地铁工程盾构测量方案
盾构隧道测量方案
盾构施工地面监测方案1、概况1.1、工程概况深圳地铁5号线土建2标盾构施工共包括三个区间,分别是:翻身站~灵芝公园站、灵芝公园站~大浪站、大浪站~同乐站。
翻身站~灵芝公园站设计起止里程CK4+196.34~CK5+461.66。
其中左右线CK4+196.34~CK4+410各213.66m为矿山法施工暗挖隧道;左线盾构区间CK4+410~CK5+461.66,长1265.32m;右线盾构区间CK4+410~CK5+461.66,长1252.68m; 灵芝公园站~大浪站起点里程为CK5+686.661,左线隧道设计终点里程为CK6+265.602,长578.941m;右线设计终点里程为CK6+109.605,长422.944m; 大浪站~同乐站区间起点里程为CK6+588.140,左线隧道设计终点里程为CK7+201.660,长613.520m;右线设计终点里程为CK7+241.200,长653.060m。
1.2、施工总体方案投入两台海瑞克复合式土压平衡盾构机(配备保压泵碴装置),两台从同乐明挖区间盾构井站先左线、后右线下井始发,由北向南沿创业路掘进;至大浪站,过站;再从大浪站南端始发、掘进,进入灵芝公园站北端头井吊出转场。
两台分别再从翻身站北端始发,通过矿山法隧道,由南向北掘进,至灵芝公园站南端头井吊处,退场。
为了确保盾构机从同乐~大浪~灵芝站和翻身~灵芝站三个区间顺利准确的进行掘进施工,对翻身~同乐站三区间的地面导线点联测控制导线测量,地面高程测量为盾构机掘进前施工奠定基础。
2、编制依据《地下铁道、轻轨交通工程测量规范GB50308-1999》《广州地铁三号线工程施工测量管理细则》《工程测量规范》(GB500026-93)《城市测量规范》(CJJ8-99)《铁路测量规范》(TBJ101-85)3、仪器设备配置4、施工测量组织机构整个区间施工中,项目经理部设测量主管一名,负责具体的施工测量工作管理及安排;专职测量工程师二名,负责现场施工测量放样及内业资料的整理;专职测量工三名。
盾构工程施工测量和监控量测方案
盾构工程施工测量和监控量测方案1 施工测量1.1 控制测量为确保施工控制点的稳定可靠,测量与相邻标段测量点联测闭合,对地面首级和二级控制网点进行同等精度的复测工作。
(1)复测按照招标文件的要求及《城市轨道交通工程测量规范》GB50308的规定,施工前,测量队对业主在交接桩时提供工程范围测区精密控制网、精密水准点等进行复测。
复测时按照首级控制网点同等精度进行观测,并与邻近标段的平面和高程控制网点进行贯通联测,做好工程测量的相互衔接。
将复测成果书面上报监理单位。
在工程施工期间,每两个月对首级控制网复测一次,并将复测成果上报监理单位。
如监测发现施工场地周围的地面有变形时,及时对首级控制网进行复测,增加复测频率,确认控制点无误后才可以继续使用。
如发现首级控制网测量超出规范允许范围时,立即报告监理单位,重新交桩后才可以使用首级控制网。
(2)控制测量复测工作完成后,在首级控制网点的基础上,根据工程项目的施工需要并结合本标段工程特点城市道路交通建筑物等实际情况定平面和高程控制网方案,现场选点埋设控制网标石后组织施测。
(3)平面控制测量为满足施工需要,严格地按四等导线测量规范增设了导线点,在盾构竖井处适当位置增设了精密导线点和精密水准点。
将新增设的控制点与地面首级控制网进行了联测,确保竖井投点在多方控制中。
盾构始发井投点测量为指导盾构掘进施工,必需把导线数据导入始发井强制对中平台上,施工完成到设计标高时,根据现场的实际情况和现有的仪器设备,采用投点仪投点(投点仪标称精度不低于1/30000),把井口上测设的为了提高投点精度,在竖井口长边对角适当位置设置投点P1,P2点,如图10-1-1-1。
然后利用地面上的控制网进行联测,将测量数据进行平差后,计算出P1、P2各点的坐标(或用前方交会法,定出P1、P2各点),将P1、P2点投在井下的投点板上,如图10-1-1-2所示。
为了检核投点精度,在井上作多次投点,投在投点板上的P1′、P2′、P1″、P2″…点。
盾构监测方案
盾构监测方案一、背景介绍随着城市化进程的推进,地下交通建设变得越来越重要。
而盾构技术作为一种地下交通隧道建设的重要方法,具有施工速度快、环境友好等优势,被广泛应用于地铁、隧道等工程中。
然而,盾构施工过程中难免会遇到一些问题,如地层塌陷、管片错位等,因此需要进行盾构监测,及时发现并解决问题,以确保施工质量和工程安全。
二、盾构监测的重要性1.检测地下层结构:盾构监测可以帮助工程人员准确了解地下层结构状况,包括地质构造、围岩稳定性等,为后续施工提供科学依据。
2.预防地层塌陷:通过监测盾构施工过程中的地层变化,可以及时预警地层塌陷的风险,采取相应措施确保施工和施工周边的安全。
3.监测管片质量:盾构施工中的管片是构成地下隧道的主要部分,通过监测管片的安装质量和位移变化,可以发现管片错位等问题,并及时调整和修复。
4.施工质量控制:盾构监测可以帮助监测施工的整体质量,包括管片安装质量、导向系统的有效性等,及时调整施工方法,确保隧道工程的质量。
三、盾构监测方法1.地层监测:通过激光测量、声波测量等方法对地下层结构进行监测,实时获取地层的变化情况,并分析地层的稳定性。
2.液压拼装监测:通过监测盾构施工过程中的液压拼装压力,可以判断盾构机是否正常工作,及时发现设备故障。
3.管片位移监测:通过监测管片的位移变化,可以发现管片错位等问题,并及时采取修复措施。
常用的监测方法有位移传感器和振动传感器。
4.管片质量监测:通过对管片的外观检查和强度测试,可以判断管片的质量是否符合要求。
5.地下水位监测:地下水位的升降会对盾构施工产生影响,通过地下水位的监测,可以及时调整施工方法,保证工程的顺利进行。
四、盾构监测方案的实施步骤1.制定监测方案:根据工程的具体情况,制定盾构监测的方案,包括监测方法、监测点位的布置、监测频率等,并进行文档化记录。
2.安装监测设备:根据监测方案的要求,安装相应的监测设备,包括位移传感器、振动传感器、液压拼装监测设备等。
