2019-2020海淀区初三期中考试试卷及答案

合集下载

2019-2020海淀区初三上学期期中数学试卷及答案

2019-2020海淀区初三上学期期中数学试卷及答案

2019~2020学年北京海淀区初三上学期期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. A.,, B.,, C.,, D.,,一元二次方程的二次项系数、一次项系数、常数项分别是( ).3-x -2=0x 23-1-231-23-123122. A. B. C. D.里约奥运会后,受到奥运健儿的感召,群众参与体育运动的热度不减,全民健身再次成为了一种时尚,球场上也出现了更多年轻人的身影.请问下面四幅球类的平面图案中,是中心对称图形的是( ).3. A. B. C. D.用配方法解方程,配方正确的是( ).+6x +2=0x 2=9(x +3)2=9(x -3)2=6(x +3)2=7(x +3)24. A. B. C. D.如图,小林坐在秋千上,秋千旋转了,小林的位置也从点运动到了点,则的度数为( ).80°A A ′∠OAA ′40°50°70°80°5. A.向左平移个单位 B.向右平移个单位C.向上平移个单位D.向下平移个单位将抛物线平移后得到抛物线,则平移方式为( ).y =2x 2y =2+1x 211116. A.点在圆外 B.点在圆内 C.点在圆上 D.无法确定在中,,以点为圆心,以长为半径作圆,点与该圆的位置关系为( ).△ABC ∠C =90°B BC A A A A二、填空题(本题共18分,每小题3分)A. B. C. D.π2π3π4π8. A. B. C. D.已知是关于的方程的根,则的值为().2x +ax -3a =0x 2a -442459. A., B.,C. D.,给出一种运算:对于函数,规定.例如:若函数,则有.函数,则方程的解是().y =x n =n y ′x n -1=y 1x 4=4y 1′x 3=y 2x 3=12y 2′=4x 1=-4x 2=2x 13√=-2x 23√==0x 1x 2=2x 1=-2x 210. A. B. C. D.太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经度影子最短的时刻.在一定条件下,直杆的太阳影子长度(单位:米)与时刻(单位:时)的关系满足函数关系(,,是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻是( ).120l t l =a +bt +c t 2a b c t 12.751313.3313.511.方程的解为 .-x =0x 212.请写出一个对称轴为的抛物线的解析式 .x =313.如图,用直角曲尺检查半圆形的工件,其中合格的是图 (填“甲”、“乙”或“丙”),你的根据是 .14.若关于的方程有两个相等的实数根,则的值是 .x -2x -k =0x 2k三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)爱智康15.如图,内接于⊙,,半径的长为,则的长为 .△ABC O ∠C =45°OB 3AB 16.指居民消费价格指数,反映居民家庭购买消费商品及服务的价格水平的变动情况.的涨跌率在一定程度受到季节性因素和天气因素的影响.根据北京市年与年涨跌率的统计图中的信息,请判断年月份与年月份,同月份比较涨跌率下降最多的月份是 月;请根据图中提供的信息,预估北京市年第四季度涨跌率变化趋势是 ,你的预估理由是 .CPI CPI 20152016CPI 201518~201618~CPI 2016CPI 17.解方程:.+4x =6x 218.求抛物线的对称轴和顶点坐标,并画出图象.y =-2x x 219.如图,、是半圆上的两点,为圆心,是直径,,求的度数.A D O BC ∠D =35°∠OAC20.已知:,求证:关于的方程有两个不相等的实数根.+2m -3=0m 2x -2mx -2m =0x 221.如图,在等边中,点是边上一点,连接,将线段绕点按顺时针方向旋转后得到,连接.求证:.△ABC D AB CD CD C 60°CE AE AE //BC 22.如图,在线段上找一点,把分为和两段,其中是较小的一段,如果,那么称线段被点黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域.如图,在我国古代紫禁城的中轴线上,太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割,已知太和殿到内金水桥的距离约为丈,求太和门到太和殿之间的距离(的近似值取).1AB C C AB AC CB BC BC ?AB =AC 2AB C 21005√ 2.223.如图是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图,、两点的距离为米,求这种装置能够喷灌的草坪面积.1240°2A B 1824.(1)二次函数图象的开口向 ,顶点坐标是 ,的值为 .下表是二次函数的部分,的对应值:…………y =a +bx +c x 2x y x -1-120121322523y m 14-1-74-2-74-1142m(2)当时,的取值范围是 .(3)当抛物线的顶点在直线的下方时,的取值范围是 .x >0y y =a +bx +c x 2y =x +n n 25.(1)求证:.(2)过点作于点,若,,求的长.如图,在中,,以为直径的⊙分别交,于点,,过点作⊙的切线交的延长线于点,连接.△ABC AB =BC AB O AC BC D E A O BC F AE ∠ABC =2∠CAF C CM ⊥AF M CM =4BE =6AE 26.(1)如果函数图象上各点横坐标不变,纵坐标变为原来的倍,得到的函数图象的表达式为.(2)回答下列问题:1将函数图象上各点的横坐标不变,纵坐标变为原来的 倍,得到函数的图象.2将函数图象上各点的纵坐标不变,横坐标变为原来的倍,得到图象的函数表达式为.小华在研究函数与图象关系时发现:如图所示,当时,,;当时,,;;当时,,.他得出如果将函数图象上各点的横坐标不变,纵坐标变为原来的倍,就可以得到函数的图象.类比小华的研究方法,解决下列问题:=x y 1=2x y 2x =1=1y 1=2y 2x =2=2y 1=4y 2?x =a =a y 1=2a y 2=x y 12=2x y 2y =3x 3y =x 2y =4x 2y =x 2227.(1)的值为 .(2)若抛物线与轴正半轴交于点,其对称轴与轴交于点,当是等腰直角三角形时,求的值.(3)点的坐标为,若该抛物线与线段有且只有一个交点,求的取值范围.在平面直角坐标系中,抛物线的对称轴为.xOy y =+mx +n -1x 2x =2m y A x B △OAB n C (3,0)OC n 28.(1)在菱形中,,为对角线上的一点(不与、重合),将射线绕点顺时针旋转角之后,所得射线与直线交于点.试探究线段与的数量关系.小宇发现点的位置,和的大小都不确定,于是他从特殊情况开始进行探究.ABCD ∠BAD =αE AC A C EB E βAD F EB EF E αβ如图,当时,菱形是正方形.小宇发现,在正方形中,平分,作于,于.由角平分线的性质可知,进而可得≌,并由全等三角形的性质得到与的数量关系为 .(2)如图,当,时.1依题意补全图形.2请帮小宇继续探究()的结论是否成立.若成立,请给出证明;若不成立,请举出反例说明.(3)小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设,若旋转后所得的线段与的数量关系满足()中的结论,请直接写出角,,满足的关系: .1α=β=90°ABCD AC ∠BAD EM ⊥AD M EN ⊥AB N EM =EN △EMF △ENB EB EF 2α=60°β=120°1∠ABE =γEF EB 1αβγ29.(1)如图,若,,则 , .(2)在正方形中,点.1如图,若点在直线上,且,求点的坐标.点到的距离定义如下:点为的两边上的动点,当最小时,我们称此时的长度为点到的距离,记为.特别的,当点在的边上时,.在平面直角坐标系中,.P ∠AOB Q ∠AOB P Q P Q P ∠AOB d(P ,∠AOB )P ∠AOB d(P ,∠AOB )=0xOy A (4,0)1M (0,2)N (-1,0)d(M ,∠AOB )=d(N ,∠AOB )=OABC B (4,4)2P y =3x +4d(P ,∠AOB )=22√P2如图,若点在抛物线上,满足的点有__________个,请你画出示意图,并标出点.3P y =-4x 2d(P ,∠AOB )=22√P P2019~2020学年北京海淀区初三上学期期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)二、填空题(本题共18分,每小题3分)1.【答案】A2.【答案】C3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】B8.【答案】B9.【答案】D10.【答案】C11.【答案】或0112.【答案】y =(x -3)213.【答案】1.2.乙的圆周角所对的弦是直径90°三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)14.【答案】-115.【答案】32√16.【答案】1.2.3.“上涨”、“下降”、“先减后增”都可年月份与年月份,同月份比较涨跌率下降最多的月份中,月下降幅度最大,而相较于月,月的有所增加,但仍是下降趋势8201518~201618~CPI 836~78~CPI 17.【答案】,.=-2+x 110--√=-2-x 210--√18.【答案】对称轴为,顶点为.x =1(1,-1)19.【答案】的度数为.∠OAC 55°20.【答案】证明见解析.21.【答案】证明见解析.22.【答案】太和门到太和殿的距离为丈.6023.【答案】这种装置能够喷灌的草坪面积为平方米.72π24.【答案】(1)1.2.3.上(2)(3)(1,-2)2y ?-2n >-325.【答案】(1)证明见解析.(2)826.【答案】(1)12(2)y =9x4y =14x 227.【答案】(1)(2)(3)或-431?n <4n =528.【答案】(1).12成立,证明见解析.(2)(3)或.EB =EF α+β=180°++γ=180α2β2°29.【答案】(1)1.2.1,2(2)11(-2,-2)(0,4)4。

2019-2020学年第二学期期中练习九年级数学参考答案

2019-2020学年第二学期期中练习九年级数学参考答案

海淀区九年级第二学期期中练习数 学 2020.5参考答案及评分建议一、选择题二、填空题9.1x ≥10.611. ()()a b c b c +- 12.913.4714.1215.324748x y x y +=⎧⎨-=⎩16. ①②③注:第16题写对1个或2个(答案不全)的得1分,含有错误答案的得0分. 三、解答题17.解:0(2)2sin 30|-+︒+1122=+⨯=18.解:解不等式3(1)2x x -<,得332x x -<,即3x <.解不等式1212x x -+>,得421x x +>-, 即1x >-.所以不等式组的解集为13x -<<.19.证明:∵△ABC 是等边三角形,∴AC =BC . ∠CAB =∠ACB =60° .∴∠CAD =∠BCE =120°.在△ACD 和△CBE 中. AD CE CAD BCE AC CB =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (SAS).20.解:(1)当1m =-时,原方程可化为2230x x --=.得(3)(1)0x x -+=,即123,1x x ==-.(2)由题意,原方程有两个实数根, 得2(2)4(21)0m ∆=---≥. 得880m -≥. 即1m ≤.21.(1)证明:∵四边形ABCD 为平行四边形,∴AD ∥BC. ∴∠B +∠BAD =180°. ∵∠B =60°, ∴∠BAD =120°.∵AE 为∠BAD 的平分线, ∴∠F AB =60°.∴△ABF 是等边三角形.(2)解:过点F 做FG ^CD 于G . ∵AB ∥CD , ∴∠FCD =∠B =60°. ∵FG ^CD , ∴∠FGC =90°. ∵∠FCD =60° , ∴∠GFC =30°. ∵CF =2,∴CG =1, FG∵∠CDF =45°, ∠FGD =90°, ∴DG=FG∴22. 解:(1)B(2)1021, 15 (3)404103835901.2161433814804..210242⨯⨯+++=≈+.答:支援湖北省的全体医务人员中,“90后”大约有1.2万人.B23. 解:(1)依题意,311.2x y x =⎧⎪⎨=+⎪⎩,∴35.2x y =⎧⎪⎨=⎪⎩,∴点A 的坐标为532⎛⎫ ⎪⎝⎭,.(2)①当1k =时,结合函数图象,可得区域W 内整点的个数为1.②12k ≤<或1620k <≤.24.(1)证明:如图,连接OE .∵Rt △ABC 中,点D 为BC 边中点, ∴AD BD =.∴∠BAD =∠DBA .∵OE =OA , ∴∠OAE =∠OEA . ∴∠OEA =∠DBA . ∴OE ∥BD .又∵EG ⊥BC , ∴OE ⊥EG . 又∵OE 是半径, ∴EG 是O e 的切线.(2)解:如图,连接DE ,DF . ∵AD 为O e 的直径, ∴∠AED =∠AFD =90°. 又∵∠BAC =90°, ∴四边形AEDF 为矩形. ∴DE =AF =6.又∵BD =AD =10,∴在Rt △BDE中,8BE ==. 25. 解:(1)10,3;(2)0:2,2:0; (3)9或10. 26. 解:(1)x =1;(2)∵2222()y x mx m m x m m =-++=-+,+1∴抛物线222y x mx m m=-++的顶点A的坐标为(,)m m. ∵若点A在第一象限,且点A的坐标为(,)m m,过点A作AM垂直x轴于M,连接OA.∵m>0,∴OM=AM=m.∴OA.∵OA.∴m=1.∴抛物线的解析式为222y x x=-+.(3)m≤1或m≥2.27.解:(1)如图所示.(2)解:∵AB=AC,∴∠1=∠2.∵点C,D关于直线OM对称,A在OM上,∴AC=AD,OC=OD.∵OA=OA,∴△ACO≌△ADO.∴∠3=∠D,∠4=∠AOC.∵∠1+∠3=180°,∴∠2+∠D=180°.∴∠BAD +∠DOB =180°,∵∠AOC =∠4 = α,∴∠BAD = 180°-2α.(3)AB=.证明如下:过点A作AH⊥ON于H.∵3 tan tan4AOHα∠==,∴34 AHOH=,∵ Rt △AOH 中,AO =5,222AH OH AO +=, ∴ AH =3,OH =4. ∵AB =∴1BH =. ∴ OB =OH +BH =5. ∴ OA =OB .∴ ∠BAO =∠ABO .∵ AB =AC , ∴ ∠ACB =∠ABO . ∴ ∠BAO =∠ACB .∵ ∠1+∠OAB =180°,∠2+∠ACB =180°, ∴ ∠1=∠2.∵ AC =AB ,AP =OC , ∴ △APB ≌△COA .∴ ∠3=∠AOB .∵ 点C ,D 关于OM 对称, ∴ ∠AOB =∠4. ∴ ∠3=∠4. ∴ PB ∥OD .28. 解(1)①2AP B ∠,3AP B ∠.注:答对一个得1分,含有错误答案得0分. ② ∵∠APB 是AB 关于⊙O 的内直角. ∴∠APB =90°,且点P 在⊙O 的内部.∴满足条件的点P 形成的图形为右图中的半圆H . (点A ,B 均不能取到) 过点B 做BD ⊥y 轴于点D . ∵(0,5),(4,3)A B -, ∴BD =4, AD =8,并可求出直线AB 的解析式为25y x =-. ∴ 当直线2y x b =+过直径AB 时,5b =-.连接OB ,作直线OH 交半圆H 于点E ,过点E 的直线EF ∥AB ,交y 轴于点F . ∵OA =OB ,AH =BH ∴EH ⊥AB , ∴EH ⊥EF .∴ EF 是半圆H 的切线.∵∠OAH =∠OAH ,∠OHB =∠BDA =90°, ∴△OAH ∽△BAD. ∴4182OH BD AH AD ===. ∴1122OH AH EH ==. ∴HO EO =.∵∠EOF =∠AOH ,∠FEO =∠AHO =90°, ∴ △EOF ≌△HOA. ∴OF =OA =5.∵ EF ∥AB ,直线AB 的解析式为25y x =- ∴直线EF 的解析式为25y x =+,此时5b = ∴ b 的取值范围为55b -<≤. (2)n 取得最大值为2.t 的取值范围为15t ≤<.注:本试卷各题中若有其他合理的解法请酌情给分.。

