光学薄膜-基础知识学习教材PPT课件
合集下载
《薄膜光学基础》PPT课件
1 2
3
先考虑由基底g和膜层3
g
组成的单层膜系统。
由式(3-225)可得,此单层膜系统的反射系数:
r r23 r3g exp( j) 1 r23r3g exp( j)
由于是λ。/4膜系,所以:
r r23 r3g 1 r23r3g
1
再考虑由膜层2和反射系
2
数为 r 的等效膜层(3,g)
2
R1
nA nA
nI nI
式中
nI
nH2 nG
是镀第一层膜后的等效折射率。若在高折射率膜层上再镀一层
低折射率膜层,其反射率为
2
R2
nA nA
nII nII
式中
nII
nL2 nI
nL nH
2
nG
是镀双层膜后的等效折射率。依此类推,当膜层为偶数(2p)层 时, (HL)p膜系的等效折射率为
3
组成的“单层膜”系统。
g
这样,此“单层膜”系统的反射系数:
r r12 r 1 r12 r
最后得到双层膜系统的反射系数:
r r12 r23 r3g r12r23r3g 1 r12r23 r12r3g r23r3g
考虑到正入射的菲涅耳系数:
rij
ni ni
nj nj
令r=0,可得双层减反膜的材料折射率条件:
此时反射率最小,透过率最大:
Rm
r12 1
r23 r12r23
2
n22 n22
n1n3 n1n3
2
Rm
r12 1
r23 r12r23
2
n22 n22
n1n3 n1n3
2
当满足下面条件时,R=0,消反射:
光学薄膜基础知识
光学薄膜材料需要适应各 种环境条件,如湿度、紫 外线等,以保证其光学性 能的稳定。
机械性能
硬度与耐磨性
光学薄膜需要有足够的硬 度和耐磨性,以抵抗摩擦 和划痕对光学表面的影响。
韧性
光学薄膜材料需要具有一 定的韧性,以防止因受到 外力而破裂或变形。
附着力
光学薄膜与基材之间的附 着力需要足够强,以保证 薄膜的稳定性和使用寿命。
表面处理与涂层技术
通过表面处理与涂层技术,可以改善光学薄膜的表面质量、提高附着力、增强抗划伤能力等,从而提高其稳定性 和使用寿命。
降低制造成本
规模化生产
通过规模化生产,可以实现成本的降 低和效率的提高,同时提高产品的可 靠性和一致性。
优化工艺参数
通过优化工艺参数,可以减少生产过 程中的浪费和损耗,降低制造成本。 同时,采用先进的生产设备和管理模 式,也能够实现成本的降低和效率的 提高。Fra bibliotek环保照明
光学薄膜可以用于LED照明设备中,提高光 效和照明质量,降低能耗和热量的产生,同 时还可以实现可调色温、可调亮度等功能, 为环保照明提供更多可能性。
THANKS
感谢观看
根据材料分类
光学薄膜可以分为金属膜、介质膜、半导体膜等,不同的材料对光的 反射、透射、吸收等特性有显著差异。
02
光学薄膜的特性
光学性能
反射与透射
光学薄膜能够根据需要改变光的 反射和透射行为,如增反膜增加 反射,减反膜减少反射并增加透
射。
干涉效应
薄膜的厚度和材料会影响光的干涉, 通过调整薄膜的厚度和材料,可以 实现对特定波长的光的干涉增强或 减弱。
光学薄膜广泛应用于光学仪器、摄影 器材、照明设备、显示屏幕等领域, 对提高光学元件的性能和改善光束质 量具有重要作用。
机械性能
硬度与耐磨性
光学薄膜需要有足够的硬 度和耐磨性,以抵抗摩擦 和划痕对光学表面的影响。
韧性
光学薄膜材料需要具有一 定的韧性,以防止因受到 外力而破裂或变形。
附着力
光学薄膜与基材之间的附 着力需要足够强,以保证 薄膜的稳定性和使用寿命。
表面处理与涂层技术
通过表面处理与涂层技术,可以改善光学薄膜的表面质量、提高附着力、增强抗划伤能力等,从而提高其稳定性 和使用寿命。
降低制造成本
规模化生产
通过规模化生产,可以实现成本的降 低和效率的提高,同时提高产品的可 靠性和一致性。
优化工艺参数
通过优化工艺参数,可以减少生产过 程中的浪费和损耗,降低制造成本。 同时,采用先进的生产设备和管理模 式,也能够实现成本的降低和效率的 提高。Fra bibliotek环保照明
光学薄膜可以用于LED照明设备中,提高光 效和照明质量,降低能耗和热量的产生,同 时还可以实现可调色温、可调亮度等功能, 为环保照明提供更多可能性。
THANKS
感谢观看
根据材料分类
光学薄膜可以分为金属膜、介质膜、半导体膜等,不同的材料对光的 反射、透射、吸收等特性有显著差异。
02
光学薄膜的特性
光学性能
反射与透射