北京地铁7号线五标盾构区间测量方案
北京地铁7号线五标广~广盾构区间施工测量方案编制: 时间:审核: 时间:批准: 时间:中铁一局集团有限公司北京地铁7号线五标项目经理部2012年10 月中铁一局集团有限公司---!!!!!!----------------------------------精品文档,值得下载,可以编辑!!!-----------------------------!!!!!!-----------目录1.编制依据ﻩ错误!未定义书签。
2.ﻩ工程概况 ···························································································错误!未定义书签。
2.1广渠门内站~广渠门外站区间概况 ·························································错误!未定义书签。
盾构区间监测方案
XX地铁XX号线XXX站~XXX站区间盾构法隧道施工监测方案编写:审核:日期:监测单位:目录一、工程沿线环境概况‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3二、监测依据‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4三、监测目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5四、监测项目‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5五、监测点的布设与埋置‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5六、监测控制网布设及各项监测项目的监测方法‥‥‥‥‥‥‥15七、监测频率及监测报警值‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17八、仪器设备‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥18九、监测质量保证措施‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥19盾构法隧道施工监测方案一、工程沿线环境概况1、XXX站~XXX站:该区间段为单线单洞圆形隧道,设计起止里程为:右DK16+067.9~右DK17+1.7m(左DK17+67.2m),右线全长933.8m,左线全长1002.268m。
其中设防灾联络通道及水泵房一座。
该区间段自XXX站南端头始发,以直线推进开始,过渡至直缓,再到缓圆、圆缓、缓直、直缓、缓圆、圆缓、缓直到XXX站。
隧道沿线均在市区主要道路干线及商业、居民区建筑物下;盾构自XXX 站始发后,沿XX路向南推进约290米后(即在左KD16+790m处)进入楼房集中区,楼房集中区域长约690m(楼房集中区内房屋简介见P7~P8之表1);隧道沿线地下设施较为复杂,主要为雨水、污水管线及自来水管等。
2、XXX站~XXX站:该区间段为单线单洞圆形隧道,设计起止里程为:右DK17+292.7~右DK17+747.455m,右线全长454.755m(左线全长475.757m)。
其中设防灾联络通道及水泵房一座。
该区间段自XXX站北端头始发,向北推进约40m后进入XX路与XX路的十字交叉路口,推进约140m后进入楼房集中区域下方,隧道沿线上方主要为交通繁忙的十字路口及众多的建筑物(建筑物集中区内房屋简介见P9~P10之表2);沿线地下设施复杂,主要为雨水、污水管线等。
地铁盾构区间测量方案大全
地铁盾构区间测量方案大全一、前期准备工作1.确定测区范围:根据地铁设计方案确定需要进行盾构区间测量的范围。
2.收集背景资料:收集该区间的地形地貌、地质勘探、地下管线等相关资料,为后续的测量工作提供参考依据。
3.选择测量方法:根据工程要求和实际情况,选择合适的测量方法,可以包括全站仪、导线测量等。
二、测量方案的制定1.测量基线的确定:根据测区长度和地形地貌条件,确定适当的基线长度和测量方式,可以选择直线测量、闭合环测量等方法。
2.测量控制点的设置:根据盾构区间的实际情况,设置合适的控制点,应覆盖整个盾构区间,控制点之间的间距一般不宜超过50米。
3.测量网的布设:根据地形地貌和控制点的位置确定测量网的布设方案,保证测量网络的稳定性和可靠性,网点之间的距离应符合工程要求。
4.测量精度的确定:根据工程要求和实际情况,确定测量精度的要求,包括水平精度、高程精度等。
三、测量工作的实施1.测量设备的校准:在进行实际测量前,必须对测量设备进行准确校准,确保测量结果的准确性和可靠性。
2.控制点的测量:根据测量方案,对控制点进行测量,包括水平距离、垂直高差、角度等参数的测量。
3.测量网的建立:根据测量方案,按照测量网的布设方案进行实际测量,测量点的选择应符合工程要求和测量精度要求。
4.数据处理与分析:对测量数据进行处理和分析,包括数据的整理、计算和绘制等工作,生成测量结果。
四、测量结果的评估与报告1.测量结果的评估:对测量结果进行评估,包括测量精度的评估、测量数据的可靠性评估等,确保测量结果的准确性。
2.结果报告的撰写:根据测量结果和评估,撰写测量报告,包括测量过程的描述、测量结果的呈现、测量精度的说明等内容。
3.结果的应用:将测量结果应用于盾构施工过程中,包括地质断面的确定、盾构机的调整以及隧道衬砌的设计等。
综上所述,地铁盾构区间测量是地铁建设中的关键环节,对于地铁隧道的准确施工和工程质量的保证具有重要意义。
通过制定科学合理的测量方案、严格按照测量要求进行测量工作,可以确保测量结果的准确性和可靠性。
盾构施工专项测量施工方案
盾构施工专项测量施工方案
一、前言
盾构施工是一种现代化的地下工程施工方法,其施工需要精确的测量工作作为基础保障。
本文将介绍盾构施工中专项测量的施工方案,包括测量准备工作、实际施工过程中的测量方法和注意事项等内容。