2019-2020学年北京市海淀区九年级(下)期中物理试卷

2019-2020学年北京市海淀区九年级(下)期中物理试卷

2019-2020学年北京市海淀区九年级(下)期中物理试卷一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意.共30分,每小题2分)1.(2分)通常情况下,下列物体属于绝缘体的是()A.铅笔芯B.玻璃杯C.食盐水D.钢尺2.(2分)下列用电器中,主要利用电流热效应工作的是()A.电视机B.电冰箱C.笔记本电脑D.电饭锅3.(2分)如图所示的事例中,目的是为了减小摩擦的是()A.雪天汽车轮胎上安装防滑链B.击球时用力握住网球拍C.浴室的防滑垫表面凹凸不平D.给机械表保养时上润滑油4.(2分)下列说法中,符合安全用电原则的是()A.可以使用绝缘皮破损的插头B.电器设备起火时,用水直接灭火C.使用试电笔时,手指不能碰到金属笔尖D.有人触电时,不必切断电源,直接用手拉开触电者即可5.(2分)如图所示的用具中,在使用时属于费力杠杠的是()A.食品夹B.裁纸刀C.钳子D.核桃夹6.(2分)关于声音的产生和传播,下列说法正确的是()A.鼓手打鼓用的力越大,鼓声的音调就越高B.声音在真空中可以传播C.小提琴演奏出的优美声音是由琴弦的振动产生的D.在高速路的两旁设置隔音墙是在声源处减弱噪声7.(2分)为抗击疫情,口罩生产厂家竭力提高口罩的产能。

如图为全自动一次性口罩生产线的局部图,口罩由传送带匀速传送。

关于这一过程下列说法正确的是()A.口罩相对于地面是静止的B.传送带相对于地面是静止的C.口罩相对于生产线上用于加工的机器是静止的D.口罩相对于传送带是静止的8.(2分)关于做功,下列说法正确的是()A.运动员举着杠铃不动时,人对杠铃的支持力做了功B.扛着一桶纯净水上楼时,人对水桶的支持力做了功C.拉着拉杆箱在水平地面上行走时,地面对拉杆箱的支持力做了功D.篮球离开手后继续在空中飞行的过程中,运动员对篮球做了功9.(2分)下列物态变化过程中,放热的是()A.放在饮料中的冰块化成水B.挂在阳台的湿衣服晾干C.放入衣箱中的樟脑丸变小D.烧开水时,壶嘴冒“白气”10.(2分)如图所示是某种USB键盘清洁器,它有两个开关,开关S1只控制照明用的小灯泡L,开关S2只控制吸尘用的电动机。

20192020学年海淀区九年级期中统考数学试题与

20192020学年海淀区九年级期中统考数学试题与

2019-2020 学年海淀区九年级期中统考数学试题与答案数学试卷(分数: 120 分时间: 120 分钟).11学校姓名准考据号一、选择题(此题共30 分,每题 3 分)下边各题均有四个选项,此中只有一个..是切合题意的.请将正确选项前的字母填在表格中相应的地点 .题号12345678910答案1.一元二次方程2 x2x30 的二次项系数、一次项系数、常数项分别是A .2,1,3 B.2,1,3C.2, 1,3 D.2, 1, 32.以下图形是中心对称图形的是A .B .C.D.3.二次函数y( x+1)22的最大值是A .2B.1C. 1 D .24.已知⊙ O 的半径是4, OP 的长为 3,则点 P 与⊙ O 的地点关系是A .点 P 在圆内B.点 P 在圆上C.点 P 在圆外D.不可以确立52沿y轴向下平移2个单位,获得的抛物线的分析式为.将抛物线 y xA .y x22B .y x2 2 C.y2D .y2 x 2x 26.已知扇形的半径为 6 ,圆心角为60 ,则这个扇形的面积为A .9B .6C.3D.7.用配方法解方程x24x 3,以下配方正确的选项是A .x 221B.x 22227 C. x 27 D .x 218.已知二次函数y ax 2bx c 的图象如下图,则以下选项中不正确的是...A .a 0B .c 0b1D.a b c 0C.0 <2a9.如图,△ ABC 内接于⊙ O,BD 是⊙ O 的直径.若DBC 33 ,则A 等于A .33B.57C.67D .6610.小明乘坐摩天轮转一圈,他离地面的高度y(米)与旋转时间x(分)之间的关系能够近似地用二次函数来刻画.经测试得出部分数据如下表:x/ 分⋯⋯y/ 米⋯⋯以下选项中,最靠近摩天轮转一圈的时间的是A . 7 分B. 6.5 分C. 6 分D. 5.5 分二、填空题(此题共18 分,每题 3 分)11.方程x240的解为 _______________ .12.请写出一个张口向上且经过 (0, 1)的抛物线的分析式 _________ .13.若二次函数y 2x2 5 的图象上有两个点A(2, a ) 、 B (3, b ) ,则 a____ b(填“ <”或“ =”或“ >”).14 .如图, A 、 B 、 C三点在⊙ O 上,∠ AOC =100 °,则∠ABC=______ °.15.用一块直径为 4 米的圆桌布平铺在对角线长为 4 米的正方形桌面上(如表示图),若周围下垂的最大长度相等,则这个最大长度x 为_______米(2取).16.如图, O 是边长为 1 的等边△ ABC 的中心,将AB 、 BC、CA 分别绕点 A、点 B、点 C顺时针旋转( 0180 ),获得AB '、BC '、CA ',连结A' B '、B ' C '、A ' C '、OA '、OB '.(1) A ' OB ' _______? ;(2)当? 时,△A'B ' C '的周长最大.三、解答题(此题共 72分,第 17~26 题,每题 5 分,第27 题 7 分,第28 题 7 分,第29 题 8 分)172x 3 x 2 ..解方程:18.若抛物线y x23x a 与 x 轴只有一个交点,务实数 a 的值.19.已知点 (3, 0) 在抛物线y3x 2( k 3) x k 上,求此抛物线的对称轴.20.如图, AC 是⊙ O 的直径, PA, PB 是⊙ O 的切线, A, B 为切点,BAC 25.求∠ P 的度数.21.已知 x=1 是方程x25ax a 20 的一个根,求代数式3a215a7 的值.22.一圆柱形排水管的截面如下图,已知排水管的半径为1m,水面宽AB 为.因为天气干燥,水管水面降落,此时排水管水面宽变成 1.2m ,求水面降落的高度.23.已知对于 x 的方程3x2(a 3)x a 0(a 0) .( 1)求证:方程总有两个不相等的实数根;( 2)若方程有一个根大于2,求 a 的取值范围.24.在设计人体塑像时,若使塑像的上部(腰以上)与下部(腰以下)的高度的比等于下部与所有(浑身)的高度比,则能够增添视觉美感.按此比率,假如塑像的高为2m,那么它的下部应设计为多高( 5 取).25.已知 AB 是⊙ O 的直径, AC、AD 是⊙ O 的弦, AB=2, AC= 2,AD=1,求∠ CAD 的度数.26.抛物线y1x2bx c 与直线y22x m 订交于A ( 2,n) 、B (2,3) 两点.(1)求这条抛物线的分析式;(2)若4 x 1,则y2y1的最小值为 ________.27.如图, AB 为⊙ O 的直径, C 为⊙ O 上一点, CD⊥AB 于点D. P 为 AB 延伸线上一点,PCD 2 BAC .(1)求证: CP 为⊙ O 的切线;(2) BP=1,CP5 .①求⊙ O 的半径;②若 M 为 AC 上一动点,则OM+DM 的最小值为.28.研究活动:利用函数 y ( x 1)( x 2) 的图象(如图1)和性质,研究函数y( x 1)(x 2) 的图象与性质 .下边是小东的研究过程,请增补完好:(1)函数y(x 1)(x 2) 的自变量x的取值范围是___________;(2)如图 2,他列表描点画出了函数y( x 1)(x 2) 图象的一部分,请补全函数图象;图 1图 2解决问题:设方程(x 1)(x 2)1x b 0 的两根为 x1、 x2,且 x1x2,方程4x23x 21x b 的两根为 x3、 x4,且 x3 x4.若1 b 2 ,则x1、x2、x3、x4的4大小关系为(用“ <”连结).29.在平面直角坐标系xOy 中,半径为1 的⊙ O 与 x 轴负半轴交于点A,点 M 在⊙ O 上,将点 M 绕点 A 顺时针旋转60 获得点 Q. 点 N 为 x 轴上一动点( N 不与 A 重合),将点M 绕点 N 顺时针旋转60 获得点 P. PQ 与 x 轴所夹锐角为.(1)如图 1,若点 M 的横坐标为1,点 N 与点 O 重合,则=________ ;2(2)若点 M、点 Q 的地点如图 2 所示,请在 x 轴上任取一点N,画出直线 PQ,并求的度数;(3)当直线 PQ 与⊙ O 相切时,点M的坐标为 _________.图 1图2备用图九年级第一学期期中测评数学试卷参照答案一、 (本 共 30 分,每小3 分) 8 9号12 3 4 5 6 7 10 答 案DAAA BBC DBC二、填空 (本 共18 分,每小3 分)14 15号 111213 16答 案x 1 2, x 22yx 2 1<130120, 150(答案不独一)三、 解答 (本 共 72 分,第 17~26 ,每小5 分,第 27 7 分,第 287 分,第29 8 分)17.解: x 23x 2 0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分 ( x 1)( x2) 0 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴ x 1 0或 x 2 0 .∴ x 11, x 2 2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分18.解:∵抛物y x 2 3x a 与 x 只有一个交点,∴ 0 , ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分即 9 4a 0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴ a9 分. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5419.解:∵点 (3, 0) 在抛物 y3x 2 ( k 3) x k 上, ∴ 03 32 3( k 3)k . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分∴ k 9. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∴抛物 的分析式 y 3 x212 x 9 .∴ 称 x2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分20.解:∵ PA,PB 是⊙ O 的切 ,∴ PA=PB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴PABPBA .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∵ AC ⊙ O 的直径, ∴ CA ⊥ PA .∴ PAC 90 o .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分∵BAC 25 o ,∴PAB65 o . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∴ P 180 2 PAB 50 o .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分21.解:∵x1 是方程 x2 5ax a 20 的一个根,∴ 1 5aa 20 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分 ∴ a 2 5a2 1 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∴原式3(a a⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分5 ) 710 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分 22.解:如 ,降落后的水面, 接 OA, OC ,点 O 作 ON ⊥ CD 于 N ,交 AB 于 M . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分∴ ONC 90 o .∵ AB ∥ CD , ∴ OMA ONC 90 o .∵ , CD 1.2 ,∴AM1,1CD2CN0.6 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分2在 Rt △OAM 中,∵ OA 1 ,∴OMOA 2 AM 2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分同理可得 ON . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∴ MN ON OM 0.2.答:水面降落了0.2 米. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分23.( 1) 明:(a 3)24 3 ( a) (a3) 2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵ a0 ,∴ (a3)2 0 .即0 .∴方程 有两个不相等的 数根.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分( 2)解方程,得 x 11, x 2a . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分3∵方程有一个根大于 2,∴a2 .3∴ a 6 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分24.解:如 ,塑像上部高度 AC 与下部高度BC 有 AC : BCBC : 2 ,即 BC 2 2AC .BC x m. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分依意,得x22(2x) ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分解得 x115, x2 1 5 (不切合意,舍去).⋯⋯4分5 1 1.2 .1.2m .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分答:塑像的下部25.解:如1,当点 D、 C 在 AB 的异,接 OD 、 BC. ⋯⋯⋯1分∵AB 是⊙ O 的直径,∴ ACB 90 o.在Rt△ACB 中,∵ AB2, AC 2 ,∴ BC 2 .∴BAC 45 o.⋯⋯⋯⋯⋯⋯2分∵OA OD AD 1,∴BAD 60 o.⋯⋯⋯⋯⋯⋯3分∴CADBAD BAC 105o.⋯⋯⋯⋯⋯⋯4分当点 D 、 C 在 AB的同,如 2 ,同理可得BAC45 ,BAD 60 .∴CAD BAD BAC 15o.∴CAD 为15o或 105 o.⋯⋯⋯⋯⋯⋯⋯5分26.解:( 1)∵直y22x m 点B(2,-3),∴ 3 2 2 m .∴m 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∵直 y22x m 点A(-2,n),∴ n 5.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∵抛物 y1x2bx c 点A和点B,542b c,∴342b c.b2,∴c3.∴ y1x22x3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2)12 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分27.( 1)明:接 OC. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∵∠ PCD=2∠ BAC,∠ POC=2∠BAC,∴∠ POC=∠PCD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∵CD⊥ AB 于点 D,∴∠ ODC=90.11 / 12∴∠ POC+∠ OCD =90o . ∴∠ PCD+∠OCD =90o . ∴∠ OCP=90o . ∴半径 OC ⊥CP .∴ CP ⊙ O 的切 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分( 2)解:① ⊙ O 的半径 r .在 Rt △OCP 中, OC 2CP 2 OP 2 .∵ BP 1, CP 5,∴ r 2( 5) 2(r 1)2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯4分解得 r2 .∴⊙ O 的半径 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分②2 14. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分328.解:( 1) x1或 x 2 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)如 所示:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分x 1 x 3 x 4 x 2 . .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分29. 解:( 1) 60 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分( 2).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分接 MQ , MP . MQ , PQ 分 交 x 于 E, F .∵将点 M 点 A 旋60 获得点 Q ,将点 M 点 N旋 60 获得点 P ,yP∴△ MAQ 和△ MNP 均 等 三角形 . ⋯⋯⋯⋯⋯⋯4 分 M∴ MA MQ , MN MP ,AMQNMP 60.∴ AMNQMP .AO E FN xQ11 / 12∴△ MAN ≌△ MQP . .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴MAN MQP .∵AEM QEF ,∴QFE AMQ 60 .∴60 . .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6分( 3)(3,1)或(3,1). ⋯⋯⋯⋯⋯⋯⋯⋯⋯8分222212 / 1212 / 12。