光学薄膜能够根据需要改变光的 反射和透射行为,如增反膜增加 反射,减反膜减少反射并增加透
射。
干涉效应
薄膜的厚度和材料会影响光的干涉, 通过调整薄膜的厚度和材料,可以 实现对特定波长的光的干涉增强或 减弱。
光学薄膜广泛应用于光学仪器、摄影 器材、照明设备、显示屏幕等领域, 对提高光学元件的性能和改善光束质 量具有重要作用。
光学薄膜基础知识共64页
光学薄膜基础知识
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
Байду номын сангаас
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
Байду номын сангаас
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
光学薄膜-基础知识
稳定性和光学性能。
热导率
表示薄膜材料导热的能 力,影响光学薄膜的散
热性能。
光学常数
描述薄膜材料对光传播 的影响,如折射率、消
光系数等。
机械性能参数
硬度
表示薄膜材料的抗划痕能力, 影响光学薄膜的耐用性。
弹性模量
表示薄膜材料的刚度,影响光 学薄膜的稳定性和抗冲击能力 。
抗张强度
表示薄膜材料抵抗拉伸的能力 ,影响光学薄膜的耐用性和稳 定性。
反射率
表示光在薄膜表面反射的比例,影响光的利 用率。
吸收率
表示光被薄膜吸收的比例,影响光的损耗。
透射率
表示光透过薄膜的比例,影响光的透过效果。
干涉效应
由于多层薄膜对光的干涉作用,影响光的相 位和振幅。
物理性能参数
密度
薄膜材料的密度,影响 光学薄膜的质量和稳定
性。
热膨胀系数
薄膜材料受热后的膨胀 程度,影响光学薄膜的
更稳定的性能等。
多功能化
光学薄膜正朝着多功能化的方向发 展,如抗反射、抗眩光、增透、偏 振等功能,以满足不同应用场景的 需求。
环保化
随着环保意识的提高,光学薄膜的 环保性能也受到了越来越多的关注, 如使用环保材料、降低生产过程中 的环境污染等。
技术挑战
制造工艺
光学薄膜的制造工艺非常复杂, 需要高精度的设备和技术,如何 提高制造工艺的稳定性和重复性
02
它是一种重要的光学元件,广泛 应用于各种领域,如显示、照明 、通信、摄影等。
光学薄膜的特性
01
02
03
高反射性
通过选择合适的膜层材料 和厚度,可以获得高反射 率,用于增强光的反射效 果。
高透射性
通过调整膜层的折射率和 厚度,可以获得高透射率, 用于提高ቤተ መጻሕፍቲ ባይዱ的透射效果。
热导率
表示薄膜材料导热的能 力,影响光学薄膜的散
热性能。
光学常数
描述薄膜材料对光传播 的影响,如折射率、消
光系数等。
机械性能参数
硬度
表示薄膜材料的抗划痕能力, 影响光学薄膜的耐用性。
弹性模量
表示薄膜材料的刚度,影响光 学薄膜的稳定性和抗冲击能力 。
抗张强度
表示薄膜材料抵抗拉伸的能力 ,影响光学薄膜的耐用性和稳 定性。
反射率
表示光在薄膜表面反射的比例,影响光的利 用率。
吸收率
表示光被薄膜吸收的比例,影响光的损耗。
透射率
表示光透过薄膜的比例,影响光的透过效果。
干涉效应
由于多层薄膜对光的干涉作用,影响光的相 位和振幅。
物理性能参数
密度
薄膜材料的密度,影响 光学薄膜的质量和稳定
性。
热膨胀系数
薄膜材料受热后的膨胀 程度,影响光学薄膜的
更稳定的性能等。
多功能化
光学薄膜正朝着多功能化的方向发 展,如抗反射、抗眩光、增透、偏 振等功能,以满足不同应用场景的 需求。
环保化
随着环保意识的提高,光学薄膜的 环保性能也受到了越来越多的关注, 如使用环保材料、降低生产过程中 的环境污染等。
技术挑战
制造工艺
光学薄膜的制造工艺非常复杂, 需要高精度的设备和技术,如何 提高制造工艺的稳定性和重复性
02
它是一种重要的光学元件,广泛 应用于各种领域,如显示、照明 、通信、摄影等。
光学薄膜的特性
01
02
03
高反射性
通过选择合适的膜层材料 和厚度,可以获得高反射 率,用于增强光的反射效 果。
高透射性
通过调整膜层的折射率和 厚度,可以获得高透射率, 用于提高ቤተ መጻሕፍቲ ባይዱ的透射效果。
《光学薄膜的形成》PPT课件
薄膜的形成是由成核开始的。
薄膜的形成——薄膜形成过程和生长模式
薄膜的形成——薄膜形成过程和生长模式
薄膜的形成——薄膜形成过程和生长模式
★ 薄膜形成过程和生长模式
薄膜形成过程是指形 成稳定核之后的过程。
