纤维素降解菌
纤维素降解菌菌落特征
纤维素降解菌菌落特征摘要纤维素是一种常见的生物质,具有广泛的应用前景。
纤维素降解菌是一类能够分解纤维素的微生物,对于纤维素的降解起着关键作用。
本文将详细介绍纤维素降解菌菌落特征,包括形态、生长条件、代谢途径等方面,为深入研究纤维素降解机制和应用提供参考。
1. 引言纤维素是一种由葡萄糖分子构成的多糖,广泛存在于植物细胞壁中。
由于纤维素的高强度、低能值等特点,其降解一直是科学家们的研究热点。
纤维素降解菌是能够分解纤维素的微生物,可以将复杂的纤维素分解成较简单的可利用碳源,具有重要的应用价值。
2. 纤维素降解菌的形态特征纤维素降解菌在形态上具有一定的特征,如形状、大小等。
主要表现为以下几个方面:2.1 菌落形态纤维素降解菌菌落形态多样,包括分散菌落和粘附菌落。
分散菌落呈点状或星状,边界清晰,颜色多为白色或淡黄色。
粘附菌落则呈不规则形态,边界模糊,颜色多为淡黄色或褐色。
2.2 菌体形状纤维素降解菌的菌体形状主要有纤维状、棒状、球状等。
纤维状的菌体长而细,类似于纤维素的形态;棒状的菌体较短而粗,类似于棒状杆菌;球状的菌体则呈圆形或卵圆形。
2.3 纤维素降解菌的其他形态特征除了上述形态特征外,纤维素降解菌还具有菌落大小、菌体长度等变异性。
不同的纤维素降解菌在形态特征上存在一定的差异,这也为纤维素降解机制的研究提供了基础。
3. 纤维素降解菌的生长条件纤维素降解菌的生长需要适宜的条件,包括温度、pH值、营养物质等。
以下是纤维素降解菌生长的一些关键条件:3.1 温度纤维素降解菌的适宜生长温度一般在30-40摄氏度之间。
温度过高或过低都会抑制其菌落形成和生长,影响纤维素降解效率。
3.2 pH值纤维素降解菌对pH值的适应范围较广,一般在5-9之间。
过低或过高的pH值都会对纤维素降解菌的生长产生不良影响。
3.3 营养物质纤维素降解菌对不同的营养物质有不同的需求。
一般需要提供适量的碳、氮、矿物质等营养物质,以维持其正常的生长和代谢。
1株纤维素降解细菌的筛选及其对甘蔗叶的降解效果
54卷1株纤维素降解细菌的筛选及其对甘蔗叶的降解效果史国英1,曾泉1,叶雪莲1,马明亮2,胡春锦1*(1广西农业科学院微生物研究所,广西南宁530007;2广西兴安县农业农村局,广西桂林541300)摘要:【目的】筛选对甘蔗叶有降解效果的细菌菌株,为其在蔗叶还田中的应用及甘蔗叶田间高效生物腐解剂和纤维素酶制剂产品的研发提供参考。
【方法】用以甘蔗叶粉为唯一碳源的培养基对田间腐解甘蔗叶样品中的降解菌进行富集,通过刚果红培养基初筛和羧甲基纤维素酶(CMCase )活性测定复筛纤维素降解菌,结合形态特征和16S rDNA 序列分析,明确筛选菌株的系统分类地位;分析经菌株发酵处理后甘蔗叶的失重率,利用透射电镜和扫描电镜观察甘蔗叶超微组织结构变化,明确菌株对甘蔗叶的降解效果。
【结果】经过初筛和复筛,获得1株高效产CMCase 菌株XW005,其纤维素酶活力为80.51U/mL ,经16S rDNA 序列及系统发育分析,将XW005菌株鉴定为Brucella intermedia 细菌(NCBI 登录号:MW538324.1)。
电镜观察甘蔗叶显微结构,发现经菌株发酵处理的甘蔗叶表皮层开裂,维管束和质膜解体,受损的叶片呈疏松状态,平坦表面受到破坏,致密结构变得松散。
甘蔗叶降解试验结果表明,发酵处理20d 后,菌株处理的甘蔗叶失重率达45.09%。
【结论】菌株XW005是1株具有降解纤维素能力的细菌,在常温条件下可对甘蔗叶进行有效降解,具有潜在的开发价值和良好的应用前景。
关键词:甘蔗叶;纤维素降解菌;Brucella intermedia ;组织微结构中图分类号:S646.099文献标志码:A文章编号:2095-1191(2023)02-0488-09收稿日期:2022-11-09基金项目:广西自然科学基金项目(2020GXNSFAA297096);广西科技计划项目(桂科AB18221048);广西农业科学院基本科研业务专项(桂农科2021JM89,桂农科2021YT098)通讯作者:胡春锦(1973-),https:///0000-0003-1722-8143,研究员,主要从事农业微生物研究工作,E-mail :chunjin-hu@第一作者:史国英(1983-),https:///0000-0001-8528-7132,副研究员,主要从事农业微生物资源收集及评价研究工作,E-mail :*******************Screening of a cellulose-degrading bacterium and itsdegradation effect on sugarcane leafSHI Guo-ying 1,ZENG Quan 1,YE Xue-lian 1,MA Ming-liang 2,HU Chun-jin 1*(1Microorganism Research Institute ,Guangxi Academy of Agricultural Sciences ,Nanning ,Guangxi 530007,China ;2Agriculture and Rural Affairs Bureau of Xing ’an County ,Guilin ,Guangxi 541300,China )Abstract :【Objective 】To screen bacteria with degradation effects on sugarcane leaves ,and to provide reference forapplication of bacteria in sugarcane leaf returning and development of efficient biological decomposition agents and cellu-lase preparation products for sugarcane leaf in field.