二、测量准备工作
1. 确定测量任务
在进行盾构施工前,需要确定需要进行的测量任务,包括地表控制点的设置、隧道轴线控制等。
2. 准备测量设备
准备好合适的测量设备,包括测距仪、全站仪、水平仪等,确保设备的精度和准确性。
三、施工过程中的测量方法
1. 地表控制点设置
在盾构施工现场周围设置地表控制点,用于确定隧道的位置和方向。
2. 隧道轴线控制
通过测量隧道隧道轴线的位置和方向,确保隧道施工的准确性和质量。
3. 岩体位移监测
通过测量岩体的位移情况,监测盾构施工对周围岩体的影响,确保隧道施工的安全性。
四、注意事项
1. 测量精度
在进行施工测量时,要保证测量的精度,避免因测量不准确引起的施工质量问题。
2. 施工环境
考虑施工环境对测量的影响,采取相应的措施保证测量工作的顺利进行。
3. 实时监测
建立实时监测系统,及时掌握隧道施工过程中的测量数据,发现问题及时调整。
结语
盾构施工专项测量施工方案是保障盾构施工质量和安全的重要保障措施,通过
合理的测量工作可以确保施工的顺利进行。
希望本文所介绍的内容对盾构施工测量工作有所助益。
地铁盾构区间测量方案大全(一)
地铁盾构区间测量方案大全(一)地铁盾构区间测量方案大全地铁建设是现代城市交通建设的重中之重。
为了确保地铁建设的顺利进行,盾构机在地铁施工中扮演着非常重要的角色。
盾构机是一种利用电液系统控制的隧道推进工具,它的使用可以最大程度地减少对周围环境的干扰和破坏。
盾构机施工需要采用一系列科学的测量方案,以保障地铁的安全和稳定推进。
一、地铁盾构区间测量前的准备工作在进行盾构区间测量之前,必须进行一些准备工作。
首先,需要进行地铁隧道的基础测量,确定隧道中心线定位和区间长度。
其次,需要根据工作环境和孔洞大小、位置等情况,确定盾构机的型号和参数。
最后,需根据实际情况,选择适合的仪器和测量方法。
二、地铁盾构区间测量的方法和步骤1、地铁盾构区间测量采用传统测量方法。
常采用的测量方法包括:传统全站仪法、三角测量法、激光传感测量法、卫星测量法等。
2、地铁盾构区间测量分为预测测量和实测测量,包括水平测量和垂直测量。
水平预测测量:对待测区间进行拓扑测量,确定地铁隧道的中心线位置和方向。
水平实测测量:对中心线实现全盘测量,并测量每个测站到中心线的距离,从而得到地铁隧道曲线的位置和变化。
垂直预测测量:通过测量标高点确定地铁隧道的垂直走向,完成预测测量。
垂直实测测量:通过全站仪或电子水平仪对隧道的倾斜、偏移和变形进行实测,以确保隧道的稳定性。
3、利用现代技术结合实际需要进行精细化测量。
采用激光传感测量法、卫星测量法等,可以提高测量精度和效率,同时简化测量流程,减少数据处理量。
三、地铁盾构区间的检测和处理地铁盾构区间测量后,需要进行数据的检测和处理。
主要步骤如下:1、数据的采集和处理。
2、数据质量检查和筛选,排除错误和不准确的数据。
3、对数据进行优化处理,提高数据的可靠性和精度。
4、利用自动化处理方法和工具,对地铁隧道的垂直、水平偏移和变形进行监测和分析,确保地铁隧道的建设。
5、对隧道进行全面检查和维护,确保工作环境的安全和稳定。
以上是地铁盾构区间测量方案大全的详细介绍。
地铁测量方案
地铁测量方案§1 编制依据1、广州市轨道交通三号线工程【沥滘站~大石北区间】盾构工程投标文件2、《工程测量规范》(GB50026—93)3、《地下铁道、轻轨交通工程测量规范》(GB50308-1999)4、《地下铁道工程施工及验收规范》(GB50299-1999)5、《广州地铁三号线工程施工测量管理细则》§2 工程概况广州市轨道交通三号线【沥滘站~大石站盾构区间】盾构工程,主要由一个明挖区段(含盾构井以及风机房)和两个盾构隧道区段构成,全长6306.56双线延长米。
主要附属工程包括6个联络通道、2个废水泵房和8个洞门。
明挖区段位于番禺区大石镇,南接大石站,北接盾构区段,隧道右线YDK15+203。
740~YDK15+306.402,长102。
662m;隧道左线ZDK15+203.740~ZDK15+304.556,长100.816m。
厦滘南~大石北盾构区段隧道里程为YDK13+773。
949~YDK15+306。
402,长1429。
791米。
沥滘站~厦滘站盾构区段隧道里程为YDK11+494.850~YDK13+116.600,长1621.75米。
本工程范围详见下图.本标段缩图沥滘站~厦滘站盾构区段线路在平面上包含两个曲线,曲线半径分别为3000m和4000m,竖向上包含5个竖曲线,4个呈“V”形坡,1个呈“人”字坡,最大坡度为27‰,;厦滘南~大石北盾构区段线路在平面上包含两个曲线,曲线半径均为2000m,竖向上包含3个竖曲线,2个呈“V”形坡,1个呈“人”字坡,最大坡度为17‰。
大石北明挖段基坑开挖深度为14~17m,多为〈2-1〉地层,采用φ1000@1100钻孔桩+内支撑的支护形式,立面上设3道支撑。
区间沿线由建设总部提供GPS点3个,精密导线点10个,水准点6个,其中IIIJ25通视条件较差,高程基准点“II地3—15”有沉降。
另外根据我项目部测量队对交接桩复测的结果,表明IIIJ20点可能产生了移动。
盾构施工测量施工方案
盾构施工测量施工方案一、引言在盾构施工过程中,测量是一项非常重要的工作。
盾构施工测量旨在确保隧道的准确位置和尺寸,以便保证隧道的安全和质量。
本文档将详细介绍盾构施工测量的方案和流程。
二、测量设备和工具在盾构施工测量中,需要使用以下设备和工具:1.全站仪:用于进行地面控制点的测量,可以实现高精度的角度和距离测量。
2.探测器:用于检测盾构机的推进位置,并确定盾构机的准确位置。
3.激光测距仪:用于测量隧道的长度和宽度。
4.水准仪:用于确定隧道的坡度和高程。
5.GPS定位系统:用于测量盾构机的实时位置和导航数据。
三、测量流程盾构施工测量的流程如下:1.建立地面控制点:根据设计要求,在施工现场周围建立地面控制点。
使用全站仪测量地面控制点的坐标,并将其记录在施工测量控制表中。
2.盾构机的起始位置确定:在盾构机开始推进之前,需要确定盾构机的起始位置。