薄膜生长模式是指薄 膜形成的宏观形式。
薄膜的形成——薄膜形成过程和生长模式
薄膜形成过程描述:
表面扩散势垒 表面扩散能
吸附能
ED
1 6
~
1 2
Ed
薄膜的形成——凝结过程
平均表面扩散时间 D
吸附原子在吸附位置上的停留时间称为平均表面扩散
时间,用 D 表示。
D
o
exp
ED kT
式中, o 是表面原子沿表面水平方向振动周期,o o
平均表面扩散距离 x (设ao 为相邻吸附位置间距)
x 4Da
D ao2 / 4 D
x
4D a ao
a D
ao exp Ed
ED
2kT
薄膜的形成——凝结过程
薄膜制备时,要 达到完全凝结的 工艺设计原则:
• 提高淀积速率
• 降低基片温度
• 选用吸附能大 的基片
1. 单体吸附;
2.形成小原子团(胚芽);
3.形成临界核(开始成核); 4.临界核捕获原子,开始长大; 5.临界核长大的同时,在非捕获区,单体逐渐形成临界核; 6.稳定核长大,彼此连接形成小岛,新面积形成;
7.新面积吸附单体,发生“二次”成核; 8.小岛结合形成大岛,大岛长大并相互结合,有产生 新面积,并发生“二次”、“三次”成核;
宏观表面能计算、表面能概念、结构
薄膜的形成——薄膜形成过程和生长模式
薄膜的形成——薄膜形成过程和生长模式
薄膜的形成——薄膜形成过程和生长模式
★ 薄膜形成过程和生长模式
薄膜形成过程是指形 成稳定核之后的过程。
薄膜生长模式是指薄 膜形成的宏观形式。
薄膜的形成——薄膜形成过程和生长模式
薄膜形成过程描述:
表面扩散势垒 表面扩散能
吸附能
ED
1 6
~
1 2
Ed
薄膜的形成——凝结过程
平均表面扩散时间 D
吸附原子在吸附位置上的停留时间称为平均表面扩散
时间,用 D 表示。
D
o
exp
ED kT
式中, o 是表面原子沿表面水平方向振动周期,o o
平均表面扩散距离 x (设ao 为相邻吸附位置间距)
x 4Da
D ao2 / 4 D
x
4D a ao
a D
ao exp Ed
ED
2kT
薄膜的形成——凝结过程
薄膜制备时,要 达到完全凝结的 工艺设计原则:
• 提高淀积速率
• 降低基片温度
• 选用吸附能大 的基片
1. 单体吸附;
2.形成小原子团(胚芽);
3.形成临界核(开始成核); 4.临界核捕获原子,开始长大; 5.临界核长大的同时,在非捕获区,单体逐渐形成临界核; 6.稳定核长大,彼此连接形成小岛,新面积形成;
7.新面积吸附单体,发生“二次”成核; 8.小岛结合形成大岛,大岛长大并相互结合,有产生 新面积,并发生“二次”、“三次”成核;
宏观表面能计算、表面能概念、结构
《现代光学薄膜技术》课件
分类
按照功能和应用,光学薄膜可以 分为增透膜、反射膜、滤光膜、 干涉膜等。
光学薄膜的应用领域
显示行业
液晶显示、等离子显示、投影显示等。
照明行业
LED照明、荧光灯等。
摄影器材
镜头、滤镜等。
太阳能行业
太阳能电池等。
光学薄膜的发展历程
19世纪末
光学薄膜概念诞生,主要用于 镜头增透。
20世纪初
光学薄膜技术逐渐成熟,应用 领域扩大。
真空蒸发镀膜技术适用于各种材料,如金属、半导体、绝缘体等,可以 制备单层膜、多层膜以及复合膜。
真空蒸发镀膜的缺点是难以控制薄膜的厚度和均匀性,且不适用于制备 高熔点材料。
溅射镀膜
溅射镀膜是一种利用高能粒子轰击靶材表面,使靶材原子或分子溅射出来并沉积在基片上形 成薄膜的方法。该方法具有较高的沉积速率和较好的薄膜质量,适用于制备高质量的多层光 学薄膜。
详细描述
高温防护膜通常由耐高温材料制成,如硅、石英等,能够承受较高的温度和恶劣的环境条件。这种薄膜常用于工 业炉、高温炉、激光器等设备的光学元件保护,防止高温对光学表面的损伤和退化,保证设备的长期稳定性和可 靠性。
05
CATALOGUE
光学薄膜的未来发展
新材料的研究与应用
光学薄膜新材料
如新型高分子材料、金属氧化物、氮 化物等,具有优异的光学性能和稳定 性,能够提高光学薄膜的耐久性和功 能性。
THANKS
感谢观看
离子束沉积技术可以应用于各种材料,如金属、非金属、 半导体、绝缘体等,可以制备单层膜、多层膜以及复合膜 。
离子束沉积的缺点是设备成本较高,且需要较高的真空度 条件。
03
CATALOGUE
光学薄膜的性能参数
按照功能和应用,光学薄膜可以 分为增透膜、反射膜、滤光膜、 干涉膜等。
光学薄膜的应用领域
显示行业
液晶显示、等离子显示、投影显示等。
照明行业