【Method 】Medium with sugarcane leaf powder as the only carbon source was used to enrich cellulose-degrading bacteria of sugarcane leaf decomposition in field.Cellulose-degrading bacteria were preliminarily screened using Congo red medium and rescreened via determination of carboxymethyl cellulose (CMCase )activity ,and according to analysis of morphological characteristics and 16S rDNA sequences ,systematic taxo-nomic classification position of the screened bacteria were made clear.Weight loss rate of sugarcane leaves after fermenta-tion treatment was analyzed and transmission electron microscope and scanning electron microscope were used to observe the change of sugarcane leaf ultrastructure ,so as to make clear effects of the strain on sugarcane leaf degradation.【Result 】Through preliminary screening and rescreening ,a strain of CMCase-producing strain XW005with cellulase activity of 80.51U/mL was obtained.According to analysis of 16S rDNA gene sequence and phylogenetic analysis ,XW005strain was identified as bacterium Brucella intermedia (NCBI accession number :MW538324.1).Electron microscopic observa-tion of sugarcane leaf microstructure showed that epidermis of sugarcane leaves under fermentation treatment of the strain2期·489·0引言【研究意义】甘蔗作为制糖业的主要原料,广泛种植于我国广东、广西、云南、海南等热带亚热带地区。
近年纤维素降解菌株筛选研究进展
第29卷第2期2021年6月纤维素科学与技术Journal of Cellulose Science and TechnologyV ol. 29 No. 2Jun. 2021文章编号:1004-8405(2021)02-0068-10 DOI: 10.16561/ki.xws.2021.02.07近年纤维素降解菌株筛选研究进展宫秀杰,钱春荣,于洋,郝玉波,李梁,姜宇博,吕国一(黑龙江省农业科学院耕作栽培研究所,黑龙江哈尔滨150086)摘要:简述了近年来纤维素降解菌株筛选的研究进展,目前筛选到纤维素降解菌的真菌主要有木霉属Trichoderma、青霉属Penicillium和曲霉属Aspergillus,细菌主要是芽孢杆菌属Bacillus、放线菌主要是链霉菌属Streptomyces。
重点介绍了筛选到的纤维素降解菌的菌株名称、菌株种属鉴定、菌株筛选来源、菌株酶活测定条件和纤维素降解效果等。
同时,对近年来已报道筛选的纤维素降解菌株的产酶活特性及降解效果进行比较。
期望对高效纤维素降解菌株筛选提供借鉴。
关键词:纤维素降解;菌株筛选;研究进展中图分类号:Q939.9 文献标识码:A纤维素是世界上最丰富的可再生资源、可被持续利用的绿色有机质资源,在高等植物、细菌、动物和海藻等生物中广泛存在,每年总量有几百亿吨,具有巨大的经济开发价值,就我国玉米秸秆纤维素而言,每年资源高达1.32亿t(纤维素按32%计算)[1]。
然而,(1)纤维素由D-吡喃葡萄糖环彼此以β-1,4-糖苷键以C1椅式构象联结而成的线形高分子化合物;(2)纤维素由结晶相和非结晶相交错组成,其中结晶相纤维素中大量的羟基基团,产生数目庞大的氢键,这些氢键构成巨大的氢键网格,直接导致了致密的晶体结构的形成[2];(3)纤维素聚合度非常大,约2 000到15 000以上,当大量游离羟基形成氢键时,氢键力非常大,它们使纤维素片之间的距离保持在很小的范围。
纤维素降解菌滤纸条实验结果与讨论
纤维素降解菌滤纸条实验结果与讨论
纤维素降解菌滤纸条实验的结果可能是指菌落的生长和滤纸条的损耗情况。
根据实验结果,可能有以下几种情况:
1. 生长正常:如果纤维素降解菌在滤纸条上生长良好并降解纤维素,滤纸条会被菌落附近的区域逐渐降解掉。
这表明纤维素降解菌能够有效地将纤维素分解为可利用的物质。
2. 生长不良:如果纤维素降解菌的生长受到限制,可能导致滤纸条上没有或者只有少量的菌落生长。
在这种情况下,滤纸条上的纤维素降解程度可能较低。
3. 滤纸条完全未被降解:如果纤维素降解菌无法降解纤维素或者菌落没有在滤纸条上生长,滤纸条可能完全不被降解。
这可能表示纤维素降解菌对纤维素不具有降解能力,或者实验条件不适合菌落生长及纤维素降解。
对于实验结果的讨论,可以考虑以下几个方面:
1. 与控制组的比较:将实验组的结果与没有加入纤维素降解菌的对照组进行比较。
如果实验组的滤纸条有明显的降解或菌落生长,而对照组没有,可以推断纤维素降解菌在滤纸条降解中起到了重要作用。
2. 影响菌生长和纤维素降解的因素:分析实验过程中可能影响纤维素降解菌生长和滤纸条降解的条件因素,例如温度、pH 值、营养成分等。
可以探讨某些条件对菌落生长和纤维素降解
的影响程度。