使用探测器对盾构机进行测量,并确定盾构机的准确位置。
记录盾构机的起始位置坐标。
3.推进位置测量:在盾构机推进过程中,需要定期对盾构机的位置进行测量,以确保盾构机推进的准确性。
使用探测器对盾构机的位置进行测量,并将测量结果记录在施工测量控制表中。
4.隧道尺寸测量:在盾构施工过程中,隧道的尺寸是非常关键的。
使用激光测距仪对隧道的长度和宽度进行测量,并记录在施工测量控制表中。
5.坡度和高程测量:使用水准仪对隧道的坡度和高程进行测量,并将测量结果记录在施工测量控制表中。
6.盾构机位置监控:使用GPS定位系统对盾构机的实时位置进行监控,并实时记录盾构机的位置。
四、施工测量控制表样例测量项目起始位置(坐标)推进位置(坐标)长度(米)宽度(米)坡度高程1 (X1, Y1, Z1) (X2, Y2, Z2) 100 10 1/100 02 (X2, Y2, Z2) (X3, Y3, Z3) 200 12 1/150 23 (X3, Y3, Z3) (X4, Y4, Z4) 300 15 1/200 5 …………………五、安全注意事项在进行盾构施工测量时,需要注意以下安全事项:1.使用测量设备和工具时,需要严格按照使用说明进行操作,并遵守相关安全规定。
盾构施工测量专项方案
一、方案概述本专项方案旨在为盾构施工提供精确的测量服务,确保施工过程符合设计要求,保障工程质量和施工安全。
本方案将详细阐述盾构施工测量的目的、内容、方法、精度要求以及实施步骤。
二、测量目的1. 确保盾构掘进方向、姿态和速度符合设计要求。
2. 监测盾构隧道结构的变形和受力情况,及时发现并处理异常情况。
3. 为施工管理和质量验收提供数据支持。
三、测量内容1. 地面控制测量:包括平面控制测量和高程控制测量。
2. 竖井联系测量:将地面控制网传递至竖井,建立竖井内的控制网。
3. 地下控制测量:包括平面控制测量和高程控制测量,用于指导盾构掘进。
4. 掘进施工测量:监测盾构姿态、掘进速度和隧道结构变形。
5. 竣工测量:对隧道结构进行测量,为质量验收提供依据。
四、测量方法1. 平面控制测量:采用GPS、全站仪等仪器进行测量,按照《城市轨道交通工程测量规范》GB50308的规定执行。
2. 高程控制测量:采用水准仪进行测量,按照《城市轨道交通工程测量规范》GB50308的规定执行。
3. 竖井联系测量:采用GPS、全站仪等仪器进行测量,将地面控制网传递至竖井。
4. 地下控制测量:采用全站仪进行测量,按照《地下铁道、轻轨交通工程测量规范》执行。
5. 掘进施工测量:采用全站仪进行测量,监测盾构姿态、掘进速度和隧道结构变形。
6. 竣工测量:采用全站仪进行测量,按照《地铁隧道工程盾构施工技术规范》DG/TJ08-2041-2008执行。
五、精度要求1. 地面控制测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。
2. 竖井联系测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。
3. 地下控制测量:平面控制点精度应达到±0.5cm,高程控制点精度应达到±0.5mm。
4. 掘进施工测量:盾构姿态精度应达到±0.5cm,掘进速度精度应达到±1cm/min,隧道结构变形精度应达到±0.5cm。
地铁盾构区间测量方案大全
地铁盾构区间测量方案大全地铁隧道盾构区间的测量方案是确保隧道施工质量和安全的重要环节。
在盾构施工前、中、后期都要进行测量,以保证施工的准确性和合格性。
下面是一套较为完整的地铁隧道盾构区间测量方案,详细介绍了不同阶段的测量方法和步骤。
一、前期测量1.地质勘探:在施工前要进行地质勘探,包括地质红线勘探、地下水位勘探、地下管线勘探等,以确定施工过程中可能出现的困难和风险。
2.基本测量:进行工程控制点布设,确定控制网的桩号和坐标,建立起起始坐标系。
3.示坡测量:通过对工地场地的土方开挖示坡进行测量,来验证土方开挖的形状和坡度是否符合设计要求。
二、中期测量1.盾构控制:在盾构施工过程中,需要实时掌握盾构机头的位置和姿态,以确保隧道的准确推进。
通过在隧道内部安装测量仪器,如激光测距仪、全站仪等,实时监测盾构机的变化,并校正施工参数。
2.地表沉降监测:通过在盾构区间的地表上安装沉降测点,测量管道施工对地表沉降的影响,以了解施工对地下管线和建筑物的影响程度,及时采取相应的补救措施。
3.地下水位监测:在盾构区间附近进行井点测量,实时监测地下水位的变化,确保施工过程中地下水的变化不会对隧道施工和周边环境造成不利影响。
三、后期测量1.隧道精度测量:在盾构掘进结束后,对隧道的内外侧壁进行测量,以确定隧道的几何形状和尺度是否符合设计要求。
2.拱顶变形监测:用全站仪等仪器进行拱顶变形观测,以监测隧道拱顶的变形情况,确保拱顶的稳定性和安全性。
3.管道斜度测量:通过测量隧道内铺设的管道斜度和异型构造,查验隧道的排水情况和交通条件,同时要验证管道的几何尺寸和位置是否与设计一致。
4.管道应力监测:通过在管道上安装应力计等仪器,实时监测管道的应力变化,以了解施工过程中管道的受力情况和稳定性。
通过以上的测量方案,可以有效地控制和监测隧道盾构区间的施工过程,保证隧道的质量和安全,同时也为隧道的设计和后续的运营提供了重要的参考数据。
盾构区间测量方案
