332简单的线性规划问题4

合集下载

332简单线性规划问题

332简单线性规划问题

审题视角
规范解答
温馨提醒
解 由约束条件x3- x+4y5+y-3≤25≤0 0 ,作出(x,y)的可行域如图所示. x≥1
由x3=x+15y-25=0 ,解得 A1,252.
由xx=-14y+3=0 ,解得 C(1,1).
2024/10/13
27
题型分类·深度剖析
思想与方法 13.利用线性规划思想求解非线性目标函数的最值
x≥1
(1)设 z=xy,求 z 的最小值;(2)设 z=x2+y2,求 z 的取值范围;
(3)设 z=x2+y2+6x-4y+13,求 z 的取值范围.
审题视角
规范解答
温馨提醒
(2)z=x2+y2 的几何意义是可行域上的点到原点 O 的距离的平方.结合图形
可知,可行域上的点到原点的距离中,dmin=|OC|= 2,dmax=|OB|=
x 4 y 3 3x 5y 25 求z的x最大1 值和最小值.
【解析】ቤተ መጻሕፍቲ ባይዱ
由z 2x y y 2x z
A(5,2) C(1, 22)
5
zmin
21
22 5
12 5
z 2 5 2 12 max 2024/10/13
截距为-z的直线
y x 1 C
•B
O
x 4y 3 0
•A
3x 5y 25 0
x-4y+3≤0 典例:(12 分)变量 x、y 满足3x+5y-25≤0 ,
x≥1
(1)设 z=xy,求 z 的最值;(2)设 z=x2+y2,求 z 的取值范围;
(3)设 z=x2+y2+6x-4y+13,求 z 的取值范围.
审题视角
规范解答
温馨提醒
由x3- x+4y5+y-3=25=0 0 ,解得 B(5,2).

3.3.2简单的线性规划问题

3.3.2简单的线性规划问题
2

x 1
2
y
2
x 1 y
2 2
2
y
x 2y +7 0
A (9, 8)
B
P
(-1,0)
.o
4x-3 y-12 0
C x
x 2y-3=0
19
迁移变式
已知变量 x,y 满足约束条件 y 6 ,则 的最大值是 ________ ,最小值是 x
12
练习3: 求z=3x+5y的最大值和最小值,使x、y满足约束条件
3 z z x 2 y y - x+ 5 5
y 5
5 x 3 y 15, y x 1, x 5 y 3.
y x 1
B (1.5,2.5) 1 o C 3 x
x 5y 3
15
x- 2y+7≥0, 已知 x、y 满足约束条件4x-3y-12≤0, x+ 2y-3≥0
求:
(1)
t=x2+y2 的最值;
(2) (3)
y+3 z= 的最值. x+3 z=x +y +2x+1 的最值
2 2
[分析] 把所求问题赋给相关的几何意义, 即转化为几何问题解决:距离(平方)与斜率. 16
3.3.2 简单的线性规划问题
1
一.情境引入
1.在同一坐标系内作出下列直线,你能得到什么结论? 2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7 Y
结论 : 形如2 x y t (t 0) 的直线与2 x y 0平行.
o
问题:你知道2x+y=t中t的几何意义吗? 2x-y=t中t的几何意义呢?

线性规划化问题的简单解法

线性规划化问题的简单解法

简单线性规划问题的几种简单解法依不拉音。

司马义(吐鲁番市三堡中学,838009)“简单的线性规划问题”属于高中数学新课程必修5,进入了高考试题,并且保持了较大的考察比例,几乎是每年高考的必考内容,也是高中数学教学的一个难点。

简单的线性规划是指目标函数只含两个自变量的线性规划。

简单线性规划问题的标准型为:1112220(0)0(0),(),0(0)m m m A x B y C A x B y C m N z Ax By A x B y C +++≥≤⎧⎪++≥≤⎪∈=+⎨⎪⎪++≥≤⎩L约束条件 目标函数 ,下面介绍简单线性规划问题的几种简单解法。

1. 图解法第一步、画出约束条件表示的可行区域,这里有两种画可行区域的方法。

⑴代点法:直线Ax+By+C=0(c 不为0)的某侧任取一点,把它的坐标代入不等式,若不等式成立,则不等式表示的区域在该点的那一侧;若不成立,则在另一侧。

⑵B 判别法:若B>0(<0),则不等式Ax+By+C >0(<0)表示的区域在直线Ax+By+C =0的上方;若B>0(<0),则不等式Ax+By+C <0(>0)表示的区域在直线Ax+By+C =0的下方。

(即若B 与0的大小方向跟不等式的方向相同,则可行区域是边界线的上方;若B 与0的大小方向与不等式的方向相反,则可信分区域是边界线的下方)用上面的两种方法画出可行区域是很简单,所以这里不必举例说明。

第二步、在画出的可行区域内求最优解(使目标函数取最大值或最小值的点),这个可以用下面的两种办法解决。

⑴y 轴上的截距法:若b >0,直线y a b x z b=-+所经过可行域上的点使其y 轴上的截距最大(最小)时,便是z 取得最大值(最小值)的点;若b <0,直线y a b x z b =-+所经过可行域上的点使其y 轴上的截距最大(最小)时,是z 取得最小值(最小值)的点(提醒:截距不是距离,截距可以取正负)。

