等腰三角形定理

合集下载

等腰三角形与等边三角形的性质及定理

等腰三角形与等边三角形的性质及定理

等腰三角形与等边三角形的性质及定理等腰三角形和等边三角形是几何学中常见的两种特殊三角形。

它们具有独特的性质和一些重要的定理,对于几何学的研究和实际应用有着重要的作用。

一、等腰三角形的性质及定理等腰三角形是指具有两条边相等的三角形。

在等腰三角形中,存在以下一些重要的性质和定理。

1. 等腰三角形的顶角和底角相等:等腰三角形的两条边相等,根据三角形内角和定理可知,其顶角和底角一定相等。

2. 等腰三角形的底边中线等于高:将等腰三角形底边的中点与顶点连接,该线段为底边的中线,根据中线定理可知,中线的长度等于等腰三角形的高。

3. 等腰三角形的两底角相等:等腰三角形的两边相等,根据等角定理可知,其两底角一定相等。

4. 等腰三角形的高同时也是角平分线和中线:等腰三角形的高线从顶点到底边的垂直线段上,这条高线也是等腰三角形的两底角的角平分线,同时也等于底边的中线。

5. 等腰三角形的内角和为180度:等腰三角形的两角相等,根据三角形内角和定理可知,其内角和为180度。

二、等边三角形的性质及定理等边三角形是指具有三条边相等的三角形。

在等边三角形中,存在以下一些重要的性质和定理。

1. 等边三角形的三条边相等,三个顶点角也相等:由于等边三角形的三条边都相等,根据等角定理可知,其三个顶点角也一定相等,每个角都是60度。

2. 等边三角形的高、中线、角平分线也相等:等边三角形的高、中线、角平分线都相等,它们都等于等边三角形的任意一条边的长度。

3. 等边三角形的内角和为180度:等边三角形的三个角都相等,根据三角形内角和定理可知,其内角和为180度。

每个角为60度,三个角的和为180度。

4. 等边三角形的外接圆半径等于边长的一半:等边三角形的外接圆半径等于边长的一半。

5. 等边三角形的内切圆半径等于边长乘以根号3再除以6:等边三角形的内切圆半径等于边长乘以根号3再除以6。

总结:等腰三角形和等边三角形都是特殊的三角形,它们具有一些独特的性质和定理。

等腰三角形的判定定理

等腰三角形的判定定理
一、问题
1、等腰三角形有什么性质定理?由这个定理可得到什么推
论?
2、已知:△ABC中,∠B= ∠C,求证:=∠2 ∠B=∠C AD = AD(公共边)
∵ △BAD≌ △CAD(AAS) ∴AB=AC(全等三角形的对应也相等)
二、知识的产生和定理
证明:∵AD ∥BC ∴∠ADB=∠DBC
又∵BD平分∠ABC ∴∠ABD=∠DBC ∴∠ADB=∠ABD ∴AB=AD(等角对等边)
四、小结: 1、等腰三角形的判定定理与性质定理是互逆定理, 它们揭示了同一个三角形中边与角之间的关系。
2、等腰三角形的判定定理由“等角”判定一个三角形 是
等腰三角形或证明两条线段相等的依据。
3、如图,已知∠A=36°,∠DBC=36 ° ∠C=72 ° 计算∠1和∠2的度数, 并说明图中有哪些等腰三角形。
解:∠1=180°-36 °- 72°=72° ∠2=∠1—∠A=72°—36°=36° 图中有等腰三角形△ABC,△ABD,△DBC
4、已知:如图,AD∥BC,BD平分∠ABC 求证:AB=AD
作业:P81/2、3
坚信同学们一定能 养成良好的习惯!
2、已知:如图,∠ABC、∠ACB的平分线相交于点F 过F做DE∥BC,交AB于D,交AC于E。 求证:BD+EC=DE
证明:∵BF、CF是角平分线 ∴∠1=∠2,∠3=∠4
又∵DE∥BC(已知) ∴∠1=∠5,∠3=∠6(两直线平行,内错角相等) ∴∠2=∠5,∠4=∠6 BD=DF,EC=EF(等角对等边) BD+EC=DF+EF 即BD+EC=DE
三、举例与应用
1、求证:如果三角形一个外角的平分线平行于三角形的一 边,那么这个三角形是等腰三角形。

推导等腰三角形的性质与相关定理

推导等腰三角形的性质与相关定理

推导等腰三角形的性质与相关定理等腰三角形是指有两条边长度相等的三角形。

在几何学中,等腰三角形具有许多特点和性质,也有一些相关的定理与推导。

本文将探讨等腰三角形的各种性质以及相关的定理,并通过推导来进一步理解这些性质。

一、等腰三角形的性质1. 两底角相等:等腰三角形的两个底角是相等的,即两条底边所对的内角相等。

2. 两腰边相等:等腰三角形的两条腰边长度相等,即两边边长相等。

3. 顶角角平分线:等腰三角形的顶角的角平分线也是底边所在的直线。

4. 表面积:等腰三角形的面积可以通过底边长度和高的关系来求解,即面积等于底边乘以高再除以2。

二、等腰三角形的定理1. 定理一:等腰三角形的底角相等。

即对于等腰三角形ABC,若AB=AC,则∠B=∠C。

证明:我们可以通过反证法来证明此定理。

假设∠B≠∠C,那么不妨设∠B>∠C。

由于∠B+∠C=180°,所以∠B-∠C>0.由三角形内角和定理可知,在三角形ABC中,∠B-∠C<∠B+∠C=180°,所以∠B-∠C<∠B-∠C,这与假设∠B-∠C>0矛盾。