目录一、编制依据 (1)二、工程概况 (1)2.1 地铁大厦站~雅苑路站区间 (2)2.2 雅苑路站~红谷中大道站区间 (2)2.3 红谷中大道站~中间风井区间 (3)2.4 中间风井~阳明公园站区间 (4)三、施工测量技术要求 (5)四、施工测量仪器管理及组织机构管理 (5)4.1 测量仪器的管理 (5)4.2 测量组织机构管理 (6)4.2.1施工测量的组织管理机构 (6)4.2.2施工测量的管理 (6)五、地面控制测量 (7)5.1 平面控制网 (7)5.2 精密水准网 (7)六、联系测量 (8)6.1 地铁大厦站始发井联系测量 (8)6.1.1地面趋近导线测量 (8)6.1.2 竖井联系测量 (8)6.2 雅苑路站接收井及始发井联系测量 (9)6.2.1地面趋近导线测量 (9)6.2.2 竖井联系测量 (9)6.3 红谷中大道站接收井及始发井联系测量 (11)6.3.1 地面趋近导线测量 (11)6.3.2 竖井联系测量 (11)6.4 中间风井联系测量 (11)6.4.1 地面趋近导线测量 (11)6.4.2竖井联系测量 (12)6.5 地面趋近水准测量 (13)6.6 高程传递 (13)七、地下控制测量 (14)7.1 洞内导线测量 (14)7.2 洞内水准测量 (14)7.3 隧道内控制测量成果的多级复核 (15)7.4 地下控制导线测量引起的横向贯通误差分析 (15)八、掘进施工测量 (16)8.1 盾构始发姿态控制测量 (16)8.2 盾构推进测量 (17)8.2.1 ZED激光系统简介 (17)8.2.2 VMT系统简介 (19)8.3 盾构姿态复核测量 (21)8.4 管片姿态日常测量 (21)九、贯通测量 (22)9.1 平面贯通测量 (22)9.2 高程贯通测量 (22)9.3 平面贯通误差的调整 (22)9.4 高程贯通误差的调整 (23)十、竣工测量 (23)十一、施工测量精度保证措施 (23)十二、小结 (24)一、编制依据1、《城市轨道交通工程测量规范》GB50308-20082、《全球定位系统城市测量技术规程》CJJ73-20093、《工程测量规范》GB50026-20074、《城市测量规范》CJJ8-995、《新建铁路工程测量技术规范》(TB10101-99)6、《地下铁道工程施工及验收规范》(GB50299-1999)7、《地下铁道设计规范》(GB50299-1999)8、《国家一、二等水准测量规范》(GB12897-91)9、经批准的《XX市轨道交通1、2号线工程控制网测量技术方案》10、 XX轨道交通2号线线路设计相关图纸文件11、 XX轨道交通2号线控制测量工程控制点成果表12、甲方的有关技术要求二、工程概况本合同段线路起于丰和中大道与世贸路交叉口的地铁大厦站,由南向北穿越雅苑路,然后向东偏转,下穿红谷中大道,途经春晖路,下穿赣江中大道,穿越赣江,过中间风井,最后沿阳明路到达阳明公园站。
盾构施工测量技术
盾构隧道施工测.技术任何一个盾构测量项目的工作都是围绕这三大要素来展开。
从测量方案的制定到测量过程的实施都是为了如何保证三大要素的质量来最终保证隧道施工的精度。
地铁施工测量按服务性质分类可以分为施工控制测量、细部放样测量(铺轨基标测量)^竣工测量和其它测量等作业。
一、施工控制测量1、地面控制测量:维护施工期间地面的平面、高程主控制网完整,维持其可靠、可用;为施工方便加密地面控制点(包括地面工程、明挖工程的地面中桩)并维持其可靠、可用。
2、联系测量:明挖工程投点、定向,暗挖工程竖井投点、定向向地下传递高程。
3、地下控制测量:明挖地下中桩体系控制测量,暗挖地下主导线控制测量,明、暗挖工程地下主水准网控制测量,进行分段贯通测量,平差地下平面、高程主控制网,照顾各段工程间的衔接。
贯通后平差确定地下主控制网的坐标、高程。
二细部放样测量1、建筑物、构筑物的结构和装修工程放样,设备、管网安装工程放样,包括暗挖法中为施工导向,盾构机定位、纠偏和装配式衬砌的拼装等要求而进行的测量作业。
2、精确铺轨要求的测量作业。
重点是控制铺轨基标测设来保证轨道的设计位置和线路参数,同时亦保证行车隧道的限界要求。
三、竣工测量竣工测量主要包括与线路相关的线路结构竣工测量、线路轨道竣工测量、沿线设备竣工测量以及地下管线竣工测量等。
其他测量作业是指为工程前期、后期工作,为工程措施服务的测量作业和控制施工影响的地上、地下及周围建筑物的变形观测等测量作业。
盾构施工测量的主要内容:地面测量控制网的交接桩。
地面测量控制网点复核及加密。
贯通测量技术方案的制订。
联系测量。
地下控制测量(地下主控导线测量、施工导线测量)。
盾构机的导向测量。
竣工测量等等。
贯通误差:地铁的贯通测量是指盾构从始发井始发沿设计线路方向和坡度到达预留洞门贯通。
此时盾构中心与预留洞门中心的偏差即为贯通误差。
贯通误差包括测量误差和施工误差两部份。
地铁隧道的贯通施工影响环节多。
其影响因素主要有:1、地面控制测量误差2、竖井联系测量误差3、地下导线测量误差4、贯通处洞门中心坐标测量误差5、盾构姿态的定位测量误差一、施工测量质量管理目标和基本质量指标(GB50308-2008)⑴质量指标:在任何贯通面上,地下测量控制网的贯通误差,横向中误差不超过±50mm,竖向中误差不超过±25mm。
盾构法隧道测量
盾构法隧道测量
盾构法是修建地铁、隧道等地下项目中的一种常见方法。
在盾构法隧道施工过程中,测量工作是非常重要的环节之一,以确保施工的精度和安全。
下面是关于盾构法隧道测量的一些基本知识。
一、测量方法
1.定位测量
定位测量是确定盾构机前进位置和建筑物结构的位置。
包括定位测量的设备有钢筋探测仪、测量仪器、万能仪器、激光测距仪等。
2.导向测量
导向测量是确定盾构机推进方向和隧道的姿态和位置。
这种测量方法包括角度测量、方位测量和测高测量。
导向测量设备包括导向测量仪、方位仪、全站仪等。
二、测量标准
在盾构法隧道测量中,需要遵循国家和地方相应的标准规定。
比如,在测量高程时,需要使用校准合格的高程仪和三角测量法。
同时,在测量过程中需要考虑因素包括土层的不均匀性,地下水位的影响,以及隧道的变形等。
三、测量工作流程
盾构法隧道测量的流程包括准备工作、测量前期、进尺测量和数据处理等环节。
测量前期需要根据设计图纸和实际的地形情况确定测量基准点和控制点。
在进尺测量的过程中,需要记录盾构机的前进位置、姿态、深度以及地质情况
等数据。
数据处理需要使用专业软件进行,以得出相应的测量结果。
综上所述,盾构法隧道测量是非常重要的一环,需要进行严格的操作和技术保障。
在测量过程中需要注意安全,预防各种意外情况的发生。
同时,需要结合实际情况变化,及时调整工作方案,确保最终测量结果的准确性。
盾构施工监测方案