北京市海淀区2019-2020学年九年级上学期期中物理试卷 (有解析)

北京市海淀区2019-2020学年九年级上学期期中物理试卷 (有解析)

北京市海淀区2019-2020学年九年级上学期期中物理试卷一、单选题(本大题共15小题,共30.0分)1.在国际上通用的质量的单位是()A. kgB. NC. m3D. 以上都是2.通常情况下,下面的物体属于导体的是()A. 物理书B. 塑料刻度尺C. 橡皮D. 铅笔芯3.在连接电路的过程中,下列几种做法中,没有必要的是()A. 断开开关,按电路图连接元件B. 必须从电源的正极开始接线C. 各个接线点一定要连接牢固D. 全部连接完后,再对照电路图检查,无误后再闭合开关4.雨季来临,因强降雨引发滑坡泥石流,堵塞河道支流,形成堰塞湖,如图所示,进而造成重大人员伤亡,电力、交通、通讯中断.对此,下列说法中正确的是()A. 泥石流从山顶到山下的过程中,动能转化为势能B. 泥石流具有做功的本领C. 泥石流只具有重力势能D. 泥石流只具有动能5.如图所示的现象中,不属于通过做功改变物体内能的是()A. 古代的人钻木取火B. 向下压缩活塞,没透乙醚的棉花燃烧C. 下滑时臀部有灼热的感觉D. 冬天烤火取暖6.下图所示的四个电路图中,各开关都闭合后,灯泡L1与L2串联的是()A. B.C. D.7.下列现象中,能表明分子在不停地做无规则运动的是()A. 濛濛细雨从空中下落B. 炒菜时,满屋飘香C. 扫地时灰尘四起D. 擦黑板时,粉笔灰在空中飞舞8.如图所示的滑动变阻器正确接入电路的两个接线柱可以是()A. a和bB. b和cC. c和dD. 随便哪两个接线柱都可以9.火车某节车厢有两间洗手间,只有当两间洗手间的门都关上时(每扇门的插销都相当于一个开关),车厢内指示牌内的指示灯才会提示旅客“洗手间有人”。

能实现上述设计的电路图是()A. B.C. D.10.将塑料包装袋撕成甲、乙两束细丝后,分别在上端打结,然后用干燥的丝绸或毛皮顺着细丝向下捋几下,做成如图情形.下列有关叙述正确的是()A. 甲束中的各细丝带的不是同一种电荷B. 甲、乙两束的细丝带的不是同一种电荷C. 甲束细丝用丝绸捋过,乙束细丝用毛皮捋过D. 甲、乙两束细丝都用丝绸或都用毛皮捋过11.关于电路中有持续电流的说法,其中正确的是()A. 只要电路中有足够的电子,电路中就有持续的电流B. 用带电体在电路中做电源,电路中就有持续的电流C. 闭合电路中必须有电源,电路中就有持续的电流D. 电路两端有电压,电路中就有持续电流12.由公式R=U可以知道,对于一个确定的电阻()IA. 加在该导体两端的电压越大,它的电阻也越大B. 通过该导体的电流越小,它的电阻就越大C. 导体的电阻与它两端的电压成正比,与通过它的电流成反比D. 以上三种说法都错13.下列事实中最能说明导体的电阻跟导体的材料有关的是()A. 长度相同的镍铬合金丝,粗的比细的电阻小B. 横截面积相同的铜丝,短的比长的电阻小C. 长度和横截面积都相同的铜丝和铁丝,铜丝的电阻比铁丝小D. 长度相同的铜丝和铁丝,铜丝的电阻可能比铁丝大14.一个电阻值为R,两端所加电压为U,通过电阻的电流为I,如果加在此电阻两端电压变为2U,则()A. 电流不变,电阻不变B. 电流加倍,电阻不变C. 电流不变,电阻加倍D. 电流加倍,电阻加倍15.为测定风速的大小,小强设计了一种测定风速的装置,其简化电路如图所示。

2019_2020学年北京海淀区初三上学期期中数学试卷-详解版

2019_2020学年北京海淀区初三上学期期中数学试卷-详解版

A.
B.
C.
D.
【答案】 B
【解析】 抛物线
向下平移 个单位得到

故选 .
5. 已知水平放置的圆柱形排水管道,管道截面半径是 面宽度为( ).
,若水面高
.则排水管道截面的水
A.
B.
C.
D.
【答案】 C 【解析】 过 作
⊙ 于点 ,


由题意可知,





中,





故选 .
6. 如图,在 中,




这四个图案中,阴影部分的面积不. 小. 于. 该图案外圈大圆面积一半的是( ).
A. 图 和图
B. 图 和图
C. 图 和图
D. 图 和图
【答案】 A 【解析】 图一:阴影部分面积等于大圆面积的一半,故正确;
图二:
圆半径为 ,则内接正三角形
中,
是 边上的高,






, ,
, ∴图二错误; 图三:


可知

又因

所以

如图,已知
﹐过 作
轴于点 ,
易知

又因


所以

所以点 的坐标为

将点 的坐标
代入抛物线
的解析式可得

并与( )中得到的
联立方程组可得:
解得
得抛物线的解析式为

2


27. 如图,在等腰 点 ,作射线 接.
中,

北京市北京市海淀区2019-2020学年九年级上学期数学期中考试试卷及参考答案

北京市北京市海淀区2019-2020学年九年级上学期数学期中考试试卷及参考答案

北京市北京市海淀区2019-2020学年九年级上学期数学期中考试试卷一、单选题1. 下列图案中,是中心对称图形的是()A .B .C .D .2. 抛物线的顶点坐标为()A . (-1,2)B . (1,2)C . (1,-2)D . (2,1)3. 体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A . MB . NC . PD . Q4. 将抛物线向下平移3个单位,得到的抛物线为()A .B .C .D .5. 已知水平放置的圆柱形排水管道,管道截面半径是1 m,若水面高0.2 m. 则排水管道截面的水面宽度为()A . 0.6 mB . 0.8 mC . 1.2 mD . 1.6 m6. 如图,在⊙O中,, . 则的度数为()A .B .C .D .7. 下列是关于四个图案的描述.图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称;图2所示是一个正三角形内接于圆;图3所示是一个正方形内接于圆;图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.这四个图案中,阴影部分的面积不小于该图案外圈大圆面积一半的是()A . 图1和图3B . 图2和图3C . 图2和图4D . 图1和图48. 如图,在平面直角坐标系xOy中,抛物线与x轴交于A, B两点. 若顶点C到x轴的距离为8,则线段AB的长度为()A . 2B .C .D . 4二、填空题9. 在平面直角坐标系中,点绕原点旋转180°后所得到的点的坐标为________.10. 写出一个对称轴是y轴的二次函数的解析式________.11. 如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=________.12. 若二次函数的图象上有两点 , 则 ________ .(填“>”,“=”或“<”)13. 如图,边长为2的正方形ABCD绕着点C顺时针旋转90°,则点A运动的路径长为________.14. 如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于________.15. 如图,已知正方形OBCD的三个顶点坐标分别为B(1,0),C(1,1), D(0,1). 若抛物线与正方形OBCD的边共有3个公共点,则h的取值范围是________.16. 如图,在中,⑴作AB和BC的垂直平分线交于点O;⑵以点O为圆心,OA长为半径作圆;⑶⊙O分别与AB和BC的垂直平分线交于点M,N;⑷连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论中,①;②;③点O是的外心;④点P是的内心.所有正确结论的序号是________.三、解答题17. 已知抛物线的对称轴为,是抛物线上一点,求该抛物线的解析式.18. 如图,等腰三角形ABC中,BA=BC,∠ABC=α.作AD⊥BC于点D,将线段BD绕着点B顺时针旋转角α后得到线段B E,连接CE. 求证:BE⊥CE.19. 请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.20. 如图,一条公路的转弯处是一段圆弧(),点是这段弧所在圆的圆心. , C是上一点,,垂足为,,求这段弯路的半径.21. 已知二次函数的图象与轴只有一个公共点.(1)求该二次函数的解析式;(2)当时,y的最大值为,最小值为.22. 如图,已知等边三角形ABC,O为△ABC内一点,连接OA,OB,OC,将△BAO绕点B旋转至△BCM.(1)依题意补全图形;(2)若OA= ,OB= ,OC=1,求∠OCM的度数.23. 如图,在Rt△ABC 中,∠C=90°,以BC为直径的半圆交AB于点D,O是该半圆所在圆的圆心,E为线段AC上一点,且ED=EA.(1)求证:ED是⊙O的切线;(2)若,∠A=30°,求⊙O的半径.24. 悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁. 其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道. 图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引. 他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB=CD, 两个索塔均与桥面垂直. 主桥AC的长为600 m,引桥CE的长为124 m.缆索最低处的吊杆MN长为3 m ,桥面上与点M相距100 m处的吊杆PQ长为13 m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D与锚点E的距离.图225. 探究函数的图象与性质.小娜根据学习函数的经验,对函数的图象与性质进行了探究.下面是小娜的探究过程,请补充完整:(1) 下表是x 与y 的几组对应值.x…023…y…0mn 3…请直接写出:m=,n=;(2) 如图,小娜在平面直角坐标系xOy 中,描出了上表中已经给出的各组对应值为坐标的点,请再描出剩下的两个点,并画出该函数的图象;(3)结合画出的函数图象,解决问题:若方程 有三个不同的解,记为x , x , x ,且x < x <x . 请直接写出x + x +x 的取值范围.26.在平面直角坐标系xOy 中,抛物线与直线 交于A, B 两点,其中点A 在x轴上.(1)用含有b 的代数式表示c ;(2) ①若点B 在第一象限,且,求抛物线的解析式;② 若 ,结合函数图象,直接写出b 的取值范围.27. 如图,在等腰△ABC 中,AB=AC ,,将点C 关于直线AB对称得到点D ,作射线BD 与CA 的延长线交于点E ,在CB 的延长线上取点F ,使得BF=DE ,连接AF.备用图123123123(1) 依题意补全图形;(2) 求证:AF=AE ;(3) 作BA 的延长线与FD 的延长线交于点P ,写出一个∠ACB 的值,使得AP=AF 成立,并证明.28. 在平面内,C 为线段AB 外的一点,若以A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点. 特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1) 如图1,在平面直角坐标系xOy 中,点M 的坐标为,在点P ,P,P 中,线段OM 的直角点是;(2) 在平面直角坐标系xOy 中,点A ,B的坐标分别为, ,直线l的解析式为 .①如图2,C 是直线l 上的一个动点,若C 是线段AB 的直角点,求点C的坐标;②如图3,P 是直线l 上的一个动点,将所有线段AP 的等腰直角点称为直线l 关于点A 的伴随点.若⊙O 的半径为r ,且⊙O 上恰有两个点为直线l 关于点A 的伴随点,直接写出r 的取值范围.参考答案1.2.3.1234.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.。

北京市海淀区2019-2020年初三上期中学业水平调研数学试题有答案(加精)

北京市海淀区2019-2020年初三上期中学业水平调研数学试题有答案(加精)

北京市海淀区九年级第一学期期中学业水平调研数 学2019.11学校___________________ 姓名________________ 准考证号__________________一、选择题 (本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置. 1.抛物线21y x =+的对称轴是 A .直线1x =-B .直线1x =C .直线0x =D .直线1y =2.点(21)P -,关于原点对称的点P '的坐标是 A .(21)-,B .(21)--,C .(12)-,D .(12)-, 3.下列App 图标中,既不是中心对称图形也不是轴对称图形的是A B C D 4.用配方法解方程2240x x --=,配方正确的是 A .()213x -=B .()214x -=C .()215x -=D .()213x +=5.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点. 若大圆半径为2,小圆半径为1,则AB 的长为 A . B . CD .26.将抛物线2(1)2y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴有一个交点,则a 的值为A .1-B .1C .2-D .27.下图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是A B C D8.已知一个二次函数图象经过11(3)P y -,,22(1)P y -,,33(1)P y ,,44(3)P y ,四点,若324y y y <<,则1234y y y y ,,,的最值情况是A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定二、填空题(本题共16分,每小题2分)9.写出一个以0和2为根的一元二次方程:________.10.函数2y ax bx c =++的图象如图所示,则ac 0.(填“>”,“=”,或“<”)11.若关于x 的方程2410x x k -+-=有两个不相等的实数根,则k的取值范围是 .12.如图,四边形ABCD 内接于⊙O ,E 为直径CD 延长线上一点,且AB ∥CD ,若∠C =70°,则∠ADE 的大小为________.13.已知O 为△ABC 的外接圆圆心,若O 在△ABC 外,则△ABC 是________(填“锐角三角形”或“直角三角形”或“钝角三角形”).14.在十三届全国人大一次会议记者会上,中国科技部部长表示,2017年我国新能源汽车保有量已居于世界前列.2015年和2017年我国新能源汽车保有量如图所示.设我国2015至2017年新能源汽车保有量年平均增长率为x ,依题意,可列方程为 .2015年和2017年我国新能源汽车保有量统计图保有量/15.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0),(3,0)两点,请写出一个满足0y <的x 的值 .EC16.如图,⊙O 的动弦AB ,CD 相交于点E ,且AB CD =,BED α∠=(090)α︒<<︒.在①BOD α∠=,②90OAB α∠=︒-,③12ABC α∠=中,一定成立的 是 (填序号).三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)17.解方程:()236x x x +=+.18.如图,将ABC △绕点B 旋转得到DBE △,且A ,D ,C三点在同一条直线上.求证:DB 平分ADE ∠.19.下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.已知:⊙O .求作:⊙O 的内接正三角形EDCBA作法:如图,① 作直径AB ;② 以B 为圆心,OB 为半径作弧,与⊙O 交于C ,D 两点; ③ 连接AC ,AD ,CD . 所以△ACD 就是所求的三角形.根据小董设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:在⊙O 中,连接OC ,OD ,BC ,BD ,∵ OC =OB =BC ,∴ △OBC 为等边三角形(___________)(填推理的依据). ∴ ∠BOC =60°.∴ ∠AOC =180°-∠BOC =120°. 同理 ∠AOD =120°,∴ ∠COD =∠AOC =∠AOD =120°.∴ AC =CD =AD (___________)(填推理的依据). ∴ △ACD 是等边三角形.20.已知1-是方程20x ax b +-=的一个根,求222a b b -+的值.21.生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O 为圆心AB 为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A 到顶棚的距离为0.8a ,顶棚到路面的距离是3.2a ,点B 到路面的距离为2a .请你求出路面的宽度l .(用含a 的式子表示)22.如图,在平面直角坐标系xOy 中,抛物线2y x ax b =++经过点()20A -,,()13B -,. (1)求抛物线的解析式;(2)设抛物线的顶点为C ,直接写出点C 的坐标和BOC ∠的度数.23.用长为6米的铝合金条制成如图所示的窗框,若窗框的高为x 米,窗户的透光面积为y 平方米(铝合金条的宽度不计).x米(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)如何安排窗框的高和宽,才能使窗户的透光面积最大?并求出此时的最大面积.24.如图,在△ABC 中,AB AC =,以AB 为直径作⊙O 交BC 于点D ,过点D 作AC 的垂线交AC 于点E ,交AB 的延长线于点F . (1)求证:DE 与⊙O 相切;(2)若CD BF =,3AE =,求DF 的长.25.有这样一个问题:探究函数332x x y -++=的图象与性质.小东根据学习函数的经验,对函数332x x y -++=的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当3x ≥时,y =___________,当3x <时y =____________; (2)根据(1)中的结果,请在所给坐标系中画出函数332x x y -++=的图象;备用图(3)结合画出的函数图象,解决问题:若关于x 的方程3312x x ax -+++=只有一个实数根,直接写出实数a 的取值范围:___________________________.26.在平面直角坐标系xOy 中,抛物线22(0)y ax x a =-≠与x 轴交于点A ,B (点A 在点B 的左侧). (1)当1a =-时,求A ,B 两点的坐标;(2)过点(30)P ,作垂直于x 轴的直线l ,交抛物线于点C .①当2a =时,求PB PC +的值;②若点B 在直线l 左侧,且14PB PC +≥,结合函数的图象,直接写出a 的取值范围.27. 已知∠MON =α,P 为射线OM 上的点,OP =1.(1)如图1,︒=60α,A ,B 均为射线ON 上的点,OA =1,OB >OA ,△PBC 为等边三角形,且O ,C两点位于直线PB 的异侧,连接AC . ①依题意将图1补全;②判断直线AC 与OM 的位置关系并加以证明;(2)若︒=45α,Q 为射线ON 上一动点(Q 与O 不重合),以PQ 为斜边作等腰直角△PQR ,使O ,R两点位于直线PQ 的异侧,连接OR . 根据(1)的解答经验,直接写出△POR 的面积.图1 备用图28.在平面直角坐标系xOy 中,点A 是x 轴外的一点,若平面内的点B 满足:线段AB 的长度与点A到x 轴的距离相等,则称点B 是点A 的“等距点”.(1)若点A 的坐标为(0,2),点1P (2,2),2P (1,4-),3P (1)中,点A 的“等距点”是_______________;(2)若点M (1,2)和点N (1,8)是点A 的两个“等距点”,求点A 的坐标;(3)记函数3y x =(0x >)的图象为L ,T 的半径为2,圆心坐标为(0,)T t .若在L 上存在点M ,T 上存在点N ,满足点N 是点M 的“等距点”,直接写出t 的取值范围.九年级第一学期期中学业水平调研数 学 参 考 答 案 2019.11一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.220-=x x (答案不唯一) 10.< 11.5<k 12.110°13.钝角三角形 14.245.1(1)172.9+=x 15.2 (答案不唯一)16.①③(注:每写对一个得1分) 三、解答题(本题共68分) 17.解法一:解:(2)3(2)x x x +=+,(2)3(2)0+-+=x x x ,(2)(3)0+-=x x , 20x +=或30x -=,12=-x ,23x =.解法二:解:方程化为 260x x --=. 2425b ac ∆=-=.152x ±==, 12=-x ,23x =.18.证明:∵ 将△ABC 绕点B 旋转得到△DBE , ∴△ABC ≌△DBE∴BA=BD .∴∠A =∠ADB . ∵∠A =∠BDE , ∴ ∠ADB =∠BDE . ∴ DB 平分∠ADE .EDCBA19. 解:(1)(2)三条边都相等的三角形是等边三角形.在同圆或等圆中,相等的圆心角所对的弦相等.20.解:∵1-是方程20+-=x ax b 的一个根, ∴ 10--=a b . ∴1+=a b . ∴222a b b -+()()2a b a b b =+-+2a b b =-+a b =+1= .21.解:如图,连接OC .由题意知0.8 3.226=++=AB a a a a .3OC OB a ∴==. ∴=-=OE OB BE a .由题意可知AB CD ⊥于E ,∴2CD CE =.在Rt OCE △中,===CE .CD ∴=.22.解:(1)∵抛物线2y x ax b =++经过点(20)(13)A B --,,,,∴4201 3.a b a b -+=⎧⎨-+=⎩,解得68.a b =⎧⎨=⎩,∴268y x x =++.(2)(3,1)C --,90BOC ∠=︒.23.(1)2332=-+y x x ; 注:没有化简不扣分.(2)当31322()2b x a =-=-=⨯-时,y 有最大值24933424()2ac b a --==⨯-. 答:当窗框的高为1米,宽为32米时,窗户的透光面积最大,最大面积为32平方米. 24.(1)证明:连接OD .∵AB 是⊙O 的直径, ∴90ADB ∠=°. ∴AD BC ⊥. 又∵AB AC =, ∴12∠=∠. ∵OA OD =, ∴2ADO ∠=∠. ∴1ADO ∠=∠. ∴OD ∥AC . ∵DE AC ⊥于点E , ∴=90ODF AED =︒∠∠. ∴OD ⊥ED . ∴DE 与⊙O 相切. (2)∵AB AC =,AD BC ⊥,∴12∠=∠,CD BD =. ∵CD BF =, ∴=BF BD . ∴3F =∠∠.∴4323F =∠+∠=∠∠.∵OB OD =, ∴5=423=∠∠∠. ∵90ODF =︒∠,∴330F ==︒∠∠,4560=∠=︒∠. ∵90ADB =︒∠, ∴2130∠=∠=︒. ∴2F =∠∠. ∴ DF AD =.∵130=︒∠,90AED =︒∠, ∴2AD ED =.∵222AE DE AD +=,3AE =,∴AD =∴DF =25.(1)化简函数解析式,当3x ≥时,y =x ,当3x <时y = 3 ;(2)根据(1)中的结果,画出函数332x x y -++=的图象如下:(3)0<a 或1≥a 或23=a . (注:每得出一个正确范围得1分) 26.(1)当1=-a 时,有22y x x =--.令0y =,得220x x --=. 解得120,2x x ==-. ∵点A 在点B 的左侧, ∴(20)A -,,(00)B ,.(2)①当2=a 时,有222y x x =-.令0y =,得2220x x -=. 解得1201x x ==,. ∵点A 在点B 的左侧, ∴(00)A ,,(10)B ,. ∴2PB =.当3=x 时,292312=⨯-⨯=c y . ∴12PC =. ∴14PB PC +=. ②59≤-a 或2≥a . 27.(1)①依题意,将图1补全;NCMPB A O②AC OM ∥.证明:连接AP∵1OA OP ==,︒=60α ,∴△OAP 是等边三角形. ∴=60OP PA OPA OAP ==︒,∠∠. ∵△PBC 是等边三角形, ∴=60PB PC BPC =︒,∠.∴OPA APB BPC APB +=+∠∠∠∠.即OPB APC =∠∠. ∴△OBP ≌△ACP . ∴60PAC O ==︒∠∠. ∴OPA PAC =∠∠. ∴AC OM ∥.(2)14POR S =△. 28.(1)1P ,3P ;OABPMCN(2)∵点()12M ,和点()18N ,是点A 的两个“等距点” ,∴AM AN =.∴点A 在线段MN 的垂直平分线上.设MN 与其垂直平分线交于点C ,()A A A x y ,,∴(15)C ,,==5A AM AN y =. ∴=3CM .∴4AC ==.∴点A 的坐标为(35)-,或(55),. (3)24t -<≤.。

2019-2020学年北京海淀区初三上学期期中物理试卷及答案.pdf

2019-2020学年北京海淀区初三上学期期中物理试卷及答案.pdf

18. 关于电流、电压和电阻的关系,下列说法中正确的是( )
A. 当导体两端的电压为零时,电阻也为零
B. 电阻由导体本身的性质决定,与电流、电压无关
C. 定值电阻两端的电压越大,通过该电阻的电流就越
D. 导体的电阻与导体两端的电压成正比,与通过导体

的电流成反比
19. 如图所示,电源两端电压一定,不考虑温度对电阻阻值的影响.关于电路的工作情况,下列说法中正确的是( )
h/cm
距离s/cm
h/cm
距离s/cm
h/cm
离s/cm
A
20
32
15
22
10
17
B
20
23
15
15
10
11
C
20
16
15
11
10
8
(1) 该实验中小球动能的大小是通过
来反映的.
(2) 比较小球的三次实验数据,可以得到的结论是:物体的
一定时,
越大,物体的动能就越大.
28. 马丽同学用如图甲所示的电路测量未知电阻Rx的阻值,闭合开关前,应将滑动变阻器的滑片P 移动到最
14. 某规格热敏电阻的阻值随环境温度的变化如图甲所示,如果设计一个通过电表示数反映热敏电阻随环境温度变化的电路,要 求温度升高时电表示数减小,图乙所示的电路中符合要求的可能是( )
A.
B.
C.
D.
15. 如图所示,电源两端电压保持恒定,R1、R2、R3为定值电阻,R1 = R2 = 8Ω.只闭合开关S1时,电压表V的示数为4.0V ;S1、S3闭合,S2断开时,电流表A2的示数为1.0A.不考虑温度对定值电阻阻值大小的影响,下列分析中正确的是( )

2019-2020北京市海淀区初三年级上数学期中试卷

2019-2020北京市海淀区初三年级上数学期中试卷

2019-2020北京市海淀区初三年级上数学期中试卷数学一、 选择题(本题共24分;每小题3分)下列各题均有四个选项;其中只有一个..是符合题意的. 1.一元二次方程23610x x --=的二次项系数、一次项系数、常数项分别是 A .3;6;1B .3;6;-1C .3;-6;1D .3;-6;-1 2.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为A .21y x =+B . 21y x =-C .21y x =-+ D .21y x =--3.如图;A ;B ;C 是⊙O 上的三个点;若∠C =35°;则∠AOB 的大小为 A .35° B .55° C .65°D .70°4.下列手机手势解锁图案中;是中心对称图形的是A .B .C .D .5.用配方法解方程2420x x -+=;配方正确的是 A .2(2=2x -)B .2(+2=2x )C .2(-2=-2x )D .2(-2=6x )6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重 合;那么n 的值可能是 A .45 B .60C .90D .1207.二次函数21y ax bx c =++与一次函数2y mx n =+的图象如图所示;则满足2ax bx c mx n ++>+的x 的取值范围是A .-3<x <0B .x <-3或x >0C .x <-3或x >1D .0<x <38.如图1.动点P 从格点A 出发;在网格平面内运动. 设点P 走过的路程为s ;点P 到直线l 的距离为d .已 知d 与s 的关系如图2所示.下列选项中;可能是点 P 的运动路线的是A .B .C .D .二、填空题(本题共24分;每小题3分)9.点 P (-1;2)关于原点的对称点的坐标为 .10.写出一个图象开口向上;过点(0;0)的二次函数的表达式:.11.如图3;四边形ABCD内接于⊙O;E为CD的延长线上一点;若∠B=110°;则∠ADE的大小为.12.抛物线y=x2-x-1与x轴的公共点的个数是.13.如图4;在平面直角坐标系xOy中;点A、点B的坐标分别为(0;2);(-1;0);将线段AB绕点O顺时针旋转;若点A的对应点A´的坐标为(2;0);则点B的对应点B´的坐标为.14.已知抛物线y=x2+2x经过点(-4;y1);(1;y2);则y1y2 (填“>”;“=”或“<”)15.如图5;⊙O的半径OA与弦BC交于点D;若OD=3;AD=2;BD=CD;则BC的长为.16.下面是“作已知三角形的高”的尺规作图过程.已知:△ABC求作:BC边上的高AD 作法:如图;(1)分别以点A和点C为圆心;大于12AC的长为半径作弧;两弧相交于P、Q两点;(2)作直线PQ;交AC于点O;(3)以O为圆心;OA为半径作⊙O;与CB的延长线交于点D;连接AD;线段AD即为所作的高请回答:该尺规作图的依据是.三、解答题(本题共72分;第17题4分;第18—23题;每小题5分;第24—25题;每小题7分;第26—28题;每小题8分)17.解方程:x2-4x+3=0.18.如图;等边三角形ABC的边长为3;点D是线段BC上的点;CD=2;以AD为边作等边三角形ADE;连接CE;求CE的长.19.已知m 是方程的一个根;的值.20.如图;在⊙O 中;. 求证:∠B =∠C .21.如图;ABCD 是一块边长为4米的正方形苗圃.园林部门拟将其改造为矩形AEFG 的形状.其中点E 在AB 边上;点G 在AD 的延长线上;DG =2BE .设BE 的长为x 米;改造后苗圃AEFG 的面积为y 平方米 (1)y 与x 之间的函数关系式为________________(不需写自变量的取值范围);(2)根据改造方案;改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等;请问此时BE 的长为多少米?22. 关于的一元二次方程011222=-+-+m x m x )(有两个不相等的实数根1x ;2x . (1)求实数m 的取值范围;(2)是否存在实数m ;使得1x 2x =0成立?如果存在;求出m 的值;如果不存在;请说明理由.23.古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家——“代数学之父”阿尔▪花拉子米.在研究一元二次方程解法的过程中;他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”. 以21039x x +=为例;花拉子米的几何解法如下:如图;在边长为x 的正方形的两个相邻边上作边长分别为x 和5的矩形;再补上一个边长为5的小正方形;最终把图形补成一个大正方形.通过不同的方式来表示大正方形的面积;可以将原方程化为2__)(+x =39+_______;从而得到此方程的正根是___________.24.如图;在平面直角坐标系xOy 中;点A 的坐标为(1;0);点P 的横坐标为2;将点A 绕点.P .旋转;使它的对应点B 恰好落在x 轴上(不与A 点重合);再将点B 绕点.O .逆时针旋转90°得到点C . (1)直接写出点B 和点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的表达式.25.如图;AB 为⊙O 直径;点C 在⊙O 上;过点O 作OD ⊥BC 交BC 于点E ;交⊙O 于点D ;CD ∥AB . (1)求证:E 为OD 的中点;(2)若CB =6;求四边形CAOD 的面积.26.在平面直角坐标系xOy 中;已知抛物线C : y =x 2-4x +4和直线l :y =kx -2k (k >0). (1)抛物线C 的顶点D 的坐标为____________; (2)请判断点D 是否在直线l 上;并说明理由;(3)记函数244222x x x y kx k x ⎧-+≤=⎨->⎩,,的图象为G ;点M (0;t );过点M 垂直于y 轴的直线与图象G 交于点11P x y (,);22x y Q(,).当1<t <3时;若存在t 使得124x x +=成立;结合图象;求k 的取值范围.27.对于平面直角坐标系xOy 中的点P ;给出如下定义:记点P 到x 轴的距离为1d ;到y 轴的距离为2d ;若12d d ≤;则称1d 为点P 的“引力值”;若12d d >;则称2d 为点P 的“引力值”.特别地;若点P 在坐标轴上;则点P 的“引力值”为0.例如;点P (-2;3)到x 轴的距离为3;到y 轴的距离为2;因为2< 3;所以点P 的“引力值”为2. (1)①点A (1;-4)的“引力值”为 ;②若点B (a ;3)的“引力值”为2;则a 的值为 ;(2)若点C 在直线24y x =-+上;且点C 的“引力值”为2.求点C 的坐标;(3)已知点M 是以D (3;4)为圆心;半径为2的圆上的一个动点;那么点M 的“引力值”d 的取值范围是 .28.在Rt△ABC中;斜边AC的中点M关于BC的对称点为点O;将△ABC绕点O顺时针旋转至△DCE;连接BD;BE;如图所示(1)在①∠BOE;②∠ACD;③∠COE中;等于旋转角的是(填出满足条件的角的序号);(2)若∠A=α;求∠BEC的大小(用含α的式子表示);(3)点N是BD的中点;连接MN;用等式表示线段MN与BE之间的数量关系;并证明.2017年北京市海淀区初三年级期中试卷数学二、 选择题(本题共24分;每小题3分)下列各题均有四个选项;其中只有一个..是符合题意的. 1.一元二次方程23610x x --=的二次项系数、一次项系数、常数项分别是 A .3;6;1B .3;6;-1C .3;-6;1D .3;-6;-1【答案】D 【解析】难度:★本题考查了一元二次方程的系数;难度易.2.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为A .21y x =+B . 21y x =-C .21y x =-+ D .21y x =--【答案】A【解析】难度:★本题考查了二次函数图象平移问题“上加下减”;难度易.3.如图;A;B;C是⊙O上的三个点;若∠C=35°;则∠AOB的大小为A.35°B.55°C.65°D.70°【答案】D【解析】难度:★本题考查了圆周角定理;难度易.4.下列手机手势解锁图案中;是中心对称图形的是A.B.C.D.【答案】B【解析】难度:★本题考查了中心对称图形;难度易.5.用配方法解方程2420x x -+=;配方正确的是 A .2(2=2x -)B .2(+2=2x )C .2(-2=-2x )D .2(-2=6x )【答案】A 【解析】难度:★本题考查了一元二次方程的解法——配方法;难度易.6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重 合;那么n 的值可能是 A .45 B .60C .90D .120【答案】D 【解析】难度:★本题考查了特殊图形的旋转角;难度易.7.二次函数21y ax bx c =++与一次函数2y mx n =+的图象如图所示;则满足2ax bx c mx n ++>+的x 的取值范围是A .-3<x <0B .x <-3或x >0C .x <-3或x >1D .0<x <3【答案】A 【解析】难度:★本题考查了二次函数与一次函数复合的不等式问题;“利用谁大谁的图象在上方”;结合交点来解题;难度易. 8.如图1.动点P 从格点A 出发;在网格平面内运动. 设点P 走过的路程为s ;点P 到直线l 的距离为d .已 知d 与s 的关系如图2所示.下列选项中;可能是点P的运动路线的是A.B.C.D.【答案】D【解析】难度:★本题考查了动点图象问题:点到直线的距离;难度易.二、填空题(本题共24分;每小题3分)9.点P(-1;2)关于原点的对称点的坐标为.【答案】(1;-2)【解析】难度:★本题考查点的对称;难度易.10.写出一个图象开口向上;过点(0;0)的二次函数的表达式:.【答案】y=x2(答案不唯一)【解析】难度:★本题考查二次函数性质;难度易.11.如图3;四边形ABCD内接于⊙O;E为CD的延长线上一点;若∠B=110°;则∠ADE的大小为.【答案】110°【解析】难度:★本题考查圆内接四边形对角互补、邻补角的性质;难度易.13.抛物线y=x2-x-1与x轴的公共点的个数是.【答案】2个【解析】难度:★本题考查二次函数与一元二次方程结合;判别式判断根的情况;难度易.13.如图4;在平面直角坐标系xOy中;点A、点B的坐标分别为(0;2);(-1;0);将线段AB绕点O顺时针旋转;若点A的对应点A´的坐标为(2;0);则点B的对应点B´的坐标为.【答案】(0;1)【解析】难度:★本题考查旋转三要素:旋转中心、旋转方向、旋转角度;难度易.14.已知抛物线y=x2+2x经过点(-4;y1);(1;y2);则y1y2 (填“>”;“=”或“<”=【答案】>【解析】难度:★本题考查二次函数对称性、增减性;难度易.15.如图5;⊙O的半径OA与弦BC交于点D;若OD=3;AD=2;BD=CD;则BC的长为.【答案】8【解析】难度:★本题考查圆的垂径定理、勾股定理;难度易.16.下面是“作已知三角形的高”的尺规作图过程.已知:△ABC求作:BC边上的高AD 作法:如图;(3)分别以点A和点C为圆心;大于12AC的长为半径作弧;两弧相交于P、Q两点;(4)作直线PQ;交AC于点O;(3)以O为圆心;OA为半径作⊙O;与CB的延长线交于点D;连接AD;线段AD即为所作的高请回答:该尺规作图的依据是.【答案】①到线段两端距离相等的点在线段的垂直平分线上. ②两点确定一条直线. ③直径所对圆周角是90°. 【解析】难度:★★本题考查尺规作图;难度较难.三、解答题(本题共72分;第17题4分;第18—23题;每小题5分;第24—25题;每小题7分;第26—28题;每小题8分)17.解方程:x 2-4x +3=0.+3=0x 4-2x 解:【答案】 (x -1)(x -3)=0 x -1=0或x -3=0 =32x =1;1x 【解析】难度:★本题考查一元二次方程解法(方法不唯一);难度易 .19.如图;等边三角形ABC 的边长为3;点D 是线段BC 上的点;CD =2;以AD 为边作等边三角形ADE ;连接CE ;求CE 的长.【答案】解:∵△ABC 、△ADE 为等边三角形 ∴BC =AB =AC =3;AD =AE∠BAD +∠DAC =∠CAE +∠DAC =60° ∴∠BAD =∠CAE 在△ABD 和△ACE 中∴△ABD≌△ACE(SAS)∴CE=BD∵BD=BC CD=1∴CE=1【解析】难度:★本题考查等边三角形性质、全等三角形证明;难度易.19.已知m 是方程的一个根;的值.【答案】解:=m2-6m+9+m2-4=2m2-6m+5∵m是方程x2-3x+1=0 的一个根∴m2-3m+1=0∴m2-3m =-1原式=2(m2-3m)+5=2×(-1)+5=3【解析】难度:★本题考查了方程根的定义;整式化简与整体代入思想.21.如图;在⊙O 中;求证:∠B=∠C.【答案】解:在⊙O中;∴AB=CD在△AOB和△COD中OA=ODOB=OCAB=CD∴△AOB≌△DOC(SSS)∴∠B=∠C【解析】难度:★本题考查了圆的基本定理(在同圆或等圆中;如果两条弧相等;那么它所对的圆周角相等;所对弦相等).21.如图;ABCD 是一块边长为4米的正方形苗圃.园林部门拟将其改造为矩形AEFG 的形状.其中点E 在AB 边上;点G 在AD 的延长线上;DG =2BE .设BE 的长为x 米;改造后苗圃AEFG 的面积为y 平方米 (1)y 与x 之间的函数关系式为________________(不需写自变量的取值范围);(2)根据改造方案;改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等;请问此时BE 的长为多少米?【答案】解:(1)y =(4-x )(4+2x ) =-2x 2+4x +16(2)-2x 2+4x +16 =16 2x 24x = 02x (x 2)= 0 x 1=0;x 2=2 ∴BE =2 【解析】难度:★本题考查了一元二次方程实际应用与方程的求解.22. 关于的一元二次方程011222=-+-+m x m x )(有两个不相等的实数根1x ;2x . (1)求实数m 的取值范围;(2)是否存在实数m ;使得1x 2x =0成立?如果存在;求出m 的值;如果不存在;请说明理由.【答案】解:(1)x 2(m 1)x +m 21=0a =1;b =2(m 1);c =m 2 1△=b 24ac =[2(m 1)]24×1×(m 21)=-8m +8∵方程有两个不相等的实数根 ∴△>0 故 m <1(2)∵12b x a△22b x a△∴x 1·x 2=224b a △=22244b b acca a要使x 1·x 2=0;∴2101m∴m 2-1=0 ∴m 1=1;m 2=-1; ∵m <1; ∴m 1=-1即当m =-1时;x 1x 2=0.【解析】难度:★★本题考查了一元二次方程根的判别式;求根公式与分式运算.24.古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家——“代数学之父”阿尔▪花拉子米.在研究一元二次方程解法的过程中;他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”. 以21039x x +=为例;花拉子米的几何解法如下:如图;在边长为x 的正方形的两个相邻边上作边长分别为x 和5的矩形;再补上一个边长为5的小正方形;最终把图形补成一个大正方形.通过不同的方式来表示大正方形的面积;可以将原方程化为2__)(+x =39+_______;从而得到此方程的正根是___________.【答案】解:∵x 2+10x +25=39+25 ∴(x +5)2=39+25 (x +5)2=64 x +5=±8 ∵x 是正解 ∴x =3 【解析】难度:★本题考查配方法求解一元二次方程根的问题.24.如图;在平面直角坐标系xOy 中;点A 的坐标为(1;0);点P 的横坐标为2;将点A 绕点.P .旋转;使它的对应点B 恰好落在x 轴上(不与A 点重合);再将点B 绕点.O .逆时针旋转90°得到点C .(1)直接写出点B和点C的坐标;(2)求经过A、B、C三点的抛物线的表达式.【答案】(1)B(3;0) C(0;3)(2)y=x 24x+3解:(1)由题意可知:PA=PB△P AB为等腰三角形点P的横坐标为2点A的坐标为(1,0)∴点B的坐标为(3,0)由旋转可知:C(0;3)(2)由(1)得A(1;0)、B(3;0)、C(0;3)设经过A、B、C三点的解析式为y=a(x1)(x3)(a)代入点C(0;3)得: 3=a(01)(03)∴a=1∴y=(x1)(x3)∴y=x 24x+3【解析】难度:★★(1)旋转、平面直角坐标系、等腰三角形的性质(2)二次函数的解析式25.如图;AB为⊙O直径;点C在⊙O上;过点O作OD⊥BC交BC于点E;交⊙O于点D;CD∥AB.(1)求证:E为OD的中点;(2)若CB=6;求四边形CAOD的面积.【答案】解:(1)证明:∵OD为⊙O的半径;且OD⊥BC于点E∴由垂径定理知:BE=CE∵CD∥AB∴∠DCE=∠OBE在△DCE与△OBE中∴△DCE≌△OBE(ASA)∴OE=DE∴E为OD的中点(2)由(1)可知:OE=12OD=12OB;EB=12BC=3在Rt△OEB中;设OE=x,OB=2x 由勾股定理可得:x2+32=(2x)2解得:3即3;OB=23∵AB为⊙O的直径∴AC ⊥BC又∵OD ⊥BC∴OE ∥AC 且OE=12AC ∴AC=2OE=23由(1)可知:△DCE ≌△OBE∴四边形CAOD 的面积=△ACB 面积 ∴S △ACB=12AC BC ⋅⋅=63 即四边形CAOD 的面积为63 【解析】难度★★(1)考查垂径定理;全等三角形 (2)勾股定理全等三角形的性质26.在平面直角坐标系xOy 中;已知抛物线C : y =x 2-4x +4和直线l :y =kx -2k (k >0). (1)抛物线C 的顶点D 的坐标为____________; (2)请判断点D 是否在直线l 上;并说明理由;(3)记函数244222x x x y kx k x ⎧-+≤=⎨->⎩,,的图象为G ;点M (0;t );过点M 垂直于y 轴的直线与图象G 交于点11P x y (,);22x y Q(,).当1<t <3时;若存在t 使得124x x +=成立;结合图象;求k 的取值范围.【答案】(1)D (2;0); (2)在;理由见解析; (3)1<k <3. 解:(1)y =x 24x +4y=(x 2)2∴点D 的坐标为(2;0) (2)当x=2时;y=2k 2k=0 ∴点D 在直线l 上(3)抛物线的对称轴为直线x=2若两点关于直线x=2对称;则22a bx x += ;即4a b x x += 由题可知124x x +=则P 、Q 两点关于直线x =2对称; 抛物线y=x 24x+4(x ≤2)关于直线x=2的对称部分为图中y=x 24x+4(x>2);直线y=1和直线y=3与抛物线y=x 24x+4(x>2)分别交于N 、M 点;所以满足题意的点在M 、N 之间;可求M (2+3;3)N (3;1)设过点D 、M 的直线为1l ;过点D 、N 的直线为1l '; 那么;直线1l 的解析式为y=3x 23 直线1l '的解析式为y=x 2∴当1<t<3时;满足题意的k 的取值范围为-1<k 3【解析】难度★★★(1)二次函数的定义和性质 (2)一次函数的性质27.对于平面直角坐标系xOy 中的点P ;给出如下定义:记点P 到x 轴的距离为1d ;到y 轴的距离为2d ;若12d d ≤;则称1d 为点P 的“引力值”;若12d d >;则称2d 为点P 的“引力值”.特别地;若点P 在坐标轴上;则点P 的“引力值”为0.例如;点P (-2;3)到x 轴的距离为3;到y 轴的距离为2;因为2< 3;所以点P 的“引力值”为2. (1)①点A (1;-4)的“引力值”为 ;②若点B (a ;3)的“引力值”为2;则a 的值为 ;(2)若点C 在直线24y x =-+上;且点C 的“引力值”为2.求点C 的坐标;(3)已知点M 是以D (3;4)为圆心;半径为2的圆上的一个动点;那么点M 的“引力值”d 的取值范围是 .【答案】 (1)① 1 ② 2a =或-2(2)C 的坐标为(-2;8)或(3;-2)(3)771d +≤≤解;(2)当2x =时;0y =;0d =;舍去; 当-2x =时;8y =;2d =;此时C (-2;8); 当2y =时;1x =;1d =;舍去;当-2y =时;3x =;2d =;此时C (3;-2); 综上C 的坐标为(-2;8)或(3;-2)(3)由(1)(2)问和定义可知;当12d d ≤;“引力值”取1d ;当12d d >时;“引力值”取2d ;则可知取一个点横纵坐标绝对值较小的为“引力值”;所以作辅助直线y x =.又因为⊙O 在第一象限;在y x =轴上方时;x y <;取x 值.在y x =下方时;y x <;取y 值.在y x =上;均可取.如图;当1x =时;M 为直线1x =与D 的切点;此时;d 取最小值1.设y x =与D 交于N 、Q 两点;当M 与Q 点重合时;d 取最大值.作DE NQ ⊥于E 点;连结DN ;作DH ⊥x 轴于H ;交NQ 于点P .可知;45QOH ∠=︒;D (3;4);可求PH =OH =3;OP =32DP =4-3=1. 又由45DPE ∠=︒ ;可求DE =PE =22.可求OE =OP +PE =223222=.由ND = r =2;DE =22;90DMN ∠=︒;可求NE =142.由垂径定理得EQ =142;可求OQ =OE +EQ =2142..则可得Q (772+;772+);此时d 取最大值为772+综上所述;7712d +≤≤. 【解析】难度★★★★(1)套定义;分类讨论.(2)分类讨论;分点到x 轴的距离为2和点到y 轴的距离为2种情况.点到x 轴的距离为2时;再分2y =和-2y =.根据定义取C (3;-2)点到y 轴的距离为2时;再分2x =和-2x =.根据定义取C (-2;8)28.在Rt △ABC 中;斜边AC 的中点M 关于BC 的对称点为点O ;将△ABC 绕点O 顺时针旋转至 △DCE ;连接BD ;BE ;如图所示(1)在①∠BOE ;②∠ACD ;③∠COE 中;等于旋转角的是 (填出满足条件的角的序号);(2)若∠A =α;求∠BEC 的大小(用含α的式子表示);(3)点N 是BD 的中点;连接MN ;用等式表示线段MN 与BE 之间的数量关系;并证明.【答案】(1)③(2)∠BEC =α(3)BE=2MN【解析】难度:★★★★解:(1)∠BOC =∠COE =∠AOD ;均为旋转角(2)解法一:∵△ABC 绕点O 顺时针旋转至△DCE∴BO =CO =EO∴B、E、C在以O为圆心、BO为半径的圆上.。

2019-2020学年北京市海淀区九年级第一学期期中数学试卷(含答案)

2019-2020学年北京市海淀区九年级第一学期期中数学试卷(含答案)

初三第一学期期中学业水平调研数 学2019.11一、选择题 (本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1. 下列图案中,是中心对称图形的是A B C D 2. 抛物线2(1)2y x =-+的顶点坐标为A .(1,2)-B . (1,2)C .(1,2)-D .(2,1)3. 体育课上,小悦在点O 处进行了四次铅球试投,铅球分别落在图中的M ,N ,P ,Q 四个点处, 则表示他最好成绩的点是A .MB .NC .PD .Q4. 将抛物线22y x =向下平移3个单位,得到的抛物线为A .223y x =+B .223y x =-C .()223y x =+D . ()223y x =-5. 已知水平放置的圆柱形排水管道,管道截面半径是1 m ,若水面高0.2 m. 则排水管道截面的水面宽度为 A.0.6 m B.0.8 m C.1.2 m D.1.6 m6. 如图,在⊙O 中,OA BC ⊥,25ADB ∠=︒. 则AOC ∠的度数为A .30︒B .45︒C .50︒D .55︒7. 下列是关于四个图案的描述.图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称; 图2所示是一个正三角形内接于圆; 图3所示是一个正方形内接于圆;图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.图1 图2 图3 图4这四个图案中,阴影部分的面积不小于...该图案外圈大圆面积一半的是 A. 图1和图3B. 图2和图3C. 图2和图4D. 图1和图48. 如图,在平面直角坐标系xOy 中,抛物线22y x mx n =-++与x 轴交于A , B 两点. 若顶点C 到x轴的距离为8,则线段AB 的长度为 A .2 B . C D .4二、填空题(本题共16分,每小题2分)9. 在平面直角坐标系中,点(3,2)P -绕原点旋转180°后所得到的点的坐标为 . 10.写出一个对称轴是y 轴的抛物线的解析式: . 11. 如图,P A ,PB 是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径. 若50P ∠=︒,则BAC ∠= °.。

2019-2020学年北京海淀区初三上学期期中化学试卷及答案.pdf

2019-2020学年北京海淀区初三上学期期中化学试卷及答案.pdf

(1) 氮气属于
(填“单质”或“化合物”)。
(2) 硝酸态氮中氮元素为 +5 价。下列物质中,氮元素以硝酸态存在的是
A. NaNO2
B. KNO3
(3) 最终,污水中的氮元素部分被植物体吸收,部分转化为
C. NH4Cl 。
(填序号)。
28. 生活中经常利用化学反应为人们服务。
月饼、老婆饼、杏仁酥等糕点包装中常有一小袋脱氧剂(如右图),用以消耗氧气,从而延长食品的保质
期。用作脱氧剂的物质应具有的化学性质是

5/10
29. 生石灰(氧化钙)可用于芒果催熟。常用的方法是将生石灰涂在纸上,喷水后垫在芒果中间。氧化钙与水反应只生成熟石灰
(氢氧化钙),同时放出大量的热,将芒果在短时间内催熟。
(1) 氢氧化钙的化学式为

(2) 氧化钙与水的反应属于基本反应类型中的

(3) 氧化钙与水的反应说明,化学变化中会发生
B. 试管内液体体积不应超过试管容积的 1/3 D. 加热后的试管,应立即用冷水冲洗干净
1/10
7. 生活中常用于降低水的硬度的方法是( )
A. 加肥皂水
B. 吸附
8. 下列实验操作正确的是( )
A.
B.
C. 加热煮沸 C.
D. 过滤 D.
取用液体
倾倒液体
读取液体体积
点燃酒精灯
9. 下列做法中,不利于保护空气质量的是( ) A. 监测并发布空气质量报告 C. 使用清洁能源
。 。
25. 水是地球上最常见、最普通的物质之一。
18 世纪末,人们就开始了对水的组成的研究。
(1) 英国科学家普利斯特里把“易燃空气”(氢气)和空气混合后盛在干燥、洁净的玻璃瓶中,当用电火花点火时

北京市海淀区2019-2020学年九年级上学期期中道德与法治试题(解析版)

北京市海淀区2019-2020学年九年级上学期期中道德与法治试题(解析版)
初三第一学期期中学业水平调研
道德与法治
注意事项: 1.本调研卷共 10 页,满分 90 分。考试时间 90 分钟 2.在调研卷和答题纸上淮确填写学校名称、姓名和准考证号。 3.调研卷答案一律填涂或书写在答题纸上,在调研卷上作答无效。 4.在答题纸上,选择题用 2B 铅笔作答,其他题用黑色字迹签字笔作答
第一部分选择题(共 40 分) 本部分共 20 小题,每小题 2 分,共 40 分。在每小题列出的四个选项中,选出最符合题目要求的 一项。
1.2019 年 10 月 1 日,庆祝中华人民共和国成立______周年大会在北京天安门广场隆重举行。中华民族实现
了从站起来、富起来到强起来的伟大飞跃,迎来了实现伟大复兴的光明前景。( )
①创新必然带来机遇,改变命运
②创新可以让人获得成就感
③创新有助于激发潜能,超越自我
④青少年已成为我国创新的主力军
A. ①②
B. ①③
C. ②③
D. ③④
【答案】C
【解析】
【详解】本题考查创新的作用。题干表述了两位初中生凭借自己的发明创造在国际大赛上获奖,这说明了
创新可以让人获得成就感,创新有助于激发潜能,超越自我,②③是正确的。①的表述过于绝对了,排除。
④限制了非公有制经济的发展
A. ①②
B. ①④
C. ②③
D. ③④
【答案】C
【解析】
【详解】本题考查改革开放。依据教材知识可知,改革开放使广大人民群众参与社会劳动、创造社会财富
1
的积极性和主动性空前高涨,说法②正确;中国人民坚持改革开放,极大解放和发展了社会生产力,说法
③正确。目前中国是世界第二大经济体,说法①错误;改革开放以来,我国逐步确立了公有制为主体、多

2019—2020学年度北京市海淀区第二学期初三期中测评初中英语

2019—2020学年度北京市海淀区第二学期初三期中测评初中英语

2019—2020学年度北京市海淀区第二学期初三期中测评初中英语英语试卷第一卷(机读卷共70分)听力明白得(共18分)一、听对话,选择与对话内容相符的图片。

(每段对话读两遍)(共6分,每题1分)请看第一组的四幅图片。

听三段对话,完成第1、2、3小题。

1.( ) 2.( ) 3.( )请看第二组的四幅图片。

听三段对话,完成第4、5、6小题。

4.( ) 5.( ) 6.( )二、听对话,依照其内容,从以下各题所给的A、B、C三个选项中,选择最正确选项。

(每段对话读两遍)(共12分,每题1.5分)听第一段对话,回答第7、8小题。

7. Where are the two speakers?A. In a street.B. In a library.C. In a hospital.8. How soon will the man get to the railway station?A. In about 30 minutes.B. In about 40 minutes.C. In about 50 minutes.听第二段对话,回答第9、10、11小题。

9. What are the two speakers?A. They’re teachers.B. They’re engineers.C. They’re students.10. What is Jack learning now?A. Science.B. Law.C. Art.11. Why is Mary taking English classes?A. She thinks it’s very interesting.B. She thinks it’s easier for her.C. She thinks it’s very useful.听第三段对话,回答第12、13、14小题。

12. What kind of friends does Jean like?A. They enjoy traveling a lot.B. They can always be trusted.C. They don’t talk about problems.13. What are Robert’s friends like?A. They often call each other.B. They never argue with him.C. They don’t talk all the ti me.14. Why does Jean mention her friend in Canada?A. They often write to keep in touch.B. They went to school together before.C. They haven’t seen each other for long.请打开第二卷,看第一大题听力试题。

海淀区2019-2020初三第一学期期中物理试题及答案

海淀区2019-2020初三第一学期期中物理试题及答案

初三第一学期期中学业水平调研物 理 2019.11考 生 须 知1.本试卷共8页,共五道大题,34个小题,满分90分。

考试时间90分钟。

2.在答题纸上认真填写学校名称、姓名和学号。

3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。

4.考试结束,请将本试卷和答题纸一并交回。

一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。

共30分,每小题2分)1. 在国际单位制中,电流的单位是A .焦耳(J )B .安培(A )C .伏特(V )D .欧姆(Ω) 2. 通常情况下,下列物质属于导体的是A. 橡胶B. 塑料C. 玻璃D. 钢尺3.在图1所示的四个电路图中,连接正确的是4. 无人机已被应用于诸多领域,图2所示是一款四翼无人机,在无人机匀速..上升过程中,下列说法正确的是 A .动能增加 B .动能不变 C .重力势能不变 D .机械能不变 5.下列实例中,通过做功改变物体内能的是A. 用热水袋暖手,手的温度升高B. 将荔枝浸在冰水混合物里降温C. 用锯条锯木头,锯条温度升高D. 用酒精灯加热使水温升高6. 图3所示的各电路中,各开关闭合后,灯泡L 1与 L 2并联的是7. 在下列事例中,能表明分子在不停地运动的是A. 扫地时尘土飞扬B. 寒冬时雪花飞舞C. 房间内烟雾缭绕D. 糖块在水中溶化图1A B C D 图2图3ABC DL 2L 1L 1L 2S8. 图4所示,当滑片向左移动时,可以使滑动变阻器接入电路的电阻变大的接法是9. 火车在两节车厢之间有两间厕所,只有当两间厕所的门S 1、S 2都关上时(相当于闭合开关),车厢中指示牌内的指示灯才会发红光,显示“有人”字样,如图5甲所示,提醒旅客两间厕所内都有人。

在图5乙所示四个电路图中符合上述设计要求的是B .D .10. 图6所示,某同学从塑料滑梯滑下来后,头发丝一根根竖起,形成“怒发冲冠”的有趣现象,下列分析正确的是A .摩擦过程中,产生了新的电荷B .竖起的头发丝不带电,但是滑梯带负电荷C .竖起的头发丝带异种电荷D .竖起的头发丝带同种电荷 11.关于电流和电压,下列说法正确的是 A. 只要导体中有电荷运动,就会形成电流 B. 只有自由电子的定向移动才能形成电流 C .电路中只要有电流,就一定有电压D. 电路中只要有电压,就一定有电流12. 某同学家的电饭锅原理电路如图7所示,S 1是温控开关,它可使电饭锅处于“加热”或“保温”状态,R 1、R 2是发热板上的两个电阻,已知R 1< R 2。

2019-2020学年北京市海淀区九年级(上)期中化学试卷

2019-2020学年北京市海淀区九年级(上)期中化学试卷

2019-2020学年北京市海淀区九年级(上)期中化学试卷一、单选题(本大题共20小题,共20.0分)1.下列生活场景涉及化学变化的是()A. 衣服晾干B. 烟花绽放C. 冰雪融化D. 纸张粉碎2.如图为空气成分示意图(按体积计算),其中“c”代表的是()A. 氧气B. 氮气C. 二氧化碳D. 稀有气体3.为了庆祝元素周期表诞生150周年,联合国将2019年定为“国际化学元素周期表年”。

制作出第一张元素周期表的科学家是()A. 道尔顿B. 德谟克利特C. 门捷列夫D. 里希特4.浓硫酸具有强腐蚀性,在运输它的车上应该贴的图标是()A. B.C. D.5.“加碘营养盐”中的“碘”指的是()A. 碘单质B. 碘分子C. 碘原子D. 碘元素6.下列物质的用途中,利用其化学性质的是()A. 活性炭可用于净水B. 氧气可用于医疗急救C. 液氮可用作冷冻剂D. 稀有气体用于霓虹灯7.下列符号能表示2个氧分子的是()A. 2O2B. O2C. 2OD. 2O2−8.下列物质在空气中燃烧,有大量白烟产生的是()A. 铁丝B. 红磷C. 木炭D. 硫粉9.下列物质属于纯净物的是()A. 澄清石灰水B. 洁净的空气C. 人呼出的气体D. 高锰酸钾10.下列实验操作中,正确的是()A. 点燃酒精灯B. 熄灭酒精灯C. 检查装置气密性D. 读取液体体积11.下列物质的化学式书写不正确的是()A. 氢气H2B. 高锰酸钾KMnO4C. 氧化铁Fe3O4D. 五氧化二磷P2O512.一种碳原子的原子核里有6个质子和8个中子,该原子的核外电子数为()A. 6B. 8C. 14D. 1213.下列关于氧气的说法不正确的是()A. 氧气能供给水中生物呼吸,说明氧气极易溶于水B. 通常状况下,氧气是无色无味的气体C. 工业上,可以用分离液态空气的方法制取氧气D. 为了方便贮存和运输,可以通过加压将氧气储存在钢瓶中14.选项事实解释A春天的公园里,花香芬芳迷人分子很小B一滴水中大约有1.67×1021个水分子分子在不断运动C水蒸发变成水蒸气,所占体积变大分子的体积受热膨胀D等体积的水和酒精混合后总体积减小分子间有间隔A B C D15.下列方法能鉴别氧气和空气的是()A. 闻气味B. 加入澄清石灰水C. 观察颜色D. 将带火星的木条伸入集气瓶中16.下列物质由分子构成的是()A. 氮气B. 铁C. 汞D. 氯化钠17.下列操作或措施符合实验安全规范的是()A. 将带火星的火柴梗扔进塑料垃圾桶内B. 酒精洒在桌上燃烧时,立即用湿抹布扑盖C. 为节省时间直接用手拿块状固体药品D. 加热高锰酸钾后的试管立即用冷水冲洗18.选A B C D项方案结论说明瓶中含有氧气说明白烟具有可燃性说明只有二氧化锰存在时,过氧化氢才会分解产生氧气说明水的状态变化是物理变化A B C D19.科学家利用废气中二氧化碳制取燃料甲烷的微观示意图如图,根据信息回答。

【推荐】北京市海淀区重点中学2019-2020九年级第一学期期中测试 含参考答案及评分标准.doc

【推荐】北京市海淀区重点中学2019-2020九年级第一学期期中测试 含参考答案及评分标准.doc

北京市海淀区重点中学2020届九年级第一学期期中测试物理试卷班级 姓名 成绩_________第Ⅰ卷 (共36分)一.下列各小题均有四个选项,其中只有一个选项符合题意。

(共24分,每小题2分)1.在国际单位制中,功率的单位是 ( )A .伏特(V )B .焦耳(J )C .安培(A )D .瓦特(W )2.如图1所示的各种装置,在使用过程中都可视为杠杆,其中属于费力杠杆的是( )3.在如图2所示的文具中,通常情况下属于导体的是 ( )4.在今年北京奥运会的男子56公斤级举重比赛中,我国运动员龙清泉夺得金牌。

图3所示的四幅图片是摄影师拍摄的一组龙清泉比赛的照片。

请结合图片和图片下方的文字,判断其中龙清泉对杠铃做功的过程是 ( )5.下列事例中,能表明分子在不停地运动的是( ) A .扫地时,灰尘四起 B .刮风时,黄沙扑面 C .下雪时,雪花飘飘 D .花开时,花香满园6.如图4所示电路中,开关S 能同时控制电灯和电铃工作与否的是( )7.下列生活实例中,通过做功改变物体内能的是 ( )A.双手互相摩擦手会感觉到发热B .把冰块放在果汁里,饮用时感觉很凉快C .利用煤气灶将冷水烧热D .在阳光下曝晒的自行车金属部分会热得烫手A .用羊角锤起钉子B .用镊子夹砝码C .用瓶启子开瓶盖D .用天平测质量图1图4图3抓紧杠铃准备举起 将杠铃提起 将杠铃压在肩部 A BC D 保持此状态3s图2A .剪刀B .塑料尺C .橡皮擦D .透明胶带8.小明和妈妈去超市购物,自动扶梯将他们从一楼匀速送上二楼,如图5所示。

在这个过程中,他们的 ( )A .重力势能增加,动能增加,机械能增加B .重力势能增加,动能减少,机械能不变C .重力势能增加,动能不变,机械能增加D .重力势能不变,动能不变,机械能不变9.如图6所示电路,在a 、b 两点间接一滑动变阻器,灯泡能发光。

现要使滑动变阻器滑片P 向左移动过程中,其接入电路中的电阻值变小,灯泡变亮,则图7所示的接法中正确的是 ( )10.如图8所示,小明分别用甲、乙两滑轮把同一桶沙子从一楼地面提到二楼地面,用甲滑轮所做的总功为W1,机械效率为η1;用乙滑轮所做的总功为W2,机械效率为η2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三第一学期期中学业水平调研数学2019.11一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列图案中,是中心对称图形的是AB C D2.抛物线2(1)2y x =-+的顶点坐标为A .(1,2)-B .(1,2)C .(1,2)-D .(2,1)3.体育课上,小悦在点O 处进行了四次铅球试投,铅球分别落在图中的M ,N ,P ,Q 四个点处,则表示他最好成绩的点是A .M B .N C .P D .Q4.将抛物线22y x =向下平移3个单位,得到的抛物线为A .223y x =+B .223y x =-C .()223y x =+D .()223y x =-5.已知水平放置的圆柱形排水管道,管道截面半径是1m ,若水面高0.2m.则排水管道截面的水面宽度为A.0.6mB.0.8mC.1.2mD.1.6m6.如图,在⊙O 中,OA BC ⊥,25ADB ∠=︒.则AOC ∠的度数为A .30︒B .45︒C .50︒D .55︒7.下列是关于四个图案的描述.图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称;图2所示是一个正三角形内接于圆;图3所示是一个正方形内接于圆;图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.图1图2图3图4这四个图案中,阴影部分的面积不小于...该图案外圈大圆面积一半的是A.图1和图3B.图2和图3C.图2和图4D.图1和图48.如图,在平面直角坐标系xOy 中,抛物线22y x mx n =-++与x 轴交于A ,B 两点.若顶点C 到x轴的距离为8,则线段AB 的长度为A .2B .C,每小题2分点(3,2)P -绕原点旋转180°后所得到的点的坐标为.10.写出一个对称轴是y 轴的抛物线的解析式:.若50P ∠=︒,则BAC ∠=°.12.若二次函数2(1)3y x =-+的图象上有两点(0,),(5,)A a B b ,则a b .(填“>”,“=”或“<”)13.如图,边长为2的正方形ABCD 绕着点C 顺时针旋转90°,则点A 运动的路径长为_______.14.在Rt ABC △中,∠C =90°,AB =10.若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长为________.15.如图,已知正方形OBCD 的三个顶点坐标分别为B (1,0),C (1,1),D (0,1).若抛物线2()y x h =-与正方形OBCD 的边共有3个公共点,则h 的取值范围是___________.16.如图,在ABC △中,(1)作AB 和BC 的垂直平分线交于点O ;(2)以点O 为圆心,OA 长为半径作圆;(3)⊙O 分别与AB 和BC 的垂直平分线交于点M ,N ;(4)连接AM ,AN ,CM ,其中AN 与CM 交于点P .根据以上作图过程及所作图形,下列四个结论中,① 2BC NC =;②2AB AM =;③点O 是ABC △的外心;④点P 是ABC △的内心.所有正确结论的序号是.三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27~28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.已知抛物线2y x bx c =++的对称轴为1x =,(2,3)M -是抛物线上一点,求该抛物线的解析式.18.如图,等腰三角形ABC 中,BA =BC ,∠ABC =α.作AD ⊥BC 于点D ,将线段BD 绕着点B 顺时针旋转角α后得到线段BE ,连接CE .求证:BE ⊥CE .9.请完成下面题目的证明.如图,已知AB 与⊙O 相切于点A ,点C ,D 在⊙O 上.求证:∠CAB =∠D .证明:连接AO 并延长,交⊙O 于点E .∵AB 与⊙O 相切于点A ,∴∠EAB =90°.∴∠EAC +∠CAB =90°.∵AE 是⊙O 的直径,∴∠ECA =90°().(填推理的依据)∴∠E +∠EAC =90°.∴∠E =.∵ AC AC =,∴∠E =∠D ().(填推理的依据)∴∠CAB =∠D .20.如图,一条公路的转弯处是一段圆弧( AB ),点O 是这段弧所在圆的圆心.100m AB =,C 是 AB 上一点,OC AB ⊥,垂足为D ,=10m CD ,求这段弯路的半径.21.已知二次函数21y x mx m =-+-的图象与x 轴只有一个公共点.求该二次函数当03x ≤≤时,y 的最大值为,最小值为.22.如图,已知等边三角形ABC ,O 为△ABC 内一点,连接OA ,OB ,OC ,将△BAO 绕点B 旋转至△BCM .(1)依题意补全图形;(2)若OA= ,OB= ,OC=1,求∠OCM的度数.23.如图,在Rt△ABC中,∠C=90°,以BC为直径的半圆交AB于点D,O是该半圆所在圆的圆心,E为线段AC上一点,且ED=EA.(1)求证:ED是⊙O的切线;(2)若23ED=,∠A=30°,求⊙O的半径.24.悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁.其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道.图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引.他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB=CD,两个索塔均与桥面垂直.主桥AC的长为600m,引桥CE的长为124m.缆索最低处的吊杆MN长为3m,桥面上与点M相距100m处的吊杆PQ长为13m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D与锚点E的距离.图225.探究函数2y x x=-的图象与性质.图1小娜根据学习函数的经验,对函数2y x x =-的图象与性质进行了探究.下面是小娜的探究过程,请补充完整:(1)下表是x 与y 的几组对应值.请直接写出:m =,n =;(2)如图,小娜在平面直角坐标系xOy中,描出了上表中已经给出的各组对应值为坐标的点,请再描出剩下的两个点,并画出该函数的图象;(3)结合画出的函数图象,解决问题:若方程2x x a -=有三个不同的解,记为x 1,x 2,x 3,且x 1<x 2<x 3.请直接写出x 1+x 2+x 3的取值范围.26.在平面直角坐标系xOy 中,抛物线2y x bx c=++与直线1y x =+交于A ,B 两点,其中点A 在x 轴上.(1)用含有b 的代数式表示c ;(2)①若点B 在第一象限,且AB =,求抛物线的解析式;②若AB ≥b 的取值范围.27.如图,在等腰△ABC 中,AB =AC ,4560ACB ︒<∠<︒,将点C 关于直线AB 对称得到点D ,作射线BD与CA的延长线交于点E,在CB的延长线上取点F,使得BF=DE,连接AF.(1)依题意补全图形;(2)求证:AF=AE;(3)作BA的延长线与FD的延长线交于点P,写出一个∠ACB的值,使得AP=AF成立,并证明.备用图28.在平面内,C为线段AB外的一点,若以A,B,C为顶点的三角形为直角三角形,则称C为线段为(4,0),在点P1(0,1)-,P2(5,1),P3(2,2)中,线段OM的直角点是;(2)在平面直角坐标系xOy中,点A,B的坐标分别为(1,4),(1,6)=-+.y x-,直线l的解析式为7①如图2,C是直线l上的一个动点,若C是线段AB的直角点,求点C的坐标;②如图3,P是直线l上的一个动点,将所有线段AP的等腰直角点称为直线l关于点A的伴随点.若⊙O的半径为r,且⊙O上恰有两个点为直线l关于点A的伴随点,直接写出r的取值范围.初三第一学期期中学业水平调研数学答案及评分参考一、选择题题号12345678答案DBCBCCAD二、填空题9.(3,2)-10.2y x =11.2512.<1314.15.01h <<16.①③④注:(1)第10题答案不唯一,符合题意的均给满分;(2)第16题答案不全且不含②的给1分.三、解答题17.解:因为2y x bx c =++的对称轴为1x =,所以12b-=.………………………………………………………………………1分得2b =-.………………………………………………………………………2分又因为()23M -,是抛物线上一点,所以()23222c -=+-⨯+.得3c =-.………………………………………………………………………4分所以抛物线的解析式为223y x x =--.…………………………………………………5分18.证明:∵线段BD 绕点B 顺时针旋转角α得到线段BE ,∴,.BD BE DBE α=∠=……………………………………………………………………………1分∵,ABC α∠=∴.ABC DBE ∠=∠……………………………………………………………………………2分∵,AD BC ⊥∴90.ADB ∠=︒在△ABD 与△CBE 中,,,,AB CB ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩……………………………………………………………………………3分∴△ABD ≌△CBE .……………………………………………………………………………4分∴90.ADB CEB ∠=∠=︒∴.BE CE ⊥…………………………………………………………………………………5分19.解:直径所对的圆周角是90︒.………………………………………………………………………2分CAB ∠.………………………………………………………………………3分同弧所对的圆周角相等.………………………………………………………………………5分20.解:设这段弯路的半径为r m,……………………………………………………………1分因为OC ⊥AB 于D ,AB =100(m ),所以BD =DA =AB =50(m ).…………………………………………………………………2分所以CD =10(m ),得10OD r =-(m ).因为Rt △BOD 中,根据勾股定理有222BO BD DO =+.………………………………………………………………………3分即22250(10)r r =+-.………………………………………………………………………4分解得r =130(m ).因此这段弯路的半径为130m.…………………………………………………………………5分21.解:(1)由题意二次函数图象与x 轴只有一个公共点.可令210x mx m -+-=,则有0∆=.………………………………………………………………………1分即24(1)0m m --=.得2m =.………………………………………………………………………2分所以该二次函数的解析式为221y x x =-+.……………………………………………3分(2)y 的最大值为4,最小值为0.……………………………………………………………5分22.解:(1)依题意补全图形,如图所示:…………………………………………………………………………………………………2分(2)连接OM ,∵△ABC 为等边三角形,∴∠ABC =60°.∵△BAO 旋转得到△BCM ,OA OB ,∴MC =OA MB=OB ∠OBM =∠ABC =60°.………………………………………3分∴△OBM 为等边三角形.∴OM=OB …………………………………………………………………4分在△OMC 中,OC=1,.∵2221+=,∴OC 2+MC 2=OM 2.∴∠OCM =90°.…………………………………………………………………………………………………5分23.(1)证明:连接OD .∵ED =EA,∴∠A =∠ADE .…………………………………………………………………………………1分∵OB=OD,∴∠OBD =∠BDO .∵∠ACB =90°,∴∠A +∠ABC =90°.∴∠ADE +∠BDO =90°.…………………………………………………………………2分∴∠ODE=90°.∴DE 是⊙O 的切线.………………………………………………………………………3分(2)解:∵∠ACB =90°,BC 为直径,∴AC 是⊙O 的切线.∵DE 是⊙O 的切线,∴ED=EC .………………………………………………………………………4分∵ED=,∴ED=EC=EA=.∴AC =.………………………………………………………………………5分∵Rt △ABC 中∠A =30°,∴BC=4.∴⊙O 的半径为2.………………………………………………………………………6分24.解:如图所示建立平面直角坐标系.依题意可知3,13,100,600,124,,,MN PQ MP AC CE AB DC BA AC DC AC ======⊥⊥,,MN AC PQ AC ⊥⊥.由抛物线的对称性可知,13002MC AC ==.则可得点坐标:(0,0),(0,3),(100,13)M N Q .…………………………………………………………………………………1分设抛物线的表达式为23y ax =+.…………………………………………………2分因为抛物线经过点Q ,所以将点Q 的坐标带入得2131003a =+.解得11000a =.…………………………………………………………………3分得抛物线的表达式为2131000y x =+.…………………………………………………4分当300x =时,得213003931000y =⨯+=.……………………………………………5分因为DC AC ⊥,所以90DCE ∠=︒.所以531155DE ====⨯=.答:索塔顶端D 与锚点E 的距离为155米.……………………………………………6分25.解:(1)m =1,n =0;……………………………………………………………………………2分(2)如图:…………………………………………………………………………………………………4分(3)12343x x x <++<+……………………………………………………………6分26.解:(1)由题意直线y =x +1与x 轴交于点A 可得点A 坐标为(-1,0)……………………………………………………………1分又因抛物线y =x 2+bx +c 经过点A所以将点A 坐标(-1,0)代入抛物线解析式可得1-b +c =0,即c =b -1.……………………………………………………………2分(2)①设y =x +1与y 轴交于点C ,可得A (-1,0),C (0,1).可知OA =OC =1.又因∠AOC =90º,所以∠OAC =45º.如图,已知AB ,过B 作BD ⊥x 轴于点D ,易知∠ADB =90º.又因∠BAD =45º,AB ,所以AD =BD =3.所以点B 的坐标为(2,3).……………………………………………………………3分将点B 的坐标(2,3)代入抛物线y =x 2+bx +c 的解析式可得2b +c =-1.并与(1)中得到的c =b -1联立方程组可得:21,1.b c c b +=-⎧⎨=-⎩解得0,1.b c =⎧⎨=-⎩得抛物线的解析式为21y x =-.……………………………………………………………4分②0b ≤或6b ≥.………………………………………………………………………6分27.(1)如图所示……………………………………………………………………………1分(2)证明:∵点C 与点D 关于直线AB 对称,∴DB =BC ,∠ABD =∠ABC .………………………………………………………2分∴DE +BD =BF +BC .∴BE =CF .∵AB =AC ,∴∠ABC =∠C .∴∠ABD =∠C .∴△ABE ≌△ACF (SAS ).∴AE =AF .…………………………………………………………………4分(3)∠ACB =54°.…………………………………………………………………5分证明:如图,∵AB =AC ,∴∠ABC =∠ACB =54°.∴∠BAC =180°-∠ABC -∠C =72°.∵点C 与点D 关于直线AB 对称,∴∠DAB =∠BAC =72°,∠ADB =∠C =54°,AD =AB =AC .∴∠DAE =180°-∠DAB -∠BAC =36°,∴∠E =∠ADB -∠DAE =18°.∵由(2)得,△ABF ≌△ADE (或者△ACF ≌△ABE ),∴∠AFB =∠E =18°.∴∠BAF =∠ABC -∠AFB =36°=12∠BAD .∵AB =AD ,∴AF 垂直平分BD .∴FB =FD .∴∠AFD =∠AFB =18°,∴∠P =∠BAF -∠AFD =18°=∠AFD ,∵由(2)得AE =AF ,∴AP =AE .…………………………………………………………………7分28.解:(1)是线段OM 的直角点为P 1,P 3;………………………………………………………2分(2)①当∠BAC =90°时,设点C 的坐标为(a ,b ).∵点A 的坐标为(1,4),点C 在直线7y x =-+上,∴b=4,7b a =-+,解得a=3.∴点C 的坐标为(3,4).………………………………………………………3分当∠ABC =90°时,设点C 的坐标为(a ,b ).∵点B 的坐标为(1,6)-,点C 在直线7y x =-+上,∴b=6-,7b a =-+,解得a=13.∴点C 的坐标为(13,6)-.………………………………………………………4分当∠ACB =90°时如图,设点C 的坐标为(a ,b ).取AB 的中点M ,作CM ⊥AB 于点H ,连接CM .∵点C 在直线7y x =-+上,∴得7b a =-+.(*)∵点A ,B 的坐标分别为(1,4),(1,6)-,∴点M 的坐标为(1,1)-,CM =5,1,1CH a HM b =-=+.∴由勾股定理得方程222(1)(1)5a b -++=.(**)由(*),(**)得43a b =⎧⎨=⎩或52a b =⎧⎨=⎩,故C 的坐标为(4,3)或(5,2).综上,点C 的坐标为(3,4)或(13,6)-或(4,3)或(5,2).……………………………5分②直接写出r 的取值范围是:222r <<.………………………………………7分注:本试卷各题中若有其他合理的解法请酌情给分.。

相关文档
最新文档