因此,等腰三角形的底角相等。

2. 定理二:等腰三角形的底边中线与高相等。

即对于等腰三角形ABC,若AB=AC,则AM=AH,其中M为BC的中点,H为顶角A所在边的垂足。

证明:根据定义可知,AM为BC的中线,AH为三角形ABC中顶角A所在边的高。

由于等腰三角形的两条腰边相等,所以AM=1/2(AB+AC)=AB=AC,同理可得AH=AM,即等腰三角形的底边中线与高相等。

三、推导等腰三角形的性质与定理现在,我们通过推导来进一步理解等腰三角形的性质与相关的定理。

假设有一个等腰三角形ABC,其中AB=AC,我们还可以假设三角形ABC中的底边为BC。

根据性质1,我们知道∠B=∠C,假设∠B=x,那么∠C也为x。

根据性质2,我们知道AB=AC,所以假设AB=AC=a。

由于三角形ABC中三个内角和为180°,根据角度的性质,我们可以得到∠A=180°-2x。

等腰三角形的判定定理

等腰三角形的判定定理

等腰三角形的判定定理〖教学目标〗◆1、理解等腰三角形的判定方法的证明过程,探索等边三角形的判定.◆2、通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维水平、分析问题和解决问题的水平.◆3、学生初步了解数学来源于实践,反过来又服务于实践的辨证唯物主义观点.〖教学重点与难点〗◆教学重点:等腰三角形的判定方法及其使用.◆教学难点:等腰三角形判定方法证明中添加辅助线的思想方法.〖教学过程〗(一)复习引入1、如图,在△ABC中,AB = AC,图中必有哪些角相等?为什么?2、反过来,若∠B= ∠C,一定有AB=AC 吗?3、通过“纸制三角形实验”发现“等角对等边”的结论。

这个结论是否真实可靠,必须从理论上加以证明。

4、等腰三角形判定定理的证明。

如果一个三角形有两个角相等,那么这两个角所对的边也相等。

已知:ΔABC中,∠B =∠C.求证:AB = AC.联想证相关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B =∠C.,没有对应相等边,所以需添辅助线为两个三角形的公共边,所以辅助线应从A点引出.再让学生回想等腰三角形中常添的辅助线,学生可找出作ΔABC的平分线AD或作BC边上的高AD等,证三角形全等的不同方法,从而推出AB=AC.(三)例题教学例1 某地质专家为估测一条东西流向河流的宽度,他选择河流北岸上一棵树(A点)为目标,然后在这棵树的正南方南岸B点插一小旗作标志,沿南偏东60度方向走一段距离到C处时,测得∠ACB为30度,这时,地质专家测得BC的长度就可知河流宽度。

这个方法准确吗?请说明理由。

(四)探究活动如图,等边三角形ABC中,三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。

A 作业:1.作业本2.课后作业题B C。

等腰三角形的判定定理

等腰三角形的判定定理

∴ AC=AB(在同一个三角形中,等角对等边)
B
C
即△ABC为等腰三角形.
辨一辨:如图,下列推理正确吗?
A 12
B
D
C
∵∠1=∠2 ,
∴ BD=DC
(等角对等边)
C 错,因为都不是在
D
同一个三角形中.
1 A2
B
判定定理的条件很重
要:在同一个三角形
∵∠1=∠2,
中,等角对等边
∴ DC=BC
(等角对等边).
A
第一种情况:有一个底角是60° 已知:如图,在△ABC中,AB=AC,∠B=60°. 求证:△ABC是等边三角形.
60°
B
C
证明: ∵AB=AC,∠B=60°(已知),
∴∠C=∠B=60°(在同一个三角形中,等边对等角).
∴∠A=60°(三角形的内角和定理),
∴∠A=∠B =∠C=60°.
∴△ABC是等边三角形(三个角都相等的三角形是等边三角形).
解:(1)∵△ABC是等边三角形,∴∠B=60°.
∵DE∥AB,∴∠EDC=∠B=60°.
∵EF⊥DE,∴∠DEF=90°. ∴∠F=90°-∠EDC=30°.
6.【中考·温州】如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且 DE∥AB,过点E作EF⊥DE,交BC的延长线于点F. (1)求∠F的度数; (2)若CD=2,求DF的长. 解:(2)∵△ABC是等边三角形,∴∠ACB=60°,
又∵∠EDC=60°,∴△EDC是等边三角形. ∴∠DEC=60°,CE=DC=2. ∵∠DEF=90°, ∴∠CEF=90°-∠DEC=30°,∠F=90°-∠EDC=30°. ∴∠CEF=∠F,∴CF=CE=2. ∴DF=4.