杭州市地1号线建华路站至彭埠站区间隧道及折返盾构推进监测方案编制:审核:二00八年十二月目录一、工程概况 (3)二、监测方案编制原则与依据 (3)三、监测范围及内容 (4)(一)监测范围 (4)(二)监测内容 (4)四、监测点的布设 (4)(一)区间隧道左、右行线地面沉降点布设 (4)(二)区间隧道周围地下管线监测点布设 (6)(三)区间隧道两侧20米范围内建(构)筑物及沪杭高速监测点布设 (7)(四)进出洞段监测点的布设 (7)(五)隧道内变形监测 (8)(六)地层有害气体的监测 (9)五、监测作业方法及流程 (9)(一)基准点的布设与检验 (9)(二)地表垂直沉降监测 (10)(三)监测作业流程图 (12)六、监测相关技术要求 (12)(一)监测精度要求 (12)(二)监测频率 (13)(三)监测控制值 (14)七、仪器设备选用 (15)八、监测施工人员组织计划(管理网络图) (16)九、质量保证措施 (16)一、精心组织 (17)二、保证落实 (17)三、配合工况,跟踪监测 (17)四、科学整理、认真分析 (17)五、严密控制,及时报警 (18)十、安全生产及文明施工管理 (18)一、作业管理 (18)二、加强与业主、施工单位、监理配合、沟通 (19)三、安全文明施工管理 (19)一、工程概况杭州市地铁交通1号线建华站〜彭埠站区间隧道分左行线和右行线两条隧道,采用盾构法施工。
盾构从建华路站站出发,向彭埠站方向推进。
沿途经过兴隆村、备塘路、沪杭高速路和彭埠村,所穿越建筑多为民房,结构多为低层砖结构。
针对施工线路周边情况,为了确保施工阶段沿线建(构)筑物,指导建华站〜彭埠站区间隧道工程施工顺利进行,对施工掘进及设计提供必要参数,必须对区间隧道盾构掘进施工进行监测。
考虑到施工线路内地表建筑物的安全质量,为确保盾构掘进对其产生沉降、裂缝、倾斜等不良影响,不但要对地面进行监测,同时还要对建筑物进行监测。
盾构测量方案
目录一、编制及测量依据........................................................................................................ - 1 -二、工程概况.................................................................................................................... - 1 -三、测量任务和内容........................................................................................................ - 2 -四、施工测量技术方案.................................................................................................... - 2 -4.1施工首级测量控制网的检测 (3)4.2施工控制网的加密测量 (3)4.3联系测量 (6)4.4地下施工控制导线测量 (8)4.5施工放样测量 (9)4.6盾构施工测量 (10)4.7隧道贯通测量 (14)4.8隧道竣工测量 (14)4.9隧道沉降测量 (14)五、测量误差分析.......................................................................................................... - 15 -5.1隧道测量误差分析 (15)5.2隧道贯通误差预计 (16)六、测量人员和测量仪器配备...................................................................................... - 19 -6.1主要测量人员配备表及职责划分细则 (19)6.2职责划分细则 (20)6.3主要测量仪器配备 (21)七、测量工作管理.......................................................................................................... - 21 -7.1测量人员管理 (21)7.2仪器管理 (22)7.3资料管理 (22)八、测量质量保证措施.................................................................................................. - 22 -九、施工测量复核程序图.............................................................................................. - 24 -一、编制及测量依据(1)《城市轨道交通工程测量规范》(GB50308-2008);(2)《城市测量规范》(GJJ8-99);(3)《地下铁道工程施工及验收规范》(GB50299-1999)(4)《工程测量规范》(GB50026-2007);(5)《建筑变形测量规范》(JGJ/T8-2007);(6)《地下铁道设计规范》(GB50299-1999);(7)《国家一、二等水准测量规范》(GB12897-2006);(8)上海市轨道交通十三号线5标区间设计资料。
盾构监测方案
北京地铁16号线21标段丽泽商务区站~丰益桥南站区间盾构段监测方案一、监测目的、依据、原则1.1监测目的1)掌控围岩、支护结构和周边环境的动态,利用监测结果为设计和施工提供参考依据。
2)提供判断围岩和支护系统基本稳定的依据,确定补浆的施作时间。
3)监测数据经分析处理及必要的计算和判断后进行预测和反馈,以便为工程和环境安全提供可靠地信息。
4)研究岩土性质、地下水条件、施工方法与地表沉降和土体变形的关系积累数据,积累资料和经验,为今后的同类工程设计提供类比依据。