3. 结果的可再现性:如果实验结果得到了重复验证,说明该实验结果具有可再现性,对于研究纤维素降解菌的特性和应用具有重要参考价值。
4. 实验结果的意义:讨论实验结果对于纤维素降解领域的研究具有什么意义,以及对于解决环境问题、生物能源开发等方面的应用价值。
需要注意的是,纤维素降解菌滤纸条实验的结果和讨论需要根据具体实验设计和结果来展开,上述内容仅为一般参考。
纤维素降解细菌的筛选及其培养基的优化
纤维素降解细菌的筛选及其培养基的优化自然界中能够降解和利用纤维素的微生物种类繁多,真菌、细菌、放线菌以及部分酵母菌等很多主要的微生物类群中都有,但长久以来人们一直以产酸性胞外纤维索酶的木霉、曲霉等真菌作为主要的研究对象。
近年来,随着纤维素酶在洗涤剂、棉织品水洗抛光整理和制浆造纸等行业上的应用和发展,使得由细菌产生的中性以及碱性纤维素酶得到广泛重视,尤其是细菌产生的胞外纤维素酶拥有简化发酵工艺,节约资源的优势,正逐步显示出它良好的使用性能和巨大的工业价值。
1 材料与方法1.1 材料1.1.1 土壤样品采集造纸厂排水处附近中性偏碱性土壤。
1.1.2 培养基(1)筛选培养基A:蛋白胨10 g,羧甲基纤维素钠10 g,NaC1 5 g,磷酸二氢钾1 g,琼脂18 g,水1 000 ml,pH值调至8。
筛选培养基B:磷酸二氢钾2 g,硫酸铵 1.4 g,硫酸镁 0.3 g,氯化钙 0.3 g,CMC 20 g,琼脂18 g,水1 000 ml,pH值调至8。
(2)斜面培养基:牛肉膏3 g,蛋白胨10 g,NaC1 5 g,琼脂15~20 g,水1 000 ml,pH值7。
(3)种子培养基:蛋白胨10 g,酵母膏5 g,NaC1 10 g,水1 000 ml,pH值7。
(4)基础培养基:羧甲基纤维素钠10 g,蛋白胨10 g,磷酸二氢钾1 g,硫酸镁 0.2 g,NaC1 10 g水1 000 ml,pH值7。
1.2 方法1.2.1 刚果红染色鉴定法1.2.2 粗酶液制备方法将发酵液于4 500 r/rain离心15 rain,取其上清液收集保存。
1.2.3 酶活测定方法0.5 的粗酶液加入1.5 用柠檬酸缓冲液配制的0.51%的CMC.Na溶液,50℃作用15 min,加入DNS 1.5 沸水浴5 rain,540 nm测光吸收,酶活力定义为每1 h 产生1 g还原糖所需的酶量为一个纤维素酶活力单位用1 U/ml表示。
纤维素降解饲料的原理是
纤维素降解饲料的原理是
纤维素降解饲料的原理是通过添加一种或多种纤维素降解菌来分解饲料中的纤维素成分。
纤维素是植物细胞壁的主要成分,含有大量的纤维素的饲料往往难以被动物消化吸收,降解纤维素可以提高饲料的消化率,增加饲料的营养价值。
纤维素降解菌是一种能够分解纤维素的微生物,它们能够产生纤维素酶,将纤维素分解为较小的可溶性纤维素组分,如纤维素和半纤维素。
这些可溶性纤维素组分更容易被动物的胃肠道消化酶分解吸收。
纤维素降解饲料的原理是通过添加纤维素降解菌,促进饲料中纤维素的降解,提高饲料的消化率和营养利用率。
纤维素降解饲料可以增加动物对饲料中纤维素的利用,减少粪便中的未消化纤维素的排出,降低养殖环境的污染。
纤维素降解饲料的应用可以改善饲料的营养质量,提高动物的生长性能和养殖效益。
同时,纤维素降解饲料也可以减少对饲料中抗营养因子的依赖,降低饲料成本,实现可持续的养殖发展。
纤维素降解细菌的筛选及酶活测定
纤维素降解细菌的筛选及酶活测定1 材料与方法1.1 含菌样品含菌样品取自校园里的腐烂树叶处的土壤。
1.2 培养基(1)CMC(羧甲基纤维素)培养基:CMC-Na15 g, NH4NO3 1 g,MgSO4 ·7H20 0.5 g,KH2PO4 0.5 g,琼脂2%,H201 000 mL,pH 自然,121 ℃灭菌。
(2)刚果红鉴定培养基:KH2PO4 0.2%,MgSO4 0.05%,(NH )2SO40.1%,琼脂2%,刚果红0.02%,CMC—Na 2%,NaC1 0.05%,pH自然。
(3)液体产酶培养基:CMC—Na 15 g,NH4 NO31 g,KH2PO4 1 g,MgSO4 0.5 g,H20 1000 mL,初始pH值霉菌调为5,细菌调为8 1.3 菌株的筛选初筛采用滤纸条崩解实验及刚果红平板识别,复筛采用液态产酶鉴定。
1.4 CMC酶活力的测定1.4.1 DNS法绘制标准曲线采用3,5一二硝基水杨酸比色定糖法(DNS) 测定酶解液中还原糖含量。
取9支比色管,分别按表顺序加入各种试剂,将各管溶液混匀,用空白管溶液调零,测520 nm处的光密度值,绘制标准曲线1.4.2 测酶活将菌株接种于发酵培养基,30℃,l80 rpm培养4 d,从培养基中取l ml菌液放人试管,加水稀释至5 ml,4000 rpm离心5 min。
移取上清液 0.5 ml于试管中,加入含 0.5% CMC—Na的柠檬酸缓冲液(0.05 mol/L,pH 4.4)1.5 ml,50℃水浴锅准确作用30 min,在每试管内加 1.5 ml DNS试剂,沸水浴 5 min,立即冷却,520 nm处测定其OD值,对比标准曲线,求葡萄糖含量。
酶活力计算公式:酶活力=葡萄糖量×10(10一稀释倍数)酶活力单位(u)=(1 mg葡萄糖/m1)·30 min。
2.流程分析(1)纤维素降解菌的筛选:将含菌样品富集培养后,取菌液0.1 mL 涂布于羧甲基纤维素平板中,待其长出菌落后,进行平皿划线法分离,分离到一系列纤维素降解菌。
微生物分离纤维素降解菌的筛选与分离
微生物分离纤维素降解菌的筛选与分离纤维素是一种广泛存在于自然界中的有机化合物,它是植物细胞壁的主要组成部分。
纤维素具有高度的生物降解性,然而,其高度结晶性和复杂的结构使其难以被常规的酶解系统降解。
在生物领域中,微生物分解是一种有效且环保的方法,因此,筛选和分离纤维素降解菌对于提高纤维素降解效率具有重要意义。
一、筛选纤维素降解菌的方法1.1 培养基的选择筛选纤维素降解菌的第一步是选择合适的培养基。
常用的纤维素降解培养基包括CMC(羧甲基纤维素钠)、Avicel(微晶纤维素)、Whatman No.1滤纸等。
这些培养基能够提供纤维素降解菌所需的碳源和营养物质,有利于菌群的生长和繁殖。