等腰三角形判定定理

等腰三角形判定定理

等腰三角形判定定理在咱们数学的奇妙世界里,等腰三角形那可是个常客。

今天咱就来好好聊聊等腰三角形的判定定理,这可是个相当重要的知识点!还记得有一次,我带着一群小朋友在操场上玩耍。

阳光正好,微风不燥。

突然,有个机灵鬼指着不远处的一个风筝喊道:“老师,你看那个风筝的形状好像等腰三角形呀!”我顺着他指的方向看去,还真是!那风筝的骨架结构可不就和我们正在学的等腰三角形有几分相似。

咱们言归正传,说说这等腰三角形的判定定理。

首先,如果一个三角形的两条边相等,那么这两条边所对的角也相等,这个三角形就是等腰三角形。

这就好比两个小伙伴手拉手,长度一样,那他们对应的“待遇”——角度也就一样啦。

再来说说另一个判定方法,如果一个三角形的两个角相等,那么这两个角所对的边也相等,这个三角形也是等腰三角形。

这就像两个小伙伴得到的糖果一样多,那他们付出的“劳动”——边的长度也就相同啦。

咱们通过几个例子来加深一下理解。

比如说,有一个三角形,其中两条边的长度分别是 5 厘米和 5 厘米,那不用想,这肯定是个等腰三角形,因为两条边相等嘛。

又比如说,一个三角形的两个角分别是 50 度和 50 度,那这两个角所对的边肯定也相等,它也是等腰三角形。

在实际生活中,等腰三角形的身影那可是无处不在。

就像我们常见的晾衣架,它的形状很多时候就是等腰三角形,这样能保证两边挂的衣物重量差不多,不容易倾斜。

还有一些建筑的屋顶,也会采用等腰三角形的结构,美观又稳固。

学习等腰三角形的判定定理,不仅能帮助我们解决数学问题,还能让我们更好地理解周围的世界。

就像那次在操场上看到的风筝,当我们明白了等腰三角形的判定定理,就能更清楚地知道为什么那个风筝能飞得那么稳,那么美。

总之,等腰三角形的判定定理虽然看起来有点复杂,但只要我们用心去理解,多观察生活中的例子,就一定能轻松掌握。

相信大家在今后的学习和生活中,遇到等腰三角形的问题都能迎刃而解,就像解决一道简单的算术题一样轻松!加油哦,小伙伴们!。

等腰三角形的性质

等腰三角形的性质

等腰三角形的性质等腰三角形是学习几何学时常见的一种特殊三角形,它具有很多独特的性质和特点。

本文将以点明等腰三角形的定义以及其性质为主线,讲解等腰三角形的一些基本知识和相关定理。

一、等腰三角形的定义等腰三角形是指两边(腰)的边长相等的三角形。

在一个等腰三角形中,通常会存在一个等腰线,即连接两个底角的线段,也是三角形的对称轴。

二、等腰三角形的基本性质1. 等腰三角形的底角相等:一个等腰三角形的两个底角(即不等边对应的两个角)相等,可记作∠A = ∠C。

2. 等腰三角形的等腰线中点角相等:等腰线将底边分为两段,连接等腰线与底边中点的线段,该线段分割出来的两个角相等,可记作∠BAD = ∠DAC,∠BDA = ∠DAB。

3. 等腰三角形的顶角平分底角:等腰三角形的顶角(即等边对应的角)等于两个底角之和的一半,可记作∠B = ∠A + ∠C。

4. 等腰三角形的高线及中线:等腰三角形的高线是从顶点到底边的垂直线段,等腰三角形的中线是从顶点到底边的中点的线段。

在等腰三角形中,高线和中线重合,且与底边垂直。

三、等腰三角形的相关定理1. 在等腰三角形中,如果两条边相等,那么两个对应的角也相等,即边对角相等定理。

例如,若AC = BC,则∠A = ∠B。

2. 在等腰三角形中,如果一个角为直角,则它对应的两边必然相等,即等腰直角三角形的两条腰相等。

例如,在直角等腰三角形ABC中,如果∠C = 90°,则AC = BC。

3. 在等腰三角形中,如果一条边平分对脚的底角,则该边为底边(腰),且等腰线也平分对脚的顶角。

例如,在等腰三角形ABC中,如果AD是BC的平分线,则BD = CD,且∠BAD = ∠CAD。

通过对等腰三角形的定义、基本性质和相关定理的分析,我们可以更好地理解和应用等腰三角形。

在实际应用中,等腰三角形常用于解决与对称性、垂直性、角度和边长之间关系等问题。

对等腰三角形有着深入的理解,对于解题和推理能力的培养会有积极的促进作用。

六年级数学等腰三角形的性质

六年级数学等腰三角形的性质

六年级数学等腰三角形的性质等腰三角形是初中数学学习中的重要概念之一。

六年级学生在学习数学的过程中,也需要掌握等腰三角形的性质和相关定理。

本文将介绍等腰三角形的定义、性质以及相关定理,帮助六年级学生更好地理解和应用等腰三角形。

一、等腰三角形的定义及性质等腰三角形是指具有两条边长度相等的三角形。

在等腰三角形中,我们可以通过观察和探究发现以下性质:1. 等腰三角形的底边两边相等:等腰三角形两底边的长度相等,即底边的两边与底边夹角的两边相等。

2. 等腰三角形的顶角两边相等:等腰三角形的两顶角对应的两边相等,即顶角两边的长度相等。

3. 等腰三角形的底角和顶角相等:等腰三角形的底角和顶角的度数相等,即底角和顶角的度数相等。

通过以上性质,我们可以得出一些结论:1. 等腰三角形的底边中线和高线相等:等腰三角形的底边中线是连接底边中点和顶角的直线段,等腰三角形的高线是从顶角降垂到底边的垂线。