3.3.2简单的线性规划问题

3.3.2简单的线性规划问题

解决问题 (1)用不等式组表示问题中的限制条件: 用不等式组表示问题中的限制条件: 设甲、乙两种产 品分别生产x 品分别生产x、y 件,由已知条件 可得二元一次不 等式组:
x &≥0 y≥0
(2)画出不等式组所表示的平面区域: 画出不等式组所表示的平面区域:
解:设需要截第一种钢板x张,第二种 设需要截第一种钢板x 钢板y 钢板y张,则目标函数为z=x+y 则目标函数为z=x+y
2x+y≧ 15 ≧ x+2y ≧ 18 x+3y ≧ 27 x ≥0,x∈N ∈ y ≥0,y∈N ∈
18 16 14 12 10 8 6 4 2
将目标函数化为: 将目标函数化为: y=-x+z,显然 越少, 显然z y=-x+z,显然z越少, 钢板数和越少。 钢板数和越少。
【教学重点】 教学重点】
利用图解法求得线性规划问题的最优解; 利用图解法求得线性规划问题的最优解;
【教学难点】 教学难点】
把实际问题转化成线性规划问题,并给出解答, 把实际问题转化成线性规划问题,并给出解答,解决难点的 关键是根据实际问题中的已知条件,找出约束条件和目标函数, 关键是根据实际问题中的已知条件,找出约束条件和目标函数, 利用图解法求得最优解。 利用图解法求得最优解。
y
M
o
3/7
5/7
6/7 x
M点是两条直线的交点,解方程组 点是两条直线的交点, 点是两条直线的交点
7 x + 7 y = 5 14 x + 7 y = 6
所以z 所以 min=28x+21y=16 + =
x 点的坐标为: 得M点的坐标为: 点的坐标为 y

