC=ABsin 45°×sin 30°=10 2.【答案】 A4.【解析】连接BC.在△ABC中,AC=10,AB=20,∠BAC=120°,由余弦定理,得BC2=AC2+AB2-2AB·AC·cos 120°=700,∴BC=107,再由正弦定理,得BCsin∠BAC =AB sin θ,∴sin θ=21 7.【答案】 A5.【解析】如图,在△ABC中,∠ABC=105°,所以∠ACB=30°.由正弦定理得106sin 30°=BCsin 45°,所以BC=206×2 2=203(m).在Rt△CBD中,CD=BC sin 60°=203×32=30(m).【答案】 B二、填空题6.【解析】如图,依题意甲楼高度AB=20tan 60°=203米,又CM=DB=20米,∠CAM =60°.所以AM=CM·1tan 60°=2033米,所以乙楼的高CD=203-2033=4033米.【答案】403 37.【解析】如图所示,设BD=x m,则142=102+x2-2×10×x×cos 60°,∴x2-10x-96=0,∴x=16.【答案】168.【解析】设AB=h,在△ABC中tan 60°=h BC,∴BC=33h,在△BCD中,∠DBC=180°-15°-30°=135°,由正弦定理得CDsin∠DBC =BCsin∠BDC,即30sin 135°=33hsin 30°,解得h=15 6.【答案】15 6三、解答题9.【解】在△BCD中,BC=31,BD=20,CD=21,由余弦定理cos∠BDC=DB2+DC2-BC22DB·DC=-17,所以cos∠ADC=17,sin∠ADC=437,在△ACD中,由条件知CD=21,A=60°,所以sin∠ACD=sin(60°+∠ADC)=32×17+12×437=5314,由正弦定理ADsin∠ACD =CD sin A,所以AD=2132×5314=15,故这时此车距离A城15千米.10.【解】 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC ,又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线, 所以BD =BA . 在△ABC 中,AB sin ∠BCA =ACsin ∠ABC,即AB =AC sin 60°sin 15°=32+620,因此,BD =32+620≈0.33 km.故B ,D 间的距离约为0.33 km.11.【解】 (1)在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =356-320cos C , ① 在△ABD 中,由余弦定理及∠C =∠D 整理得AB 2=AD 2+BD 2-2AD ·BD cos D =392-392cos C , ② 由①②得:356-320cos C =392-392cos C , 整理可得,cos C =12,又∠C 为三角形的内角,所以C =60°, 又∠C =∠D ,AD =BD , 所以△ABD 是等边三角形, 故AB =14,即A 、B 两点的距离为14. (2)小李的设计符合要求.理由如下:S △ABD =12AD ·BD sin D , S △ABC =12AC ·BC sin C , 因为AD ·BD >AC ·BC , 所以S △ABD >S △ABC ,由已知建造费用与用地面积成正比,故选择△ABC建造环境标志费用较低.因此小李的设计符合要求.。
正余弦定理知识点+经典题(有答案)
正余弦定理1.定理内容:(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即2sin sin sin a b cR A B C=== (2)余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。
即:2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+-(3)面积定理:111sin sin sin 222ABC S ab C bc A ac B ∆=== 2.利用正余弦定理解三角形: (1)已知一边和两角:(2)已知两边和其中一边的对角: (3)已知两边和它们所夹的角: (4)已知三边:正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .262.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 63.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .26.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或328.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .29.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________.14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .2 6C .3 6D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( )D .2 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( )A .60°B .45°C .120°D .150°4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( )或5π6 或2π35.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( )A .aB .bC .cD .以上均不对6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .由增加的长度决定7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( )A .2B .-2C .4D .-4 8.在△ABC 中,b =3,c =3,B =30°,则a 为( )B .2 3 或2 3 D .29.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________.13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.14.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.正弦定理1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )D .26解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin Bsin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6解析:选=45°,由正弦定理得b =a sin Bsin A =4 6.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135°B .135°C .45°D .以上答案都不对解析:选C.由正弦定理a sin A =b sin B 得:sin B =b sin A a =22,又∵a >b ,∴B <60°,∴B =45°. 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6.5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 C .2解析:选=180°-105°-45°=30°,由b sin B =c sin C 得c =2×sin 30°sin45°=1.6.在△ABC 中,若cos A cos B =ba ,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形解析:选D.∵b a =sin B sin A ,∴cos A cos B =sin Bsin A , sin A cos A =sin B cos B ,∴sin2A =sin2B即2A =2B 或2A +2B =π,即A =B ,或A +B =π2.7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( )或 3 或32解析:选=AC sin B ,求出sin C =32,∵AB >AC ,∴∠C 有两解,即∠C =60°或120°,∴∠A =90°或30°.再由S △ABC =12AB ·AC sin A 可求面积.8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )B .2解析:选D.由正弦定理得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.解析:由正弦定理得:a sin A =csin C ,所以sin A =a ·sin C c =12.又∵a <c ,∴A <C =π3,∴A =π6.答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.解析:由正弦定理得a sin A =bsin B⇒sin B =b sin A a =4×12433=32.答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×sin30°sin120°=43,∴a +c =8 3. 答案:8312.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得 2R sin A =2·2R ·sin B ·cos C , 所以sin A =2sin B ·cos C , 即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:等腰三角形13.在△ABC 中,A =60°,a =63,b =12,C=30°则a +b +csin A +sin B +sin C =________,c =________.解析:由正弦定理得a +b +c sin A +sin B +sin C=a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×sin60°×c =183,∴c =6.答案:12 614.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________.解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°,∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C ,∴a -2b +c sin A -2sin B +sin C =2R sin A -2sin B +sin Csin A -2sin B +sin C =2R =2. 答案:215.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析:依题意,sin C =223,S △ABC =12ab sin C =43,解得b =2 3. 答案:2316.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.解析:∵b sin C =43×12=23且c =2, ∴c <b sin C ,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少解:在△ABC 中,BC =40×12=20, ∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°, 所以∠A =180°-(30°+105°)=45°, 由正弦定理得AC =BC ·sin ∠ABC sin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是10 2 km.18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c .解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6.由sin B sin C =cos 2A2,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ),即2sin B sin C +cos(B +C )=1,变形得 cos B cos C +sin B sin C =1,即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3.由正弦定理a sin A =b sin B =csin C ,得b =c =a sin Bsin A =23×1232=2.故A =2π3,B =π6,b =c =2.19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 解:(1)∵A 、B 为锐角,sin B =1010,∴cos B =1-sin 2B =31010.又cos 2A =1-2sin 2A =35,∴sin A =55,cos A =255, ∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22.又0<A +B <π,∴A +B =π4.(2)由(1)知,C =3π4,∴sin C =22.由正弦定理:a sin A =b sin B =csin C 得5a =10b =2c ,即a =2b ,c =5b .∵a -b =2-1,∴2b -b =2-1,∴b =1. ∴a =2,c = 5.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.解:由S =12ab sin C 得,153=12×603×sin C ,∴sin C =12,∴∠C =30°或150°. 又sin B =sin C ,故∠B =∠C .当∠C =30°时,∠B =30°,∠A =120°.又∵ab =603,a sin A =bsin B ,∴b =215. 当∠C =150°时,∠B =150°(舍去). 故边b 的长为215.余弦定理1.在△ABC 中,如果BC =6,AB =4,cos B =13,那么AC 等于( )A .6B .26C .3 6D .46 解析:选A.由余弦定理,得 AC =AB 2+BC 2-2AB ·BC cos B= 42+62-2×4×6×13=6.2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2解析:选B.由余弦定理,得c 2=a 2+b 2-2ab cos C =22+(3-1)2-2×2×(3-1)cos30° =2, ∴c = 2.3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150°解析:选∠A =b 2+c 2-a 22bc =-3bc 2bc =-32, ∵0°<∠A <180°,∴∠A =150°. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) 或5π6 或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac ,联想到余弦定理,代入得cos B =a 2+c 2-b 22ac =32·1tan B =32·cos B sin B .显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3.5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对解析:选·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c =c .6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4解析:选△ABC =3=12|AB →|·|AC →|·sin A =12×4×1×sin A ,∴sin A =32,又∵△ABC 为锐角三角形,∴cos A =12,∴AB →·AC →=4×1×12=2.8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .23 或2 3 D .2解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3.9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B =π3. 