底边中线和高线的长度相等。

2. 等腰三角形的底边中线和顶角平分线重合:等腰三角形的底边中线和顶角平分线是同一条直线,即底边中线也是顶角的平分线。

3. 等腰三角形的底边中线和顶角平分线垂直:等腰三角形的底边中线和顶角平分线相互垂直。

二、等腰三角形的相关定理在研究等腰三角形的过程中,数学家总结出一些重要的等腰三角形定理,这些定理对解决各种相关题目非常有帮助。

1. 等腰三角形的高线相等定理:等腰三角形的两条高线相等。

2. 等腰三角形的顶角平分线的性质:等腰三角形的顶角平分线和底边中线重合,并且底边上任意点到顶角平分线的距离都相等。

3. 等腰三角形的底角平分线相等定理:等腰三角形的底角平分线相等,且与底边垂直。

以上定理是在等腰三角形的基础上得出的,对于解决相关题目非常有帮助。

在学习等腰三角形时,应该理解这些定理的含义,并能够熟练运用它们解决问题。

三、例题与解析为了更好地理解等腰三角形的性质和相关定理,我们来看几个例题并进行解析。

例题1:在等腰三角形ABC中,AB = AC,D为底边BC的中点,连接AD并延长至点E,求证:∠BAC = ∠CAE。

等腰三角形的性质定理和判定定理

等腰三角形的性质定理和判定定理

教学内容(一)知识梳理知识点1:等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)知识点2:等腰三角形性质定理2:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2,BD=DC AD⊥BC知识3:等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。

在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC【典型例题分析】例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。

解:∵AP=PQ=AQ(已知)∴△APQ是等边三角形(等边三角形的定义)∴∠APQ=∠AQP=∠PAQ=60°(等边三角形的性质)∵AP=BP(已知)∴∠PBA=∠PAB(等边对等角)又∠APQ=∠PAB+∠PBA=60°∴∠PBA=∠PAB=30°同理∠QAC=30°∴∠BAC=∠PAB+∠PAQ+∠QAC=30°+60°+30°=120°例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。

求证:△DEF是等腰三角形。

证明:∵∠B+∠BDE+∠BED=180°(三角形内角和定理)∠BED+∠DEF+∠FEC=180°(平角性质)∠B=∠DEF(已知)∴∠BDE=∠FEC(等角的补角相等)在△BED和△CFE中,∠BDE=∠FEC中(已证),BD=CE (已知),∠B=∠C (已知)∴△BED≌△CFE (ASA),∴DE=EF (全等三角形对应边相等)∴△DEF是等腰三角形(等腰三角形定义)例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD证明:∵AB∥CD (已知)∴∠A=∠C,∠B=∠D (两直线平行,内错角相等)∵OA=OB (已知)∴∠A=∠B (等边对等角)∴∠C=∠D (等量代换)∴OC=OD (等角对等边)例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC的位置关系,并证明你的结论。

等 腰 三 角 形 概念及 性 质

等 腰 三 角 形 概念及 性 质

______=_____( ).
②∵AB= AC, BD= DC,
∴∠_____=∠_____,
_____⊥_____(
).
A
③∵AB= AC,AD平分∠BAC
∴ ______⊥______,
_____⊥____(
)
B
C
D
例1:已知:如图房屋顶角∠BAC=100° 过屋顶A的立柱AD⊥BC,屋檐AB= AC. 求顶架上的∠B,∠C,∠BAD,∠CAD 的度数.
等腰三角形的性质
等边三 角形 等腰三角形
不等边三角形
顶角


底角 底角

1、等腰三角形性质定理:
等腰三角形的两个底角相等。
已知:如图,在△ABC中,AB=AC. 求证:∠B=∠C.
A
12
B
C
D
A
B
C
D
A
B
C
D
已知:如图,在△ABC中,AB=
AC.
求证:∠B=∠C.
常见证明方法:
A
(1)作顶角的平分线;
BE交于F, ∠ADB等于_度,则∠CBE等
于_度,∠AFB为_度,含30°角的直三
角形共有_个,它们是_,在 Rt△BEC
中30°所对的直角边_____占斜边_____

.
A
E F
B
C
D
课后思考:在同一个三角形中, “等边对等角”,那么大边所对的 角也较大吗?请同学们课后研究。
A
B
C
(2)作底边上的高;
(3)作底边上的中线;
B
C
D
还有一种特殊证明方法:
A
A

等腰三角形的性质定理和判定定理

等腰三角形的性质定理和判定定理

等腰三角形的性质和判定一、知识梳理知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C(3)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)(4)定理的作用:证明同一个三角形中的两个角相等。

知识点2:等腰三角形性质定理2(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)(2)符号语言:∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2BD=DC AD⊥BC(3)定理的作用:可证明角相等,线段相等或垂直。