(完整版)简单的线性规划问题(附答案).doc

(完整版)简单的线性规划问题(附答案).doc

简单的线性规划问题[ 学习目标 ] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念 .2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一线性规划中的基本概念名称意义约束条件关于变量 x, y 的一次不等式 (组 )线性约束条件关于 x, y 的一次不等式 (组 )目标函数欲求最大值或最小值的关于变量x, y 的函数解析式线性目标函数关于变量 x,y 的一次解析式可行解满足线性约束条件的解(x, y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1.目标函数的最值线性目标函数 z= ax+ by (b≠ 0)对应的斜截式直线方程是y=-a z,在 y 轴上的截距是z,bx+b b当 z 变化时,方程表示一组互相平行的直线.当 b>0,截距最大时, z 取得最大值,截距最小时,z 取得最小值;当 b<0,截距最大时, z 取得最小值,截距最小时,z 取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界 )便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的 A、B、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x, y 满足约束条件y≤ 2,x+ y≥ 1,x- y≤1,则 z= 3x+ y 的最大值为( )A . 12B .11C.3 D.- 1答案 B解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=- 3x+z 经y=2,x= 3,过点 A 时, z 取得最大值.由? 此时z=3x+ y= 11.x-y= 1 y= 2,x+y- 2≤ 0,跟踪训练 1 (1)x,y 满足约束条件x- 2y- 2≤ 0,若z=y-ax取得最大值的最优解不唯一,...2x-y+ 2≥ 0,则实数 a 的值为 ()1 1A. 2或- 1 B .2 或 2C.2 或 1 D. 2 或- 1x-y+ 1≤ 0,(2)若变量 x,y 满足约束条件x+2y- 8≤ 0,则 z= 3x+ y 的最小值为 ________ .x≥0,答案(1)D (2)1解析(1) 如图,由 y=ax+ z 知 z 的几何意义是直线在y 轴上的截距,故当 a>0 时,要使z= y- ax 取得最大值的最优解不唯一,则a=2;当 a<0 时,要使 z= y- ax 取得最大值的最优解不唯一,则a=- 1.y=- 3x+ z 过点(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z= 3x+ y,即(0,1)时 z 取最小值 1.题型二非线性目标函数的最值问题x- y-2≤ 0,例2 设实数 x, y 满足约束条件 x+ 2y- 4≥ 0,求2y- 3≤ 0,(1)x2+y2的最小值;y(2)x的最大值.解如图,画出不等式组表示的平面区域ABC,(1)令 u= x2+ y2,其几何意义是可行域ABC 内任一点 (x, y)与原点的距离的平方.x+2y- 4= 0,4,8 过原点向直线 x+ 2y- 4=0 作垂线 y= 2x,则垂足为y=2x 的解,即 5 5 ,x+ 2y- 4= 0, 3又由2y- 3=0,得 C 1,2 ,所以垂足在线段 AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC|=1+3 2 213=2,13所以, x2+y2的最小值为4 .yABC 内任一点 (x, y)与原点相连的直线l 的斜率为 v,即 v (2)令 v=x,其几何意义是可行域y- 0=x-0.由图形可知,当直线l 经过可行域内点 C 时, v 最大,3由(1) 知 C 1,2,所以 v max=3 y 3,所以的最大值为.2 x 2x≥ 0,跟踪训练 2 已知 x, y 满足约束条件y≥ 0,则(x+3) 2+ y2的最小值为 ________.x+ y≥ 1,答案10解析画出可行域 ( 如图所示 ) . (x+ 3)2+ y2即点 A(- 3,0)与可行域内点(x, y)之间距离的平方.显然AC 长度最小,∴AC2= (0+ 3)2+ (1- 0)2= 10,即 (x+ 3)2+y2的最小值为 10.题型三线性规划的实际应用例 3某公司生产甲、乙两种桶装产品.已知生产甲产品 1 桶需耗 A 原料 1 千克、 B 原料 2 千克;生产乙产品 1 桶需耗 A 原料 2 千克、 B 原料 1 千克.每桶甲产品的利润是300 元,每桶乙产品的利润是400 元.公司在生产这两种产品的计划中,要求每天消耗A, B 原料都不超过 12 千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?x+ 2y≤ 12,解设每天分别生产甲产品x 桶,乙产品 y 桶,相应的利润为2x+ y≤ 12,z 元,于是有x≥ 0, y≥ 0,x∈ N , y∈ N ,z= 300x+ 400y,在坐标平面内画出该不等式组表示的平面区域及直线300x+400y= 0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在 y 轴上的截距达到最大,此时 z= 300x+ 400y 取得最大值,最大值是 z= 300× 4+ 400× 4= 2 800,即该公司可获得的最大利润是 2 800 元.