1.2 筛选方法传统的筛选方法是利用纤维素作为唯一的碳源,在培养基中培养环境中的微生物,通过测定产酶能力来判断纤维素降解菌的存在。
常用的方法有:(1)红色亚甲基纤维素(RAC)将纤维素培养基添加亚甲基蓝等指示剂,在纤维素降解区域由蓝色转变为红色,表明纤维素被降解。
(2)半定量筛选利用葡萄糖法测定纤维素降解能力。
在培养基中添加不同浓度的纤维素,观察菌落的生长情况和菌液中的葡萄糖含量,评估纤维素降解能力。
(3)放射标记纤维素将放射性同位素标记在纤维素分子上,通过测定纤维素的解脱率来评估菌株的降解能力。
二、纤维素降解菌的分离与鉴定2.1 分离方法从自然环境中分离纤维素降解菌是筛选过程的关键步骤之一。
常用的分离方法包括:(1)稀释平板法将适当稀释的样品在纤维素培养基上均匀涂布,经过一段时间后,将生长的菌落分离并培养纯种。
(2)可溶性物质包埋法将样品与纤维素培养基搅拌均匀,接种到含有纤维素的胶状物上,培养一段时间后,可分离出纤维素降解菌。
2.2 鉴定方法为了确定分离的菌株是否为具有纤维素降解能力的菌株,需要进行鉴定。
常用的鉴定方法包括:(1)形态学鉴定观察菌落的形态、颜色和菌落边缘等特征,使用显微镜观察细胞的形状和结构。
(2)生理生化特性鉴定测定菌株的氧耗、氧释等生理特征,通过测定菌株对不同碳源和氮源的利用情况来判断其代谢特性。
纤维素降解细菌筛选及降解特性分析
p p rd c mp st n Th o im ab x t y ells n y ciiyo clu c e i o mi ra h d tep a a e e o o ii . es du c r o ymeh lcluo ee z mea tvt fBa il s ih n f r s e c e h e k o l v l e( 3 g tt efu t a ffr n ain au 2 7U/ )a h o rh d yo eme tt . o
t e f t rp p r c u d b h k n i t a t n 6 d y , i h id c t d t a h WO s r i s h d g e t c p ct f f t r h i e a e o l e s a e n o p s e i a s wh c n ia e h tt e t ta n a r a a a i o i e l y l
z n, u JM NG a g. Colg f En io me tlS in ea d En i ern Na k i ie st Tin i 0 0 1 Y n ( le eo vr n na ce c n g n e ig, n a v riy, a j n3 0 7 ) Un
枯草芽孢杆菌纤维素降解
枯草芽孢杆菌纤维素降解枯草芽孢杆菌是一种常见的纤维素降解菌,具有较高的纤维素降解能力,对于生物质资源的利用具有重要意义。
本文将从枯草芽孢杆菌的分类特征、纤维素降解机制、应用前景等方面进行探讨。
一、枯草芽孢杆菌的分类特征枯草芽孢杆菌(Bacillus subtilis)是一种革兰氏阳性菌,属于芽孢杆菌属(Bacillus),是一类广泛存在于自然环境中的细菌。
枯草芽孢杆菌具有较强的耐热性和耐酸碱性,能够在较宽的温度范围和pH范围内生长繁殖,适应性强。
二、纤维素降解机制纤维素是一种复杂的多糖类物质,主要由纤维素、半纤维素和木质素组成。
枯草芽孢杆菌通过产生多种纤维素酶来实现对纤维素的降解。
其中包括纤维素酶、木聚糖酶、半纤维素酶等。
这些酶能够将纤维素分解为较低级别的糖类物质,如葡萄糖、木糖等,从而实现对纤维素的降解。
三、枯草芽孢杆菌在生物质资源利用中的应用前景1. 生物质能源开发利用:枯草芽孢杆菌具有较高的纤维素降解能力,可以将废弃的农作物秸秆、木材废料等生物质资源转化为可再生能源,如生物乙醇、生物气等。
2. 饲料添加剂:枯草芽孢杆菌可以分解纤维素为可被动物消化吸收的低聚糖,将其应用于饲料中可以提高饲料的营养价值,增强动物的消化吸收能力。
3. 环境污染治理:生物质资源的高效利用可以减少传统能源的消耗,降低环境污染。
枯草芽孢杆菌在纤维素降解过程中产生的酶可以降解有机废弃物,减少土壤和水体的污染。
4. 生物制药领域:枯草芽孢杆菌可以产生多种有益物质,如抗生素、酶等。
这些物质在生物制药领域具有广泛的应用前景,可以用于制备药物、抗菌剂等。
总结:枯草芽孢杆菌作为一种常见的纤维素降解菌,具有较高的纤维素降解能力,对于生物质资源的利用具有重要意义。
通过产生多种纤维素酶,枯草芽孢杆菌能够将纤维素降解为可利用的低聚糖类物质。
枯草芽孢杆菌在生物质能源开发利用、饲料添加剂、环境污染治理以及生物制药领域都具有广阔的应用前景。
随着对生物资源的需求不断增加,枯草芽孢杆菌的研究和应用将会得到更多关注,推动生物质资源的高效利用和环境可持续发展。
常温纤维素降解菌的分离与鉴定
常温纤维素降解菌的分离与鉴定陈燕;周孙全;郑奇士;周义军;王艳;谭佑铭【摘要】目的分离培养常温下能降解纤维素的细菌.方法采集腐烂植物样本6份、表层土壤样本6份和污染水体样本2份;在22 ℃条件下,采用复合纤维素培养基筛选,羧甲基纤维素钠刚果红平板分离,富集培养基扩增培养;重复多次操作,测定纤维素酶活性后获得常温下具有纤维素酶活性的菌株;提取细菌基因组DNA,对16S rDNA 进行测序,并与Genebank对比,鉴定其种属.结果分离出3株常温下具有纤维素酶活性的细菌,其纤维素酶活性分别为0.028、0.57和1.2 μg/min.经鉴定,3株细菌与类芽孢杆菌属、暂定种金黄色杆菌和金黄杆菌的匹配度分别为99%、97%和97%.结论从腐烂的树叶、腐烂树叶下的表层土壤和污染水体中均能分离出常温下具有纤维素酶活性的菌株.【期刊名称】《上海交通大学学报(医学版)》【年(卷),期】2010(030)008【总页数】4页(P1018-1020,封3)【关键词】纤维素降解菌;分离;筛选;纤维素【作者】陈燕;周孙全;郑奇士;周义军;王艳;谭佑铭【作者单位】上海交通大学,公共卫生学院,上海,200025;上海交通大学,公共卫生学院,上海,200025;上海交通大学,公共卫生学院,上海,200025;上海交通大学,公共卫生学院,上海,200025;上海交通大学,公共卫生学院,上海,200025;上海交通大学,公共卫生学院,上海,200025【正文语种】中文【中图分类】S188纤维素是构成植物细胞壁的主要成分,也是地球上最丰富的可再生资源。