在△ABD 中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×1×2×12= 3. 答案:310.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10.设a =(3-1)k ,b =(3+1)k ,c =10k (k >0), ∴c 边最长,即角C 最大.由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又C ∈(0°,180°),∴C =120°. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________.解析:S =12ab sin C ,sin C =32,∴C =60°或120°.∴cos C =±12,又∵c 2=a 2+b 2-2ab cos C ,∴c 2=21或61,∴c =21或61. 答案:21或6112.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 解析:由正弦定理a ∶b ∶c =sin A ∶sin B ∶sin C =2∶3∶4, 设a =2k (k >0),则b =3k ,c =4k ,cos B =a 2+c 2-b 22ac =2k 2+4k 2-3k 22×2k ×4k=1116, 同理可得:cos A =78,cos C =-14,∴cos A ∶cos B ∶cos C =14∶11∶(-4). 答案:14∶11∶(-4)13.在△ABC 中,a =32,cos C =13,S △ABC =43,则b =________.解析:∵cos C =13,∴sin C =223.又S △ABC =12ab sin C =43,即12·b ·32·223=43,∴b =2 3.答案:2314.已知△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为________.解析:在△ABC 中,cos B =AB 2+BC 2-AC 22AB ·BC=49+25-362×7×5=1935,∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×(-1935)=-19.答案:-1915.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 24,则角C =________. 解析:12ab sin C =S =a 2+b 2-c 24=a 2+b 2-c 22ab ·ab 2 =12ab cos C ,∴sin C =cos C ,∴tan C =1,∴C =45°.答案:45°16.(2011年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 解析:设三边长为k -1,k ,k +1(k ≥2,k ∈N ),则⎩⎪⎨⎪⎧ k 2+k -12-k +12<0k +k -1>k +1⇒2<k <4,∴k =3,故三边长分别为2,3,4,∴最小角的余弦值为32+42-222×3×4=78.答案:7817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12.又∵a ,b 是方程x 2-23x +2=0的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12)=a 2+b 2+ab =(a +b )2-ab=(23)2-2=10,∴AB =10. 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求角C 的度数.解:(1)由题意及正弦定理得 AB +BC +AC =2+1,BC +AC =2AB ,两式相减,得AB =1.(2)由△ABC 的面积12BC ·AC ·sin C =16sin C ,得BC ·AC =13,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC=AC +BC 2-2AC ·BC -AB 22AC ·BC=12, 所以C =60°.19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值; (2)求sin(2A -π4)的值.解:(1)在△ABC 中,由正弦定理AB sin C =BC sin A ,得AB =sin C sin A BC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC=255, 于是sin A =1-cos 2A =55.从而sin 2A =2sin A cos A =45,cos 2A =cos 2 A -sin 2 A =35.所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210.20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.解:由正弦定理,得sin C sin B =c b .由2cos A sin B =sin C ,有cos A =sin C 2sin B =c 2b .又根据余弦定理,得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc ,即c 2=b 2+c 2-a 2,所以a =b .又因为(a +b +c )(a +b -c )=3ab ,所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,所以b =c ,所以a =b =c ,因此△ABC 为等边三角形.。
高中数学-余弦定理、正弦定理应用举例跟踪测试卷及答案
课时跟踪检测 (十三) 余弦定理、正弦定理应用举例层级(一) “四基”落实练1.如图,两座灯塔A 和B 与河岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的 ( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D 由条件及题图可知,∠A =∠B =40°.又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033m B .10 3 m, 2 0 3 m C .10(3-2)m, 20 3 mD.1532 m ,2033m 解析:选A 由题意,知h 甲=20tan 60°=203(m), h 乙=20tan 60°-20tan 30°=4033(m). 3.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( ) A .15 2 km B .30 2 km C .45 2 kmD .60 2 km解析:选B 如图所示,依题意有AB =15×4=60,∠DAC =60°,∠ CBM =15°,所以∠MAB =30°,∠AMB =45°.在△AMB 中,由正弦定理,得60sin 45°=BMsin 30°,解得BM =30 2 (km).4.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这艘船的航行速度为( )A.1762n mile/h B .34 6 n mile/h C.1722n mile/h D .34 2 n mile/h解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762(n mile/h).故选A. 5.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为 ( )A .30°B .45°C .60°D .75°解析:选B 依题意可得AD =2010(m), AC =305(m),又CD =50(m),所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=6 0006 0002=22.又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.6.某人朝正东方向走x m 后,向右转150°,然后朝新方向走3 m ,结果他离出发点恰好为3m ,那么x 的值为_______.解析:如图,在△ABC 中,AB =x ,B =30°,BC =3,AC =3,由余 弦定理得(3)2=x 2+32-2×3×x ×cos 30°, ∴x 2-33x +6=0,∴x =3或2 3. 答案:23或 37.如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°, 45°,且∠BAC =135°.若山高AD =100 m ,汽车从C 点到B 点历时14 s ,则这辆汽车的速度为________m/s.(精确到0.1,参考数据:2≈1.414,5≈2.236) 解析:由题意可知,AB =200 m ,AC =100 2 m , 由余弦定理可得BC =40 000+20 000-2×200×1002×-22≈316.2(m), 这辆汽车的速度为316.2÷14≈22.6(m/s). 答案:22.68.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,求山高MN .解:根据图示,AC =100 2 m .在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°解得AM =100 3 m .在△AMN 中,MNAM =sin 60°,所以MN =1003×23=150(m). 层级(二) 能力提升练1.如图所示,为了测量某湖泊两侧A ,B 间的距离,李宁同学首先选定了与 A ,B 不共线的一点C ,然后给出了三种测量方案(△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ):①测量A ,B ,b ;②测量a ,b ,C ;③测量A ,B ,a .则一定能确定A ,B 间距离的所有方案的个数为( )A .3B .2C .1D .0解析:选A 对于①,利用内角和定理先求出C =π-A -B ,再利用正弦定理b sin B =c sin C解出c ;对于②,直接利用余弦定理c 2=a 2+b 2-2ab cos C 即可解出c ;对于③,先利用内角和定理求出C =π-A -B ,再利用正弦定理a sin A =csin C解出c .故选A. 2.当太阳光线与水平面的倾斜角为60°时,一根长为2 m 的竹竿,要使它的影子最长,则竹竿与地面所成的角α=________. 解析:如图,设竹竿的影子长为x . 依据正弦定理可得2sin 60°=xsin (120°-α).所以x =43·sin(120°-α). 因为0°<120°-α<120°,所以要使x 最大,只需120°-α=90°, 即α=30°时,影子最长. 答案:30°3.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为______小时.解析:如图,设A 地东北方向上存在点P 到B 的距离为30千米, AP =x .在△ABP 中,PB 2=AP 2+AB 2-2AP ·AB ·cos A ,即302=x 2+402-2x ·40cos 45°,化简得x 2-402x +700=0, |x 1-x 2|2=(x 1+x 2)2-4x 1x 2=400, |x 1-x 2|=20,即图中的CD =20(千米),故t =CD v =2020=1(小时).答案:14.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直 弹射高度:A ,B ,C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100 m ,∠BAC =60°,在A 地听到弹射声音的时间比在B 地晚217s .A 地测得该仪器弹至最高点H 时的仰角为30°. (1)求A ,C 两地的距离; (2)求该仪器的垂直弹射高度CH . (声音的传播速度为340 m/s)解:(1)由题意,设AC =x m ,则BC =x -217×340=(x -40)m.在△ABC 中,由余弦定理,得BC 2=BA 2+AC 2-2BA ·AC cos ∠BAC , 即(x -40)2=10 000+x 2-100x ,解得x =420. 所以A ,C 两地间的距离为420 m.(2)在Rt △ACH 中,AC =420 m ,∠CAH =30°, 所以CH =AC tan ∠CAH =140 3 m. 所以该仪器的垂直弹射高度CH 为140 3 m.5.如图所示,在社会实践中,小明观察一棵桃树.他在点A 处发现桃树顶端点C 的仰角大小为45°,往正前方走4 m 后,在点B 处发现桃树 顶端点C 的仰角大小为75°. (1)求BC 的长;(2)若小明身高为1.70 m ,求这棵桃树顶端点C 离地面的高度(精确到0.01 m ,其中3≈1.732).解:(1)在△ABC 中,∠CAB =45°,∠DBC =75°, 则∠ACB =75°-45°=30°,AB =4. 由正弦定理得BC sin 45°=4sin 30°, 解得BC =42(m).即BC 的长为4 2 m. (2)在△CBD 中,∠CDB =90°,BC =42,所以DC =42sin 75°.因为sin 75°=sin(45°+30°)=sin 45°cos 30°+cos 45°sin 30°=6+24,则DC =2+2 3. 所以CE =ED +DC =1.70+2+23≈3.70+3.464≈7.16(m).即这棵桃树顶端点C 离地面的高度为7.16 m. 层级(三) 素养培优练1.北京冬奥会,首钢滑雪大跳台(如图1)是冬奥历史上第一座与工业遗产再利用直接结合的竞赛场馆,大跳台的设计中融入了世界文化遗产敦煌壁画中“飞天”的元素.西青区某校研究性学习小组为了估算赛道造型最高点A (如图2)距离地面的高度AB (AB 与地面垂直),在赛道一侧找到一座建筑物PQ .测得PQ 的高度约为25米,并从P 点测得A 点的仰角为30°.在赛道与建筑物PQ 之间的地面上的点M 处测得A 点、P 点的仰角分别为75°和30°(其中B ,M ,Q 三点共线).则该学习小组利用这些数据估算得赛道造型最高点A 距离地面的高度约为(参考数据:2≈1.41,3≈1.73,6≈2.45)( )A .59B .60C .65D .68解析:选A 如图所示,由题意得∠AMB =75°,∠PMQ =30°,∠AMP =75°,∠APM =60°,∠PAM =45°,在△PMQ 中,PM =PQsin ∠PMQ=50,在△PAM 中,由正弦定理得AM sin ∠APM =PMsin ∠PAM,AM sin 60°=50sin 45°,所以AM =256, 在△ABM 中,AB =AM ·sin ∠AMB =256×sin 75° =256×6+24, 所以AB =150+5034≈150+50×1.734=236.54=59.125,所以赛道造型最高点A 距离地面的高度约59.2.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O 的北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值. (3)是否存在v ,使得小艇以v 海里/时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v 的取值范围;若不存在,请说明理由. 解:(1)设相遇时小艇的航行距离为S 海里,则由余弦定理,可得S =900t 2+400-2×30t ×20cos (90°-30°) =900t 2-600t +400=900t -132+300, 故当t =13时,S min =103,此时v =303,即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇,由题意可知(v t )2=202+(30t )2-2·20·30t ·cos(90°-30°), 化简得,v 2=400t2-600t 900=400 1t -342+675. 由于0<t ≤12,所以1t ≥2,所以当1t =2时,v 取得最小值1013, 即小艇航行速度的最小值为10 13 海里/时. (3)存在.由(2)知,v 2=400t2-600t +900,设1t =u (u >0), 于是400u 2-600u +900-v 2=0.小艇总能有两种不同的航行方向与轮船相遇,等价于方程有两个不等正根,即6002-1 600(900-v 2)>0,900-v 2>0,解得153<v <30, 所以v 的取值范围是(153,30).。