反思与感悟线性规划解决实际问题的步骤:① 分析并根据已知数据列出表格;②确定线性约束条件;③ 确定线性目标函数;④画出可行域;⑤利用线性目标函数 (直线 )求出最优解;⑥ 实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练 3 预算用 2 000 元购买单价为 50 元的桌子和 20 元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的 1.5 倍,问桌子、椅子各买多少才行?解设桌子、椅子分别买x 张、 y 把,目标函数z= x+ y,把所给的条件表示成不等式组,即约束条件为50x+20y≤ 2 000,y≥ x,y≤ 1.5x,x≥ 0,x∈ N*,y≥0, y∈ N* .x=200,50x+ 20y=2 000,7由解得200 y= x,y=,7所以 A 点的坐标为 200,200 .7 750x + 20y =2 000,x = 25,由解得75y = 1.5x ,y = 2 ,所以 B 点的坐标为 7525, 2 .200 20075所以满足条件的可行域是以 A 7 ,7 , B 25, 2 , O(0,0) 为顶点的三角形区域 (如图 ).75由图形可知,目标函数 z =x + y 在可行域内的最优解为 B 25, 2 ,但注意到 x ∈ N * , y ∈ N * ,x = 25, 故取y = 37.故买桌子 25 张,椅子 37 把是最好的选择.x + y - 3≤ 0,1.若直线 y = 2x 上存在点 ( x , y)满足约束条件 x - 2y - 3≤0, 则实数 m 的最大值为 ()x ≥ m ,3A .- 1B . 1C.2D . 25x - 11y ≥- 22,2x + 3y ≥ 9, 2.某公司招收男职员x 名,女职员 y 名, x 和 y 需满足约束条件则 z2x ≤ 11,x ∈ N * , y ∈ N * ,= 10x + 10y 的最大值是 ( )A . 80B .85C .90D . 95y≤1,3.已知实数x,y 满足x≤1,则z=x2+y2的最小值为________.x+y≥ 1,一、选择题1.若点 (x, y)位于曲线 y= |x|与 y= 2 所围成的封闭区域,则 2x- y 的最小值为 ( ) A .- 6 B.- 2 C. 0 D. 2x≥ 1,2.设变量 x, y 满足约束条件x+ y- 4≤ 0,则目标函数 z= 3x- y 的最大值为 ()x- 3y+4≤ 0,4A .- 4 B. 0 C.3 D. 4x≥ 1,则 z=y-1的取值范围是 (3.实数 x, y 满足 y≥ 0,)x- y≥ 0,xA . [ - 1,0]B .( -∞, 0]C.[ -1,+∞ ) D. [ - 1,1)x- y≥ 0,4.若满足条件x+ y- 2≤ 0,的整点 (x, y)(整点是指横、纵坐标都是整数的点)恰有 9 个,y≥ a则整数 a 的值为 ()A .- 3 B.- 2C.- 1 D. 0x≥ 1,5.已知 x, y 满足x+ y≤ 4,目标函数z= 2x+ y 的最大值为7,最小值为1,则 b,c x+ by+ c≤ 0,的值分别为( )A .- 1,4B .- 1,- 3C.- 2,- 1 D.- 1,- 26.已知x,y 满足约束条件x+ y≥ 5,x- y+ 5≥0,x≤ 3,使 z= x+ ay(a> 0)取得最小值的最优解有无数个,则 a 的值为( )A .- 3 B. 3 C.- 1 D. 1二、填空题x≤ 2,7.若 x, y 满足约束条件y≤2,则 z= x+ 2y 的取值范围是 ________.x+ y≥2,8.已知- 1≤ x+y≤ 4 且 2≤ x-y≤ 3,则 z= 2x- 3y 的取值范围是________(答案用区间表示).0≤ x≤ 2,9.已知平面直角坐标系 xOy 上的区域 D 由不等式组y≤ 2,给定.若 M(x, y)为 Dx≤ 2y上的动点,点 A 的坐标为 (→ →2, 1),则 z= OM ·OA的最大值为 ________.10.满足 |x|+ |y|≤ 2 的点 (x,y)中整点 (横纵坐标都是整数)有 ________个.x- y+ 2≥ 0,11.设实数 x, y 满足不等式组2x- y- 5≤ 0,则 z= |x+ 2y- 4|的最大值为 ________.x+ y- 4≥ 0,三、解答题x- 4y≤- 3,12.已知x, y 满足约束条件3x+ 5y≤ 25,目标函数z= 2x- y,求z 的最大值和最小值.x≥ 1,x+ y- 11≥ 0,13.设不等式组3x- y+ 3≥0,表示的平面区域为 D.若指数函数y= a x的图象上存在区域5x- 3y+ 9≤0D 上的点,求 a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板 2 m2,生产每个书橱需要方木料0.2 m3,五合板 1 m2,出售一张方桌可获利润80 元,出售一个书橱可获利润120 元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1. 答案B解析 如图,当 y = 2x 经过且只经过x + y - 3=0 和 x = m 的交点时, m 取到最大值,此时,即 (m,2m)在直线 x + y - 3= 0 上,则 m = 1.2. 答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于 x , y ∈ N * ,计算区域内与11 9 最近的点为 (5,4),故当 x =5, y = 4 时, z 取得最大值为90.2 ,213. 答案2解析实数 x ,y 满足的可行域如图中阴影部分所示,则 z 的最小值为原点到直线 AB 的距离的平方,故 z min = 12= 1.2 2课时精练答案一、选择题1.答案 A解析画出可行域,如图所示,解得A(- 2,2),设 z= 2x- y,把z= 2x- y 变形为 y= 2x- z,则直线经过点 A 时 z 取得最小值;所以 z min=2× (- 2)- 2=- 6,故选 A.2.答案 D解析作出可行域,如图所示.x+ y- 4=0,x=2,联立解得x- 3y+ 4= 0,y=2.当目标函数z= 3x- y 移到 (2,2)时, z= 3x- y 有最大值4.3.答案 D解析作出可行域,如图所示,y-1的几何意义是点 (x, y)与点 (0,1)连线 l 的斜率,当直线l 过 B(1,0) 时 k l最小,最小为- 1. x又直线 l 不能与直线x- y= 0 平行,∴ k l< 1.综上, k∈ [- 1,1).解析不等式组所表示的平面区域如图阴影部分所示,当 a=0 时,只有 4 个整点 (1,1),(0,0) ,(1,0),(2,0).当 a=- 1 时,正好增加 (- 1,- 1),(0,- 1),(1 ,- 1),(2,- 1),(3,- 1)5 个整点.故选C.5.答案 D解析由题意知,直线x+by+ c= 0 经过直线2x+ y= 7 与直线x+ y= 4 的交点,且经过直线2x+ y=1 和直线x= 1 的交点,即经过点(3,1)和点 (1,- 1),3+ b+ c= 0,b=- 1,∴解得1- b+ c= 0,c=- 2.6.答案 D解析如图,作出可行域,作直线l:x+ ay=0,要使目标函数z= x+ ay(a> 0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+ y= 5 重合,故a= 1,选 D.二、填空题7.答案[2,6]解析如图,作出可行域,作直线 l :x+ 2y= 0,将 l 向右上方平移,过点 A(2,0)时,有最小值 2,过点 B(2,2)时,有最大值 6,故 z 的取值范围为[2,6] .解析作出不等式组-1≤ x+ y≤ 4,表示的可行域,如图中阴影部分所示.2≤ x- y≤ 3在可行域内平移直线 2x-3y= 0,当直线经过 x- y= 2 与 x+y= 4 的交点 A(3,1)时,目标函数有最小值z min=2× 3- 3× 1= 3;当直线经过 x+ y=- 1 与 x- y= 3 的交点 B(1,- 2) 时,目标函数有最大值z max=2× 1+ 3× 2 = 8.所以 z∈[3,8] .9.答案 4解析由线性约束条件0≤ x≤ 2,y≤ 2,画出可行域如图中阴影部分所示,目标函数→ →2x+ y,将其化为z=OM ·OA=x≤ 2yy=- 2x+ z,结合图形可知,目标函数的图象过点( 2, 2)时, z 最大,将点 ( 2, 2)代入 z = 2x+ y,得 z 的最大值为 4.10.答案13解析|x|+ |y|≤ 2 可化为x+ y≤ 2 x- y≤ 2x≥ 0, y≥0x≥ 0, y< 0 ,,-x+ y≤ 2 x<0, y≥ 0 ,-x- y≤ 2 x<0, y< 0 ,作出可行域为如图正方形内部(包括边界 ),容易得到整点个数为13 个.11.答案 21解析作出可行域 (如图 ),即△ABC 所围区域 (包括边界 ),其顶点为A(1,3), B(7,9),C(3,1)方法一∵可行域内的点都在直线x+ 2y- 4=0 上方,∴x+ 2y- 4> 0,则目标函数等价于 z= x+ 2y-4,易得当直线 z= x+2y- 4 在点 B(7,9)处,目标函数取得最大值z max= 21.方法二z= |x+ 2y-4|=|x+ 2y- 4|· 5,5令 P( x,y)为可行域内一动点,定直线x+2y- 4= 0,则z= 5d,其中 d 为 P(x, y)到直线 x+2y- 4= 0 的距离.由图可知,区域内的点 B 与直线的距离最大,故d的最大值为 |7+ 2× 9-4|= 21.5 5故目标函数z max= 21 · 5= 21.5三、解答题12.解z= 2x- y 可化为y= 2x- z, z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l0:2x- y=0 平行的直线系l,经上下平移,可得:当l 移动到l1,即经过点A(5,2) 时, z max= 2× 5 - 2= 8.当l 移动到 l 2,即过点 C(1,4.4) 时,z min= 2× 1-4.4=- 2.4.13.解先画出可行域,如图所示,y= a x必须过图中阴影部分或其边界.∵A(2,9) ,∴ 9= a2,∴a= 3.∵a> 1,∴ 1< a≤ 3.14.解由题意可画表格如下:方木料 (m3) 五合板 (m2) 利润 (元 ) 书桌 (张 ) 0.1 2 80书橱 (个 ) 0.2 1 120(1)设只生产书桌x 张,可获得利润z 元,0.1x≤ 90,x≤ 900,2x≤ 600,? x≤300,? 0≤ x≤ 300.则z= 80x,x≥0x≥ 0所以当 x= 300 时, z max= 80× 300= 24 000(元 ) ,即如果只安排生产书桌,最多可生产300 张书桌,获得利润24 000 元.(2)设只生产书橱y 个,可获得利润z 元,0.2y≤ 90,y≤ 450,1·y≤ 600,? y≤ 600,? 0≤ y≤ 450.则z= 120y,y≥ 0y≥ 0所以当 y= 450 时, z max= 120× 450= 54 000(元 ),即如果只安排生产书橱,最多可生产450 个书橱,获得利润54 000 元.(3)设生产书桌 x 张,书橱 y 个,利润总额为z 元,0.1x+ 0.2y≤ 90,x+ 2y≤ 900,2x+ y≤ 600,2x+ y≤ 600,则?x≥ 0,x≥ 0,y≥ 0 y≥ 0.z= 80x+120y.在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图 ).作直线 l :80x+ 120y=0,即直线 l: 2x+ 3y=0.把直线 l 向右上方平移至 l1的位置时,直线经过可行域上的点M,此时 z= 80x+ 120y 取得最大值.x+ 2y= 900,由2x+ y= 600,解得,点M 的坐标为 (100,400) .所以当 x= 100,y= 400 时,z max= 80×100+ 120×400= 56 000(元 ).因此,生产书桌100 张、书橱400 个,可使所得利润最大.。