纤维素的降解需要外切葡聚糖酶、内切葡聚糖酶等多种酶的共同作用才能完成。
部分细菌和真菌具有纤维素酶活性,但需要较高的工作温度,因此,人类对纤维素的利用十分有限[1]。
本研究拟在室温下分离具有纤维素酶活性的细菌,为提高纤维素的利用度,为污染环境的生态修复提供较为有效的菌株。
1 材料与方法1.1 环境样品于2009年10月2日(雨后第2天)在上海植物园采集腐烂的树叶、竹根和野草;从腐烂的植物下采集表层湿润、肥沃的土壤;从被污染且长有大量水生植物的景观水体中采集水样。
筛选纤维素分解菌方法
筛选纤维素分解菌方法纤维素分解菌是一类具有良好纤维素降解能力的微生物,能够有效分解植物细胞壁中的纤维素,并将其转化为可利用的产物,如糖类和有机酸。
筛选纤维素分解菌的方法主要包括传统培养方法和分子生物学方法。
传统培养方法是最常用的筛选纤维素分解菌的方法之一。
首先,可以选择一些富含纤维素的底泥、土壤或植物残渣等样品作为菌种源,并在适当的培养基中培养。
然后,通过进行连续传代培养,筛选出具有较高纤维素酶活性的菌株。
常用的培养基成分包括纤维素、氮源、无机盐等。
培养过程中,可以通过测定菌株的纤维素酶活性来评估其降解能力。
常用的纤维素酶活性检测方法包括纤维素降解圈法和滴定法等。
分子生物学方法是近年来发展起来的一种筛选纤维素分解菌的方法。
这种方法利用纤维素酶基因的特异性序列,设计引物,并通过PCR扩增的方法进行筛选。
一般选择纤维素酶结构基因(如celA和celB等)作为目标基因,进行PCR扩增。
通过比较不同菌株的基因片段序列,可以筛选出具有较高纤维素降解能力的菌株。
此外,还可以利用转基因技术将纤维素酶基因导入到目标微生物中,提高其纤维素降解能力。
除了传统培养方法和分子生物学方法,还可以利用高通量筛选技术来筛选纤维素分解菌。
高通量筛选技术包括微流体技术、光学筛选技术和生物芯片技术等。
通过这些技术,可以快速并高效地筛选出具有较高纤维素降解能力的菌株,并进一步研究其降解机制。
总的来说,筛选纤维素分解菌的方法多种多样,其中传统培养方法和分子生物学方法是最常用的。
未来随着技术的进一步发展,相信会有更多更高效的筛选方法出现,有助于挖掘和利用更多具有纤维素降解能力的微生物,促进纤维素资源的利用和环境减排。
高效纤维素降解菌的筛选鉴定及特性研究
3、探索高效纤维素降解菌在其他方面的应用,如生物医药、生物防治等领 域;
4、结合现代生物技术手段,如基因工程、代谢工程等,对高效纤维素降解 菌进行遗传改造,提高其性能和适应性。
参考内容
引言
纤维素作为一种重要的生物质资源,在生物能源、材料等领域具有广泛的应 用前景。纤维素降解菌能够将纤维素分解为可利用的糖类,为工业生产和生物技 术领域提供重要的原料。因此,筛选具有高效降解能力的纤维素降解菌并研究其 特性,对于实现纤维素资源的有效利用具有重要意义。
高效纤维素降解菌的筛选鉴定及特 性研究
目录
01 高效纤维素降解菌的 筛选鉴定
03 结论与展望
02
高效纤维素降解菌的 特性研究
04 参考内容
随着生物技术的迅速发展,微生物在环保、能源等领域的应用备受。高效纤 维素降解菌作为其中之一,在解决全球气候变化、生物质能源开发等方面具有重 要意义。本次演示将围绕高效纤维素降解菌的筛选鉴定及特性研究展开论述。
4、数据处理与分析:对测定结果进行统计和分析,比较混合菌种与单一菌 种的降解效果。
3、测定结果
通过上述测定方法,我们发现混合菌种在纤维素降解方面表现出以下优势:
1、混合菌种的纤维素降解率高于单一菌种,说明不同菌种之间的协同作用 有助于提高降解效果。
2、混合菌种的生长曲线呈现平稳增长趋势,说明各菌种之间具有一定的协 同生长作用。
背景
纤维素降解菌主要包括细菌、真菌和放线菌等。这些微生物通过产生纤维素 酶来分解纤维素,将其转化为可利用的糖类。纤维素酶是一种复合酶,包括内切 葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶等,分别作用于纤维素的不同部位, 使其降解为单糖。
方法
筛选纤维素降解菌的方法主要包括以下步骤:
纤维素降解菌的分离及筛选
实验材料
1、培养基:刚果红培养基、PDA培养基
2、样品:土壤 3、仪器及其他用品:酒精灯、载玻片、 盖玻片、显微镜、滴管、试管、培养皿、 锥形瓶、枪头、涂布器等
实验步骤
1、培养基的配制及分装 2、物品准备
3、灭菌
4、铺斜面倒平板 5、分离 6、斜面培养 7、观察
培养基的配制
1、刚果红培养基
(NH4)2SO4 MgSO4 KH2PO4 2g 0.25g 1g
明矾
纤维素钠 刚果红
2g
1.88g 2g
琼脂
蒸馏水
18g
1000ml
2、PDA培养基
马铃薯 200g
纤维素(cmc)若干克
琼脂 蒸馏水 15-20g 1000ml
分装
1、将配制好的刚果红培养基装入 500mlL锥形瓶中,装250mL 2、PDA培养基10mL左右/试管, 共8管
物品准备:
1、盛有9mL蒸馏水的试管,6支
(2)无菌条件下,将土壤悬液稀释 成10-2~10-7系列浓度。
具体稀释过程:用无菌吸管无菌操作取10-1浓度的土壤悬液1 mL并加入编号10-2的无菌试管中,震荡混合均匀。即为10-2浓 度的土壤稀释液。依此类推,直到稀释至10-7的试管中(每个 稀释度换1支枪头)。
(3)分别用移液器精确地吸取10-4、10-5、10-6的 稀释菌液0.2 ~0.3 mL,对号放入编好号的无菌培养 皿中,每一浓度对应两个平板。用无菌涂布棒(从浓 度小的梯度开始)将加入平板培养基上的土壤稀释液 在整个平板表面涂匀,涂完一个平板用酒精灯灭菌。
土壤中纤维素降解菌 的筛选及初步鉴定
2011级生技1班 第二小组
●实验目的
●实验原理
●实验材料 ●实验步骤
纤维素降解菌的分离和筛选
纤维素降解菌的分离和筛选1.实验目的:1.掌握纤维素降解菌的的分离和筛选的方法2.学会会培养基的制备3.再次了解菌落的形态2.实验原理:从美术楼后面树林中取适量的土壤,用无菌水将得到的样品经适当稀释, 在28℃下培养1d,稀释10-6、10-7、10-8三个浓度,分别接种于鉴别培养基中培养, 每组3个平行,在37℃下培养2-3 d,然后进行初筛,重复以上步骤,直至获得纯的菌株。