知识3:等腰三角形的判定定理(1)文字语言:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)(2)符号语言:在△ABC中∵∠B=∠C ∴AB=AC(3)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。

在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC(4)定理的作用:证明同一个三角形中的边相等。

二、【典型例题分析】基础知识应用题:例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。

例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。

求证:△DEF是等腰三角形。

综合应用题:例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC的位置关系,并证明你的结论。

例5. 求证:等腰三角形两腰上的中线相等解:已知:如图所示,在△ABC中,AB=AC,BD,CE是△ABC的中线求证:BD=CE例6. 如图,点C为线段AB上的一点,△ACM,△BCN是等边三角形,AN,MC相交于点E,CN与BM相交于点F。

等腰三角形的判定定理PPT课件

等腰三角形的判定定理PPT课件

如图,在△ABC中,D,E分别是AC,AB上的点, BD,CE相交于点O.若∠BEO=∠CDO,BE=CD, 问△ABC是等腰三角形吗?请说明理由。
如图,上午8时,一条船从A处出发,以15海里/小时 的速度向正北方向航行,9时45分到达B处。从A处测
得灯塔C在北偏向26°方向, 从B处测得灯塔C在北偏西52°
B
A 30O O 60
C
D
说明线段相等的方法: 1、说明线段所在的两个三角形全等。 2、说明线段所对的两个角相等。
做一做:
如图,在△ABC中,AB=AC,∠1=∠2,则 △ABD和△ACD全等吗?为什么?
探究判定:
1、三个内角都等于60°的三角形是等边三角形?
www.czsx.co 11
精品
方向,求B处到灯塔C的距离。
如图,在△ABC中,AB=AC,∠1=∠2,则△ABD 与△ACD全等吗?证明你的判断.
飞机螺旋桨三个叶片的长度相等,每两个叶片 (中心线)所成的角为120°.如果用线段把每两 个叶片的外端连结起来,那么所得的三角形是正 三角形吗?请说明理由.
A
O
B
C
把一张顶角为36°的等腰三角形纸片剪两刀,分 成三张小纸片,使每张小纸片都是等腰三角 形.你能办到吗?请画示意图说明剪法.
如图,D是AC上的一点.
(1) 若∠A=∠ABD,则__D__A____=__D__B___ (2) 若CB=CD,则∠__C_D__B__=∠__C_B__D__
例1:一次数学实践活动的内容是测量河宽,如图,即 测量A,B之间的距离.同学们想出了许多方法,其中小聪 的方法是:从点A出发,沿着与直线AB成60°角的AC方 向前进至C,在C处测得∠C=30°.量出AC的长,它就是 河宽(即A,B之间的距离).这个方法正确吗?请说明 理由.

等腰三角形的性质

等腰三角形的性质

等腰三角形的性质关键信息项:1、等腰三角形的定义:至少有两边相等的三角形。

2、等腰三角形的性质定理:等腰三角形的两底角相等(简写成“等边对等角”)。

等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。

3、等腰三角形的对称性:等腰三角形是轴对称图形,对称轴为顶角平分线(或底边上的中线、底边上的高)所在的直线。

11 等腰三角形的定义一个三角形,如果至少有两条边相等,那么这样的三角形就被称为等腰三角形。

相等的两条边被称为腰,另一条边被称为底边。

两腰所夹的角称为顶角,底边与腰的夹角称为底角。

111 等腰三角形的识别可以通过以下方法判断一个三角形是否为等腰三角形:定义法:有两条边相等的三角形是等腰三角形。

等角对等边:如果一个三角形的两个角相等,那么这两个角所对的边也相等。

12 等腰三角形的性质定理一:等边对等角等腰三角形的两底角相等。

这是因为在等腰三角形中,通过作顶角的平分线或者底边上的中线或者底边上的高,可以利用全等三角形的判定定理(SAS、ASA、AAS 等)证明得到两个底角所对应的三角形全等,从而得出两底角相等的结论。

121 等边对等角的应用这个性质在解决与等腰三角形相关的角度计算问题时非常有用。

例如,已知等腰三角形的顶角为 80°,则可以通过两底角相等的性质,计算出底角的度数为(180° 80°)÷ 2 = 50°。

13 等腰三角形的性质定理二:三线合一等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合。

这一性质可以通过全等三角形的证明来得出。

131 三线合一的应用当已知等腰三角形中其中“一线”的情况时,可以推知其他“两线”的情况。

例如,已知等腰三角形顶角的平分线是底边上的高,那么可以得出这条平分线也是底边上的中线;反之亦然。

在解决等腰三角形的相关证明和计算问题时,“三线合一”的性质经常被运用。

14 等腰三角形的对称性等腰三角形是轴对称图形,其对称轴是顶角平分线(或底边上的中线、底边上的高)所在的直线。

等腰三角形性质定理和判定定理

等腰三角形性质定理和判定定理

等腰三角形性质定理和判定定理
定义:有两边相等的三角形是等腰三角形
等腰三角形的性质:
等腰三角形的两个底角相等.(简写成“等边对等角”)
等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)
等腰三角形的两底角的平分线相等.(两条腰上的中线相等,两条腰上的高相等)
等腰三角形的底边上到两条腰的距离相等
等腰三角形的一腰上的高与底边的夹角等于顶角的一半
等腰三角形的判定:
有两条腰相等的三角形是等腰三角形
1.三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边.
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一.
4.;等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)等腰三角形的判定1有两条边相等的三角形是等腰三角形
2有两个角相等的三角形是等腰三角形(简称:等角对等边)3顶角的平分线,底边上的中线,底边上的高的重合的三角形是等腰三角形(4所有的等边三角形为等腰三角形)。