(完整版)正弦定理和余弦定理典型例题
《正弦定理和余弦定理》典型例题透析类型一:正弦定理的应用:例1.已知在ABC ∆中,10c =,45A =o ,30C =o ,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C=Q , ∴sin 10sin 45102sin sin 30c A a C ⨯===oo∴ 180()105B A C =-+=o o , 又sin sin b c B C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯====⨯=o o o 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。
【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A .【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴56a =【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ∆===o 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b c B C=, ∴sin 1sin 23c B C b ===o , (方法一)∵0180C <<o o , ∴30C =o 或150C =o ,当150C =o 时,210180B C +=>o o ,(舍去);当30C =o 时,90A =o ,∴222a b c =+=.(方法二)∵b c >,60B =o , ∴C B <,∴60C <o 即C 为锐角, ∴30C =o ,90A =o ∴222a b c =+=.总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。
正弦定理和余弦定理的应用Word版含答案
正弦定理和余弦定理的应用【课前回顾】测量中的有关几个术语(2)南偏西α:【课前快练】1.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩A ,B (如图),要测量A ,B 两点的距离,测量人员在岸边定出基线BC ,测得BC =50 m ,∠ABC =105°,∠BCA =45°.可以计算出A ,B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m解析:选A 由题意知∠CAB =180°-∠ABC -∠BCA =30°, 由正弦定理得AB sin ∠BCA =BCsin ∠CAB,所以AB =BC ·sin ∠BCAsin ∠CAB=50×2212=502(m).2.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( )A .10 2 mB .20 mC .20 3 mD .40 m解析:选D 设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,由余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =-20(舍去)或x =40.故电视塔的高度为40 m.3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的________方向上.解析:如图所示,∠ACB =90°, 又AC =BC ,∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案:北偏西15°考点一 测量高度问题求解高度问题的3个注意点(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.【典型例题】(2018·衡水模拟)如图,为了测量河对岸电视塔CD 的高度,小王在点A 处测得塔顶D 的仰角为30°,塔底C 与A 的连线同河岸成15°角,小王向前走了1 200 m 到达M 处,测得塔底C 与M 的连线同河岸成60°角,则电视塔CD 的高度为________m.[思维路径](结论)求CD →放在△ACD 中求解→在Rt △ACD 中知∠DAC →(关键点)需再知AC →在△ACM 中,易知两角与一边,用正弦定理可解得.解析:在△ACM 中,∠MCA =60°-15°=45°,∠AMC =180°-60°=120°,由正弦定理得AM sin ∠MCA =AC sin ∠AMC ,即1 20022=AC 32,解得AC =600 6.在△ACD 中,∵tan ∠DAC =DC AC =33,∴DC =6006×33=600 2. 答案:600 2【针对训练】(2018·大连大联考)为了测量某新建的信号发射塔AB 的高度,先取与发射塔底部B 在同一水平面内的两个观测点C ,D ,测得∠BDC =60°,∠BCD =75°,CD =40 m ,并在点C 的正上方E 处观测发射塔顶部A 的仰角为30°,且CE =1 m ,则发射塔高AB =( )A .(202+1)mB .(203+1)mC .20 2 mD .(402+1) m解析:选A 如图,过点E 作EF ⊥AB ,垂足为F , 则EF =BC ,BF =CE =1,∠AEF =30°. 在△BCD 中,由正弦定理得, BC =CD ·sin ∠BDC sin ∠CBD =40·sin 60°sin 45°=20 6.所以EF =206,在Rt △AFE 中,AF =EF ·tan ∠AEF =206×33=202, 所以AB =AF +BF =202+1 (m).考点二 测量距离问题1.测量距离问题,无论题型如何变化,即两点的情况如何,实质都是要求这两点间的距离,无非就是两点所在三角形及其构成元素所知情况不同而已,恰当地画出(找出)适合解决问题的三角形是解题的基础,将已知线段长度和角度转化为要解的三角形的边长和角是解题的关键.2.求距离问题的两个策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. 角度(一) 两点都不可到达1.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA=δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离为________km.解析:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°,∴AC =DC =32(km). 在△BCD 中,∠DBC =45°, 由正弦定理,得BC =DC sin ∠DBC ·sin ∠BDC =32sin 45°·sin 30°=64.在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos 45° =34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64 km. 答案:64角度(二) 两点不相通的距离2.如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离.即AB =a 2+b 2-2ab cos α.若测得CA =400 m ,CB =600 m ,∠ACB =60°,则A ,B 两点的距离为________m.解析:在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000. ∴AB =200 7 (m).即A ,B 两点间的距离为200 7 m. 答案:200 7角度(三) 两点间可视但有一点不可到达3.如图,为了测量两座山峰上P ,Q 两点之间的距离,选择山坡上一段长度为300 3 m 且和P ,Q 两点在同一平面内的路段AB 的两个端点作为观测点,现测得∠PAB =90°,∠PAQ =∠PBA =∠PBQ =60°,则P ,Q 两点间的距离为________ m.解析:由已知,得∠QAB =∠PAB -∠PAQ =30°.又∠PBA =∠PBQ =60°,∴∠AQB =30°,∴AB =BQ . 又PB 为公共边,∴△PAB ≌△PQB ,∴PQ =PA . 在Rt △PAB 中,AP =AB ·tan 60°=900,故PQ =900, ∴P ,Q 两点间的距离为900 m. 答案:900【针对训练】1.已知A ,B 两地间的距离为10 km ,B ,C 两地间的距离为20 km ,现测得∠ABC =120°,则A ,C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D 由余弦定理可得: AC 2=AB 2+CB 2-2AB ×CB ×cos 120° =102+202-2×10×20×⎝⎛⎭⎫-12=700. ∴AC =107(km).2.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( )A .15 2 kmB .30 2 kmC .45 2 kmD .60 2 km 解析:选B 作出示意图如图所示,依题意有AB =15×4=60,∠DAC =60°,∠CBM =15°,∴∠MAB =30°,∠AMB =45°. 在△AMB 中,由正弦定理,得60sin 45°=BM sin 30°, 解得BM =30 2.考点三 测量角度问题1.注意解决测量角度问题的3事项(1)测量角度时,首先应明确方位角及方向角的含义. (2)求角的大小时,先在三角形中求出其正弦或余弦值.(3)在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点.2.掌握解三角形应用题的4步骤【典型例题】游客从某旅游景区的景点A 处至景点C 处有两条线路.线路1是从A 沿直线步行到C ,线路2是先从A 沿直线步行到景点B 处,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处同时出发匀速步行,甲的速度是乙的速度的119倍,甲走线路2,乙走线路1,最后他们同时到达C 处.经测量,AB =1 040 m ,BC =500 m ,则sin ∠BAC 等于________.解析:依题意,设乙的速度为x m/s , 则甲的速度为119x m/s ,因为AB =1 040 m ,BC =500 m , 所以AC x =1 040+500119x ,解得AC =1 260 m.在△ABC 中,由余弦定理得,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =1 0402+1 2602-50022×1 040×1 260=1213,所以sin ∠BAC =1-cos 2∠BAC = 1-⎝⎛⎭⎫12132=513.答案:513【针对训练】在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解:如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=ACsin 120°, 所以sin α=20sin 120°28=5314. 所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314. 【课后演练】1.如图,两座灯塔A 和B 与河岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D 由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C ∵tan 15°=tan(60°-45°)=tan 60°-tan 45°1+tan 60°tan 45°=2-3,∴BC =60tan60°-60tan 15°=120(3-1)(m).3.如图,在塔底D 的正西方A 处测得塔顶的仰角为45°,在塔底D 的南偏东60°的B 处测得塔顶的仰角为30°,A ,B 的距离是84 m ,则塔高CD 为( )A .24 mB .12 5 mC .127 mD .36 m解析:选C 设塔高CD =x m , 则AD =x m ,DB =3x m.又由题意得∠ADB =90°+60°=150°, 在△ABD 中,利用余弦定理,得 842=x 2+(3x )2-23·x 2cos 150°, 解得x =127(负值舍去),故塔高为127 m.4.一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 作出示意图如图所示,设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,在Rt △BCD 中,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.5.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .10 2 海里B .10 3 海里C .20 3 海里D .20 2 海里解析:选A 画出示意图如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°, 解得BC =102(海里).6.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D两点,测出四边形ABCD 各边的长度(单位:km):AB =5,BC =8,CD =3,DA =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 km解析:选A 在△ACD 中,由余弦定理得: cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230.在△ABC 中,由余弦定理得: cos B =AB 2+BC 2-AC 22AB ·BC =89-AC 280.因为∠B +∠D =180°,所以cos B +cos D =0, 即34-AC 230+89-AC 280=0,解得AC =7.7.海上有A ,B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,那么B 岛和C 岛间的距离是________ n mile.解析:如图,在△ABC 中,AB =10,A =60°,B =75°,C =180°-60°-75°=45°,由正弦定理,得AB sin C =BCsin A, 所以BC =AB ·sin A sin C =10×sin 60°sin 45°=56(n mile). 答案:5 68.如图所示,一艘海轮从A 处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20 n mile 的B 处,海轮按北偏西60°的方向航行了30 min 后到达C 处,又测得灯塔在海轮的北偏东75°的方向上,则海轮的速度为________n mile/min.解析:由已知得∠ACB =45°,∠B =60°, 由正弦定理得AC sin B =ABsin ∠ACB ,所以AC =AB ·sin B sin ∠ACB=20×sin 60°sin 45°=106,所以海轮航行的速度为10630=63(n mile/min).答案:639.某同学骑电动车以24 km/h 的速度沿正北方向的公路行驶,在点A 处测得电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处,测得电视塔S 在电动车的北偏东75°方向上,则点B 与电视塔的距离是________km.解析:如题图,由题意知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,∴∠ASB =45°,由正弦定理知BS sin 30°=ABsin 45°,∴BS =AB ·sin 30°sin 45°=32(km).答案:3 210.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析:由题意,在△ABC 中,∠BAC =30°, ∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°, 解得BC =300 2 m. 在Rt △BCD 中,CD =BC ·tan 30°=3002×33=100 6(m). 答案:100 611.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( )A .5 kmB .10 kmC .5 3 kmD .5 2 km解析:选C 作出示意图(如图),点A 为该船开始的位置,点B 为灯塔的位置,点C 为该船后来的位置,所以在△ABC 中,有∠BAC =60°-30°=30°,B =120°,AC =15,由正弦定理,得15sin 120°=BC sin 30°,即BC =15×1232=53,即这时船与灯塔的距离是5 3 km.12.