最后镜检。
3.试验方法:1. 取样先从树林中取10g土壤(10—15cm深)。
用灭菌的塑料袋盛装。
2.饥饿培养秤取10g土壤,置于250ml的装有90ml无菌水的锥形瓶中,摇匀,在37℃下培养1d。
3.梯度稀释所需仪器:试管(8支)、洗耳球、移液管。
需要先经高压蒸气灭菌的仪器:试管(每只内装9ml蒸馏水)、移液管。
用移液管从饥饿培养土壤液中吸取1ml土壤悬液加入盛有9ml无菌水的试管中充分混匀。
然后用移液管从此试管中吸取1ml加入另一盛有9ml无菌水的试管中,混合均匀,以此类推制成10-1,10-2,10-3,10-1,10-2,10-310-4,10-5,10-6,10-7,10-8不同稀释度的土壤溶液。
4.选择培养○1刚果红培养基的制备所需要的仪器有:500ml锥形瓶、天平、药匙、玻璃棒、电炉、摇床、培养基,用2层纱布加棉花做成瓶塞,将瓶口塞紧,再在瓶塞外包裹两层报纸,用线绳扎紧,在121℃下高压蒸汽灭菌20min。
灭菌后,倒9个灭菌平板,凝固后待用。
○2涂布平板将上述已倒培养基的9个平板底面分别用记号笔写上10-6、10-7、10-83种稀释度(每个稀释度划3个平板)。
然后用移液管分别由10-6、10-7,10-8三管土壤稀释液中各吸取0.2ml对号放入已写好稀释度的平板中,用无菌涂布器在培养基表面轻轻地涂布均匀,室温下静置5~10min,使菌液吸附进培养基。
38℃倒置培养2-3d,至菌落长出,产生纤维素酶的菌落周围将会出现透明圈。
纤维素降解菌的分离筛选
纤维素降解菌的分离筛选一概述纤维素是植物细胞壁的主要成分,是由葡萄糖组成的大分子多糖,不溶于水及一般有机溶剂。
纤维素分为:α-纤维素、β-纤维素、γ-纤维素,α-纤维素通常大部分是结晶性纤维素,β-纤维素,γ-纤维素在化学上除含有纤维素以外,还含有各种糖类。
纤维素的结构是由几百到几万个吡喃D-葡萄糖残基以β-1,4-糖苷键连接形成纤维素链,纤维素链之间又通过氢键相互缔合,形成纤维素束。
纤维素的聚合范围非常宽,分子中单糖结构片段可以从几百到一万五千左右,是一种高分子化合物。
本实验以羧甲基纤维素钠对水磨钟楼土壤中的纤维素降解菌进行分离筛选。
二实验目的本实验通过以羧甲基纤维素钠为唯一碳源对土壤中的菌株进行筛选,分离出具有一定纤维素酶活力的微生物。
三材料和器皿⑴土壤样品取水磨钟楼,枫叶广场土壤样品各10g。
⑵培养基羧甲基纤维素钠培养基羧甲基纤维素钠5g. K²HPO4 1g NaNo3 3g KCl 0.5g MgSO4 0.5g FeSO4 0.01g 蒸馏水500ml⑶器皿无菌培养皿,无菌吸管,三角瓶,涂布器,接种环⑷显色剂台盼蓝显色剂⑸仪器高压蒸汽灭菌锅超净台振荡培养箱恒温培养箱四方法与步骤1 样品处理取10g样品于三角瓶中,加入适量蒸馏水振荡。
取上清液接种到液体羧甲基纤维素钠培养基中振荡培养3-4天2 准备平板将羧甲基纤维素钠培养基高压灭菌,待冷却至50度左右倒平板,冷却,待用。
3 纤维素降解菌的初筛取振荡培养液,经10-²~10-6不同稀释倍数处理后,用移液枪分别吸取0.2ml,涂布到羧甲基纤维素钠琼脂培养基上。
放于30度恒温培养箱中培养5天,并用台盼蓝染色处理4 复筛取生长良好的菌落,将1ml菌悬液接种于羧甲基纤维素钠培养基上30度恒温培养3天5 分离纯化选取水解圈大而明显的菌落,用平板划线分离法,对单菌落进行多次划线分离,以获得纯菌落。
6 观察菌落观察菌落的特征包括形态、大小、颜色、隆起情况、表面状况、质地、透明度、光泽、等。
纤维素分解微生物的分类及特点
纤维素分解微生物的分类及特点纤维素是一种存在于植物细胞壁中的多糖,由于其结构复杂,对于大多数动物来说很难直接消化吸收。
然而,有一类微生物可以通过分解纤维素来获取能量和营养物质,它们被称为纤维素分解微生物。
纤维素分解微生物广泛存在于自然界中,对于碳循环和有机质分解起着重要的作用。
纤维素分解微生物主要分为三大类,包括细菌、真菌和原生动物。
下面我将分别介绍它们的分类及特点。
一、细菌细菌是纤维素分解微生物中最常见的类别之一。
根据其生境和纤维素分解能力的不同,细菌可以分为以下几类:1. 纤维素产生菌这类细菌能够将碳源转化为纤维素,是纤维素分解微生物中的重要一环。
它们具有较高的纤维素分解能力,对于植物材料的降解具有重要的作用。
2. 纤维素降解菌这类细菌主要利用纤维素酶对纤维素进行降解。
它们产生多种纤维素酶,通过酶解纤维素的β-1,4-糖苷键,将纤维素分解为低聚糖或单糖。
3. 古菌古菌是一类具有原核生物特征的微生物,其在纤维素分解中也起到了重要的作用。
古菌通过产生纤维素酶和其他降解酶,参与植物细胞壁的降解过程。
二、真菌真菌是纤维素分解微生物中另一重要的类别。
真菌通过分泌纤维素酶和其他降解酶来降解纤维素,其中一些真菌还能合成与纤维素降解相关的酶。
1. 真菌的多样性真菌分为许多不同的类别,其中一些类别具有很高的纤维素降解能力。
例如木腐真菌,它们生长在木材中,能够高效地降解木质纤维素。
2. 真菌的降解机制真菌通过分泌具有纤维素降解功能的酶来降解纤维素。
这些酶包括纤维素酶、β-葡聚糖酶等,它们作用于纤维素链的不同位置,将纤维素降解为较小的糖分子。
三、原生动物除了细菌和真菌,原生动物也参与了纤维素的分解过程。
原生动物主要通过共生细菌的帮助来降解纤维素。
1. 共生细菌原生动物在消化过程中会容纳一些纤维素分解菌,这些菌能够合成纤维素酶。
原生动物与共生细菌之间形成一种共生关系,共同参与纤维素的降解过程。
2. 原生动物的贡献原生动物通过摄入纤维素分解细菌和吸收降解产物来促进纤维素的分解和消化。
纤维素降解菌菌落特征
纤维素降解菌菌落特征一、概述纤维素是植物细胞壁中最主要的成分之一,但由于它的复杂结构和高度结晶性,使得大多数生物无法降解。
然而,存在着一些特定的微生物可以分解纤维素,这些微生物被称为纤维素降解菌。
本文将从菌落特征方面探讨纤维素降解菌的相关知识。
二、形态特征1. 形态多样性纤维素降解菌在形态上具有较大的多样性,包括球形、棒状、弯曲状等不同形态。