3.3.2简单的线性规划问题

3.3.2简单的线性规划问题

食物∕㎏ A B
碳水化合物∕㎏ 0.105 0.105
蛋白质∕㎏ 0.07 0.14
脂肪∕㎏ 0.14 0.07
解:设每天食用X㎏食物A,Y㎏食物B,总成本为z,那么
0.105 x 0.105 y 0.075 0.07 x 0.14 y 0.06 0.14 x 0.07 y 0.06 x0 y0
四个步骤
图解法 目 标 函 数
三 个 转 化
平移找解法
常用方法
最优整数解
调整优值法
距离,斜率等
最优解
四个步骤:
寻找平行线组的 最大(小)纵截距
1。画(画可行域) 2。作(作z=Ax+By=0时的直线L 。) 3。移(平移直线L 。寻找使纵截距取得最值时的点) 4。答(求出点的坐标,并转化为最优解)
小结:
列表
Байду номын сангаас
实际问题
作 答
设出变量
寻找约束条件 建立目标函数
转化
线性规划问题
建模
最优解
调 整
若生产一件甲产品获利2万元,生产一件乙产品获利3 万元,采用那种生产安排利润最大?
y
4 3 2 1
o
1
2
3
4
8
x
X+2y-8=0
设工厂获得的利润为z,则z=2x+3y 2 z y x 3 3
y
4 3
M
o
4
8
x
简单的线性规划问题
关于变量x、y的一次不等式,称为线性约束条件。 求最大值或求最小值的的函数称为目标函数,因为它是 关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值问 题,统称为线性规划问题。 y 可行解 4 满足线性约束的解 可行域 最优解 (x,y)叫做可行解。 由所有可行解组成的 集合叫做可行域。

3.3.2简单线性规划(1_2)--上课用

3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,

3.3 二元一次不等式(组)与简单的线性规划问题4

3.3 二元一次不等式(组)与简单的线性规划问题4

无“=”画虚线
2.同侧同号,异侧异号
y 如:画出不等式 2x+y-6<0 表示的平面区域。
6
解:先画直线2x+y-6=0
取原点(0,0),代入
2x+y-6<0
2x+y-6=0,
因为
o
3
x
2×0+0-6=-6 <0,
2x+y-6=0
所以,原点在2x+y-6<0表示的 平面区域内,不等式 2x+y-6<0 表示的区域如图所示。
例3.一个化肥厂生产甲、乙两种混合肥 料,生产1车皮甲种肥料需用的主要原料 是磷酸盐4吨,硝酸盐18吨,生产1车皮乙 种肥料需用的主要原料是磷酸盐1吨,硝 酸盐15吨,现有库存磷酸盐10吨,硝酸盐 66吨.如果在此基础上进行生产,设x,y 分别是计划生产甲、乙两种混合肥料的车 皮数,请列出满足生产条件的数学关系式, 并画出相应的平面区域.
在平面直角坐标系中表示直线: Ax + By + C =0
某一侧所有点组成的平面区域.
判断方法:“直线定界、特殊点定域”
(2)画不等式 Ax + By + C > 0表示的平面区域时,把直 线Ax + By + C = 0画成虚线以表示区域不包括边界直线. 画不等式 Ax + By + C ≥ 0表示的平面区域时,此区域包 括边界直线,则把边界直线Ax + By + C = 0画成实线.
y 6

3 O
注意:把直线画
如图所示 .
3
x
成虚线以表示区域 不包括边界
例2 画出不等式组
y
x y 0

第一部分 第三章 3.3 3.3.2 简单的线性规划问题

第一部分  第三章  3.3  3.3.2  简单的线性规划问题

返回
x-y-2=0, 解方程组 x+2y-5=0,
x=3, 得最优解 y=1.
∴z最大=2×3+3×1+1=10. 答案:(1)C (2)B
返回
[一点通]
解决线性规划问题的方法是图解法,即借
助直线(把线性目标函数看作斜率确定的一族平行线)与平 面区域(可行域)有交点时,直线在y轴上的截距的最大值或 最小值求解.其基本思路是 (1)根据线性约束条件,在直角坐标系中,把可行域表 示的平面图形准确地画出来;
返回
线性规划的有关概念 名称 约束条件 线性约束条件 意义 变量x,y满足的一组条件
由x,y的 二元一次不等式(或方程) 组成
的不等式组 欲求 最大值 或 最小值 所涉及的变量x,
目标函数
y的解析式 线性目标函数 目标函数是关于x,y的二元一次解析式
返回
名称 可行解
意义 满足 线性约束条件 的解(x,y) 所有 可行解 组成的集合 使目标函数取得 最大值 或 最小值 的 可行解 在线性约束条件下,求线性目标函数 的最大值或最小值问题
B
70%
0.5
6
某冶炼厂至少要生产1.9(万吨)铁,若要求CO2的排放量 不超过2(万吨),则购买铁矿石的最少费用为________
(百万元).
返回
解析:可设需购买 A 矿石 x 万吨,B 矿石 y 万吨, x≥0, y≥0, 则根据题意得到约束条件为: 0.5x+0.7y≥1.9, x+0.5y≤2,
则目标函数 z=2x+3y+1 的最大值为(
)
B.10 D.8.5
返回
[思路点拨]
先作出可行域的直线2x+3y=0,然
后平移直线2x+3y=0,根据直线的截距的几何意义确