等腰三角形的一些定理

等腰三角形的一些定理

等腰三角形的一些定理全文共四篇示例,供读者参考第一篇示例:等腰三角形是指两边长度相等的三角形,它是三角形中一种常见的特殊三角形。

在几何学中,等腰三角形有许多有趣的性质和定理,这些定理在解题和证明中起着重要的作用。

本文将就等腰三角形的一些定理进行详细介绍。

等腰三角形的性质之一是两底角相等。

也就是说,等腰三角形的两个底角(非等边所对顶的两个角)是相等的。

这个定理可以通过等角的方法来证明,只需要利用等腰三角形两个底角相等的性质,我们就可以得到两个底角相等这个结论。

等腰三角形的高线经过底边的中点。

等腰三角形的高线是指从顶点到底边上某一点的垂直线段,而且高线会将底边平分成两等分。

这个定理可以通过高线垂直于底边、高线相等等方法来推导证明。

这个性质在解题中非常有用,可以帮助我们快速找到等腰三角形的高线长度。

等腰三角形的内角和为180度。

等腰三角形的内角和是指三个角的和,等于180度。

这个定理可以通过等腰三角形两底角相等的性质以及角的和为180度的性质来推导证明。

这个定理在解题时也经常用到,可以帮助我们快速计算等腰三角形的内角和。

等腰三角形的周长公式为P=2a+b,其中a为腰长,b为底边长。

等腰三角形的周长可以通过两腰长和底边长的和来计算得到。

这个公式在解题时非常实用,可以帮助我们快速计算等腰三角形的周长。

等腰三角形是几何学中比较简单且常见的一个特殊三角形。

通过对等腰三角形的一些定理进行学习和掌握,可以帮助我们更好地理解和应用几何学知识。

希望本文介绍的等腰三角形定理能够对大家有所帮助。

【文章至此完毕,共XXX字】。

第二篇示例:等腰三角形是指具有两条边相等的三角形,其特点是两条边长度相等,两个底角也相等。

在几何学中,等腰三角形是比较常见的一种三角形,具有一些特殊的性质和定理,下面我们来详细了解一下关于等腰三角形的一些定理。

等腰三角形的性质之一就是两边对应的角相等。

也就是说,等腰三角形的两个底角是相等的,这是由对称性质决定的。

等腰三角形的相关要点总结

等腰三角形的相关要点总结

等腰三角形的相关要点总结1.等腰三角形的判定定理(等角对等边)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).例如:如图14-3-11,△ABC中,若∠B=∠C,则AB=AC证明:过点A作AD平分∠BAC,交BC于点D,则∠BAD=∠CAD.在△ABD和△ACD中,∴△ABD≌△ACD(AAS).∴AB=AC因此,这一结论可直接利用.【说明】(1)在使用“等边对等角”或“等角对等边”时,一定要注意是在同一个三角形中才有这一对应关系,不在同一三角形中的边、角没有这一对应关系.(2)有了这一结论,为今后证明线段相等又添了一种重要的解题途径.例如:如图14-3-12,△ABC中,AB=AC,BD、CE相交于O点.且BE=CD求证:OB=OC.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).在△BCE和△CBD中⎪⎩⎪⎨⎧∠∠,=,=,=CBBCDCBEBCCDBE∴△BCE≌△CBD(SAS).∴∠BCE=∠CBD,即∠OBC=∠BCO∴OB=OC(等角对等边).【说明】证两条线段相等,若这两条线段在同一个三角形中,可利用等腰三角形的判定定理来证明.2.等边三角形(equilateral triangle)(1)定义:三条边都相等的三角形,叫等边三角形.如图14-3-14,△ABC 中,AB=BC=CA,则△ABC为等边三角形.(2)性质:①等边三角形的三个内角都相等,并且每一个角都等于60°.如图14-3-14中,若△ABC为等边三角形,则∠A=∠B=∠C=60°.②除此之外,还具有等腰三角形的一切性质,如三线合一,轴对称等.(3)判定:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.下面证明以上两条判定.判定①:如图14-3-15,已知△ABC中,∠A=∠B=∠C求证:△ABC是等边三角形.证明:∵ ∠B =∠C ,∴ AB =AC又∵ ∠A =∠B ∴ AC =BC∴ AB =AC =BC ,∴ △ABC 是等边三角形.判定②:如图14-3-15,已知△ABC 中,AB =AC ,∠B =60°.求证:△ABC 是等边三角形.证明:∵ AB =AC ,∴ ∠B =∠C .又∵ ∠B =60°,∴ ∠B =∠C =60°.又∵ ∠A +∠B +∠C =180°,∴ ∠A =180°-(∠B +∠C )=60°.∴ ∠A =∠B =∠C ,∴ AB =BC =AC .∴ △ABC 为等边三角形.(4)应用:例如:如图14-3-16,△ABC 为等边三角形,D 、E 为直线BC 上的两点,且BD =BC =CE ,求∠DAE 的度数.分析:要求∠DAE 的度数,需分开求,先求∠BAC ,再求∠DAB 和∠CAE ,由△ABC 为等边三角形知∠BAC =60°,又∵ BD =BC ,而BC =BA ,则BD =BA ,∴ △ABD 为等腰三角形,∴ ∠D =∠DAB =21∠ABC =30°.同理可知,∠CAE =30°.解:∵ △ABC 为等边三角形,∴ AB =BC =AC ,∠BAC =∠ABC =∠ACB =60°.又∵BD=BC,∴BD=BC=AB.