其中,球形的常见菌属有Actinoplanes和Streptomyces;棒状的常见菌属有Cellulomonas和Clostridium;弯曲状的常见菌属有Fibrobacter和Ruminococcus等。
2. 色泽特征不同种类的纤维素降解菌在颜色上也存在差异。
例如,Cellulomonas 在培养基上呈现出白色或淡黄色;Streptomyces则呈现出灰色或蓝灰色;而Ruminococcus则呈现出淡黄色或浅蓝色等。
三、生长特征1. 生长速度纤维素降解菌的生长速度较慢,通常需要较长的时间才能形成可见的菌落。
2. 菌落形态不同种类的纤维素降解菌在菌落形态上也存在差异。
例如,Cellulomonas的菌落呈现出白色、光滑、整齐;Streptomyces则呈现出平坦或隆起的表面,有时会有棕色色素沉积;而Ruminococcus则呈现出圆形或不规则形状,表面光滑。
3. 生长条件纤维素降解菌对生长条件有一定要求。
一般来说,它们需要适宜的温度、pH值和氧气含量等条件才能正常生长。
例如,Clostridium在厌氧条件下生长最佳,pH值在6.5-7.5之间;而Fibrobacter则需要较高的温度和较低的pH值才能生长。
四、代表性纤维素降解菌及其特征1. CellulomonasCellulomonas是一种常见的纤维素降解菌属。
它们具有白色或淡黄色的颜色特征,菌落呈现出光滑、整齐的特点。
此外,Cellulomonas能够在较宽的温度范围内生长,并且对氧气含量的要求较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
那些是植物结构多糖,是细胞壁的主要成分。
通过对降解纤维素微生物发生的分析。
可知具有降解纤维素能力的微生物分布在细菌、放线菌、和真菌的许多菌属中,其中真菌被认为是自然界中有机质特别是纤维素物质的主要降解者、降解纤维素微生物种类木质素的存在木质素(lignin )与纤维素及半纤维素共同形成植物体骨架,是自然界中在数量上仅次于纤维素的第二大天然高分子材料,据估计全世界每年可产生600万亿吨[18] 。
木质素是植物的主要成分之一,它是植物细胞胞间层和初生壁的主要填充物,其产量是仅次于纤维素的最为丰富的有机物,通常在木质细胞中占15%~30%。
从化学结构看[19],针叶树的木质素主要由松柏醇的脱氢聚合物构成愈创木基木质素;阔叶树的木质素由松柏醇和芥子醇的脱氢聚合物构成愈创木基紫丁香基木质素;而草本植物则是由松柏醇、芥子醇和对香豆醇的脱氢聚合物和对香豆酸组成因而使木质素成为结构复杂、稳定、多样的生物大分子物。
木质素依靠化学键与半纤维素连接,包裹在纤维之外,形成纤维素。
植物组织由于木质素存在而有了强度和硬度。
在生活生产中,大部分的木质素被直接排放,不仅浪费了这种宝贵的资源,还对周围环境产生巨大影响,因此研究木质素的降解和利用越来越成为热门的课题。
绿色植物占地球陆地生物量的95% ,其化学物质组成主要是木质素、纤维素和半纤维素,它们占植物[]干重的比率分别为15%~20%,45%和20% 农作物秸杆是这类生物质资源的重要组成部分,全世界年产量为20 多亿吨,而我国为 5 亿多吨但是,要充分、有效地利用这类资源却相当困难,这是由于秸秆产量!" B ’随季节变化,且量大、低值、体积大、不便运输,大多数动物都不能消化其木质纤维素,自然降解过程又极其缓慢,导致大部分秸秆以堆积、荒烧等形式直接倾入环境,造成极大的环境污染和浪费’存在于秸秆中的非水溶性木质纤维素很难被酸和酶水解,主要是因纤维素的结晶度、聚合度以及环绕着纤维素与半纤维素缔合的木质素鞘所致’木质素与半纤维素以共价键形式结合,将纤维素分子包埋在其中,形成一种天然屏障,使酶不易与纤维素分子接触,而木质素的非水溶性、化学结构的复杂性,导致了秸秆的难降解性’所以,要彻底降解纤维素,必须首先解决木质素的降解问题’因此,秸秆利用的研究从过去的降解纤维素的研究转向了木质的降解研究,作者对此进行了综述’木质素降解微生物的种类在自然界中,能降解木质素并产生相应酶类的生物只占少数%木质素的完全降解是真菌、细菌及相应微生物群落共同作用的结果,其中真菌起着主要作用% 降解木质素的真菌根据腐朽类型分为:白腐菌———使木材呈白色腐朽的真菌;褐腐菌———使木材呈褐色腐朽的真菌和软腐菌%前两者属担子菌纲,软腐菌属半知菌类% 白腐菌降解木质素的能力尤于其降解纤维素的能力,这类菌首先使木材中的木质素发生降解而不产生色素%而后两者降解木质素的能力弱于其降解纤维素的能力,它们首先开始纤维素的降解并分泌黄褐色的色素使木材黄褐变,而后才部分缓慢地降解木质素% 白腐菌能够分泌胞外氧化酶降解木质素,因此被认为是最主要的木质素[,]降解微生物!木质素的生物降解的应用木质素的生物降解目前成功地用于生产实践的实际应用尚不多见,但在有些方面的研究已经显现出诱人的前景-&)造纸工业分解木质素的酶类在造纸工业上的应用有两个方面,一是用改造旧的造纸工艺,用于生物制浆、生物漂白和生物脱色-黄孢原毛平革菌和P.brvispora等在国外已经得到成功利用-如用P.brvispora)(%/ 进行生物制浆预处理可降低47%的能耗并增加了纸浆的张力,但它们的木质素降解率和产酶量都还是极为有限的,处理时间过长,距大规模推广应用尚有一定的距离- 二是木质素分解菌或酶类用于造纸废[]水的处理,这方面的国内外研究报告已有很多且已取得了一定的实效0 -%)饲料工业木质素分解酶或分解菌处理饲料可提高动物对饲料的消化率- 实际上,木素酶和分解菌的应用已经突破了秸秆仅用于反刍动物饲料的禁地,已有报道饲养猪、鸡的实验效果- 目前,以木素酶、纤维素酶和植酸酶等组成的饲料多酶复合添加剂已达到了商品化的程度-")发酵与食品工业木质纤维素中木质素的优先降解是制约纤维素进一步糖化和转化的关键,已有很多实验偿试使用秸秆进行酒精发酵或有机酸发酵,但看来这还有很长的路要走-在食品工业如啤酒的生产中,可使用漆酶等进行沉淀和絮凝的脱除,使酒类得到澄清-!)生物肥料传统上曾使用高温堆肥的办法来使秸秆转化为有机肥料,但这些操作劳动强度大,近年来不为农民所欢迎最近,秸秆转化为有机肥料的简单而行之有效的办法是秸秆就地还田但是,还田秸秆- -在田间降解迟缓并带来了一系列的耕作问题,而解决这些问题的关键是加速秸秆的腐熟过程,因此,以白腐菌为代表的木质素降解微生物为这种快速腐熟提供了理论上的可能性-在国内,已有几家科研单位在进行相相似文献(10条)1.期刊论文李燕荣.周国英.胡清秀.冯作山.LI Yan-rong.ZHOU Guo-ying.HU Qing-xiu.FENG Zuo-shan 食用菌生物降解木质素的研究现状-中国食用菌2009,28(5)木质素是农作物秸秆中的主要成份之一,木质素降解直接影响秸秆等植物资源的利用效率.从降解木质素的食用菌种类、食用菌木质素降解酶系及其营养调控机理、应用前景共4个方面,综述了食用菌生物降解秸秆木质素的研究现状.2.学位论文黄红丽堆肥中木质素的生物降解及其与腐殖质形成关系的研究2006随着社会的发展,有机固体废物的排放急剧增加。