3.3.2简单的线性规划问题(整数最优解)

3.3.2简单的线性规划问题(整数最优解)

1.应准确建立数学模型,即根据题意找出约束条件, 确定线性目标函数。 2.用图解法求得数学模型的解,即画出可行域, 在可行域内求得使目标函数取得最值的解.(一般最优解 在直线或直线的交点上,要注意斜率的比较。) 3.要根据实际意义将数学模型的解转化为实际 问题的解,即结合实际情况求得最优解。
二、练习(教材P91 T1、2)
12
例题6 某工厂现有两种大小不同规格的钢板可截成 A、B、C三种规格, 每张钢板可同时截得三种规示 :格的小钢板的块数如下表所
规格类型 钢板类型
A规格
2 1
B规格
1 2
C规格
1 3
第一种钢板
第二种钢板
某顾客需要A,B,C三种规格的成品分别为15,18,27块,若你是 经理,问各截这两种钢板多少张既能满足顾客要求又使所用钢板张 数最少。 解:设需截第一种钢板x张,第二种钢板y张, 分 钢板总张数为Z则, 2x+y≥15, 析 x+2y≥18, 问 x+3y≥27, 目 标 函 数 : 题 x≥0 z = x + y : y≥0
平移L找交点及交点坐标
x 27
x+3y=27
2x+y=15
x+2y=18
当直线L经过点A时z=x+y=11.4, 但它不是最优整数解. 解得交点B,C的坐标B(3,9)和C(4,8)
作直线x+y=12
直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解.
{
2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
y
15 9
B(3,9)

3.3.2-简单的线性规划问题-课件

3.3.2-简单的线性规划问题-课件

[例4] 某人有楼房一幢,室内面积共180 m2,拟分隔成两类 房间作为旅游客房.大房间每间面积为18 m2,可住游客5名,每 名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每 名游客每天住宿费为50元;装修大房间每间需1000元,装修小房 间每间需600元.如果他只能筹款8000元用于装修,且游客能住满 客房,他应隔出大房间和小房间各多少间,才能获得最大收益?
x≥0
迁移变式 3 已知点 P(x,y)满足条件y≤x
(k
2x+y+k≤0
为常数),若 x+3y 的最大值为 8,则 k=________.
解:作出可行域如图 7 所示, 作直线 l0:x+3y=0, 平移 l0 知当 l0 过点 A 时,x+3y 最大, 由于 A 点坐标为(-3k,-3k). ∴-3k-k=8,从而 k=-6.
[例3] 已知变量x,y满足约束条件1≤x+y≤4,-2≤x-y≤2.若 目标函数z=ax+y(其中a>0)仅在点(3,1)处取得最大值,则a的取值 范围为________.
[分析] 由题目可获取以下主要信息: ①可行域已知; ②目标函数在(3,1)处取得最大值. 解答本题可利用逆向思维,数形结合求解.
解方程组-4x+4x+3y=3y=361. 2, 得 D 点坐标为(3,8) ∴zmax=2x+3y=30 当直线经过可行域上的点 B 时,截距3z最小,即 z 最 小.由已知得 B(-3,-4) ∴zmin=2x+3y=2×(-3)+3×(-4)=-18. (2)同理可求 zmax=40,zmin=-9.
3.3.2 简单的线性规划问题
线性规划问题的有关概念:
1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .

课件7:3.3.2 简单的线性规划问题

课件7:3.3.2 简单的线性规划问题

3.在可行域内求目标函数的最优解. 4.根据实际意义将数学模型的解转化为实际问题的解, 即结合实际情况求得最优解. 另外,线性目标函数的最大值、最小值一般在可行域的 顶点处取得,也可能在可行域的边界上取得,即满足条 件的最优解有无数多个.要准确理解z的几何意义.
本课结束 更多精彩内容请登录:

解:设甲、乙两种产品的产量分别为x,y件,
约束条件是x2+ x+2yy≤ ≤450000 , x≥0,y≥0
目标函数是f=3x+2y,要求出适当的x,y,使f=3x+2y取 得最大值. 如下图作出可行域.
设3x+2y=a,a是参数,将它变形为y=- 32x+a2 ,这是斜
率为-
3 2
,随a变化的一族直线.当直线与可行域相交且
A.(1,1) B.(3,2)
C.(5,2) D.(4,1) 【解析】对直线y=x+b进行平移,注意b越大,z越小. 【答案】A
3.若实数x,y满足
x-y+1≤0, x>0,

y x
的取值范围
是( )
A.(0,1)
B.(0,1]
C.(1,+∞)
D.[1,+∞)
x-y+1≤0,
x>0,
【答案】C
4.不等式组
x-y+5≥0 x+y>0
,表示的平面区域是(
)
x<3
【解析】注意直线的虚实知,选C. 【答案】C
课堂小结: 要完成一项确定的任务,如何统筹安排,尽量做到用最少 的资源去完成它,这是线性规划中最常见的问题之一;资 源数量一定,如何安排使用它们,使得效益最好,这是线 性规划中常见的问题之二.解决这类问题的思路和方法: 1.准确建立数学模型,根据实际问题中的已知条件,找出 约束条件和目标函数,应分清已知条件中,哪些属于约束 条件,哪些与目标函数有关,并列出正确的不等式组. 2.由二元一次不等式表示的平面区域画出可行域.

(完整版)简单的线性规划问题(附答案)

(完整版)简单的线性规划问题(附答案)

简单的线性规划问题[学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一 线性规划中的基本概念知识点二 线性规划问题 1.目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A 、B 、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一 求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧ y =2,x -y =1⇒⎩⎪⎨⎪⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求(1)x 2+y 2的最小值; (2)yx的最大值. 解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎪⎨⎪⎧x +2y -4=0,y =2x 的解,即⎝⎛⎭⎫45,85, 又由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0,得C ⎝⎛⎭⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝⎛⎭⎫322=132, 所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v=y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大, 由(1)知C ⎝⎛⎭⎫1,32, 所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案 10解析 画出可行域(如图所示).(x +3)2+y 2即点A (-3,0)与可行域内点(x ,y )之间距离的平方.显然AC 长度最小,∴AC 2=(0+3)2+(1-0)2=10,即(x +3)2+y 2的最小值为10. 题型三 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元.反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y , 把所给的条件表示成不等式组,即约束条件为⎩⎪⎨⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎪⎨⎪⎧50x +20y =2 000,y =x ,解得⎩⎨⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎫2007,2007.由⎩⎪⎨⎪⎧50x +20y =2 000,y =1.5x ,解得⎩⎪⎨⎪⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎫25,752. 所以满足条件的可行域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752, O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎫25,752, 但注意到x ∈N *,y ∈N *,故取⎩⎪⎨⎪⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z=10x +10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为( ) A .-6 B .-2 C .0 D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43 D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z =2x +y 的最大值为7,最小值为1,则b ,c的值分别为( ) A .-1,4 B .-1,-3 C .-2,-1 D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x +2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示).9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B 解析 如图,当y =2x 经过且只经过x +y -3=0和x =m 的交点时,m 取到最大值,此时,即(m,2m )在直线x +y -3=0上,则m =1. 2.答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方, 故z min =⎝⎛⎭⎫122=12.课时精练答案一、选择题 1.答案 A解析 画出可行域,如图所示,解得A (-2,2),设z =2x -y ,把z =2x -y 变形为y =2x -z , 则直线经过点A 时z 取得最小值; 所以z min =2×(-2)-2=-6,故选A. 2.答案 D解析 作出可行域,如图所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0,解得⎩⎪⎨⎪⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C 解析不等式组所表示的平面区域如图阴影部分所示,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C. 5.答案 D解析 由题意知,直线x +by +c =0经过直线2x +y =7与直线x +y =4的交点,且经过直线2x +y =1和直线x =1的交点,即经过点(3,1)和点(1,-1),∴⎩⎪⎨⎪⎧ 3+b +c =0,1-b +c =0,解得⎩⎪⎨⎪⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案 13解析 |x |+|y |≤2可化为 ⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C (3,1)方法一 ∵可行域内的点都在直线x +2y -4=0上方, ∴x +2y -4>0,则目标函数等价于z =x +2y -4,易得当直线z =x +2y -4在点B (7,9)处,目标函数取得最大值z max =21. 方法二 z =|x +2y -4|=|x +2y -4|5·5, 令P (x ,y )为可行域内一动点,定直线x +2y -4=0, 则z =5d ,其中d 为P (x ,y )到直线x +2y -4=0的距离. 由图可知,区域内的点B 与直线的距离最大, 故d 的最大值为|7+2×9-4|5=215.故目标函数z max =215·5=21. 三、解答题12.解 z =2x -y 可化为y =2x -z ,z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l 0:2x -y =0平行的直线系l ,经上下平移,可得:当l 移动到l 1,即经过点A (5,2)时,z max =2×5-2=8.当l 移动到l 2,即过点C (1,4.4)时,z min =2×1-4.4=-2.4.13.解 先画出可行域,如图所示,y =a x 必须过图中阴影部分或其边界.∵A (2,9),∴9=a 2,∴a =3. ∵a >1,∴1<a ≤3.14.解 由题意可画表格如下:(1)设只生产书桌x 张,可获得利润z 元, 则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获得利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元, 则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600, 解得,点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
3x ? 5 y? 25 ? 0
4 6x
讲授新课
以经过点 A(5,2)的直线 l2 所对应的z最大, 以经过点 B(1,1)的直线 l1 所对应的z最小.
y x?1
4C
l02
B
O2
x? 4y? 3? 0
A
3x ? 5 y? 25 ? 0
4 6x
讲授新课
以经过点 A(5,2)的直线 l2 所对应的z最大, 以经过点 B(1,1)的直线 l1 所对应的z最小.
讲授新课
作一组和 l0平行的直线 l:2x+y=z,z∈R. 可知,当 l在l0的右上方时,直线 l上的 点(x,y)满足2x+y>0.
即z>0,而且l 往右 平移时, z随之增 大,在经过不等式 组(1)表示的三角形 区域内的点且平行 于l的直线中,
y x?1
4C
l02
B
O2
x? 4y? 3? 0
3.3.2简单的线性规划 问题(1)
引入新课
1. 某工厂用A、B两种配件生产甲、乙两种 产品,每生产一件甲产品使用4个A配件耗 时1h ,每生产一件乙产品使用 4个B配件耗 时2h ,该厂最多可从配件厂获得 16个A配 件和12个B配件,按每天工作8h计算,该 厂所有的日生产安排是什么?
引入新课
1. 某工厂用A、B两种配件生产甲、乙两种 产品,每生产一件甲产品使用4个A配件耗 时1h ,每生产一件乙产品使用 4个B配件耗 时2h ,该厂最多可从配件厂获得 16个A配 件和12个B配件,按每天工作8h计算,该 厂所有的日生产安排是什么? (1) 设甲、乙两种产品分别生产x、y件,
由已知条件可得二元一次不等式组:
O 2 4 6x
讲授新课
以经过点 A(5,2)的直线 l2 所对应的z最大,
以经过点 B(1,1)的直线 l1 所对应的z最小. 所以,zmax=2×5+2=12, zmin=2×1+1=3.
y x?1
l1 4 C
l2
x? 4y? 3? 0
2
B
O2
A
3x ? 5 y? 25 ? 0
y x?1
4C
l2
l02
x? 4y? 3? 0
A
B
3x ? 5 y? 25 ? 0
O 2 4 6x
讲授新课
以经过点 A(5,2)的直线 l2 所对应的z最大, 以经过点 B(1,1)的直线 l1 所对应的z最小.
y x?1
l1 4 C
l2
l02
x? 4y? 3? 0
A
B
3x ? 5 y? 25 ? 0
引入新课
(3)若生产一件甲产品获利2万元,生产一 件乙产品获利3万元,采用哪种生产安排 利润最大?
引入新课
(3)若生产一件甲产品获利2万元,生产一 件乙产品获利3万元,采用哪种生产安排 利润最大? 设生产甲产品x乙产品y件时,工厂获得的 利润为z,则z=2x+3y.上述问题就转化为:
引入新课
(3)若生产一件甲产品获利2万元,生产一 件乙产品获利3万元,采用哪种生产安排 利润最大? 设生产甲产品x乙产品y件时,工厂获得的 利润为z,则z=2x+3y.上述问题就转化为: 当x、y满足不等式※并且为非负整数时, z的最大值是多少?
? x ? 4 y ? ?3,
下列条件:?? 3 x ? 5 y ? 25, (1)
?? x ? 1,
求z的最大值和最小值.
讲授新课
? x ? 4 y ? ? 3,
? ?
3
x
?
5
y
?
25 ,
?? x ? 1,
(1)
y x?1 4C
2
B
O2
x? 4y? 3? 0
A
3x ? 5 y? 25 ? 0
4 6x
讲授新课
我们先画出不等式组 (1)表示的平面区
域,如图中△ ABC内部且包括边界,点 (0,0)
不在这个三角形 区域内,当 x=0, y=0时,z=2x+y =0,点(0,0)在直 线l0: 2x+y=0上.
y x?1
4C
l02
B
O2
x? 4y? 3? 0
A
3x ? 5 y? 25 ? 0
4 6x
讲授新课
3. 一般地,求线性目标函数在线性约束 条件下的最大值或最小值的问题,统称 为线性规划问题 .
4. 满足线性约束条件的解 (x,y)叫做可行解.
讲授新课
3. 一般地,求线性目标函数在线性约束 条件下的最大值或最小值的问题,统称 为线性规划问题 .
4. 满足组成的集合叫做 可行域.
讲授新课
3. 一般地,求线性目标函数在线性约束 条件下的最大值或最小值的问题,统称 为线性规划问题 .
4. 满足线性约束条件的解 (x,y)叫做可行解. 5. 由所有可行解组成的集合叫做 可行域. 6. 使目标函数取得最大值或最小值的可行
解,它们都叫做这个问题的 最优解.
讲授新课 例题分析
例1. 设 z=2x+y,式中变量x、 y满足
讲授新课
作一组和 l0平行的直线 l:2x+y=z,z∈R.
y x?1
4C
l02
B
O2
x? 4y? 3? 0
A
3x ? 5 y? 25 ? 0
4 6x
讲授新课
作一组和 l0平行的直线 l:2x+y=z,z∈R.
y x?1
4C
l02
B
O2
x? 4y? 3? 0
A
3x ? 5 y? 25 ? 0
4 6x
讲授新课
2. 欲求最大值或最小值的函数z=2x+3y 叫做目标函数.
讲授新课
2. 欲求最大值或最小值的函数z=2x+3y 叫做目标函数. 由于 z=2x+y又是x、y的一次解析式, 所以又叫线性目标函数.
讲授新课
3. 一般地,求线性目标函数在线性约束 条件下的最大值或最小值的问题,统称 为线性规划问题 .
引入新课
1. 某工厂用A、B两种配件生产甲、乙两种 产品,每生产一件甲产品使用4个A配件耗 时1h ,每生产一件乙产品使用 4个B配件耗 时2h ,该厂最多可从配件厂获得 16个A配 件和12个B配件,按每天工作8h计算,该 厂所有的日生产安排是什么? (1) 设甲、乙两种产品分别生产x、y件,
由已知条件可得二元一次不等式组: (2)将上述不等式组表示成平面上的区域,
讲授新课
1. 上述问题中,不等式组是一组对变量 x、y的约束条件,这组约束条件都是 关于x、y的一次不等式,所以又叫线 性约束条件.
讲授新课
1. 上述问题中,不等式组是一组对变量 x、y的约束条件,这组约束条件都是 关于x、y的一次不等式,所以又叫线 性约束条件. 线性约束条件除了用一次不等式表示 外,有时也用一次方程表示.
相关文档
最新文档