∴∠DAB=∠D,又∵∠ABC=∠D+∠DAB,∴∠ABC=2∠DAB=60°,∴∠DAB=30°.同理,∠CAE=30°.∴∠DAE=∠DAB+∠BAC+∠CAE=30°+60°+30°=120°.【说明】本题中用到了等边三角形的性质.再如:如图14-3-17,已知△ABC为等边三角形,D、E、F分别为△ABC三边上的点,且BD=CE=AF,直线AD、BE、CF两两相交于点R、Q、P.求证:△PQR是等边三角形.分析:本题既用到了等边三角形的性质,又用到了其判定.要证△PQR为等边三角形,证三边相等难度较大,可考虑证其三角相等.也可先证∠PQR=60°,而∠PQR=∠ACQ+∠QAC,又因为∠ACQ+∠BCF=60°,只需证∠BCF=∠DAC,由此可联想证△BCF与△CAD全等.证明:∵△ABC为等边三角形,∴∠BAC=∠ABC=∠BCA=60°,AB=BC=CA.又∵BD=CE=AF,∴BF=DC=AE在△ABE和△BCF和△CAD中,⎪⎩⎪⎨⎧∠∠∠,==,==,==CDBFAEDCAFBCBAECABCAB∴△ABE≌△BCF≌△CAD(SAS).∴∠ABE=∠BCF=∠CAD.∵∠ACQ+∠BCF=60°,∴∠ACQ+∠CAQ=60°.∴∠AQF=∠ACQ+∠CAQ=60°,即∠PQR=60°.同理,∠RPQ=∠PRQ=60°.∴△PQR为等边三角形.【说明】(1)此题证明思路比较清晰,只是步骤书写较繁,书写应认真;(2)在证明过程中用到了三个三角形全等的连等形式,可仿照两个三角形全等的方式使用.3.证明线段相等的方法到目前为止,学过的证明线段相等的方法,有以下几种:(1)全等三角形的对应边相等(在两个三角形中).(2)等角对等边(在一个三角形中).(3)轴对称的性质(在某条直线的两侧).(4)角平分线的性质(在角的平分线上的两条线段).(5)中点的概念(在一条直线上).(6)利用第三条等量线段.(7)作辅助线、创造条件.例如:如图14-3-20,点D、E在BC上,AB=AC,AD=AE.求证:BD=CE.分析:因BD与CE在一条直线上,且又在两个三角形中,可考虑证两个三角形全等或用中点的概念进行证明,也可用轴对称的性质进行证明.证法一:用全等三角形∵AB=AC,∴∠B=∠C又∵AD=AE,∴∠ADF=∠AEF.又∵∠ADF=∠B+∠BAD,∠AEF=∠C+∠CAE,∴∠BAD=∠CAE在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.证法二:用中线如图14-3-20,过A点作AF⊥BC于F.∵AB=AC,AF⊥BC,∴BF=CF(三线合一).又∵AD=AE,AF⊥DE,∴DF=EF(三线合一).∴BF-DF=CF-EF,∴BD=CE.证法三:用轴对称过A作BC边上的垂线,垂足为F.∵AB=AC,AF⊥BC,∴△ABC关于直线AF对称,∴BF=CF.同理,DF=EF.∴BF-DF=CF-EF.即BD=CE.【说明】从以上的证明可以看出,一个结论有多种证明途径和证明方法.4.证明角相等的方法到目前为止,学过的证明角相等的方法,有以下几种:(1)角平分线的定义及性质.(2)全等三角形的对应角相等(在两个三角形中).(3)等边对等角(在一个三角形中).(4)轴对称的性质.(5)找第三等量角(如∠A=∠C,∠B=∠C,则∠A=∠B).(6)作辅助线,创造条件.例如:如图14-3-21,△ABC中,AB=AC,∠1=∠2.求证:∠BAD=∠CAD.分析:要证∠BAD=∠CAD,因两角在两个三角形中,可考虑选用全等三角形和角平分线,以及轴对称进行证明.证法一:用全等三角形∵∠1=∠2,∴DB=DC在△ABD和△ACD中,AB=AC,DB=DC,AD=AD,∴∠ABD≌△ACD(SSS).∴∠BAD=∠CAD.证法二:用轴对称∵∠1=∠2,∴DB=DC∴点D在BC的垂直平分线上.又∵AB=AC,∴A点也在BC的垂直平分线上.∴△ABD与△ACD关于直线AD对称.∴∠BAD=∠CAD(轴对称的性质).证法三:用角平分线∵∠1=∠2,∴DB=DC.又∵AB=AC,∴点A、D都在BC的垂直平分线上.∴AD也为∠BAC的平分线(三线合一).∴∠BAD=∠CAD.例如:如图14-3-22,△ABC中,AD平分∠BAC,AD的垂直平分线交AD 于E,交BC的延长线于F.求证:∠B=∠CAF.分析:要证∠B=∠CAF,根据全等三角形和等腰三角形已不可能,角平分线也用不上,可考虑用第三等量角.证明:∵EF垂直平分AD,∴F A=FD.∴∠1=∠3+∠4.又∵∠ADC为△ABD的外角,∴∠1=∠B+∠2.∴∠B+∠2=∠3+∠4.又∵∠2=∠3,∴∠B=∠4.即∠B=∠CAF.5.得到等腰三角形的方法(1)如图14-3-27,一直线平行于等腰三角形底边,与两腰(或两腰的延长线)相交所得的三角形是等腰三角形.如图中,△ADE是等腰三角形.(2)把一张对边平行的纸,像图14-3-28那样折叠,重合部分是一个等腰三角形.如图中,△FBD是等腰三角形.(3)等腰三角形两底角的平分线的交点与底边两端点组成等腰三角形.(4)等腰三角形两腰上的高的交点与底边两端点构成等腰三角形.(5)等腰三角形两腰上的中线的交点与底边两端点构成等腰三角形.(6)36°角为顶角的等腰三角形,底角的平分线把原等腰三角形分成两个等腰三角形.(7)90°角为顶角的等腰直角三角形,顶角的平分线把原三角形分成两个等腰直角三角形.。