LED照明、荧光灯等。
摄影器材
镜头、滤镜等。
太阳能行业
太阳能电池等。
光学薄膜的发展历程
19世纪末
光学薄膜概念诞生,主要用于 镜头增透。
20世纪初
光学薄膜技术逐渐成熟,应用 领域扩大。
真空蒸发镀膜技术适用于各种材料,如金属、半导体、绝缘体等,可以 制备单层膜、多层膜以及复合膜。
真空蒸发镀膜的缺点是难以控制薄膜的厚度和均匀性,且不适用于制备 高熔点材料。
溅射镀膜
溅射镀膜是一种利用高能粒子轰击靶材表面,使靶材原子或分子溅射出来并沉积在基片上形 成薄膜的方法。该方法具有较高的沉积速率和较好的薄膜质量,适用于制备高质量的多层光 学薄膜。
详细描述
高温防护膜通常由耐高温材料制成,如硅、石英等,能够承受较高的温度和恶劣的环境条件。这种薄膜常用于工 业炉、高温炉、激光器等设备的光学元件保护,防止高温对光学表面的损伤和退化,保证设备的长期稳定性和可 靠性。
05
CATALOGUE
光学薄膜的未来发展
新材料的研究与应用
光学薄膜新材料
如新型高分子材料、金属氧化物、氮 化物等,具有优异的光学性能和稳定 性,能够提高光学薄膜的耐久性和功 能性。
THANKS
感谢观看
离子束沉积技术可以应用于各种材料,如金属、非金属、 半导体、绝缘体等,可以制备单层膜、多层膜以及复合膜 。
离子束沉积的缺点是设备成本较高,且需要较高的真空度 条件。
03
CATALOGUE
光学薄膜的性能参数
薄膜光学PPT课件
溶胶-凝胶法(Sol-Gel)
Sol-Gel是一种制备光学薄膜的新方法,具有工艺简单、成本低等优点。该方法制备的薄 膜具有纯度高、均匀性好等优点,可广泛应用于各种光学器件的制造。
在新能源和光电器件中的应用前景
太阳能光伏电池
光学薄膜在太阳能光伏电池中有着广泛的应用,如减反射膜、抗反射膜等。通过使用高性能的光学薄膜,可以提高光 伏电池的光电转换效率和稳定性。
散射类型
瑞利散射、米氏散射、拉 曼散射等。
散射强度
与波长、散射颗粒或分子 的尺寸、形状和折射率有 关。
光的吸收和反射
光的吸收
光波通过介质时,能量 被介质吸收转化为热能 或其他形式的能量的现
象。
吸收系数
表示介质对不同波长光 的吸收能力,与物质的
性质和浓度有关。
反射现象
光波在介质表面发生方 向改变的现象,可分为
光电探测器
在光电探测器中,光学薄膜可以起到保护、增强光信号的作用。高性能的光学薄膜可以提高探测器的响应速度、灵敏 度和稳定性。
激光器
在激光器中,光学薄膜可以起到调制激光输出、提高激光质量的作用。新型的光学薄膜材料和制备技术 可以推动激光器技术的发展,为新能源和光电器件的应用提供更广阔的前景。
THANKS
干涉仪测试的原理基于光的干涉现象,通过将待测薄膜放置在干涉仪中,与标准参 考膜片进行干涉,通过测量干涉图谱的变化来计算薄膜的光学常数。
分光光度计测试
分光光度计测试是一种通过测量 光的吸收光谱来分析物质的方法, 广泛应用于薄膜的光学性能测试。
分光光度计测试可以测量薄膜的 吸收光谱、反射光谱和透射光谱, 从而获得薄膜的折射率、反射率、
新型制备技术的探索
化学气相沉积(CVD)
Sol-Gel是一种制备光学薄膜的新方法,具有工艺简单、成本低等优点。该方法制备的薄 膜具有纯度高、均匀性好等优点,可广泛应用于各种光学器件的制造。
在新能源和光电器件中的应用前景
太阳能光伏电池
光学薄膜在太阳能光伏电池中有着广泛的应用,如减反射膜、抗反射膜等。通过使用高性能的光学薄膜,可以提高光 伏电池的光电转换效率和稳定性。
散射类型
瑞利散射、米氏散射、拉 曼散射等。
散射强度
与波长、散射颗粒或分子 的尺寸、形状和折射率有 关。
光的吸收和反射
光的吸收
光波通过介质时,能量 被介质吸收转化为热能 或其他形式的能量的现
象。
吸收系数
表示介质对不同波长光 的吸收能力,与物质的
性质和浓度有关。
反射现象
光波在介质表面发生方 向改变的现象,可分为
光电探测器
在光电探测器中,光学薄膜可以起到保护、增强光信号的作用。高性能的光学薄膜可以提高探测器的响应速度、灵敏 度和稳定性。
激光器
在激光器中,光学薄膜可以起到调制激光输出、提高激光质量的作用。新型的光学薄膜材料和制备技术 可以推动激光器技术的发展,为新能源和光电器件的应用提供更广阔的前景。
THANKS
干涉仪测试的原理基于光的干涉现象,通过将待测薄膜放置在干涉仪中,与标准参 考膜片进行干涉,通过测量干涉图谱的变化来计算薄膜的光学常数。
分光光度计测试