地面上有两座相距120 m 的塔,在矮塔塔底望高塔塔顶的仰角为α,在高塔塔底望矮塔塔顶的仰角为α2,且在两塔底连线的中点O 处望两塔塔顶的仰角互为余角,则两塔的高度分别为( )A .50 m,100 mB .40 m,90 mC .40 m,50 mD .30 m,40 m解析:选B 设高塔高H m ,矮塔高h m ,在O 点望高塔塔顶的仰角为β.则tan α=H 120,tan α2=h 120, 根据三角函数的倍角公式有H 120=2×h 1201-⎝⎛⎭⎫h 1202.① 因为在两塔底连线的中点O 望两塔塔顶的仰角互为余角,所以在O 点望矮塔塔顶的仰角为π2-β, 由tan β=H 60,tan ⎝⎛⎭⎫π2-β=h 60, 得H 60=60h .② 联立①②解得H =90,h =40.即两座塔的高度分别为40 m,90 m.13.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径的长度为( )A .50 5 mB .507 mC .5011 mD .5019 m解析:选B 设该扇形的半径为r ,连接CO .由题意,得CD =150(m),OD =100(m),∠CDO =60°,在△CDO 中,由余弦定理得,CD 2+OD 2-2CD ·OD ·cos 60°=OC 2,即1502+1002-2×150×100×12=r 2, 解得r =507.14.(2018·惠州调研)如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC=45°,根据以上数据可得cos θ=________.解析:由∠DAC=15°,∠DBC=45°,可得∠DBA=135°,∠ADB=30°.在△ABD中,根据正弦定理可得ABsin∠ADB=BDsin∠BAD,即50sin 30°=BDsin 15°,所以BD=100sin 15°=100×sin(45°-30°)=25(6-2).在△BCD中,由正弦定理得CD∠DBC=BDsin∠BCD,即25sin 45°=25(6-2)sin∠BCD,解得sin∠BCD=3-1.所以cos θ=cos(∠BCD-90°)=sin∠BCD=3-1.答案:3-115.(2018·福州质检)如图,小明同学在山顶A处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A处测得公路上B,C两点的俯角分别为30°,45°,且∠BAC=135°.若山高AD=100 m,汽车从B点到C点历时14 s,则这辆汽车的速度约为______m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.解析:因为小明在A处测得公路上B,C两点的俯角分别为30°,45°,所以∠BAD =60°,∠CAD=45°.设这辆汽车的速度为v m/s,则BC=14v.在Rt△ADB中,AB=ADcos∠BAD=ADcos 60°=200.在Rt△ADC中,AC=ADcos∠CAD=100cos 45°=100 2.在△ABC中,由余弦定理,得BC2=AC2+AB2-2AC·AB·cos∠BAC,所以(14v)2=(1002)2+2002-2×1002×200×cos 135°,所以v=50107≈22.6,所以这辆汽车的速度约为22.6 m/s.答案:22.616.一艘海轮从A出发,沿北偏东75°的方向航行(23-2)n mile 到达海岛B,然后从B出发,沿北偏东15°的方向航行4 n mile到达海岛C.(1)求AC的长;(2)如果下次航行直接从A出发到达C,求∠CAB的大小.解:(1)由题意,在△ABC中,∠ABC=180°-75°+15°=120°,AB=23-2,BC=4,根据余弦定理得,AC2=AB2+BC2-2AB×BC×cos∠ABC=(23-2)2+42+(23-2)×4=24,所以AC=2 6.故AC的长为2 6 n mile.(2)根据正弦定理得,sin∠BAC=4×3226=22,所以∠CAB=45°.17.已知在东西方向上有M,N两座小山,山顶各有一座发射塔A,B,塔顶A,B的海拔高度分别为AM=100 m和BN=200 m,一测量车在小山M的正南方向的点P处测得发射塔顶A的仰角为30°,该测量车向北偏西60°方向行驶了100 3 m后到达点Q,在点Q处测得发射塔顶B处的仰角为θ,且∠BQA=θ,经测量tan θ=2,求两发射塔顶A,B之间的距离.解:在Rt△AMP中,∠APM=30°,AM=100,∴PM=100 3.连接QM,在△PQM中,∠QPM=60°,PQ=1003,∴△PQM为等边三角形,∴QM=100 3.在Rt△AMQ中,由AQ2=AM2+QM2,得AQ=200.在Rt△BNQ中,tan θ=2,BN=200,∴BQ=1005,cos θ=5 5.在△BQA中,BA2=BQ2+AQ2-2BQ·AQ cos θ=(1005)2,∴BA=100 5.即两发射塔顶A,B之间的距离是100 5 m.18.如图所示,在一条海防警戒线上的点A,B,C处各有一个水声监测点,B,C两点到点A的距离分别为20 km和50 km.某时刻,B收到发自静止目标P的一个声波信号,8 s后A,C同时接收到该声波信号,已知声波在水中的传播速度是1.5 km/s.(1)设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;(2)求静止目标P到海防警戒线AC的距离.解:(1)依题意,有PA=PC=x,PB=x-1.5×8=x-12.在△PAB 中,AB =20,cos ∠PAB =PA 2+AB 2-PB 22PA ·AB =x 2+202-(x -12)22x ·20=3x +325x. 同理,在△PAC 中,AC =50,cos ∠PAC =PA 2+AC 2-PC 22PA ·AC =x 2+502-x 22x ·50=25x . 因为cos ∠PAB =cos ∠PAC ,所以3x +325x=25x ,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠PAD =2531,得 sin ∠PAD =1-cos 2∠PAD =42131, 所以PD =PA sin ∠PAD =31×42131=421(km). 故静止目标P 到海防警戒线AC 的距离为421 km.。
正弦定理余弦定理应用实例练习含答案
课时作业3 应用举例时间:45分钟 满分:100分课堂训练1.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .103海里B .106海里C .52海里D .56海里【答案】 D【解析】 如图,∠A =60°,∠B =75°, 则∠C =45°, 由正弦定理得:BC =AB ·sin A sin C =10×sin60°sin45°=5 6.2.如图所示,设A 、B 两点在河的两岸,一测量者在A 所在的河岸边选定一点C ,测出AC 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算出A 、B 两点的距离为( )A .502mB .503mC .252m D.2522m【答案】 A【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=ABsi n45°,解得AB =502m ,选A.3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m.【答案】 521【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,设电视塔高度为h m,则OA=33h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB,即352=(33h)2+h2-2×33h×h×(-32)解得h=521.4.如图所示,海中小岛A周围38海里有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.【解析】在△ABC中,BC=30,∠B=30°,∠ACB=135°,∴∠BAC=15°由正弦定理BCsin A=ACsin B,即:30sin15°=ACsin30°∴AC=60cos15°=60cos(45°-30°)=60(cos45°cos30°+sin45°sin30°)=15(6+2),∴A到BC的距离为d=AC sin45°=15(3+1)≈40.98海里>38海里,所以继续向南航行,没有触礁危险.课后作业一、选择题(每小题5分,共40分)1.已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A 在灯塔B的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°【答案】 B【解析】 如图所示,∠ECA =40°,∠FCB =60°,∠ACB =180°-40°-60°=80°,∵AC =BC ,∴∠A =∠ABC =180°-80°2=50°,∴∠ABG =180°-∠CBH -∠CBA =180°-120°-50°=10°.故选B.2.某市在“旧城改造”工程中,计划在如下图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮价格为a 元/m 2,则购买这种草皮需要( )A.450a元B.225a元C.150a元D.300a元【答案】 C【解析】S△=12×20×30×sin150°=12×20×30×12=150(m2),∴购买这种草皮需要150a元,故选C.3.有一长为10m的斜坡,倾斜角为75°.在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长的长度(单位:m)是( )A.5 B.10C.10 2 D.10 3【答案】 C【解析】如图,设将坡底加长到B′时,倾斜角为30°.在△ABB′中,利用正弦定理可求得BB′的长度.在△ABB ′中,∠B ′=30°,∠BAB ′=75°-30°=45°,AB =10m. 由正弦定理,得BB ′=AB sin45°sin30°=10×2212=102(m).∴坡底延长102m 时,斜坡的倾斜角将变为30°.4.一船以226km/h 的速度向正北航行,在A 处看灯塔S 在船的北偏东45°,1小时30分后航行到B 处,在B 处看灯塔S 在船的南偏东15°,则灯塔S 与B 之间的距离为( )A .66 kmB .132 kmC .96 kmD .33 km【答案】 A【解析】 如图,∠ASB =180°-15°-45°=120°, AB =226×32=336,由正弦定理336sin120°=SBsin45°,∴SB =66(km).5.据新华社报道,强台风“珍珠”在饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,树尖与地面成45°角,树干也倾斜,与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是( )A.2063米B .106米 C.1063米D .202米【答案】 A【解析】 设树干底部为O ,折断点为P ,树尖着地处为M ,如图,△OPM 中,∠P =180°-∠M -∠O =180°-45°-75°=60°,由正弦定理得PO sin M =MOsin P ,∴PO =MO sin M sin P =20×sin45°sin60°=2063.6.甲船在B 岛的正南A 处,AB =10km ,甲船以4 km/h 的速度向正北航行,同时,乙船自B 岛出发以6km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们航行的时间是( )A.1507min B.157h C .21.5min D .2.15h【答案】 A 【解析】如图,设经过x小时时距离为s,则在△BPQ中,由余弦定理知:PQ2=BP2+BQ2-2BP·BQ·cos120°,即s2=(10-4x)2+(6x)2-2(10-4x)×6x×(-1 2 )=28x2-20x+100.当x=-b2a=514时,s2最小,此时x=514h=1507min.7.一艘船以4km/h的速度与水流方向成120°角的方向航行,已知河水流速为2km/h,则经过3h,该船实际航程为( ) A.215km B.6kmC.221km D.8km【答案】 B【解析】如图,∵|OA→|=2,|OB→|=4,∠AOB=120°,∴∠A=60°,|OC→|=22+42-2×2×4cos60°=2 3.经过3h,该船的航程为23×3=6(km).8.如图,△ABC是简易遮阳棚,A、B是南北方向上的两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角为( )A.75° B.60°C.50° D.45°【答案】 C【解析】 如图,作CE ⊥平面ABD 于点E ,则∠CDE 是太阳光线与地面所成的角,即∠CDE =40°,延长DE 交直线AB 于点F ,连接CF ,则∠CFD 是遮阳棚与地面所成的角,设为α.要使S △ABD 最大,只需DF 最大.在△CFD 中,CF sin40°=DF sin 140°-α. ∴DF =CF ·sin 140°-αsin40°.∵CF 为定值,∴当α=50°时,DF 最大.二、填空题(每小题10分,共20分)9.如图在山脚A 测得山顶P 的仰角为α,沿倾斜角为β的斜坡向上走a 米到B ,又测得山顶P 的仰角为γ,则山高为________.【答案】 a sin α·sin γ-βsin γ-αm 【解析】 在△PAB 中,已知∠BAP =α-β,∠APB =γ-α,AB =a ,由正弦定理可得PA =a sin γ-βsin γ-α, 在Rt △PAQ 中,PQ =PA sin α=a sin αsin γ-βsin γ-α. 10.一只蚂蚁沿东北方向爬行x cm 后,再向右转105°爬行20cm ,又向右转135°,这样继续爬行可回到出发点处,那么x =________.【答案】 2036【解析】如图△ABC中,∠A=45°+15°=60°,∠B=45°+30°=75°,∠ACB=45°,由正弦定理知xsin∠ACB =20sin A,∴x=2036.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.A、B是海平面上的两个点,相距800 m,在A点测得山顶C 的仰角为45°,∠BAD=120°,又在B点测得∠ABD=45°,其中D 是点C到水平面的垂足,求山高CD.【分析】 如图,由于CD ⊥平面ABD ,∠CAD =45°,所以CD =AD .因此,只需在△ABD 中求出AD 即可.【解析】 在△ABD 中,∠BDA =180°-45°-120°=15°,由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m).∵CD ⊥平面ABD ,∠CAD =45°∴CD =AD =800(3+1)≈2 (m).答:山高CD 为2 m.12.如图,一辆汽车从O点出发,沿海岸一条直线公路以100千米/小时的速度向东匀速行驶,汽车开动时,在O点南偏东方向距O 点500千米且与海岸距离为300千米的海上M处有一快艇,与汽车同时出发,要把一件重要的物品递送给这辆汽车的司机,问快艇至少必须以多大的速度行驶,才能把物品递送到司机手中?并求快艇以最小速度行驶时方向与OM所成的角.【分析】根据题意画出示意图如图所示.在△MON中,利用余弦定理得到速度v关于时间t的函数关系式,然后利用二次函数求最值.【解析】 如图所示,设快艇从M 处以v 千米/小时的速度出发,沿MN 方向航行,t 小时后与汽车相遇.在△MON 中,MO =500,ON =100t ,MN =vt ,设∠MON =α,由题意得sin α=35,则cos α=45. 由余弦定理,得MN 2=OM 2+ON 2-2OM ·ON ·cos α,即v 2t 2=5002+1002t 2-2×500×100t ×45. v 2=5002×1t 2-2×500×80×1t +1002=(500×1t-80)2+3 600. 当1t =80500,即t =254时,v 2min =3 600. 即快艇至少必须以60千米/小时的速度行驶,此时MN =60×254=375,MQ 是M 到ON 的距离,且MQ =300. 设∠MNO =β,则sin β=300375=45.所以可得α+β=90°, 即MN 与OM 所成的角为90°.。
(完整版)正弦定理和余弦定理典型例题(最新整理)
【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)
;
根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .
完整版)正弦定理与余弦定理练习题
完整版)正弦定理与余弦定理练习题1.已知三角形ABC中,a=4,b=43,A=30°,求角B的大小。
解:根据正弦定理,有XXX,即sinB=43/4×sin30°=21.5/4.由此可知B的大小为30°或150°,故选B。
2.已知锐角三角形ABC的面积为33,BC=4,CA=3,求角C的大小。
解:根据面积公式,有33=1/2×4×3×sinC,即sinC=22/3.由此可知C的大小为arcsin(22/3)≈75°,故选A。
3.已知三角形ABC中,a,b,c分别是角A,B,C所对的边,且(2a+c)cosB+bcosC=0,求角B的大小。
解:根据余弦定理,有c^2=a^2+b^2-2abcosC,即cosC=(a^2+b^2-c^2)/(2ab)。
代入已知式中,得(2a+c)cosB-b(a^2+b^2-c^2)/(2ab)=0,化简得(4a^2+2ac-b^2)cosB=2abc。
由此可知cosB=(2abc)/(4a^2+2ac-b^2)。
代入cosine double angle formula,得cos2B=(4a^2b^2c^2)/(4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4)。
由于cos2B≤1,可列出不等式4a^2b^2+2a^2c^2-2ab^3+2abc^2-2b^2c^2-b^4≥4a^2b^2c^2,即b^4-2ab^3+(2ac-2c^2-4a^2)b+6a^2c^2-5a^2b^2≤0.考虑b的取值,当b=0时,不等式显然成立;当b>0时,由于a,b,c均为正数,不等式两边同除以b^4后,得到一个关于x=ac/b^2的一元二次不等式6x^2-5x-2≤0.解得x∈[2/3,1],即ac/b^2∈[2/3,1]。
由此可知cosB的取值范围为[1/2,√3/2],故角B的大小为arccos(1/2)≈60°或arccos(√3/2)≈30°,故选B。
(完整版)正弦定理、余弦定理综合训练题含答案
正弦定理、余弦定理综合训练题1. [2016全国卷I ] △ ABC 的内角A , B , C 的对边分别为 a , b , c.已知a = 5, c = 2, cos A = 2,则 b =() A. .2B. 3 C . 2D . 32 1[解析]D 由余弦定理得5= b 2 + 4-2 X b X 2X 3,解得b = 3或b =- 3(舍去),故选D. n 1B = —, BC 边上的高等于§BC ,贝U sin A =( )D.S 10D ,设BC = 3,则有 AD = BD = 1 , AB = 2,由余弦定理 得AC = \ 5.由正弦定理得 “5= s^A , n sin Asin ’43. [2013新课标全国卷I ]已知锐角厶 A + cos 2A = 0, a = 7, c = 6,贝U b =( A . 101[解析]D 由23cos2A + cos 2A = 0,得25cos2A = 1•因为△ABC 为锐角三角形,所以cos A =. 51 12在A ABC 中,根据余弦定理,得 49 = b 2 + 36- 12b •即卩b 2—厂b5 545 4. ________________ [2016全国卷n ] △ ABC 的内角A , B , C 的对边分别为 a , b , c ,若cos A =5, cos C = ^, a = 1,贝U b= .4 53 12[解析]因为cos A = 5, cos C = 13,且A , C 为三角形的内角,所以sin A = 5, sin C =〔3, sin63 「, a b ~― asin B 21B = si n(A + C)= sin AcosC + cos As in C = 65.又因为 sin A = sin B ,所以 b = sin A =伯. 13—13 = 0,解得 b = 5 或 b =— 5 (舍去).5. [2015 全国卷 I ]已知 a , b , c 分别是△ ABC 内角 A , B , C 的对边,sin 2B = 2sin Asin C. (1)若 a = b ,求 cos B;⑵若B = 90°,且a =〔 2, 求厶ABC 的面积. 解:(1)由题设及正弦定理可得b 2 = 2ac.又a = b ,所以可得b = 2c , a = 2c.2. [2016全国卷川]在厶ABC 中, [解析]D 作AD 丄BC 交BC 于点解得sin A =学=噜ABC 的内角A , B , C 的对边分别为 a , b , c , 23COS 2D . 5⑵由(1)知 b 2= 2ac.因为B = 90°,所以由勾股定理得a 2+ c 2= b 2. 故 a 2 + c 2= 2ac ,得 c = a = 2, 所以△ABC 的面积为1.6. [2015 全国卷n ] △ ABC 中,D 是 BC 上的点,AD 平分/ BAC , BD = 2DC. sin / B (1)求跖/C ; ⑵若/ BAC = 60°,求/ B. 解:(1)由正弦定理得AD _ BD AD _ DC sin ZB sin /BAD’ sin ZC sin /CAD 因为AD 平分Z BAC , BD = 2DC ,所以 sin ZB DC 1 sinZC BD 2⑵因为/C = 180°—/BAC + /B),/BAC = 60°,所以、i'3 1sin ZC = sin( ZBAC +/B)= ? cos/B + in ZB.V 3由(1)知 2sinZB = sin/C ,所以 tanZB = 3,即/B = 30°7. [2014新课标全国卷n ]四边形ABCD 的内角A 与C 互补,AB = 1, BC = 3, CD 2.(1)求 C 和 BD ;⑵求四边形ABCD 的面积.解:(1)由题设及余弦定理得 BD 2= BC 2+ CD 2— 2BC CDcos C =13 — 12cos C ,①BD 2= AB 2+ DA 2— 2AB DAcos A由余弦定理可得 cos B =a 2+ c 2— b2ac1 4.DA ==5 + 4cos C .②1 —由①②得 cos C = 2,故 C = 60°,BD =7.⑵四边形ABCD 的面积1 1S = ?AB DA si n A + ?BC CDsi n C1 1/ 1X 2 + 2 x 3X 2 sin 60°=2 38. [2016 山东卷]△ ABC 中,角 A , B , C 的对边分别是 a , b , c.已知 b = c , a 2= 2b 2(1 — sin A), 贝U A =(nCG'•b = c , a 2 = 2b 2( 1 — sin A),「.2b 2sin A = b 2+ c 2— a 2= 2bccos A = 2b 2cos A ,「.tanA=1,即 A = 4. 9.[2015广东卷]设厶ABC 的内角 A , B , C 的对边分别为 a , b , c.若a = 2, c = 2.3, cos A =于且b<c ,则b =( ) A . 3B . 2 .2C . 2D. 3[解析]C 由余弦定理得 a 2= b 2 + c 2— 2bccos A ,所以22 = b 2+ (2\'勺)2— 2x b x 2屈,即卩 b 2— 6b + 8= 0,解得 b = 2 或 b = 4•因为 b<c,所以 b = 2. 10. [2016上海卷]已知△ ABC 的三边长分别为3, 5, 7,则该三角形的外接圆半径等于32+ 52 — 72 1[解析]利用余弦定理可求得最大边 7所对角的余弦值为2x 3x 5 =—2,所以此角的正弦值为牙•设三角形外接圆的半径为R ,由正弦定理得2R=^|,所以R = 于.22冗 b11. ________________________________________________________ [2016 北京卷]在厶 ABC 中,/ A =〒,a = ■. 3c ,则b = _______________________________ .3 c2 n b b[解析]由余弦定理 a 2= b 2+ c 2— 2bccos A 可得,3c 2= b 2+ c 2— 2bccos 3,整理得 2+ — 2= 0,3 c cnD.?[解析]C解得b= 1或c=—2(舍去).12. [2016浙江卷]在厶ABC 中,内角 A , B , C 所对的边分别为 a , b , c.已知b + c = 2acos B. (1)证明:A = 2B ;2⑵若cos B = 3,求cos C 的值.解:⑴证明:由正弦定理得 sin B + sin C = 2sin Acos B ,故 2s in Acos B = sin B + sin (A + B)= sin B + sin Acos B + cos As in B ,于是 sin B = sin (A — B). 又 A , B € (0, n ),故 O V A — B Vn, 所以 B =n —(A — B)或 B = A — B , 因此A =%(舍去)或A = 2B ,所以A = 2B.=—cos(A + B) = — cos Acos B + sin A sin B =⑵由cos B =cos 2B = 2cos 2B — 1 = — 9,故 cos A =— 9, sin sin cos C。
正弦定理与余弦定理练习题共3套(附答案)
正弦定理与余弦定理练习第一套正弦定理(一)●作业导航掌握正弦定理,会利用正弦定理求已知两角和任意一边或两边和一边对角的三角形问题.一、选择题(本大题共5小题,每小题3分,共15分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于()A .30°B .30°或150°C .60°D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为()A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于()A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶24.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为()A .(2,+∞)B .(-∞,0)C .(-21,0)D .(21,+∞) 5.在△ABC 中,sin A >sin B 是A >B 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本大题共5小题,每小题3分,共15分)1.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________.2.在△ABC 中,若b =2c sin B ,则∠C =________.3.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.4.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.5.在△ABC 中,∠B =45°,∠C =60°,a =2(3+1),那么△ABC 的面积为________.三、解答题(本大题共5小题,每小题6分,共30分)1.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16.(1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.2.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .3.在△ABC 中,求证2tan 2tanBA BA b a b a +-=+-.4.△ABC 中,A 、B 、C 成等差数列,b =1,求证:1<a +c ≤2.5.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.参考答案一、选择题(本大题共5小题,每小题3分,共15分)1.D 分析:由正弦定理得,B bA a sin sin =,∴sin B =23sin =aA b ,∴∠B =60°或∠B =120°.2.C 分析:∵∠A =30°,∠B =120°,∴∠C =30°,∴BA =BC =6,∴S △ABC =21×BA ×BC ×sin B =21×6×6×23=93.3.A 分析:由正弦定理得,C cB b A a sin sin sin ==,∴sin A ∶sin B ∶sin C =1∶3∶2=21∶23∶1,∴A ∶B ∶C =30°∶60°∶90°=1∶2∶3.4.D 分析:利用正弦定理及三角形两边之和大于第三边.5.C 分析:A >B ⇔a >b ⇔2Rsin A >2Rsin B ⇔sin A >sin B .二、填空题(本大题共5小题,每小题3分,共15分)1.23或3分析:sin C =23230sin 32=︒,于是,∠C =60°或120°,故∠A =90°或30°,由S △ABC =21×AB ×AC ×sin A ,可得S △ABC =23或S △ABC =3.2.30°或150°分析:由b =2c sin B 及正弦定理C cB B c Cc B b sin sin sin 2sin sin ==得,∴sin C =21,∴∠C =30°或150°.3.22分析:∵c =2R sin C ,∴R =22sin 2=C c.4.60°或120°分析:∵S △ABC =21bc sin A ,∴23=21×2×3sin A ,∴sin A=23,∴∠A =60°或120°.5.6+23分析:∵B bA a sin sin =,∴︒=︒-︒-︒+45sin )6045180sin()13(2b,∴b =4.∴S △ABC =21ab sin C =6+23.三、解答题(本大题共5小题,每小题6分,共30分)1.解:(1)∵a +b =16,∴b =16-aS =21ab sin C =21a (16-a )sin60°=43(16a -a 2)=-43(a -8)2+163(0<a <16)(2)由(1)知,当a =8时,S 有最大值163.2.