等腰三角形中的有关公理

等腰三角形中的有关公理

等腰三角形中的有关公理、定理:(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)(3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”.(4)等边三角形的各个内角都相等,并且每一个内角都等于60°.直角三角形的有关公理、定理:(1)直角三角形的两个锐角互余;(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(4)直角三角形斜边上的中线等于斜边的一半.(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.性质0:直角三角行的外切圆直径是直角三角形的斜性质1:直角三角形两直角边的平方和等于斜边的平方.性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积,即ab=ch.性质5:直角三角形垂心位于直角顶点.性质6:直角三角形的内切圆半径等于两直角边之和减去斜边的差的一半,即r=a+b-c/2性质7:直角三角形中,斜边上的高是两条直角边在斜边上的射影比例中项.性质8:直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.由此,直角三角形两条直角边的平方比等于它们在斜边上的射影比.性质9:含30°的直角三角形三边之比为1:根号3:2性质10:含45°角的直角三角形三边之比为1:1:根号2回答者:╭⌒XDY⌒╮- 试用期一级9-17 16:55直角三角形的题形一般是已知两边长(或是一边长一角度)求第三边或角度三角形分类(1)按角度分a.锐角三角形:三个角都小于90度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形定理
一、说教材分析
1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。

通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。

并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

2、教学目标:要求学生掌握等腰三角形的性质定理1、2和等边三角形的每个角都相等,且每个角都为60度,使学生会用等腰三角形的性质定理进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法,培养学生的联想能力
3、教学重点、难点:等腰三角形的性质定理是本课的重点
等腰三角形“三线合一”性质的运用是本课的难点
4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多媒体教学。

二、说教学方法:
“教必有法而教无定法”,只有方法得当,才会有效。

根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

三、说学生学法。

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

四、说教学程序
1、等腰三角形的有关概念,轴对称图形的有关概念。

提问:等腰三角形是不是轴对称图形?什么是它的对称轴?
2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

性质定理1:
等腰三角形的两个底角相等
在△ABC中,∵AB=AC()∴∠B= ∠C()
性质定理2:
等腰三角形的顶角平分线、底边上的中线和高线互相重合
①∵AB=AC ∠1= ∠2 ()∴BD=DC AD⊥BC ()
②∵AB=AC BD=DC ()∴∠1= ∠ 2 AD⊥BC ()
③∵AB=AC AD⊥BC于D () ∴BD=DC ∠1= ∠ 2 ()
强调性质定理2中的三线段前的定语的重要性,可让学生实际画图验证。

4、对新知识的感知性应用
指导学生表述证明过程。

思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?
课堂练习:
p.43练习1,练习2(指出这是等边三角形的性质定理)。

5、小结:
(1)等腰三角形的性质定理1、2。

(2)等边三角形的性质
(3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

(4)联想方法要经常运用,对解题大有裨益。

五、布置作业:
见作业本
六、对于本节的几点思考
1、本节的学习任务比较重要,有定理的证明、定理的计算和证题应用,所以本人针对学生的特点,在上节课例的掌握好的情况下,让学生自己去发现、去联想,能充分地发挥学生主观能动性。

练习2其目的有二:(一)使学生在复习本节知识。

(二)为下一节内容铺垫。

2、通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

3、在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

9.12等腰三角形的性质定理
板书设计
课题:
9.12等腰三角形的性质定理例1、书写格式例2、书写过程
性质定理1
性质定理2。

相关文档
最新文档