分光光度计测试是一种通过测量 光的吸收光谱来分析物质的方法, 广泛应用于薄膜的光学性能测试。
分光光度计测试可以测量薄膜的 吸收光谱、反射光谱和透射光谱, 从而获得薄膜的折射率、反射率、
新型制备技术的探索
化学气相沉积(CVD)
《光学薄膜》课件
择、沉积工艺、薄膜结构设计和表面
处理等,其中控制沉积过程是关键。
3光学薄膜的工作原理Fra bibliotek光学薄膜通过控制入射光的干涉和衍 射现象,实现对光的传播和反射的控 制,从而产生特定的光学效果。
光学薄膜的性质及影响因素
光学薄膜的性质包括光学常数、厚度、 结构和成分等,这些因素会影响薄膜 的光学性能和应用效果。
第三部分:分类与应用
第四部分:挑战与未来
光学薄膜在未来的前景
随着科技的发展和需求的 增长,光学薄膜将继续发 挥重要作用,应用范围将 不断扩大,性能和效率将 进一步提高。
当前光学薄膜研究面 临的挑战
光学薄膜研究面临材料选 择、沉积工艺、薄膜稳定 性和性能优化等方面的挑 战,需要综合应用多学科 知识来解决。
如何解决未来研究中 的问题
光学薄膜的应用范围
光学薄膜广泛应用于光学仪器、光通信、太阳能、显示技术和传感器等领域,提供了独特的 光学性能和功能。
光学薄膜的特性与优点
光学薄膜具有高透过率、高反射率、多色彩、可调性和可控性等特性,使其成为设计和制造 各种光学元件的理想材料。
第二部分:原理
1
光学薄膜的制备过程
2
光学薄膜的制备过程包括薄膜材料选
《光学薄膜》PPT课件
# 光学薄膜
光学薄膜是指具有特定光学性质和应用的薄膜材料,通过光的干涉和衍射现 象产生彩色效果。本课件将介绍光学薄膜的基本概念、工作原理以及在各个 领域中的应用。
第一部分:介绍
什么是光学薄膜?
光学薄膜是一种特殊的薄膜,其厚度通常在波长数量级,能够通过干涉和衍射现象来控制光 的传播和反射。
未来研究可以加强材料设 计、工艺优化、表征技术 以及理论模拟等方面的研 究,从而解决光学薄膜研 究中的问题。
光学薄膜原理 ppt课件
1.2E6~12000ev
由炽热物体、气体 放电或其它光源激 发分子或原子等微 观客体所产生的电
磁辐射
用高速电子流轰击原子中的内层 电子而产生的电磁辐射 放射性原子衰变发出的电磁辐射 或高能粒子碰撞产生的电磁辐射
光学薄膜基础理论
几个条件: ✓工作波段:光学 ✓薄膜厚度于考虑的波长在一个数量级 ✓薄膜的面积与波长相比可认为无限大 ✓薄膜材料各向均匀、同性 ✓薄膜材料为非铁磁性材料 ✓光穿过膜层而非沿着膜层在膜层内传播
20 0 1
c os 0 c os1
R r 2 (0 1 )2 0 1
T
N1 N0
t2
4N0 N1 (N0 N1)2
T
1 0
ts2
401 (0 1)2
s N cos
p N / cos
第三节 单层薄膜的传输矩阵
E12
1 2 E2
1
21
H2
E12
1 2
E2
1
21
H2
( e iδ1 = cosδ1+ i sinδ1, e -iδ1 = cos δ1 - i sin δ1 )
η: Amended admi. or effect. index
倾斜入射时反射系数和透射系数:
由切向连续
Ei 0 tan
Er 0 tan
Et 1 ta n
(1)
Hi 0 tan
Hr 0 tan
Ht 1 ta n
E i 0 0 tan
Er
0 0 tan
Et
1 1tan
(2)
切向反射系数: (1)×η1- (2): 切向透射系数:(1)×η0+(2):
N
c os
由炽热物体、气体 放电或其它光源激 发分子或原子等微 观客体所产生的电
磁辐射
用高速电子流轰击原子中的内层 电子而产生的电磁辐射 放射性原子衰变发出的电磁辐射 或高能粒子碰撞产生的电磁辐射
光学薄膜基础理论
几个条件: ✓工作波段:光学 ✓薄膜厚度于考虑的波长在一个数量级 ✓薄膜的面积与波长相比可认为无限大 ✓薄膜材料各向均匀、同性 ✓薄膜材料为非铁磁性材料 ✓光穿过膜层而非沿着膜层在膜层内传播
20 0 1
c os 0 c os1
R r 2 (0 1 )2 0 1
T
N1 N0
t2
4N0 N1 (N0 N1)2
T
1 0
ts2
401 (0 1)2
s N cos
p N / cos
第三节 单层薄膜的传输矩阵
E12
1 2 E2
1
21
H2
E12
1 2
E2
1
21
H2
( e iδ1 = cosδ1+ i sinδ1, e -iδ1 = cos δ1 - i sin δ1 )