如何有效处理有机固体废物已成为当前世界各国十分关注的课题。
目前,堆肥化已成为有机固体废物处理技术的研究热点。
有机固体废物(特别是农业废物)中含有大量木质纤维素,而木质素的保护作用及其难降解性使得加速木质素降解成为堆肥充分腐熟的关键。
近几十年来,国内外学者一直在寻找能够快速降解木质素的最佳菌剂。
其中研究得最多的是白腐真菌,但非真菌类微生物群在木质纤维素循环中也起到了重要作用。
因此,本课题就栗褐链霉菌对稻草木质素的降解展开了研究。
分别在固、液态培养条件下,研究了不同外加碳氮源对栗褐链霉菌在降解木质纤维素过程中胞外酶活性的影响,并考察了木质素降解中间产物——可酸沉淀的多聚木质素APPL的产量及培养前后木质纤维素三种组分的绝对量变化。
结果表明,在固态发酵中,外加碳氮源对过氧化物酶的产生及木质素的降解均有促进作用,但对半纤维素酶和纤维素酶的产生及半纤维素和纤维素的降解均有抑制作用;外加氮源-酵母膏对APPL的产生具有明显的促进作用,而外加氮源-氯化铵和外加碳源-葡萄糖均抑制APPL的产生;在液态发酵中,外加氮源-酵母膏对栗褐链霉菌产过氧化物酶和APPL的产生均有显著的促进作用,但对产半纤维素酶和纤维素酶没有明显作用;而外加氮源-氯化铵对三种酶及APPL的产生都具有一定的抑制作用;外加碳源-葡萄糖能在一定程度上促进半纤维素酶和纤维素酶的产生,但对过氧化物酶和APPL的产生具有抑制作用。
外加氮源-酵母膏外加氮源-氯化铵能明显提高木质素的降解率,而外加碳源-葡萄糖均抑制木质素的降解。
另外,腐殖质形成学说中的木质素学说表明木质素降解与腐殖质形成有着密切联系。
由于各微生物的木质素降解机理不同,故其对腐殖质形成的作用也不同。
据此,我们比较研究了两种不同木质素降解菌:黄孢原毛平革菌和栗褐链霉菌及土著微生物培养条件下木质素降解率、腐殖质总量、各组分含量及胡敏酸E4/E6的变化,研究了不同木质素降解菌在腐殖质形成过程中的作用。
结果表明,接种有木质素降解能力的微生物有利于土壤中腐殖质总量的形成,其中栗褐链霉菌相对来说更有利于木质素降解过程中腐殖质的形成,从而更有利于堆肥质量的提高;两种微生物降解木质素形成腐殖质的过程有所不同:黄孢原毛平革菌首先将木质素转化成富里酸进而富里酸转化为胡敏酸,而栗褐链霉菌主要是使木质素结构发生改性形成胡敏酸,后来转化为富里酸。
经微生物作用后,土壤中胡敏酸E4/E6总趋势均有所增加,但在全过程中呈现动态变化。
3.期刊论文池玉杰.鲍甫成木质素生物降解与生物制浆的研究现状分析-林业科学2004,40(3)综述了木质素生物降解与生物制浆的研究现状,包括木质素降解代谢产物和降解途径与机制的研究、参与木质素降解的酶及其作用机制的研究、木腐菌对木材和木质素降解能力的研究以及高效降解木质素的生物制浆用优异菌株的筛选.对木质素生物降解与生物制浆的研究进行了展望.结果表明:生物制浆由于既节省能源又有环境友好的特性而具有毋庸置疑的应用前景,在我国加强木质素生物降解和生物制浆的研究是势在必行的,这对于保护环境,缓解能源危机以及制浆造纸业的可持续发展都具有重要的意义.4.学位论文陈芙蓉农林废物堆肥化中木质素生物降解研究及接种剂开发2008目前,堆肥化处理技术已成为农业废物资源化利用技术之一,该方法能实现农业废物循环利用,既可取得良好的经济效益,又可实现清洁生产,防止环境污染。
目前,堆肥化处理技术正进入科学化的新阶段,为了改善该技术存在的如历时时间长,肥效低等诸多不足,提高堆肥效率、提升产品质量,使之能大规模推广应用,国内外研究者就堆肥设备、堆肥化工艺、堆肥微生物学、堆肥化控制以及堆肥技术和产品的应用等方面开展了大量研究工作。
其中,限速有机物的降解一直被认为是快速堆肥的关键,农业废物堆肥化中的限速有机物主要是指木质纤维素,这类有机物结构坚硬,分解困难,与腐殖质产生有密切联系。
木质素是农业废物堆肥化过程中的主要限速有机物,其降解被认为是快速堆肥的关键。
本研究采用PLFA方法定量分析堆肥化过程中木质素降解微生物学机理,并以此为依据,研究开发高效堆肥化接种剂。
应用PLFA-PLS法构建了木质素含量与PLFA之间的定量回归模型,分析模型参数可发现,农业废物堆肥化过程中木质素的有效降解是数量少、能力强与数量多、能力弱的微生物共同作用的结果,前者主要是真菌、放线菌,后者主要是细菌,其中真菌与放线菌在堆肥化过程中占主导地位。
微生物种类较之数量对于木质素降解更为有利。
在高温期,有效的木质素降解微生物群落组成为:革兰氏阳性细菌:革兰氏阴性细菌:放线菌:真菌为42:35:6:1 7;在二次发酵期为:革兰氏阳性细菌:革兰氏阴性细菌:放线菌:真菌为58:23:4:15。
微生物浓度数量级为108cells/g dw。
选取农林废物堆肥中筛选出的木质素降解优势土著微生物枯草芽孢杆菌Bacillus subtilis)、铜绿假单孢菌(Pseudomonas aeruginosa)、黑曲霉(Aspergillusniger)、简青霉(penicillium simplicissim)、栗褐链霉菌(Streptomyces badius),依据PLFA-PLS定量分析所得堆肥化二次发酵期有效的木质素降解微生物群落组成比例混合接种至稻草基质发酵瓶中,做一组正交试验L9(34)以优化混合比例,以期研究开发一种基于木质素降解的高效堆肥化接种剂。