1.2监测的依据1.2.1《北京地铁十六号线工程丽泽商务区站~丰益桥南站(含联络线)地下区间盾构段结构施工图》1.2.2《北京地铁十六号线工程丽泽商务区站~丰益桥南站(含联络线)地下区间施工组织设计》1.2.3现行测量规范、规程、标准1)《地下铁道工程施工及验收规范》(GB50299-1999)(2003版)2)《盾构法隧道施工与验收规范》(GB50446-2008)3)《地下铁道设计规范》(GB50157-2003)4)《地下铁道、轻轨交通工程测量规范》(GB50308-2008)5)《城市轨道交通工程监测技术规范》(GB50911-2013)6)《工程测量规范》(GB50026-2007)7)《城市测量规范》(CJJ/T 8-2011)8)《建筑变形测量规范》(JGJ 8-2007)9)《城市轨道交通地下工程建设风险管理规范》(GB 50652-2011)10)《城市轨道交通技术规范》(GB 50490-2009)11)《建筑结构荷载规范》(GB 50009-2012)12)《北京地铁工程监控量测技术规程》(DB11/490-2007)13)《北京地铁施工监控量测技术要求》1.2.4《北京地铁十六号线工程土建施工21标段沿线周边建(构)筑物及管线调查报告》1.3监测原则1.3.1可靠性原则可靠性原则是监测系统设计中所考虑的最重要的原则。
为了确保其可靠性,必须做到:1)仪器先进、可靠;2)做好测点保护;1.3.2多层次监测原则多层次监测原则的具体含义有二点:1)在监测方法上以外表动态监测与结构内部应力监测相结合,并辅以巡检的方法,以便相互验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx市轨道交通1号线一、二期工程土建施工9标盾构测量方案中铁二十四局集团有限公司二0XX年二月xx市轨道交通1号线一、二期工程土建施工9标盾构测量方案编制:审核:批准:目录一、工程概况及编制依据 (1)二、编制依据 (2)三、仪器配置 (2)四、测量管理网络及人员配置 (3)五、基本技术要求 (3)六、前期准备 (4)七、控制网测量和各项准备 (4)八、盾构施工前期的测量 (8)九、联系测量 (8)十、地下施工测量 (11)十一、盾构姿态日常测量 (12)十二、曲线段盾构测量 (15)十三、地表沉降测量 (16)十四、隧道沉降测量 (16)十五、贯通测量 (17)十六、竣工测量 (17)十七、提高贯通精度的方法和测量复核 (18)十八、质量保证措施 (19)十九、施工安全保证措施 (19)一、工程概况及编制依据xx市轨道交通1号线一、二期工程由xx站至徽州大道站,线路长约24.65km,其中地下线23.65km,地面线1km。
一期工程共设车站22座,全部为地下站。
云谷路站~南宁路站区间为盾构区间,区间线路沿规划庐州大道向南敷设,区间沿线以荒地和水稻田为主,线路下穿规划岷江路及规划徐河,本区间上方无管线。
本区间隧道为两条单洞单线圆形隧道,均采用盾构法施工,区间线间距为由北向南由12m渐变至15m;区间最大纵坡25.007‰,最小纵坡2‰;区间设计起讫里程右线:K25+421.529~K25+738.600,左线:K25+421.500~K25+738.600,区间线路长度右线317.071m,左线317.050m,不设置联络通道;隧道穿过土层主要为粘土②层、粘土③层;右线盾构区间在南宁路站始发掘进至云谷路站,于站内调头后始发掘进左线盾构区间至南宁路站,然后吊出。
具体走向详见该区间隧道走向图。
南宁路站~贵阳路站区间为盾构区间,区间线路沿规划庐州大道向南敷设,区间沿线以荒地和水稻田为主,线路下穿规划漓江路、规划嘉陵江路及规划丙铺路,本区间上方无管线。
本区间隧道为两条单洞单线圆形隧道,均采用盾构法施工,区间线间距为15m;区间最大纵坡6‰,最小纵坡2‰;区间设计起讫里程左、右线:K25+926.000~K26+508.911,区间线路长582.911m,不设置联络通道;隧道穿过土层主要为粘土③层;右线盾构区间在南宁路站始发掘进至贵阳路站,于站内调头后始发掘进左线盾构区间至南宁路站,然后盾构转运至南宁路站右线小里程端头井处。
具体走向详见该区间隧道走向图。
盾构衬砌采用C50钢筋混凝土预制管片拼装而成,每环管片由3块标准块、2块邻接块及1块封顶块组成。
管片采用错缝拼装。
管片内径为Φ5400mm,厚度300mm,管片外径为Φ6000mm,每环管片宽度1.5m。
衬砌内弧面,在隧道贯通后按设计要求作嵌缝、抹孔等防水处理。
本工程采用铁建重工ZTE6250土压平衡盾构机。
刀盘开挖直径6280mm,采用辐条式刀盘,刀盘开口率约45%,刀盘采用变频电机驱动,驱动扭矩5700kNm;前盾直径6250mm,盾体长度7.98m,整机长度约85m;盾体及后配套总重为450t,其中最重的前盾重量为98t;推进系统最大总推力42575kN,油缸行程2100mm。
二、编制依据(1)GB50308-2008 《城市轨道交通工程测量规范》。
(2)xx市轨道交通1号线二期工程云谷路站~南宁路站区间、南宁路站~贵阳路站区间设计图纸。
(3)xx市轨道交通1号线一、二期工程土建施工9标盾构区间施工方案。
三、仪器配置根据工程实际,需要以下主要仪器:仪器配件:四、测量管理网络及人员配置根据工程的实际需求,隧道施工需要测量人员如下:注:联系测量的人员及仪器由我公司专业定向人员进行操作。
附: 测量仪器检定证书及测量人员资格证书五、基本技术要求(1)所有测量工作均要符合国家相关规范要求。
(2)根据精度分析并结合施工的特点,测距边只进行温度、气压等气象改正和倾斜改正,不进行高斯投影和大地基面投影改正。
(3)平面测量标志全部采用强制对中标志,可以有效地消除对中误差。
因受施工条件的限制,不可避免会有短边出现,此时对中误差对角度观测影响特别明显,可采取加强测回数和测回间重新整平仪器的方法,有效削弱对中误差。
(4)联系测量、地下控制导线测量、地下控制水准测量,通常在每段隧道贯通前应至少独立进行三次,即在隧道掘进100~150m时、隧道掘进到一半时和距贯通面100~150m时分别进行一次,并保证观测数据和最终成果满足相关规定要求,取三次测量成果的加权平均值指导隧道贯通。