η: Amended admi. or effect. index
倾斜入射时反射系数和透射系数:
由切向连续
Ei 0 tan
Er 0 tan
Et 1 ta n
(1)
Hi 0 tan
Hr 0 tan
Ht 1 ta n
E i 0 0 tan
Er
0 0 tan
Et
1 1tan
(2)
切向反射系数: (1)×η1- (2): 切向透射系数:(1)×η0+(2):
N
c os
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
眼镜镀膜----AR 滤光片 幕墙玻璃----AR 液晶领域----ITO膜
车灯、冷光镜、舞台灯光滤光片 光通信领域:DWDM、光纤薄膜器件 红外膜 激光领域----激光反射腔高反射膜 CD、DVD驱动器 投影显示
数码领域
光学薄膜在光学系统中的作用
提高光学效率、减少杂光。如高效减反射膜、高反射膜。 实现光束的调整或再分配。如分束膜、分色膜、偏振分 光膜就是根据不同需要进行能量再分配的光学元件。
四、带通滤光片
从光学薄膜的角度来讲,最有意义的进 展是1899年出现的法布里-珀珞干涉仪。 它是干涉带通滤光片的一种基本结构。而 自从1940年出现金属-介质滤光片以来, 它已经在光学、光谱学、激光、天文物理 学等各个领域得到了广泛的应用。
四、带通滤光片
法布里—珀珞的结构
四、带通滤光片
带通ቤተ መጻሕፍቲ ባይዱ主要参数
产生的条件:
1、光波产生的相位差固定不变 2、光波的振幅不能相互垂直 3、光波的频率要一致
什么叫做光学薄膜?
所谓光学薄膜,首先它应该是薄的 然后它应该会产生一定光学效应的
那么要薄到什么程度呢?
定性的讲:它的厚度应该和入射光波长可以相 比拟的 物理意义上讲:能引起光的干涉现象的膜层
与镀膜技术密切相关的产业
二、分束膜
介质分束镜的优缺点
优点:吸收小,几乎可以忽略 缺点:光谱范围窄、偏振分离明 显、角度效应明显
二、分束膜
两类分束镜的曲线
K9基底上分光膜理论曲线
100
80
60
% Transmittance
40
20
0 400 450 500 550 600 650 Wavelength (nm) 700 750 800
一、光学薄膜的类型
我们根据其作用,可以简单的分为
1、减反射膜或者叫增透膜 2、分束膜 3、反射膜 4、滤光片 5、其他特殊应用的膜
一、减反膜
1、减反膜的作用 o 增加光学系统透过率 o 减少杂散光 o 提高象质 o 增加作用距离
一、减反膜
2、减反膜按层数分类 o 单层减反膜
一、减反膜
干涉截止滤光片的几个重要指标
1.透射曲线开始上升(或下降) 时的波长以及此曲线上升(或下 降)的许可斜率 2.高透射带的光谱宽度、平均 透射率以及在此透射带内许可 的最小透射率 3.具有低透射率的反射带(抑 制带)的光谱宽度以及在此范围 内所许可的最大透射率。
干涉截止滤光片的分类
可以分为长波通和短波通两类,见下图
二、分束膜
正确
NPBS
错误
PBS
二、分束膜
分束膜根据镀膜材料还有金属分 束镜和介质分束镜两种。 两种分束镜各有各的优缺点,可 以根据不同的使用要求和工艺水平 采用不同的类型。
二、分束膜
金属分束镜的优缺点
优点:中性好,光谱范围宽、偏振效 应小、制作简单
缺点:吸收大、激光阈值低
使用注意事项:光的入射方向
通过波长的选择性透过提高系统信噪比。如窄带及带 通滤光片、长波通、短波通滤光片。
实现某些特定功能。如ITO透明导电膜、保护膜等
当前最热门的应用领域
1、数码相机用的IR-CUT
2、投影显示光学系统----包括LCD、DLP、 LCOS
3、光通讯:DWDM (dense wavelengh division multiplexer)滤光片 4、减反射膜----永远的热门
一、减反膜
3、另一种分类 单点减反 宽波段减反(超宽波段) 双波段减反 宽角度减反
减反膜几个重要的技术指标
使用的波段 使用的角度或者角度范围 剩余反射率要求 使用环境 在激光领域还有激光阈值要求
二、分束膜
一般来讲,分束膜总是倾斜使用,常用的是 45度。分束膜有两种:中性分束膜(也就是一 般讲的消偏振NPBS)、偏振分束膜(也就是通 常讲的PBS)。 中性分束镜有两种结构:平板型和棱镜型。 而PBS一般都用棱镜。平板结构由于不可避免 的象散问题所以只用于中低要求的光学装置。
光学薄膜
----基础知识介绍
光是什么?