解:∵sin C ∶sin A =4∶13∴c ∶a =4∶13设c =4k ,a =13k ,则⎪⎩⎪⎨⎧-=++=-38213)4(213132k b k k b kk∵k =133时b <0,故舍去.∴k =1,此时a =13,b =2135-,c =4.3.证明:由正弦定理,知a =2R sin A ,b =2R sin B2tan2tan2cos 2sin 22cos 2sin 2)22sin(22sin()22sin()22sin(sin sin sin sin sin 2sin 2sin 2sin 2B A B A B A B A B A B A B A B A B A B A B A B A B A B A BA BA B R A R B R A R b a b a +-=-++-=--++-++--+--++=+-=+-=+-∴4.证明:∵A 、B 、C 成等差数列,∴2B =A +C ,又A +B +C =π,∴B =3π,A +C =32π.∵b =1,设△ABC 的外接圆半径为R ,∴b =2R sin 3π∴1=2R ·23,∴3R =1.∴a +c =2R sin A +2R sin C =2R (sin A +sin C )=2R [sin(32π-C )+sin C ]=2R (23cos C +23sin C )=23R (21cos C +23sin C )=23R sin(C +6π)=2sin(C +6π)∵A +C =32π,∴0<C <32π∴6π<C +6π<65π∴21<sin(C +6π)≤1∴1<2sin(C +6π)≤2 ∴1<a +c ≤2.5.证明:在△ABC 中,设C ≥120°,则c 最长,令最短边为a ,由正弦定理得A B A A C a c sin )sin(sin sin +==∵A ≤B∴2A ≤A +B ≤180°-C ≤60°∵正弦函数在(0,3π)上是增函数,∴sin(A +B )≥sin2A >0∴A B A a c sin )sin(+=≥A A A A A sin cos sin 2sin 2sin ==2cos A ∴a c≥2cos A ∵2A ≤60° ∴0°<A ≤30°∴cos A ≥cos30°=23∴a c ≥2·23∴a c≥3∴最长边与最短边之比不小于第二套正弦定理练习(二)1.在ABC ∆中,已知角04345,2,,3B c b ===则角A 的值是()A.15°B.75°C.105°D.75°或15°2.ABC ∆中,bsinA<a<b,则此三角形有()A.一解B.两解C.无解D.不确定3.若sin cos cos ,A B CABC a b c==∆则是()A.等边三角形B.有一内角是30°C.等腰直角三角形D.有一内角是30°的等腰三角形4.在ABC ∆中,已知0060,45,8,B C BC AD BC ===⊥于D,则AD 长为()A.4(31)- B.4(3+1)3+3)D.4(33)5.在ABC ∆中,A>B 是sinA>sinB 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.在ABC ∆中,060,6,14B b a ===,则A=7.在ABC ∆ABC ∆中,已知cos 2cos 21sin 2sin cos ,cos sin B C A B C C B +=+==求证:b=c 且A=900。
正弦定理和余弦定理应用举例 Microsoft Word 文档
1、一艘轮船按照北偏西30度,的方向以每小时45海里的速度航行,一个灯塔M原来在轮船的北偏东10度的方向,经过20分钟后,灯塔在轮船的北偏东70度方向上,求灯塔和轮船原来的距离.现在这样可以用余弦定理了cos60°=(AB^2+BC^2-AC^2)/2AB*BCBC=2a,AC=15,这样肯定能用含有a的式子表示AB然后在左边那个三角形里就能根据勾股定理求出a。
但是我这种算法特别不好算,你再等等,我想一想还有什么办法。
【同步教育信息】一. 本周教学内容:1. 正弦定理和余弦定理应用举例2. 解三角形全章总结教学目的:1. 能够正确运用正弦定理、余弦定理等知识、方法解决一些与测量以及几何计算有关的实际问题。
2. 通过对全章知识的总结提高,帮助学生系统深入地掌握本章知识及典型问题的解决方法。
二. 重点、难点:重点:解斜三角形问题的实际应用;全章知识点的总结归纳。
难点:如何在理解题意的基础上将实际问题数学化。
知识分析:一. 正弦定理和余弦定理应用举例 1. 解三角形应用题的基本思路 (1)建模思想解三角形应用问题时,通常都要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出三角形的边角的大小,从而得出实际问题的解。
这种数学建模思想,从实际问题出发,经过抽象概括,把它转化为具体问题中的数学模型,然后通过推理演算,得出数学模型的解,再还原成实际问题的解,用流程图可表示为:(2)解三角形应用题的基本思路:−−−→−−−−→−−−−→画图解三角形检验、结论实际问题数学问题(解三角形)数学问题的解实际问题的解2. 解三角形应用题常见的几种情况:(1)实际问题经抽象概括,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解。
(2)实际问题经抽象概括后,已知量与未知量涉及到两个(或两个以上)三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求出其他三角形中的解,有时需设出未知量,从几个三角形中列出方程,解方程得出所要求的解。
正弦定理和余弦定理应用举例
4.坡比 坡面的铅直高度与水平宽度之比,即i = =tanα (i为坡比,α为坡角).
1.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、
β的关系为
()
A.α>β
B.α=β
C.α+β=90°
D.α+β=180BC中,由余弦定理得BC2=AB2+AC2- 2AB·ACcos120°, 即49=25+AC2+5AC, 解之得AC=3. ∴S△ABC= AB·ACsinA= ×5×3× = 答案:
5.在200 m高的山顶上,测得山下一塔的塔顶与塔底的俯
角分别是30°、60°,则塔高为
1.一船向正北航行,看见正西方向有相距10海里的两个灯
塔恰好与它在一条直线上,继续航行半小时后,看见一
灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这
只船的速度是每小时
()
A.5海里
B.5 海里
C.10海里
D.10 海里
解析:如图,依题意有 ∠BAC=60°,∠BAD=75°, 所以∠CAD=∠CDA=15°, 从而CD=CA=10,在直角三角形ABC中,可得AB=5, 于是这只船的速度是 =10(海里/小时).
并向北偏东30°方向,以10海里每小时速度逃窜,“马 鞍山”舰最快速度为10 海里/小时,请你设计一套“马 鞍山”舰追击海盗船只的方案,使“马鞍山”舰能最快截 获海盗船,包括:①“马鞍山”舰航行的速度及方向;② 追上海盗船所用时间.
解:如图,设“马鞍山”舰以 10 海里/小时速度追击,t 小时后在D处截获海盗船. 则CD=10 t海里,BD=10 t海里,在△ABC中,由余弦定理 得BC2=AB2+AC2-2AB·ACcosA =( -1)+22-2( -1)·2·cos120°=6, ∴BC= 海里.
正弦定理、余弦定理习题
正弦定理、余弦定理习题题型一 正、余弦定理的简单应用例1 (1)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于 ( )A .30° B .60° C .120° D .150°(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c+b )sin C ,则sin B +sin C 的最大值为( ) A .0 B .1 C.12D. 2变式练习1(1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C 等于 ( ) A.725 B .-725 C .±725 D.2425(2)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________.题型二 正弦定理、余弦定理的综合应用例2 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .变式练习2在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值; (2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状.例3 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.变式练习3已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值.(1)求f (x )的值域及周期;(2)求△ABC 的面积.正弦定理、余弦定理习题答案例1解析 (1)∵sin C =23sin B ,由正弦定理得c =23b ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32, 又A 为三角形的内角,∴A =30°.(2)已知2a sin A =(2b +c )sin B +(2c +b )sin C ,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,又A 为三角形的内角,∴A =120°. 故sin B +sin C =sin B +sin(60°-B )=32cos B +12sin B =sin(60°+B ), 故当B =30°时,sin B +sin C 取得最大值1.练习: 答案 (1)A (2)π6解析 (1)由正弦定理b sin B =c sin C, 将8b =5c 及C =2B 代入得b sin B =85b sin 2B, 化简得1sin B =852sin B cos B, 则cos B =45, 所以cos C =cos 2B =2cos 2B -1=2×(45)2-1=725,故选A. (2)∵A +C =2B 且A +B +C =π,∴B =π3. 由正弦定理知:sin A =a sin B b =12, 又a <b ,∴A <B ,∴A =π6. 例2解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.练习2解 (1)∵c =2,C =π3, ∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4.又∵△ABC 的面积为3,∴12ab sin C =3,ab =4. 联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2. (2)由sin C +sin(B -A )=sin 2A ,得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0,∴cos A =0或sin A -sin B =0,当cos A =0时,∵0<A <π,∴A =π2,△ABC 为直角三角形; 当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b ,即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.例3:解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )],∴2sin A cos B ·b 2=2cos A sin B ·a 2,即a 2cos A sin B =b 2sin A cos B . 方法一 由正弦定理知a =2R sin A ,b =2R sin B ,∴sin 2A cos A sin B =sin 2B sin A cos B ,又sin A ·sin B ≠0,∴sin A cos A =sin B cos B ,∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2. ∴△ABC 为等腰或直角三角形.练习3解 (1)因为A ,B ,C 成等差数列,所以2B =A +C ,又A +B +C =π,所以B =π3,即A +C =2π3. 因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π. 又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1],所以f (x )的值域为[-2,2]. (2)因为f (x )在x =A 处取得最大值,所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π, 故当2A -π3=π2时,f (x )取到最大值, 所以A =512π,所以C =π4. 由正弦定理,知3sin π3=c sin π4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64,所以S △ABC =12bc sin A =3+34.。
正弦定理和余弦定理习题及答案
正弦定理和余弦定理习题及答案正弦定理和余弦定理 测试题一、选择题:1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223 C .-63D.632.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°3.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ∠ECF =( )A.1627B.23C.33D.344.△ABC 中,若lg a -lg c =lgsin B =-lg 2且B ∈⎝ ⎛⎭⎪⎫0,π2,则△ABC的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3 C.3+33D .2+ 36.已知锐角A 是△ABC 的一个内角,a 、b 、c 是三角形中各内角的对应边,若sin 2A -cos 2A =12,则( )A .b +c =2aB .b +c <2ªC .b +c ≤2aD .b +c ≥2a7、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=15.15.53 D .53-8、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形9、ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为(A)6π (B)3π (C) 2π (D) 23π10、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( ) A.323 C.158D.15720、已知ABC △21,且sin sin 2A B C +=.(I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.21、△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B(Ⅰ)求cot A +cot C 的值; (Ⅱ)设32BA BC ⋅=,求a +c 的值.22、 某海轮以30海里/小时的速度航行,在A 点测得海面上油井P 在南偏东︒60,向北航行40分钟后到达B 点,测得油井P 在南偏东︒30,海轮改为北偏东︒60的航向再行驶80分钟到达C 点,求P 、C 间的距离.答案1.解析:依题意得0°<B <60°,由正弦定理得a sin A =bsin B得sin B =b sin A a =33,cos B =1-sin 2B =63,选D. 2.解析:由sin C =23sin B 可得c =23b ,由余弦定理得cos A =b 2+c 2-a 22bc =-3bc +c 22bc =32,于是A =30°,故选A. 3.解析:设AC =1,则AE =EF =FB =13AB =23,由余弦定理得CE =CF =AE 2+AC 2-2AC ·AE cos45°=53,所以cos ∠ECF =CE 2+CF 2-EF 22CE ·CF =45,所以tan ∠ECF =sin ∠ECF cos ∠ECF=1-⎝ ⎛⎭⎪⎫45245=34. 答案:D 4.解析:∵lg a -lg c =lgsin B =-lg 2,∴lg a c =lgsin B =lg 22.∴a c =sin B =22. ∵B ∈⎝⎛⎭⎪⎫0,π2,∴B =π4,由c =2a , 得cos B =a 2+c 2-b 22ac=3a 2-b 222a2=22. ∴a 2=b 2,∴a =b . 答案:D5.解析:2b =a +c ,12ac ·12=12⇒ac =2,a 2+c 2=4b 2-4,b 2=a 2+c 2-2ac ·32⇒b 2=4+233⇒b =3+33. 答案:C6.解析:由sin 2A -cos 2A =12,得cos2A =-12, 又A 是锐角,所以A =60°,于是B +C =120°. 所以b +c 2a =sin B +sin C2sin A=2sinB +C2cosB -C23=cosB -C2≤1,b +c ≤2a . 答案:c7.解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0, 又25(sin cos )1sin 23A A A +=+=,故选A8.解:111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ⎧==-⎪⎪⎪==-⎨⎪⎪==-⎪⎩,得212121222A A B B C C πππ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩,那么,2222A B C π++=,所以222A B C ∆是钝角三角形。
正弦、余弦定理及其应用(附答案)
书航教育正弦、余弦定理及其应用正弦、余弦定理及其应用一、选择题(共12小题)1、线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始____ h后,两车的距离最小.()A、B、1C、D、22、在△ABC中,角A,B,C的对边分别是a,b,c,下列命题:①•>0,则△ABC为钝角三角形.②若b=csinB,则C=45°.③若a2=b2+c2﹣bc,则A=60°.④若已知E为△ABC的边BC的中点,△ABC所在平面内有一点P,满足,设,则λ=2,其中正确命题的个数是()A、1B、2C、3D、43、△ABC中,若a=4,b=3,c=2,则△ABC的外接圆半径为()A、B、C、2D、4、在锐角△ABC中,若C=2B,则的范围()A、B、C、(0,2)D、5、△ABC,sinA+cosA=,AC=2,AB=3,则△ABC的面积为:()A、B、C、D、6、在△ABC中,a=x,b=2,B=45°,若此三角形有两解,则x的取值范围是()A、x>2B、x<2C、D、7、已知△ABC的三个角分别为A,B,C,满足sinA:sinB:sinC=2:3:4,则sinA的值为()A、B、C、D、8、已知△ABC中,角A、B、C所对的边分别为a,b,c,且BC边上的高为,则的最大值为()A、2B、C、2D、49、在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A、B、C、D、10、下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A、①②④B、②④C、②③D、③④11、北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,看台上第一排和最后一排的距离米(如图所示),旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为()A、(米/秒)B、(米/秒)C、(米/秒)D、(米/秒)12、有一山坡,坡角为30°,若某人在斜坡的平面上沿着一条与山坡底线成30°角的小路前进一段路后,升高了100米,则此人行走的路程为()A、300mB、400m二、填空题(共12小题)13、在△ABC中,已知a,b,c是角A,B,C的对应边,①若a>b,则f(x)=(sinA﹣sinB)•x在R上是增函数;②若a2﹣b2=(acosB+bcosA)2,则△ABC是Rt△;③cosC+sinC的最小值为;④若cosA=cosB,则A=B;⑤若(1+tanA)(1+tanB)=2,则,其中正确命题的序号是_________.14、设函数f(x)=3sinx+2cosx+1.若实数a、b、c使得af(x)+bf(x﹣c)=1对任意实数x恒成立,则的值等于_________.15、在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.16、已知a,b,c分别是△ABC的三个内角A,B,C所对的边,向量=,若,且,则角A,B的大小分别是_________.17、如图,在海岸上A、C两地分别测得小岛B在A地的北偏西α方向,在C地的北偏西﹣α方向,且,则C与B的距离是_________km.18、在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若a:b:c=3:5:6,则=_________.19、已知△ABC的面积为S,角A、B、C的对边分别为a、b、c,若4S=a2+b2﹣c2,那么C=_________.20、在△ABC中,已知a2+b2﹣ab﹣c2=0,且,则A=21、在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若A=60°,b、c分别是方程x2﹣7x+11=0的两个根,则a等于_________.22、如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为_________.23、有一广告气球,直径为6 m,如图所示,放在公司大楼的上空,当行人仰望气球的中心的仰角∠BAC=30°时,测得气球的视角θ=2°,若θ的弧度数很小时,可取si nθ=θ,由此可估计该气球的高BC约为_________.24、将边长为1正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最大值是_________.三、解答题(共6小题)25、(2008•湖南)已知△ABC的外接圆的半径为,内角A,B,C的对边分别为a,b,c,又向量,,且,(I)求角C;(II)求三角形ABC的面积S的最大值.26、(2006•江西)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知,(1)求的值;(2)若a=2,,求b的值.27、(2010•重庆)设函数f(x)=cos(x+π)+2,x∈R.(1)求f(x)的值域;(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值.28、(2009•山东)已知函数f(x)=2sinxcos2+cosxsinθ﹣sinx(0<θ<π),在x=π处取最小值.(Ⅰ)求θ的值;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f(A)=,求角C.29、(2007•浙江)已知△ABC的周长为+1,且sinA+sin B=sin C(I)求边AB的长;(Ⅱ)若△ABC的面积为sin C,求角C的度数.30、(2005•湖北)在△ABC中,已知AB=,cosB=,AC边上的中线BD=,求sinA的值.答案与评分标准一、选择题(共12小题)1、线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以50 km/h的速度由B向C行驶,则运动开始____ h后,两车的距离最小.()A、B、1C、D、2考点:函数模型的选择与应用;余弦定理。
正弦定理余弦定理练习题及答案(供参考)
正弦定理、余弦定理练习题年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题(共20题,题分合计100分)1.已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为B.D.2.在△ABC中,a=λ,b=λ,A=45°,则满足此条件的三角形的个数是D.无数个3.在△ABC中,b cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形4.已知三角形的三边长分别为x2+x+1,x2-1和2x+1(x>1),则最大角为°°°°5.在△ABC中,=1,=2,(+)·(+)=5+2则边||等于A.C.D.6.在△ABC中,已知B=30°,b=50,c=150,那么这个三角形是A.等边三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形7.在△ABC中,若b2sin2C+c2sin2B=2bc cos B cos C,则此三角形为A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.正弦定理适应的范围是△B.锐角△ C.钝角△ D.任意△9.已知△ABC中,a=10,B=60°,C=45°,则c=+(-1) C.(+1)10.在△ABC中,b sin A<a<b,则此三角形有A.一解B.两解C.无解D.不确定11.三角形的两边分别为5和3,它们夹角的余弦是方程5x2-7x-6=0的根,则三角形的另一边长为12.在△ABC中,a2=b2+c2+bc,则A等于°°°13.在△ABC中,,则△ABC是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.在△ABC中,a=2,A=30°,C=45°,则△ABC的面积S△ABC等于A.C.+1D.(+1)15.已知三角形ABC的三边a、b、c成等比数列,它们的对角分别是A、B、C,则sin A sin C 等于+cos2B+sin2B16.在△ABC中,sin A>sin B是A>B的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.在△ABC中,b Cos A=a cos B,则三角形为A.直角三角形B.锐角三角形C.等腰三角形D.等边三角形18.△ABC中,sin2A=sin2B+sin2C,则△ABC为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形19.△ABC中,A=60°,b=1,这个三角形的面积为,则△ABC外接圆的直径为A.B.C.D.20.在△ABC中,,则k为D.(R为△ABC外接圆半径)二、填空题(共18题,题分合计75分)1.在△ABC中,A=60°,C=45°,b=2,则此三角形的最小边长为.2.在△ABC中,= .3.在△ABC中,a∶b∶c=(+1)∶∶2,则△ABC的最小角的度数为.4.在△ABC中,已知sin A∶sin B∶sin C=6∶5∶4,则sec A= .5.△ABC中,,则三角形为_________.6.在△ABC中,角A、B均为锐角且cos A>sin B,则△ABC是___________.7.在△ABC中,若此三角形有一解,则a、b、A满足的条件为____________________.8.已知在△ABC中,a=10,b=5,A=45°,则B= .9.已知△ABC中,a=181,b=209,A=121°14′,此三角形解.10.在△ABC中,a=1,b=1,C=120°则c= .11.在△ABC中,若a2>b2+c2,则△ABC为;若a2=b2+c2,则△ABC为;若a2<b2+c2且b2<a2+c2且c2<a2+b2,则△ABC为.12.在△ABC中,sin A=2cos B sin C,则三角形为_____________.13.在△ABC中,BC=3,AB=2,且,A= .14.在△ABC中,B=,C=3,B=30°,则A= .15.在△ABC中,a+b=12,A=60°,B=45°,则a= ,b= .16.若2,3,x为三边组成一个锐角三角形,则x的范围为.17.在△ABC中,化简b cos C+c cos B= .18.钝角三角形的边长是三个连续自然数,则三边长为.三、解答题(共24题,题分合计244分)1.已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.2.已知△ABC的三边长a=3,b=4,c=,求三角形的最大内角.3.已知在△ABC中,∠A=45°,a=2,c=,解此三角形.4.在四边形ABCD中,BC=a,DC=2a,四个角A、B、C、D度数的比为3∶7∶4∶10,求AB的长.5.在△ABC中,A最大,C最小,且A=2C,A+C=2B,求此三角形三边之比.6.证明:在△ABC中,.(其中R为△ABC的外接圆的半径)7.在△ABC中,最大角A为最小角C的2倍,且三边a、b、c为三个连续整数,求a、b、c的值.8.如下图所示,半圆O的直径MN=2,OA=2,B为半圆上任意一点,以AB为一边作正三角形ABC,问B在什么位置时,四边形OACB面积最大?最大面积是多少?9.在△ABC中,若sin A∶sin B∶sin C=m∶n∶l,且a+b+c=S,求a.10.根据所给条件,判断△ABC的形状(1)a cos A=b cos B(2)11.△ABC中,a+b=10,而cos C是方程2x2-3x-2=0的一个根,求△ABC周长的最小值.12.在△ABC中,a、b、c分别是角A、B、C的对边,设a+c=2b,A-C=,求sin B的值.13.已知△ABC中,a=1,b=,A=30°,求B、C 和c.14.在△ABC中,c=2,tan A=3,tan B=2,试求a、b及此三角形的面积.15.已知S△ABC=10,一个角为60°,这个角的两边之比为5∶2,求三角形内切圆的半径.16.已知△ABC中,,试判断△ABC的形状.17.已知△ABC的面积为1,tan B=,求△ABC 的各边长.18.求值:19.已知△ABC的面积,解此三角形.20.在△ABC中,a=,b=2,c=+1,求A、B、C及S△.21.已知(a2+bc)x2+2=0是关于x的二次方程,其中a、b、c是△ABC的三边,(1)若∠A为钝角,试判断方程根的情况.(2)若方程有两相等实根,求∠A的度数.22.在△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断△ABC的形状.23.在△ABC中,a>b,C=,且有tan A·tan B=6,试求a、b以及此三角形的面积.24.已知:k是整数,钝角△ABC的三内角A、B、C所对的边分别为a、b、c(1)若方程组有实数解,求k的值.(2)对于(1)中的k值,若且有关系式,试求A、B、C的度数.正弦定理、余弦定理答案一、选择题(共20题,合计100分)1 A 2A3C 4 B 5 C 6D 7A 8 D 9B 10 B 11 B 12C 13C 14C 16. C 17:C 18A 19C 20. A二、填空题(共18题,合计75分)1.2(-1) 23. 45°4. 85.等腰三角形6.:钝角三角形7.a=b sin A或b<a8.60°或120°9无10.11.钝角三角形直角三角形锐角三角形12.等腰三角形13.120°14.或215. 36-1216.<x<17.a18. 2、3、4三、解答题(共24题,合计244分)=B=105°b=2.∠C=120°3.∠B=75°或∠B=15°b=+1,∠C=60°,∠B=75°或b=-1,∠C=120°,∠B=15°4. AB的长为5.:此三角形三边之比为6∶5∶4=6,b=5,c=48.当θ=时,S四边形OACB最大, 最大值为+29.10(1)△ABC是等腰三角形或直角三角形(2)△ABC为等边三角形11△ABC周长的最小值为12.=60°,B2=120°;C1=90°,C2=30°;c1=2,c2=114..15.16.等边三角形17.18.20. A=60°,B=45°,C=75°,S△=21. (1)没有实数根(2)60°22.等腰三角形或直角三角形23.24.(1)k=1,2,3 (2)C=45°,B=15°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业3应用举例时间:45分钟满分:100分课堂训练1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是()A.103海里B.106海里C.52海里D.56海里【答案】 D【解析】如图,∠A=60°,∠B=75°,则∠C=45°,由正弦定理得:BC=AB·sin Asin C=10×sin60°sin45°=5 6.2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()A .502mB .503mC .252m D.2522m【答案】 A【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A.3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m.【答案】 521【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,设电视塔高度为h m,则OA=33h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB,即352=(32+h2-2×33h×h×(-32)3h)解得h=521.4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.【解析】 在△ABC 中,BC =30,∠B =30°,∠ACB =135°, ∴∠BAC =15°由正弦定理BC sin A =AC sin B ,即:30sin15°=AC sin30° ∴AC =60cos15°=60cos(45°-30°)=60(cos45°cos30°+sin45°sin30°)=15(6+2),∴A 到BC 的距离为d =AC sin45°=15(3+1)≈40.98海里>38海里,所以继续向南航行,没有触礁危险.课后作业一、选择题(每小题5分,共40分)1.已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°【答案】 B【解析】 如图所示,∠ECA =40°,∠FCB =60°,∠ACB =180°-40°-60°=80°,∵AC =BC ,∴∠A =∠ABC =180°-80°2=50°,∴∠ABG =180°-∠CBH -∠CBA =180°-120°-50°=10°.故选B.2.某市在“旧城改造”工程中,计划在如下图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮价格为a 元/m 2,则购买这种草皮需要( )A .450a 元B .225a 元C .150a 元D .300a 元【答案】 C【解析】 S △=12×20×30×sin150°=12×20×30×12 =150(m 2),∴购买这种草皮需要150a 元,故选C.3.有一长为10m 的斜坡,倾斜角为75°.在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长的长度(单位:m)是( )A .5B .10C .102 D .10 3【答案】 C【解析】 如图,设将坡底加长到B ′时,倾斜角为30°.在△ABB ′中,利用正弦定理可求得BB ′的长度.在△ABB ′中,∠B ′=30°, ∠BAB ′=75°-30°=45°,AB =10m. 由正弦定理,得BB ′=AB sin45°sin30°=10×2212=102(m).∴坡底延长102m 时,斜坡的倾斜角将变为30°.4.一船以226km/h 的速度向正北航行,在A 处看灯塔S 在船的北偏东45°,1小时30分后航行到B 处,在B 处看灯塔S 在船的南偏东15°,则灯塔S 与B 之间的距离为( )A .66 kmB .132 kmC .96 kmD .33 km【答案】 A【解析】 如图,∠ASB =180°-15°-45°=120°, AB =226×32=336, 由正弦定理336sin120°=SBsin45°, ∴SB =66(km).5.据新华社报道,强台风“珍珠”在广东饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,树尖与地面成45°角,树干也倾斜,与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是( )A.2063米 B .106米 C.1063米 D .202米【答案】 A【解析】 设树干底部为O ,折断点为P ,树尖着地处为M ,如图,△OPM 中,∠P =180°-∠M -∠O =180°-45°-75°=60°,由正弦定理得PO sin M =MO sin P ,∴PO =MO sin M sin P =20×sin45°sin60°=2063.6.甲船在B 岛的正南A 处,AB =10km ,甲船以4 km/h 的速度向正北航行,同时,乙船自B 岛出发以6km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们航行的时间是( )A.1507min B.157h C .21.5min D .2.15h【答案】 A 【解析】如图,设经过x 小时时距离为s ,则在△BPQ 中,由余弦定理知: PQ 2=BP 2+BQ 2-2BP ·BQ ·cos120°,即s2=(10-4x)2+(6x)2-2(10-4x)×6x×(-12) =28x2-20x+100.当x=-b2a =514时,s2最小,此时x=514h=1507min.7.一艘船以4km/h的速度与水流方向成120°角的方向航行,已知河水流速为2km/h,则经过3h,该船实际航程为() A.215km B.6kmC.221km D.8km【答案】 B【解析】如图,∵|OA→|=2,|OB→|=4,∠AOB=120°,∴∠A=60°,|OC→|=22+42-2×2×4cos60°=2 3.经过3h,该船的航程为23×3=6(km).8.如图,△ABC是简易遮阳棚,A、B是南北方向上的两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD面积最大,遮阳棚ABC与地面所成的角为()A .75°B .60°C .50°D .45° 【答案】 C【解析】 如图,作CE ⊥平面ABD 于点E ,则∠CDE 是太阳光线与地面所成的角,即∠CDE =40°,延长DE 交直线AB 于点F ,连接CF ,则∠CFD 是遮阳棚与地面所成的角,设为α.要使S △ABD 最大,只需DF 最大.在△CFD 中,CF sin40°=DF sin (140°-α).∴DF =CF ·sin (140°-α)sin40°. ∵CF 为定值,∴当α=50°时,DF 最大. 二、填空题(每小题10分,共20分)9.如图在山脚A 测得山顶P 的仰角为α,沿倾斜角为β的斜坡向上走a 米到B ,又测得山顶P 的仰角为γ,则山高为________.【答案】 a sin α·sin (γ-β)sin (γ-α)m 【解析】 在△P AB 中,已知∠BAP =α-β,∠APB =γ-α,AB =a ,由正弦定理可得P A =a sin (γ-β)sin (γ-α), 在Rt △P AQ 中,PQ =P A sin α=a sin αsin (γ-β)sin (γ-α). 10.一只蚂蚁沿东北方向爬行x cm 后,再向右转105°爬行20cm ,又向右转135°,这样继续爬行可回到出发点处,那么x =________.【答案】 203 6【解析】 如图△ABC 中,∠A =45°+15°=60°,∠B =45°+30°=75°,∠ACB =45°,由正弦定理知 x sin ∠ACB=20sin A ,∴x =203 6. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.A 、B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD .【分析】 如图,由于CD ⊥平面ABD ,∠CAD =45°,所以CD =AD .因此,只需在△ABD 中求出AD 即可.【解析】 在△ABD 中,∠BDA =180°-45°-120°=15°,由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m).∵CD ⊥平面ABD ,∠CAD =45°∴CD =AD =800(3+1)≈2 186(m).答:山高CD 为2 186 m.12.如图,一辆汽车从O 点出发,沿海岸一条直线公路以100千米/小时的速度向东匀速行驶,汽车开动时,在O 点南偏东方向距O 点500千米且与海岸距离为300千米的海上M 处有一快艇,与汽车同时出发,要把一件重要的物品递送给这辆汽车的司机,问快艇至少必须以多大的速度行驶,才能把物品递送到司机手中?并求快艇以最小速度行驶时方向与OM 所成的角.【分析】 根据题意画出示意图如图所示.在△MON 中,利用余弦定理得到速度v 关于时间t 的函数关系式,然后利用二次函数求最值.【解析】 如图所示,设快艇从M 处以v 千米/小时的速度出发,沿MN 方向航行,t 小时后与汽车相遇.在△MON 中,MO =500,ON =100t ,MN =v t ,设∠MON =α,由题意得sin α=35,则cos α=45.由余弦定理,得MN 2=OM 2+ON 2-2OM ·ON ·cos α,即v 2t 2=5002+1002t 2-2×500×100t ×45. v 2=5002×1t 2-2×500×80×1t +1002=(500×1t -80)2+3 600. 当1t =80500,即t =254时,v 2min =3 600.即快艇至少必须以60千米/小时的速度行驶,此时MN =60×254=375,MQ 是M 到ON 的距离,且MQ =300.设∠MNO =β,则sin β=300375=45.所以可得α+β=90°,即MN 与OM 所成的角为90°.。