由于本工程隧道单线最长为582.911m,则我方计划每条线共进行3次联系测量。
(5)对测量数据由两人采用两种不同方法计算,以进行校核。
由于隧道施工测量工作的重要性,及特殊性,对于每日的盾构报表和管片报表都应进行检查,复核,如发现有问题应及时上报有关部门,另外,在线路线型变化的地方,尤其要注意变化情况。
对于井上和井下的测量导线要定期复测,建立测量资料的两级复核制度,并作好对日常资料的整理工作。
同时,应利用公司的盾构报表复核程序定期对盾构报表进行复核,真正做到数据的正确、可靠,不出现错误和粗差。
六、前期准备6.1、资料准备对于甲方提供的控制点桩位应认真确认,并做好测量桩位交接手续,同时,还应组织设备和人员准备对交桩成果进行复核,并熟悉设计单位提供的设计图纸,对轴线的关键元素进行复算确认,如有问题及时上报。
6.2、仪器检查在开工前应对即将在本工程中使用的测量仪器进行检查,所有需计量的仪器都必须有在有效使用期内的鉴定证书,并把原件保存在工地现场,实在不行也应保留复印件,对鉴定证书即将过期的仪器应提早送交相关单位检校,避免影响工程施工。
如发现存在影响测量精度的问题,应及时上报,只有当确定仪器无问题时,方可使用。
七、控制网测量和各项准备(1)平面控制点检测、平面控制网的布设及地面趋近导线测量业主提供的平面控制点应该满足每个井口或车站附近至少有三个,作为向隧道内传递坐标和方位的联系测量依据,并确保区间隧道两端的控制点的通视。
对业主所提供的平面控制点在进场后两周内进行首次复核,并上报监理给予复核,如果检测的成果超限,立即以书面形式报监理工程师确认,由监理工程师及时汇同业主和控制网测量单位研究解决。
之后定期进行双月复测。
复测限差见下表:复测完成后,为确保隧道顺利贯通,并满足工程施工及放样的需求,根据甲方提供的平面控制点进行加密,建立南北两井之间互相通视且直接可以到达端头井的平面控制点,组成区间隧道的平面控制网。
加密点统一采用强制对中固定台,且最好能直接在联系测量中使用该台。
DTPB62、DTPB64、09D23、09D24、DX118五个控制点组成区间隧道平面控制网,按业主和监理的规定对该控制网进行定期复测,其测角中误差≤±2.5″,边长最大中误差≤±4mm。
云谷路站~南宁路站~贵阳路站平面控制点各控制点和井口控制点组成区间隧道平面控制网,从各控制点分别引点至井口,此点作为井下施工导线直传的起始点。
观测时采用Leica TS09全站仪及配套棱镜,每站四测回,采用左、右角观测,左、右角平均值之和与3600较差≤4″,水平角观测一测回内2C较差≤9″,同一方向值各测回较差≤6″。
在场地上设置牢固的测量平台,配以强制对中盘,将该点引到井口测量墩上。
(2)高程控制网测量①水准控制点检测业主提供的水准控制点应满足规范要求,对业主所提供的水准控制点进行定期检测,并依据二等水准要求进行施测,并上报监理给予复核,如果检测的成果超限,立即以书面形式报监理工程师确认,由监理工程师及时汇同业主和控制网测量单位研究解决。
其中相邻区间的深层高程点高程与设计值较差≤±10mm。
②地面趋近水准测量及高程传递地面趋近水准测量的目的是把交桩的高等级水准控制点引测到近工作井的水准点或施工水准点上,为竖井高程传递做好准备。
在业主提供的控制水准网下布设水准网,布设成附合路线。
在竖井设置2~3个水准点,采用往返测。
主要技术要求为:视距小于60m,往返较差、附合或环线闭合差≤±8L mm,L以km计。
在每个端头井的井上、井下建立固定水准点(整个施工期间不得破坏)根据《城市轨道交通工程测量规范》(GB50308-2008)规定,按精密水准测量的有关条目施测,并定期与甲方提供的水准控制点联测,以检核水准点是否有变动。
高程传递时采用竖井钢尺悬挂,在井边悬挂鉴定过的钢尺,钢尺末端挂规定的重物,在井上与井下分别用水准仪对钢尺进行读数,观测时独立观测二测回,每测回变动仪器的高度,同时应考虑加入温度改正。
(3)洞门圈及盾构基座放样利用在井口的控制点用导线直传的方法,在井底设临时点位,以此点设站测洞门圈的横径和平面坐标,并求出洞门圈的平面中心坐标,计算洞门圈的平面偏差值。
利用高程传递至井底的临时水准点,测量洞门圈的圈底高程,圈顶高程,求出洞门圈直径和高程偏差值。
盾构基座的放样是很重要的,这关系到盾构出洞后轴线的控制,因此,在放样前应根据轴线的要求,与项目工程师商讨放样的具体要求并征得其认可。
在放样过程中,采用将洞门圈的中心和盾构基座的前后中心三点在同一竖直面上的方法安放基座,同时根据设计坡度和出洞后的盾构坡度,适当对盾构基座放坡。
安放时,基座平面位置根据事先计算的洞门圈中心,盾构基座前中心和盾构基座后中心的这三点的坐标,用仪器实测它们的值,计算这三点实测坐标值与理论值的偏差,逐步调整偏离值直至满足设计轴线要求。
高程位置,根据事先计算好的基座各主要点的高程,利用水准仪对其进行高程放样。
(4)盾构标志制作及程序编制①人工测量方法根据盾构机的结构实际情况,盾构测量标志尽量安装在盾构平面中心轴线上。
在盾构机调试结束准备推进前,对盾构进行多次测量,得到盾构的轴线,然后在盾构轴线上选择合适的位置安装前后标志,前标、后标应有足够距离,(一般应超出1m),且前标距盾构切口距离越近越好,同时应保证与观测台有良好的通视条件,后标志通常为两个红色三角垂直对交的标志,前标志在大多数情况下为一有刻度的类似刻度尺的装置。
坡度板安装在盾构方便观测及不容易破坏的位置,垂球线长度≥1m。
对盾构进行姿态测量时,在井下导线点上设测量台,该测量台与盾构机的位置关系事先已测定,而且其与盾构机内的前标志、后标志的位置关系也已测定,并以稳定的井下主要导线点为后视点,对盾构机内的前、后标志进行观测,同时,对安装在盾构机内的坡度板进行观测。
利用测量台测得的前标水平角,后标水平角,和推进的环号可算得盾构的切口与盾尾的坐标,再利用坐标转换公式求得盾构机的切口、盾尾与设计轴线的平面偏差值。
利用测量台测得的前标竖直角,前标刻度(竖直角位置),坡度板的坡度和推进环号可算得盾构的切口与盾尾的高程,再与设计轴线的数据相比较即可得到盾构机的高程偏差。