光是一种电磁波,(在真空中的)可见光波长范围是700~400nm ;红外光为约700 到107nm量级;紫外光1-400nm;比紫外光短的还有X射线、γ 射线(<0.001nm)等; 而比红外长的就是我们熟悉的无线电波
什么叫光的干涉?
物理定义:
当2个或多个光波(光束)在空间叠加 时,在叠加区域内出现的各点强度稳定的强弱 分布现象。
λ0——中心波长,或峰值波长
Tmax——中心波长透射率,
或 , 峰值透射率
2⊿λ——透过率为峰值透过率
一半的波长宽度,也称通带半宽 度,有时也用2⊿λ/ λ0表示相对半 宽度
四、带通滤光片
根据膜层的不同,可分为
金属滤光片 全介质滤光片 双半波、三半波全介质滤光片 金属诱导透射滤光片
o
双层减反膜
单层膜、 λ/4-λ/4和 λ/2-λ/2型双层增透膜理论曲线
5
4
3
% Reflectance
2
1
0 400 450 500 550 600 Wavelength (nm) 650 700
一、减反膜
o
多层减反膜
K9基底上各种设计的增透膜理论曲线比较
5
4
3
% Reflectance
2
1
0 400 450 500 550 600 Wavelength (nm) 650 700
三、滤光片
一般我们把改变光束性质或者颜色的膜 叫做滤光膜。 常见的有: 1、干涉截止滤光片
2、带通滤光片
3、金属滤光片 4、负滤光片
三、滤光片
1、干涉截止滤光片 要求某一波长范围的光束高透,而偏离 这一区域的光束骤然变为截止------我们把这中 类型的膜叫干涉截止滤光片。此类膜有着广泛 的用途,例如照明上用的冷光碗上的冷光膜、 舞厅里色彩变幻的旋转灯以及我们在做的 IRCUT都属于此类。
100 80 60
单半波与双半波滤光片光谱曲线
% Transmittance
40 20 0 500 520 540 560 Wavelength (nm) 580 600
金属诱导透射滤光片
介质带通滤光片的结构为:介质反射膜/间隔层/ 介质反射膜/间隔层/介质反射膜.但是滤光片也可以 是混合结构,例如用一层金属膜如银膜代替两间隔之 间的介质反射膜形式如下:
车灯、冷光镜、舞台灯光滤光片 光通信领域:DWDM、光纤薄膜器件 红外膜 激光领域----激光反射腔高反射膜 CD、DVD驱动器 投影显示
数码领域
光学薄膜在光学系统中的作用
提高光学效率、减少杂光。如高效减反射膜、高反射膜。 实现光束的调整或再分配。如分束膜、分色膜、偏振分 光膜就是根据不同需要进行能量再分配的光学元件。
四、带通滤光片
从光学薄膜的角度来讲,最有意义的进 展是1899年出现的法布里-珀珞干涉仪。 它是干涉带通滤光片的一种基本结构。而 自从1940年出现金属-介质滤光片以来, 它已经在光学、光谱学、激光、天文物理 学等各个领域得到了广泛的应用。
四、带通滤光片
法布里—珀珞的结构
四、带通滤光片
带通ቤተ መጻሕፍቲ ባይዱ主要参数
产生的条件:
1、光波产生的相位差固定不变 2、光波的振幅不能相互垂直 3、光波的频率要一致
什么叫做光学薄膜?
所谓光学薄膜,首先它应该是薄的 然后它应该会产生一定光学效应的
那么要薄到什么程度呢?
定性的讲:它的厚度应该和入射光波长可以相 比拟的 物理意义上讲:能引起光的干涉现象的膜层
与镀膜技术密切相关的产业
二、分束膜
介质分束镜的优缺点
优点:吸收小,几乎可以忽略 缺点:光谱范围窄、偏振分离明 显、角度效应明显
二、分束膜
两类分束镜的曲线
K9基底上分光膜理论曲线
100
80
60
% Transmittance
40
20
0 400 450 500 550 600 650 Wavelength (nm) 700 750 800
一、光学薄膜的类型
我们根据其作用,可以简单的分为
1、减反射膜或者叫增透膜 2、分束膜 3、反射膜 4、滤光片 5、其他特殊应用的膜
一、减反膜
1、减反膜的作用 o 增加光学系统透过率 o 减少杂散光 o 提高象质 o 增加作用距离
一、减反膜
2、减反膜按层数分类 o 单层减反膜
一、减反膜
干涉截止滤光片的几个重要指标
1.透射曲线开始上升(或下降) 时的波长以及此曲线上升(或下 降)的许可斜率 2.高透射带的光谱宽度、平均 透射率以及在此透射带内许可 的最小透射率 3.具有低透射率的反射带(抑 制带)的光谱宽度以及在此范围 内所许可的最大透射率。
干涉截止滤光片的分类
可以分为长波通和短波通两类,见下图
二、分束膜
正确
NPBS
错误
PBS
二、分束膜
分束膜根据镀膜材料还有金属分 束镜和介质分束镜两种。 两种分束镜各有各的优缺点,可 以根据不同的使用要求和工艺水平 采用不同的类型。
二、分束膜
金属分束镜的优缺点
优点:中性好,光谱范围宽、偏振效 应小、制作简单
缺点:吸收大、激光阈值低
使用注意事项:光的入射方向
通过波长的选择性透过提高系统信噪比。如窄带及带 通滤光片、长波通、短波通滤光片。
实现某些特定功能。如ITO透明导电膜、保护膜等
当前最热门的应用领域
1、数码相机用的IR-CUT
2、投影显示光学系统----包括LCD、DLP、 LCOS
3、光通讯:DWDM (dense wavelengh division multiplexer)滤光片 4、减反射膜----永远的热门
一、减反膜
3、另一种分类 单点减反 宽波段减反(超宽波段) 双波段减反 宽角度减反
减反膜几个重要的技术指标
使用的波段 使用的角度或者角度范围 剩余反射率要求 使用环境 在激光领域还有激光阈值要求
二、分束膜
一般来讲,分束膜总是倾斜使用,常用的是 45度。分束膜有两种:中性分束膜(也就是一 般讲的消偏振NPBS)、偏振分束膜(也就是通 常讲的PBS)。 中性分束镜有两种结构:平板型和棱镜型。 而PBS一般都用棱镜。平板结构由于不可避免 的象散问题所以只用于中低要求的光学装置。
光学薄膜
----基础知识介绍
光是什么?
光是一种电磁波,(在真空中的)可见光波长范围是700~400nm ;红外光为约700 到107nm量级;紫外光1-400nm;比紫外光短的还有X射线、γ 射线(<0.001nm)等; 而比红外长的就是我们熟悉的无线电波
什么叫光的干涉?
物理定义:
当2个或多个光波(光束)在空间叠加 时,在叠加区域内出现的各点强度稳定的强弱 分布现象。
λ0——中心波长,或峰值波长
Tmax——中心波长透射率,
或 , 峰值透射率
2⊿λ——透过率为峰值透过率
一半的波长宽度,也称通带半宽 度,有时也用2⊿λ/ λ0表示相对半 宽度
四、带通滤光片
根据膜层的不同,可分为
金属滤光片 全介质滤光片 双半波、三半波全介质滤光片 金属诱导透射滤光片
o
双层减反膜
单层膜、 λ/4-λ/4和 λ/2-λ/2型双层增透膜理论曲线
5
4
3
% Reflectance
2
1
0 400 450 500 550 600 Wavelength (nm) 650 700
一、减反膜
o
多层减反膜
K9基底上各种设计的增透膜理论曲线比较
5
4
3
% Reflectance
2
1
0 400 450 500 550 600 Wavelength (nm) 650 700
三、滤光片
一般我们把改变光束性质或者颜色的膜 叫做滤光膜。 常见的有: 1、干涉截止滤光片
2、带通滤光片
3、金属滤光片 4、负滤光片
三、滤光片
1、干涉截止滤光片 要求某一波长范围的光束高透,而偏离 这一区域的光束骤然变为截止------我们把这中 类型的膜叫干涉截止滤光片。此类膜有着广泛 的用途,例如照明上用的冷光碗上的冷光膜、 舞厅里色彩变幻的旋转灯以及我们在做的 IRCUT都属于此类。
100 80 60
单半波与双半波滤光片光谱曲线
% Transmittance
40 20 0 500 520 540 560 Wavelength (nm) 580 600
金属诱导透射滤光片
介质带通滤光片的结构为:介质反射膜/间隔层/ 介质反射膜/间隔层/介质反射膜.但是滤光片也可以 是混合结构,例如用一层金属膜如银膜代替两间隔之 间的介质反射膜形式如下: