一次函数与正比例函数测试题

合集下载

正比例函数与一次函数综合练习50题

正比例函数与一次函数综合练习50题

正比例函数与一次函数综合练习50题1.如图,已知函数y=﹣x+b 的图象与x轴,y轴分别交于点A、B,与函数y=x 的图象交于点M,点M的横坐标为2,在x轴上有一点P〔a,0〕〔其中a>2〕,过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.〔1〕求点M、点A的坐标;〔2〕假设OB=CD,求a的值,并求此时四边形OPCM的面积.2.如图,在平面直角坐标系中,O为坐标原点,过点B〔6,0〕的直线AB与直线OA相交点A〔4,2〕,动点M在直线OA上运动.〔1〕求直线AB的解析式.〔2〕求△OAC的面积.〔3〕是否存在点M,使△OMC的面积是△OAC的面积的?假设存在求出此时点M的坐标;假设不存在,说明理由.3.如图,一次函数y=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y=x图象交于点P〔2,n〕.〔1〕求m和n的值;〔2〕求△POB的面积;〔3〕在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?假设存在,请求出C点的坐标;假设不存在,请说明理由.4.如图,在平面直角坐标系xOy中,已知直线l1:y=mx〔m≠0〕与直线l2:y=ax+b 〔a≠0〕相交于点A〔1,2〕,直线l2与x轴交于点B〔3,0〕.〔1〕分别求直线l1和l2的表达式;〔2〕过动点P〔0,n〕且平行于x轴的直线与l1,l2的交点分别为C,D,当点C 位于点D左方时,写出n的取值范围.5.如图,一次函数y=ax+b的图象与正比例函数y=kx的图象交于点M.〔1〕求正比例函数和一次函数的解析式;〔2〕根据图象写出使正比例函数的值大于一次函数的值的x的取值范围;〔3〕求△MOP的面积.6.在平面直角坐标系xOy中,一次函数y=﹣x+7的图象交y轴于点D,且它与正比例函数y=x的图象交于点A.〔1〕求点D的坐标;〔2〕求线段OA的长;〔3〕设x轴上有一点P〔a,0〕,过点P作x轴的垂线〔垂线位于点A的右侧〕,分别交y=x和y=﹣x+7的图象于点B、C,连接OC,假设BC=OA,求△OBC 的面积.7.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与正比例函数y=kx的图象都经过点B〔3,1〕〔1〕求一次函数和正比例函数的表达式;〔2〕假设直线CD与正比例函数y=kx平行,且过点C〔0,﹣4〕,与直线AB相交于点D,求点D的坐标.〔注:二直线平行,k相等〕〔3〕连接CB,求三角形BCD的面积.8.如图,经过原点的直线l1与经过点A〔0,24〕的直线l2相交于点B〔18,6〕.在x轴上有一点P〔a,0〕〔a>0〕,过点P作x轴的垂线分别交直线l1、l2于点C、D.〔1〕求直线l2的表达式;〔2〕假设线段CD长为12,求此时a的值;9.如图,已知一个正比例函数与一个一次函数的图象交于点A〔3,4〕,且OA=OB 〔1〕求两个函数的解析式;〔2〕直线AB交x轴于点C,求△AOC的面积;〔3〕在x轴上存在一点p,使△AOP是等腰三角形,直接写出所有符合要求的点P的坐标.10.如图,直线y=﹣x+6交直线y=x+6于点A,直线y=﹣x+6与直线y=2x相交于点B,直线y=x+6与直线y=2x相交于点C.〔1〕求点B的坐标;〔2〕求三角形ABC的面积;〔3〕假设点P是直线y=2x上的动点,当△ABP的面积等于△AOC的面积时,求点P的坐标.11.如图,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,与直线l2:y=﹣x交于点P.直线l3:y=﹣x+4与x轴交于点C,与y轴交于点D,与直线l1交于点Q,与直线l2交于点R.〔1〕点A的坐标是,点B的坐标是,点P的坐标是;〔2〕将△POB沿y轴折叠后,点P的对应点为P′,试判断点P′是否在直线l3上,并说明理由;〔3〕求△PQR的面积.12.如图,直线y=﹣x+3与y轴交于点C,与x轴交于点D,点P是直线y=x+3上的一个动点〔点P在第一象限〕,过P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.〔1〕假设PE=5EF,求m的值;〔2〕过点P作PG∥CD交y轴于点G,判断四边形PECG的形状,并说明理由.13.观察如图,A点为正比例函数y=x与一次函数y=﹣x+7的图象的交点〔1〕求点A的坐标;〔2〕设x轴上一点P〔a,b〕,过点P作x轴的垂线〔垂线位于点A的右侧〕分别交y=x和y=﹣x+7的图象于点B,C,连接OC,假设BC=OA,求△OBC的面枳.14.如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.〔1〕分别求出点A、B、C的坐标;〔2〕假设D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;〔3〕在〔2〕的条件下,设P是x轴上的点,使得P到点A、D的距离和最小;求点P的坐标.15.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与数y=x 图象交于点M,点M的横坐标为2,在x轴上有点P〔a,0〕〔其中a>2〕,过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D.〔1〕求点A的坐标;〔2〕假设OB=CD,求a的值;〔3〕在〔2〕条件下假设以OD线段为边,作正方形ODEF,求直线EF的表达式.16.如图,平面直角坐标系中,已知直线y=x上一点P〔2,m〕,C〔0,n〕为y 轴上一点,以P为直角顶点作等腰Rt△PCD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A.〔1〕求m的值,并求出直线PC的函数表达式〔用含n的式子表示〕;〔2〕判断线段OB和OC的数量关系,并证明你的结论;〔3〕当△OPC≌△ADP时,求点A的坐标.17.如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.〔1〕求A,B两点的坐标;〔2〕求△BOC的面积;〔3〕如图2,假设有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t〔s〕,连接CQ.①当OA=3MN时,求t的值;②试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?假设存在,请直接写出t的值;假设不存在,请说明理由.18.如图1,在直角坐标系中,点A坐标为〔0,12〕,经过原点的直线l1与经过点A的直线l2相交于点B〔m,n〕〔1〕假设m=9,n=3,求直线l1和l2的解析式;〔2〕将△BAO绕点B顺时针旋转180°得△BFE,如图2,连接AE,OF;①证明:四边形OFEA是平行四边形;②假设四边形OFEA是正方形,则m=,n=.19.如图,在平面直角坐标系中,点A的坐标为〔3,0〕,B为直线y=x上的一个动点,延长AB至C,使得AB=BC,过点C作CD⊥x轴于点D,交直线OB 于点F,过点A作AE∥OB,交直线CD于点E.〔1〕求直线AE的解析式;〔2〕在点B的运动过程中,线段CF的长是否发生改变?假设不变,请求出线段CF的长;假设改变,请说明理由;〔3〕假设AD=EF,点D在点A的右侧,直接写出tan∠CAD的值;〔4〕连接BE,在点B的运动过程中,是否存在点E,使△ABE为直角三角形?假设存在,直接写出点E的坐标;假设不存在,请说明理由.20.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.〔1〕求点P的坐标;的值;〔2〕求S△OPA〔3〕动点E从原点O出发,沿着O→P→A的路线向点A匀速运动〔E不与点O、A重合〕,过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为〔a,0〕,矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.21.已知如图,直线y=kx+b与x轴、y轴分别交于点A、B,与直线y=3x交于点C,且|OA﹣6|+=0,将直线y=kx+b沿直线y=3x折叠,与x轴交于点D,与y轴交于点E.〔1〕求直线y=kx+b的解析式及点C的坐标;〔2〕求△BCE的面积;〔3〕假设点P是直线y=3x上的一个动点,在平面内是否存在一点Q,使以点A、C、P、Q为顶点的四边形是矩形?假设存在,请直接写出点P、点Q的坐标;假设不存在,请说明理由.22.如图,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A.〔1〕点A的坐标是;点B的坐标是;点C的坐标是;〔2〕假设D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;〔3〕在〔2〕的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?假设存在,直接写出点Q的坐标;假设不存在,请说明理由.23.如图,直线OC、BC的函数关系式分别是y1=x和y2=﹣2x+6,动点P〔x,0〕在OB上运动〔0<x<3〕,过点P作直线m与x轴垂直.〔1〕求点C的坐标,并答复当x取何值时y1>y2?〔2〕设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.〔3〕当x为何值时,直线m平分△COB的面积?24.如图,在平面直角坐标系中,一次函数y=mx+n〔m≠0〕的图象与x轴交于点A〔﹣3,0〕,与y轴交于点B,且与正比例函数y=2x的图象交于点C〔3,6〕.〔1〕求一次函数y=mx+n的解析式;〔2〕点P在x轴上,当PB+PC最小时,求出点P的坐标;〔3〕假设点E是直线AC上一点,点F是平面内一点,以O、C、E、F四点为顶点的四边形是矩形,请直接写出点F的坐标.25.已知:如图1,在△AOB中,OA=AB=,BO=2,点B在x轴上,直线l1:y=kx+3〔k为常数,且k≠0〕过点A,且与x轴、y轴分别交于点D,C,直线l2:y=ax〔a为常数,且a>0〕与直线l1交于点P,且△DOP的面积为.〔1〕求直线l1,l2的解析式;〔2〕如图2,直线l3∥y轴,与直线l1,x轴分别交于点M,Q,且直线l3与线段OA或线段OP交于点N.假设点Q的横坐标为m〔﹣1<m<2〕,求△APN的面积S关于m的函数关系式.26.已知:如图1,在平面直角坐标系中,直线1:y=﹣x+4与坐标轴分别相交于点A、B与2:y=x相交于点C.〔1〕求点c的坐标;〔2〕假设平行于y轴的直线x=a交于直线1于点E,交直线l2于点D,交x轴于点M,且ED=2DM,求a的值;〔3〕如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP 之间的位置关系,并证明你的结论.27.如图,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+8与x轴交于点A,与y轴交于点B,直线l2与直线l交于C点,tan∠COA=2.〔1〕求点C的坐标;〔2〕动点P从点A出发,沿线段AB以每秒5个单位的速度向终点B运动,同时动点Q从点B出发,沿线段BO以每秒4个单位的速度向终点O运动.设△PBQ的面积为S,运动时间为t秒,求S与t之间的函数关系式;〔3〕在〔2〕的条件下,假设△BQP与△BOC相似,求出符合题意的t值及点P 坐标.28.如图,已知直线y=﹣x+7与直线y=x交于点A,且与x轴交于点B,过点A 作AC⊥y轴与点C.点P从O点以每秒1个单位的速度沿折线O﹣C﹣A运动到A;点R从B点以相同的速度向O点运动,一个点到终点时,另一个点也随之停止运动.〔1〕求点A和点B的坐标;〔2〕过点R作直线l∥y轴,直线l交线段BA于点Q,设动点P运动的时间为t 秒.①当t为何值时,以A,P,O,R为顶点的四边形的面积为13?②是否存在以A、P、R为顶点的三角形是等腰三角形?假设存在,直接写出t 的值;假设不存在,请说明理由.29.〔1〕如图1,直线AB:y=﹣2x+8分别交x轴、y轴于点A、B,与直线OC:y=x交于点C.求①点C的坐标;②△OAC的面积.〔2〕如图2,已知直线OC:y=x,作∠AOC的平分线ON,△OAC的面积为5,且OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ 是否存在最小值?假设存在,求出这个最小值;假设不存在,说明理由.30.如图,已知点P〔m,5〕在直线y=kx〔k>0〕上,线段OP的垂直平分线交y轴于点A,交x轴于点B,连接AP,BP,得“筝形”四边形PAOB.〔1〕当m=2时,求tan∠POA的值;〔2〕假设直线x=5交x轴于点C,交线段AB于点D〔异于端点〕,记“筝形”四边形PAOB的面积为s,△DCB的面积为t,试比较s与2t+的大小,并说明理由.31.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A 〔﹣3,0〕,与y轴交于点B,且与正比例函数y=x的图象交点为C〔m,4〕.求:〔1〕一次函数y=kx+b的解析式;〔2〕假设点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标;〔3〕在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.32.如图:在平面直角坐标系xOy中,已知正比例函数y=与一次函数y=﹣x+7的图象交于点A.〔1〕求点A的坐标;〔2〕在y轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;〔3〕如图、设x轴上一点P〔a,0〕,过点P作x轴的垂线〔垂线位于点A的右侧〕,分别交y=和y=﹣x+7的图象于点B、C,连接OC,假设BC=OA,求△ABC的面积及点B、点C的坐标;〔4〕在〔3〕的条件下,设直线y=﹣x+7交x轴于点D,在直线BC上确定点E,使得△ADE的周长最小,请直接写出点E的坐标.33.如图,在平面直角坐标系中,一次函数y=kx+4的图象经过点A〔1,3〕,点B是一次函数y=kx+4的图象与正比例函数y=x的图象的交点.〔1〕求一次函数y=kx+4的表达式;〔2〕求点B的坐标.〔3〕在x轴上找一点P,使PA+PB的值最小,直接写出满足条件的点P的坐标及△PAB的面积.34.如图,已知直线l:y=﹣x+b与x轴、y轴分别交于点A,B,直线l1:y=x+1与y轴交于点C,设直线l与直线l1的交点为E〔1〕如图1,假设点E的横坐标为2,求点A的坐标;〔2〕在〔1〕的前提下,D〔a,0〕为x轴上的一点,过点D作x轴的垂线,分别交直线l与直线l1于点M、N,假设以点B、C、M、N为顶点的四边形为平行四边形,求a的值;〔3〕如图2,设直线l与直线l2:y=﹣x﹣3的交点为F,问是否存在点B,使BE=BF,假设存在,求出直线l的解析式,假设不存在,请说明理由.35.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,直线y=x与直线MN交于点P,已知AC=10,OA=8.〔1〕求P点坐标;〔2〕作∠AOP的平分线OQ交直线MN与点Q,点E、F分别为射线OQ、OA上的动点,连结AE与EF,试探索AE+EF是否存在最小值?假设存在,请直接写出这个最小值;假设不存在请说明理由;〔3〕在直线MN上存在点G,使以点G,B,C三点为顶点的三角形是等腰三角形,请直接写出G点的坐标.36.如图,已知直线y=x+1与y轴交于点A,一次函数y=kx+b的图象经过点B〔0,﹣1〕,与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为〔1,n〕.〔1〕则n=,k=,b=;〔2〕求四边形AOCD的面积;〔3〕在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?假设存在求出点P的坐标;假设不存在,请说明理由.37.如图,一个正比例函数y1=k1x的图象与一个一次函数y2=k2x+b的图象相交于点A〔3,4〕,且一次函数y2的图象与y轴相交于点B〔0,﹣5〕,与x轴交于点C.〔1〕判断△AOB的形状并说明理由;〔2〕假设将直线AB绕点A旋转,使△AOC的面积为8,求旋转后直线AB的函数解析式;〔3〕在x轴上求一点P使△POA为等腰三角形,请直接写出所有符合条件的点P的坐标.38.如图,在平面直角坐标系中,直线y=﹣x﹣3与x轴、y轴分别交于A、B=9.两点,C为x轴正半轴上一点,S△ABC〔1〕求点C的坐标;〔2〕假设线段AB上一点M到坐标轴的距离相等.①求点M的坐标及直线OM的函数表达式;②假设点P为直线OM上一动点,且∠APM=∠CPM,求点P的坐标.39.如图1,已知直线y=﹣3x+6与x轴、y轴交于A、B两点,点C在x轴负半轴上,S△BOC =3S△BOA〔1〕求直线BC的函数表达式;〔2〕如图2,一条直线y=mx经过原点,与直线AB,BC分别交于点E、F,假设S△BOE=S△BOF,求m的值;〔3〕如图3,将〔2〕中直线EF向上平行移动后经过点B,与x轴交于点G,设H为线段BG上一点〔含端点〕,连接AH,一动点M从点A出发,沿线段AH运动到H,再沿线段HB运动到B后停止,假设点M在AH上的速度为每秒1个单位,在HB上的速度为每秒个单位,当点H的坐标是多少时,点M在整个运动过程中用时最少?40.已知直线y=2x﹣10与直线y=x相交于点A,与x轴相交于点B.〔1〕求△OAB的面积.〔2〕假设OC平分∠AOB交AB于C,在OA上截取OD=OB,连接CD,①证明:△OCD≌△OCB;②求△OAC的面积;③求点C的坐标.41.如图,已知一次函数y=kx+3﹣2k〔k≠0〕,A〔﹣2,1〕,C〔﹣2,﹣3〕,B 〔1,﹣3〕.〔1〕求证:点M〔2,3〕在直线y=kx+3﹣2k〔k≠0〕上;〔2〕当直线y=kx+3﹣2k〔k≠0〕经过点C时,点P是直线y=kx+3﹣2k〔k≠0〕上一点,假设S△CBP =2S△ABC,求点P的坐标;〔3〕当直线y=kx+3﹣2k〔k≠0〕与△ABC有公共点时,直接写出k的取值范围.42.如图1,在平面直角坐标系中,A〔0,4〕,C〔4,0〕且AB平行于x轴,点B在函数y=x的图象上〔1〕求BC的函数解析式;〔2〕如果有一经过B点的直线将四边形ABCO的面积分成两个相等的部分,求这条直线的解析式;〔3〕如图2,M,N分别为线段BC上两点,且OM⊥BC,∠BNA=45°,试判断线段AN,MO,MC三边的数量关系,并证明.43.如图,在平面直角坐标系中,直线y=﹣x﹣与x轴交于点A,与直线y=﹣x交于点B.〔1〕求点B的坐标;〔2〕点B关于x轴的对称点为点C,求△AOC的面积;〔3〕过点B作BD⊥x轴于点D,动点P从点D出发,在射线DB上以每秒1个单位长度的速度向下运动,运动的时间为t秒,连接OP,将线段OP以点O为旋转中心,逆时针旋转90°得线段OP′,连接AP′,△AP′O的面积为S,在点P运动过程中〔不包含点D〕,S的值是否与t的值有关?如果有关,请直接写出S与t 的函数关系式;如果无关,请直接写出S的值.44.如图,直线y=x﹣m与直线y=kx〔k≠0〕交于点A,直线y=x﹣m与x轴交于点B,与y轴交于点C,假设直线y=kx〔k≠0〕与x轴正半轴所成夹角为30°,OB=.〔1〕求k、m的值.〔2〕假设点E为x轴上的动点,连接AE,当△ABE与△OAE相似时求点E的坐标.45.已知:直线y=2x与x=2相交于点A,直线x=2与x轴相交于点Q,点P是射线AQ上的一点,点B是直线OP上的一点,设AP=t,点B的坐标为〔a,b〕.〔1〕求直线OP的解析式;〔用含t的代数式表示〕〔2〕当三点A,O,B构成以OB为斜边的直角三角形时,求a与t之间的关系式;〔3〕将△PAB沿直线PB折叠后,点A的对称点A′恰好落在坐标轴上,请直接写出所有满足条件的t的值,并写出以A,A′,P,B为顶点的四边形为菱形时的点B坐标.46.如图,在平面直角坐标系中,O是坐标原点,直线AB:y=与x,y轴分别相交于点A、B,BC平分∠ABO交x轴于点C.〔1〕求点A、B的坐标和线段AB的长;〔2〕求线段OC的长;〔3〕假设过原点的直线l平行于直线AB,动点P在直线l上运动,当∠OBP=∠OBA时,求点P的坐标.47.如图,已知函数y=﹣的图象与x轴、y轴分别交于点A、B,与函数y=x 的图象交于点E,点E的横坐标为3.〔1〕求点A的坐标;〔2〕在x轴上有一点F〔a,0〕,过点F作x轴的垂线,分别交函数y=﹣和y=x的图象于点C、D,假设以点B、O、C、D为顶点的四边形为平行四边形,求a的值.48.如图,直线OC,BC的函数关系式分别是y1=x和y2=﹣x+6,两直线的交点为C.〔1〕点C的坐标是〔,〕,当x时,y1>y2?〔2〕△COB是三角形,请证明.〔3〕在直线y1找点D,使△DOB的面积是△COB的一半,求点D的坐标.〔4〕作直线a⊥x轴,并交直线y1于点E,直线y2于点F,假设EF的长度不超过3,求x的取值范围.49.如图,直线y=﹣x+4交x轴、y轴于A、C两点,过点C的直线y=2x+4交x轴于点B,过点B作BD⊥AC于点D,直线BD交y轴于点E.〔1〕求直线DE的解析式;〔2〕在直线DE上有一动点P,已知点P的横坐标为t.用含t的式子表示点P 到直线BC的距离;〔3〕在〔2〕的条件下,当点P在x轴上方时,连接PC,当t为何值时,满足∠CPB=45°.50.如图1,在直角坐标系中,直线y=x+m与x轴负半轴交于点A,与y轴正半轴交于点B,且△AOB的面积是8.〔1〕求m的值;〔2〕如图2,直线y=kx+3k〔k<0〕交直线AB于点E,交x轴于点C,点D坐标是〔0,﹣2〕,过D点作DF⊥CD交EC于F点,假设∠AEC=∠CDO,求点F的坐标;〔3〕如图3,点P坐标是〔﹣1,﹣2〕,假设△ABO以2个单位/秒的速度向下平移,同时点P以1个单位/秒的速度向左平移,平移时间是t秒,假设点P落在△ABO内部〔不包含三角形的边〕,求t的取值范围.。

2023学年北师大版数学八年级上同步考点训练4-2 一次函数与正比例函数(能力提升)(含详解)

2023学年北师大版数学八年级上同步考点训练4-2 一次函数与正比例函数(能力提升)(含详解)

专题4.2 一次函数与正比例函数(能力提升)(原卷版)一、选择题。

1.(2022春•南关区校级月考)已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定2.(2022春•勃利县期末)下列函数中,是一次函数但不是正比例函数的为()A.y=﹣B.y=﹣C.y=﹣D.y=3.(2021春•南通期中)如图,一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分,则剩余木板的面积(空白部分)y(m2)与x(m)的函数关系式为(0≤x<5)()A.y=10﹣x B.y=5x C.y=2x D.y=﹣2x+104.(2021春•防城区月考)在①y=﹣8x;②y=﹣;③y=+1;④y=﹣8x2+6;⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个5.(2022•市南区校级二模)若关于x的方程﹣2x+b=0的解为x=2,则直线y=﹣2x+b一定经过点()A.(2,0)B.(0,3)C.(4,0)D.(2,5)6.(2022春•长葛市期末)如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是()A.x=20B.x=25C.x=20或25D.x=﹣207.(2021•蕉岭县模拟)在平面直角坐标系中,一次函数y=mx+b(m,b均为常数)与正比例函数y=nx(n为常数)的图象如图所示,则关于x的方程mx=nx﹣b的解为()A.x=3B.x=﹣3C.x=1D.x=﹣18.(2021秋•霍邱县期中)在下列函数关系中:①y=kx,②y=x,③y=x2﹣(x﹣1)x,④y=x2+1,⑤y=22﹣x,一定是一次函数的个数有()A.3个B.2个C.4个D.5个9.(2021春•普陀区校级期中)下列函数中,一次函数是()A.B.y=﹣2xC.y=x2+2D.y=mx+n(m,n是常数)10.(2021秋•碑林区校级期中)如图,在平面直角坐标系中,已知点A(2,4),B(1,2),C(5,2),直线l经过点A,它将△ABC分成面积相等的两部分,则直线l的表达式为()A.y=﹣2x+6B.y=﹣2x+8C.y=2x+8D.y=﹣x+6二、填空题。

一次函数与正比例函数练习题

一次函数与正比例函数练习题

一次函数与正比例函数练习题一、选择题1.下列关于x的函数中,是一次函数的是()A.y=3(x﹣1)2+1 B.y=x+C.y=﹣x D.y=(x+3)2﹣x22.下列函数中,正比例函数是()A.y=﹣8x B.y=﹣8x+1 C.y=8x2+1 D.y=3.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或﹣2 B.2或﹣1 C.3 D.44.若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()A.增加4 B.减小4 C.增加2 D.减小25.若直线y=x+k,x=1,x=4和x轴围成的直角梯形的面积等于9,则k的值等于()A.B.C.或D.或6.已知点A(,1),B(0,0),C(,0),AE平分∠BAC,交BC于点E,则直线AE对应的函数表达式是()A.y=x﹣B.y=x﹣2 C.y=x﹣1 D.y=x﹣27.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)8.已知A(0,0),B(3,2)两点,经过A、B两点的图象的解析式为()A.y=3x B.y=x C.y=x D.y=x+19.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3 10.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2 B.y=2 C.x=﹣1 D.y=﹣1二、填空题11.已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为.12.函数是y关于x的正比例函数,则m=.13.下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有.14.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.15.如图,将含45°角的直角三角尺放置在平面直角坐标系中,其中A(﹣2,0),B(0,1),则直线BC的函数表达式为.16.如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b(a>0,b>0).设直线AB的解析式为y=kx+m,若是整数时,k也是整数,满足条件的k 值共有个.17.矩形ABCO在平面直角坐标系中,且顶点O为坐标原点,已知点B(3,2),则对角线AC所在的直线l对应的解析式为.18.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b =ax﹣2的解为x=.三、解答题19.已知一次函数y=2x﹣3.(1)当x=﹣2时,求y.(2)当y=1时,求x.(3)当﹣3<y<0时,求x的取值范围.20.已知y=(k﹣1)x|k|+(k2﹣4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.21.当m,n为何值时,y=(m﹣1)+n.(1)是一次函数;(2)是正比例函数.22.当m,n为何值时,y=(m﹣3)x|m|﹣2+n﹣2.(1)是一次函数;(2)是正比例函数.。

一次函数与正比例函数 练习题

一次函数与正比例函数 练习题

一次函数与正比例函数班级:___________姓名:___________得分:__________一. 填空选择题(每小题8分,40分)1.下列函数中,是一次函数的是( ).A .y =7x 2B .y =x -9C .y =6xD .y =1x +12.下列函数中,是正比例函数的是( ).A .y =-2xB .y =-2x +1C .y =-2x 2D .y =-2x3.乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s (千米)与行驶时间t (时)之间的函数关系式是 .4.某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.5.已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 .二、解答题(每小题10分,60分)1.在弹性限度内,弹簧的长度y (厘米)是所挂物体质量x (千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x 之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.2.当m 为何值时,函数y=-(m-2)x 32 m +(m-4)是一次函数?3.已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.4.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨) 运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?5.已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.6.某蒜薹生产基地喜获丰收收蒜薹200吨。

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A.y=x﹣3. B.y=2x+3. C.y=﹣x+3. D.y=2x﹣3.【答案】C【解析】【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=−x+3,故选:C.【点睛】本题主要考查一次函数的解析式和一次函数的图象与性质,熟悉掌握是关键.2.下列式子中,表示y是x的正比例函数的是()A.y=. B.y=x+2. C.y=x2. D.y=2x.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.【详解】A、,自变量次数不为1,故本选项错误;B、. y=x+2,是和的形式,故本选项错误;C、y=x2,自变量次数不为1,故本选项错误;D、y=2x ,符合正比例函数的含义,故本选项正确;所以D选项是正确的.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数的定义条件是:k为常数且,自变量次数为1.3.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数【答案】C【解析】【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【详解】解:根据题意,特征数是(2,k-2)的一次函数表达式为:y=2x+(k-2).因为此一次函数为正比例函数,所以k-2=0,解得:k=2.故选C.【点睛】本题主要考查一次函数、正比例函数的定义,有新意,但难度不大.4.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C.D.设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选:.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.在平面直角坐标系中,记直线与两坐标围成的面积为,则最接近( )A.B.C.D.【答案】C【解析】令x=0,y=,令y=0,x=,则直线(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,),∴直线与两坐标轴所围成的图形的面积为S k=,当k为正整数时,S k=当k=1,S1=;当k=2,S2=,,=,=,=,故选C.6.已知等腰三角形周长为,则底边长关于腰长的函数图象是( )A.B.C.D.【答案】D【解析】根据题意得y+2x=20,y=-2x+20,∵y>0且2x>y,∴-2x+20>0且2x>-2x+20,∴5<x<10,∴底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),∵k=-2<0,∴y随x的增大而减小,故选D.7.如果是的正比例函数,是的一次函数,那么是的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系【答案】B【解析】由题意得:y=kx,x=k1z+b,则y=kk1z+kb,当b≠0时,y是z的一次函数,②当b=0时,y是z的正比例函数,综上所述,y是z的一次函数,故选B.A.B.C.D.【答案】A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.9.若点在函数的图象上,则下列各点在此函数图象上的是( )A.B.C.D.【答案】A【解析】∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A选项,∵当x=1时,y=2,∴此点在函数图象上,故A选项正确,B选项,∵当x=-2时,y=-4≠-1,∴此点不在函数图象上,故B选项错误,C选项,∵当x=-1时,y=-2≠2,∴此点不在函数图象上,故C选项错误,D选项,∵当x=2时,y=4≠-4,∴此点不在函数图象上,故D选项错误,故选A.10.一辆汽车以平均速度千米/时的速度在公路上行驶,则它所走的路程(千米)与所用的时间(时)的关系表达式为( )A.B.C.D.【答案】D【解析】根据路程=速度×时间得:汽车所走的路程s(千米)与所用的时间t(时)的关系表达式为:s=60t,故选D.11.正比例函数y=3x的大致图像是( )A.B.C.D.【答案】B【解析】∵3>0,∴图像经过一、三象限.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.12.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A.B.C.D.【答案】C【解析】首先由已知条件常数k1,k2异号,且k1>k2,得出k1,k2与0的关系,然后根据正比例函数及反比例函数的图象性质作答.解:因为k1,k2异号,且k1>0,k2<0,所以函数y=k1x的图象经过第一、三象限,函数的图象在第二、四象限,故选C.13.如图,在平面直角坐标系中,将△OAB沿直线y=-x平移后,点O′的纵坐标为6,则点B平移的距离为()A.4.5 B.6 C.8 D.10【答案】D【解析】根据题意得出O′点的纵坐标进而得出其横坐标,再得出O点到O′的距离,最后得出点B与其对应点B′之间的距离.解:∵点O的坐标为(0,0),△OAB沿x轴向右平移后得到△O′A′B′,点O的对应点O′在直线y=-x上,且O′点纵坐标为:6,故6=-x,解得:x=−8,即O到O′的距离为10,则点B与其对应点B′之间的距离为10.故选:D点睛:本题考查了函数图象上的点及平移的性质.根据函数解析式求出点的坐标是解题的关键.14.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)【答案】B【解析】分别把各点坐标代入函数y=2x进行检验即可.解答:A. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;B. ∵当x=1时,y=2;当x=0时,y=0,∴两组数据均符合,故本选项正确;C. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D. ∵当x=−1时,y=−2≠2;∴点(-1,2)不符合,故本选项错误.故选B.15.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x【答案】A【解析】【分析】本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选:A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.16.已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1 B.a>1 C.a≥1 D.a≤1【答案】A【解析】∵y随x的增大而减小,∴a-1<0,∴a<1.故选A.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.17.正比例函数y=x的大致图像是()A.A B.B C.C D.D【答案】C【解析】∵1>0,∴正比例函数y=x的大致图像经过一、三象限.故选C.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.18.已知函数y=(k-1)为正比例函数,则()A.k≠±1 B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1.故选C.19.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,15400【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=9时,W 最小 =10000元.故选C.点睛:选择方案问题的方法(1)从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.(2)在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.20.若m<-1,有下列函数:①(x>0);②y=-mx+1;③y=mx;④y=(m+1)x.其中y随x的增大而增大的是( )A.①②B.②③C.①③D.③④【答案】A【解析】对于反比例函数,当k<0,在每个象限内,y随x的增大而增大,故①正确;根据一次函数的性质,y随x的增大而增大,得出k>0,故④正确.故选A.21.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是()A.A B.B C.C D.D【答案】D【解析】y=kx-k=k(x-1),恒过(1,0);根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则k<0,易得D.故选D.22.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位【解析】根据“上加下减常数项”,=+.看做由直线向上平移个单位得到.故选C.23.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.7【答案】C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.24.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数【答案】A【解析】设原来溶液中有糖ag,水bg,则=,即y=x,为正比例函数.故选A.点睛:本题关键根据甜度不变列比例式求解.25.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【答案】D【解析】y=-x的图像平分第二、四象限.故选D.点睛:y=x的图像平分第一、三象限.26.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y= kx(k≠0)中得,k=2>0,∴函数图像经过原点,且经过第一、三象限.故选C.27.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1【答案】A【解析】∵y随着x的增大而减小,∴m+1<0,即m<-1.故选A.28.已知正比例函数y=kx(k≠0),点(2,–3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【答案】B【解析】将(2,-3)代入函数解析式得:2k=-3,解得k=-<0,∴y随着x的增大而减小.故选B.29.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随着x的增大而增大,∴-3m>0,解得m<0.∴P(m,5)在第二象限.故选B.点睛:正比例函数y=kx(k≠0),若y随着x的增大而增大,那么k>0;若y随着x的增大而减小,那么k<0.30.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1C.±1 D.–1【答案】A【解析】∵函数图像经过一、三象限,∴k>0.故选A.31.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图像不经过(2,1),故错误;B:k=2>0,∴函数图像经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误.故选C.点睛:掌握正比例函数图像的性质.32.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()A.(-3,2)B.(,-1)C.(,-1)D.(-,1)【答案】C【解析】∵正比例函数y=kx经过点(2,−3),∴−3=2k,解得k=−;∴正比例函数的解析式是y=−x;A. ∵当x=−3时,y≠2,∴点(−3,2)不在该函数图象上;故本选项错误;B. ∵当x=时,y≠−1,∴点(,−1)不在该函数图象上;故本选项错误;C. ∵当x=时,y=−1,∴点(,−1)在该函数图象上;故本选项正确;D. ∵当x=时,y≠1,∴点(1,−2)不在该函数图象上;故本选项错误。

一次函数和正比例函数练习题-北师大版

一次函数和正比例函数练习题-北师大版

一次函数和正比例函数练习题一.选择题(共18小题)1.人的身高h随时间t的变化而变化,那么下列说法正确的是()A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量D.h是自变量,t是因变量2.下列对函数的认识正确的是()A.若y是x的函数,那么x也是y的函数B.两个变量之间的函数关系一定能用数学式子表达C.若y是x的函数,则当y取一个值时,一定有唯一的x值与它对应D.一个人的身高也可以看作他年龄的函数3.下列各式中,y不是x的函数的为()A.y=x B.y=4x2C.y2=x D .4.下列图形中的图象不表示y是x的函数的是()A .B .C .D .5.下列各曲线中不能表示y是x的函数的是()A .B .C .D .6.下列各曲线中,哪些表示y是x的函数()A.①②③B.②③④C.①③④D.①②④7.若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠18.函数y=自变量x的取值范围()A.x≥1 B.x≤﹣1 C.x≥﹣1 D.x≤19.在函数y=中,自变量x的取值范围是()A.x≥﹣3且x≠0 B.x≤3且x≠0 C.x≠0 D.x≥﹣310.已知变量s与t的关系式是s=6t ﹣t2,则当t=2时,s=()A.1 B.2 C.3 D.411.已知两个变量之间的关系满足y=﹣x+2,则当x=﹣1时,对应的y的值为()A.1 B.3 C.﹣1 D.﹣312.下列函数中,是一次函数的有()(1)y=πx (2)y=2x﹣1 (3)y=(4)y=2﹣3x (5)y=x2﹣1.A.4个 B.3个 C.2个 D.1个13.已知函数y=(m+3)x﹣5是一次函数,则m的取值范围是()A.m=3或m=﹣3 B.m=3 C.m=﹣3 D.m≠﹣314.如果y=(m﹣1)+3是一次函数,那么m的值是()A.1 B.﹣1 C.±1 D .±15.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣116.若函数y=(2m+6)x2+(1﹣m)x是正比例函数,则m的值是()A.m=﹣3 B.m=1 C.m=3 D.m>﹣317.若y=x+2﹣b是正比例函数,则b的值是()A.0 B.﹣2 C.2 D.﹣0.518.下列说法不正确的是()A.一次函数不一定是正比例函数B.不是一次函数就不一定是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数二.填空题(共18小题)19.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中是自变量,是因变量.20.在下列4个等式中:①y=x+1;②y=﹣2x;③y2=x;④y=x2,y是x的函数的是.21.三角形的底边长是x,这条边上的高是8,那么此三角形的面积y与底边长x之间的关系式为.22.已知梯形的上底长是4,下底长是x,高是6,则梯形的面积y与下底长x之间的关系式是.23.汽车离开甲站30千米后,以80千米/时的速度匀速前进了t小时,则汽车离开甲站所走的路程s(千米)与时间t(小时)之间的关系式是.24.已知一个长方形周长50cm,若设其面积为y cm,一边长为x cm,则y与x之间的关系式为:.25.某地区截止到今年栽有果树2400棵,计划今后每年栽果树300棵,x年后,总共栽有果树y棵,则y与x之间的关系式为.26.在函数y=中,自变量x的取值范围是.27.在关系式y=3x﹣1中,当x由1变化到5时,y由变化到.28.已知函数y=﹣2x,当x=时,y=1.29.均匀地向一个瓶子注水,最后把瓶子注满,在注水过程中,水面高度h随时间变化规律如图1,则这个瓶子的形状是如图2中的.30.星期天早上,淇淇从家跑步到公园,接着马上原路步行回家,如图所示的是淇淇离家的路程y(米)与时间t(分)的函数图象,则淇淇回家的速度是每分钟步行米.31.若关于x的函数y=(n+1)x m﹣1是一次函数,则m=,n.32.下列函数关系式:①y=2x﹣1;②;③;④s=20t.其中表示一次函数的有(填序号)33.若y=(m﹣3)x|m|﹣2+4是一次函数,则m=.34.已知函数y=(m﹣1)x+1是一次函数,则m=.35.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.36.已知函数y=(n﹣2)x+n2﹣4是正比例函数,则n为.三.解答题(共4小题)37.如图,是某校的平面示意图,已知图书馆、行政楼的坐标分别为(﹣3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他地点的坐标(3)在图中用点P表示体育馆(﹣1,﹣3)的位置.38.已知:A(﹣2,0)、B(2,4),C(5,0)(1)在如图所示的坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)点P是y轴负半轴上一动点,连接BP交x轴于点D,是否存在点P使△ADP与△BDC的面积相等?39.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.40.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.。

初二数学一次函数正比例与一次函数基础常考题

初二数学一次函数正比例与一次函数基础常考题

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题含解析一.选择题共12小题1.已知y=m﹣3x|m|﹣2+1是一次函数,则m的值是A.﹣3 B.3 C.±3 D.±22.一次函数y=mx+n与y=mnxmn≠0,在同一平面直角坐标系的图象是A.B.C.D.3.关于一次函数y=﹣2x+3,下列结论正确的是A.图象过点1,﹣1 B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<04.已知正比例函数y=kxk≠0的函数值y随x的增大而减小,则一次函数y=x+k 的图象大致是A.B.C.D.5.已知直线y=kx﹣4k<0与两坐标轴所围成的三角形面积等于4,则直线的解析式为A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣46.在下列各图象中,表示函数y=﹣kxk<0的图象的是A.B.C.D.7.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是A.B.C.D.8.下列函数1y=3πx;2y=8x﹣6;3y=;4y=﹣8x;5y=5x2﹣4x+1中,是一次函数的有A.4个B.3个C.2个D.1个9.直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的A.B.C.D.10.下列函数中,是一次函数但不是正比例函数的是A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣111.函数y=2﹣ax+b﹣1是正比例函数的条件是A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数12.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为A.B.C.D.二.填空题共11小题13.已知函数y=m﹣1x+m2﹣1是正比例函数,则m= .14.若函数y=a﹣3x|a|﹣2+2a+1是一次函数,则a= .15.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是.16.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有.17.如图,在直角坐标系中,已知矩形ABCD的两个顶点A3,0、B3,2,对角线AC所在的直线L,那么直线L对应的解析式是.18.一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是.19.已知,一次函数y=x+5的图象经过点Pa,b和Qc,d,则ac﹣d﹣bc﹣d的值为.20.如图,该直线是某个一次函数的图象,则此函数的解析式为.21.若一次函数y=kx+bk≠0与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:.22.已知点A3,y1、B2,y2在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y 1y2.填>、=或<23.一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b= .三.解答题共17小题24.已知直线y=kx+b经过点A5,0,B1,4.1求直线AB的解析式;2若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;3根据图象,写出关于x的不等式2x﹣4>kx+b的解集.25.已知函数y=2m+1x+m﹣3;1若函数图象经过原点,求m的值;2若函数图象在y轴的截距为﹣2,求m的值;3若函数的图象平行直线y=3x﹣3,求m的值;4若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为8,0,Px,y 是直线y=﹣x+10在第一象限内一个动点.1求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;2当△OPA的面积为10时,求点P的坐标.27.已知正比例函数y=m﹣1的图象在第二、四象限,求m的值.28.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P2,p在第一象限,直线PA交y轴于点C0,2,直线PB交y轴于点D,此时,S△AOP=6.1求P的值;2若S△BOP =S△DOP,求直线BD的函数解析式.29.在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.1将直线y=2x向下平移2个单位后对应的解析式为;2求点A的坐标;3若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.30.已知y与x+2成正比例,且当x=1时,y=﹣6.1求y与x的函数关系式.2若点a,2在此函数图象上,求a的值.31.已知把直线y=kx+bk≠0沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.1求直线y=kx+bk≠0的解析式;2求直线y=kx+bk≠0与坐标轴围成的三角形的周长.32.如图,已知一条直线经过点A5,0、B1,4.1求直线AB的解析式;2若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C 33.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.1分别求点A、C的坐标;2在x轴上求一点P,使它到B、C两点的距离之和最小.34.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标8,0,点A的坐标为6,0.点Px,y是第一象限内的直线上的一个动点点P不与点E,F重合.1求k的值;2在点P运动的过程中,求出△OPA的面积S与x的函数关系式.3若△OPA的面积为,求此时点P的坐标.35.课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.阅读理解小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x 轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.1将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6解决问题2已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.拓展探究3一次函数y=﹣2x的图象绕点2,3逆时针方向旋转90°后得到的图象对应的函数表达式为.直接写结果36.已知正比例函数y=kx的图象经过点P1,2,如图所示.1求这个正比例函数的解析式;2将这个正比例函数的图象向右平移4个单位,求出平移后的直线的解析式.37.如图,直线y=x+2分别与x轴、y轴交于点A、B,将直线AB沿y轴向下平移至点C0,﹣1,与x轴交于点D,过点B作BE⊥CD,垂足为E.1求直线CD的解析式;2求S.△BEC38.1点0,7向下平移2个单位后的坐标是,直线y=2x+7向下平移2个单位后的解析式是.2直线y=2x+7向右平移2个单位后的解析式是.3如图,已知点Ca,3为直线y=x上在第一象限内一点,直线y=2x+7交y轴于点A,交x轴于点B,将直线AB沿射线OC方向平移|OC|个单位,求平移后的直线解析式.39.某人从离家18千米的地方返回,他离家的距离s千米与时间t分钟的函数图象如图所示:1求线段AB的解析式;2求此人回家用了多长时间40.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为3,0、0,5.1直接写出B点坐标;2若过点C的一条直线把矩形OABC的周长分为3:5两部分,求这条直线的解析式.初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题含解析参考答案与试题解析一.选择题共12小题1.2015春•昌平区期末已知y=m﹣3x|m|﹣2+1是一次函数,则m的值是A.﹣3 B.3 C.±3 D.±2分析根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.解答解;由y=m﹣3x|m|﹣2+1是一次函数,得,解得m=﹣3,m=3不符合题意的要舍去.故选A.点评本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为12.2016春•昌江县校级期末一次函数y=mx+n与y=mnxmn≠0,在同一平面直角坐标系的图象是A.B.C.D.分析由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.解答解:1当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;2当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;3当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;4当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.点评一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3.2016春•河东区期末关于一次函数y=﹣2x+3,下列结论正确的是A.图象过点1,﹣1 B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<0分析A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.解答解:A、当x=1时,y=1.所以图象不过1,﹣1,故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.点评本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.4.2016春•十堰期末已知正比例函数y=kxk≠0的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是A.B.C.D.分析根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.解答解:∵正比例函数y=kxk≠0的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.点评本题考查了一次函数图象:一次函数y=kx+bk、b为常数,k≠0是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为0,b.5.2015秋•柘城县期末已知直线y=kx﹣4k<0与两坐标轴所围成的三角形面积等于4,则直线的解析式为A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4分析首先求出直线y=kx﹣4k<0与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.解答解:直线y=kx﹣4k<0与两坐标轴的交点坐标为0,﹣4,0,∵直线y=kx﹣4k<0与两坐标轴所围成的三角形面积等于4,∴4×﹣×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选B.点评主要考查了用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.6.2015春•澧县期末在下列各图象中,表示函数y=﹣kxk<0的图象的是A.B.C.D.分析由于正比例函数的图象是一条经过原点的直线,由此即可确定选择项.解答解:∵k<0,∴﹣k>0,∴函数y=﹣kxk<0的值随自变量x的增大而增大,且函数为正比例函数,故选:C.点评此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.2014秋•深圳期末两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是A.B.C.D.分析由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.解答解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b >0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.点评一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.2014春•临沂期末下列函数1y=3πx;2y=8x﹣6;3y=;4y=﹣8x;5y=5x2﹣4x+1中,是一次函数的有A.4个B.3个C.2个D.1个分析根据一次函数的定义求解.解答解:1y=3πx 2y=8x﹣6 4y=﹣8x是一次函数,因为它们符合一次函数的定义;3y=,自变量次数不为1,而为﹣1,不是一次函数,5y=5x2﹣4x+1,自变量的最高次数不为1,而为2,不是一次函数.故选B.点评解题关键是掌握一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1.注意正比例函数是特殊的一次函数,不要漏掉1y=3πx,它也是一次函数.9.2015秋•西安校级期末直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的A.B.C.D.分析根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求b的符号,由b,k的符号来求直线y=bx﹣k所经过的象限.解答解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴﹣k<0,∴直线y=bx﹣k经过第二、三、四象限.故选C.点评本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.2015春•高密市期末下列函数中,是一次函数但不是正比例函数的是A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣1分析根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.解答解:A、y=2x是正比例函数,故A错误;B、y=+2是反比例函数的变换,故B错误;C、y=﹣x是一次函数,故C正确;D、y=2x2﹣1是二次函数,故D错误;故选:C.点评本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.11.2015秋•招远市期末函数y=2﹣ax+b﹣1是正比例函数的条件是A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数分析根据正比例函数的意义得出2﹣a≠0,b﹣1=0,求出即可.解答解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.点评本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a≠0和b﹣1=0是解此题的关键.12.2015春•柘城县期末当x>0时,y与x的函数解析式为y=2x,当x≤0时,y 与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为A.B.C.D.分析利用正比例函数图象的性质结合自变量的取值范围得出符合题意的图象.解答解:∵当x>0时,y与x的函数解析式为y=2x,∴此时图象则第一象限,∵当x≤0时,y与x的函数解析式为y=﹣2x,∴此时图象则第二象限,故选:C.点评此题主要考查了正比例函数的图象,正确根据自变量取值范围得出图象是解题关键.二.填空题共11小题13.2016秋•兴化市期末已知函数y=m﹣1x+m2﹣1是正比例函数,则m= ﹣1 .分析由正比例函数的定义可得m2﹣1=0,且m﹣1≠0.解答解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.点评本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.14.2016春•罗平县期末若函数y=a﹣3x|a|﹣2+2a+1是一次函数,则a= ﹣3 .分析根据一次函数的定义得到a=±3,且a≠3即可得到答案.解答解:∵函数y=a﹣3x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.点评本题考查了一次函数的定义:对于y=kx+bk、b为常数,k≠0,y称为x的一次函数.15.2011秋•青田县期末如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是k>m>n .分析根据函数图象所在象限可判断出k>0,m>0,n<0,再根据直线上升的快慢可得k>m,进而得到答案.解答解:∵正比例函数y=kx,y=mx的图象在一、三象限,∴k>0,m>0,∵y=kx的图象比y=mx的图象上升得快,∴k>m>0,∵y=nx的图象在二、四象限,∴n<0,∴k>m>n,故答案为:k>m>n.点评此题主要考查了正比例函数图象,关键是掌握正比例函数图象的性质:它是经过原点的一条直线,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.16.2013秋•姜堰市校级期末一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有①③.分析根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.解答解:根据图示及数据可知:①k<0正确;②a>0错误;③方程kx+b=x+a的解是x=3,正确;④当x<3时,y1<y2错误.故正确的判断是①③.点评本题考查一次函数的图象,考查学生的分析能力和读图能力,次函数y=kx+b 的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.17.2015春•上海校级期末如图,在直角坐标系中,已知矩形ABCD的两个顶点A3,0、B3,2,对角线AC所在的直线L,那么直线L对应的解析式是y=﹣x+2 .分析根据矩形的性质及B点坐标可求C点坐标,设直线L的解析式为y=kx+b,根据“两点法”列方程组,可确定直线L的解析式.解答解:∵矩形ABCD中,B3,2,∴C0,2,设直线L的解析式为y=kx+b,则,解得∴直线L的解析式为:y=﹣x+2.故答案为:y=﹣x+2.点评本题考查用待定系数法确定函数的解析式,是常用的一种解题方法.18.2013秋•长丰县校级期末一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是x>0 .分析直接根据一次函数的图象即可得出结论.解答解:由函数图象可知,当y<5时,x>0.故答案为:x>0.点评本题考查的是一次函数的图象,能利用数形结合求出不等式的解集是解答此题的关键.19.2016春•简阳市校级期中已知,一次函数y=x+5的图象经过点Pa,b和Qc,d,则ac﹣d﹣bc﹣d的值为25 .分析根据一次函数图象上点的坐标特征,将点Pa,b和Qc,d分别代入函数解析式,求得a﹣b、c﹣d的值;然后将其代入所求的代数式求值即可.解答解:∵一次函数y=x+5的图象经过点Pa,b和Qc,d,∴点Pa,b和Qc,d满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴ac﹣d﹣bc﹣d=a﹣bc﹣d=﹣5×﹣5=25.故答案是:25.点评本题考查了一次函数图象上点的坐标特征.求代数式的值时,要先将其变形为含有a﹣b、c﹣d的因式的形式,然后求值.20.2014秋•源城区校级期末如图,该直线是某个一次函数的图象,则此函数的解析式为y=2x+2 .分析根据图象写出该直线所经过的点的坐标,然后将其代入函数的解析式y=kx+b,列出关于k、b的一元二次方程,然后解方程求得k、b的值;最后将它们代入函数解析式即为所求.解答解:设该直线方程是:y=kx+bk>0.根据图象知,该直线经过点﹣1,0、0,2,则,解得,,∴此函数的解析式为y=2x+2.故答案是:y=2x+2.点评本题考查了待定系数法求一次函数的解析式.一次函数图象上的点的坐标都满足该函数的解析式.21.2015秋•郓城县期末若一次函数y=kx+bk≠0与函数y=x+1的图象关于x 轴对称,且交点在x轴上,则这个函数的表达式为:y=﹣x﹣1 .分析先求出这两个函数的交点,然后根据一次函数y=kx+bk≠0与函数y=x+1的图象关于x轴对称,解答即可.解答解:∵两函数图象交于x轴,∴0=x+1,解得:x=﹣2,∴0=﹣2k+b,∵y=kx+b与y=x+1关于x轴对称,∴b=﹣1,∴k=﹣∴y=﹣x﹣1.故答案为:y=﹣x﹣1.点评本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.22.2015秋•滨海县期末已知点A3,y1、B2,y2在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1<y2.填>、=或<分析首先判断一次函数一次项系数为负,然后根据一次函数的性质当k<0,y随x 的增大而减小即可作出判断.解答解:∵一次函数y=﹣x+3中k=﹣<0,∴y随x增大而减小,∵3>2,∴y1<y2.故答案为<.点评本题主要考查了一次函数图象上点的坐标特征的知识,解答本题要掌握一次函数的性质当k<0,y随x的增大而减小,此题难度不大.23.2015春•淮南期末一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b= 1或9 .分析因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知,若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;然后结合题意利用方程组解决问题.解答解:∵因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;则有,解之得,∴k+b=9.若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;则有,解之得,∴k+b=1,综上:k+b=9或1.故答案为1或9.点评本题考查了一次函数与一次不等式的关系,此类题目需利用y随x的变化规律,确定自变量与函数的对应关系,然后结合题意,利用方程组解决问题.三.解答题共17小题24.2016春•新疆期末已知直线y=kx+b经过点A5,0,B1,4.1求直线AB的解析式;2若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;3根据图象,写出关于x的不等式2x﹣4>kx+b的解集.分析1利用待定系数法把点A5,0,B1,4代入y=kx+b可得关于k、b得方程组,再解方程组即可;2联立两个函数解析式,再解方程组即可;3根据C点坐标可直接得到答案.解答解:1∵直线y=kx+b经过点A5,0,B1,4,∴,解得,∴直线AB的解析式为:y=﹣x+5;2∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C3,2;3根据图象可得x>3.点评此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.25.2015春•大石桥市校级期末已知函数y=2m+1x+m﹣3;1若函数图象经过原点,求m的值;2若函数图象在y轴的截距为﹣2,求m的值;3若函数的图象平行直线y=3x﹣3,求m的值;4若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.分析1根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;2根据题意可得m﹣3=﹣2,解方程即可;3根据两函数图象平行,k值相等可得2m+1=3;4根据一次函数的性质可得2m+1<0,再解不等式即可.解答解:1∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;2∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;3∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;4∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.点评此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b 的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.26.2016春•潮南区期末如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A 的坐标为8,0,Px,y是直线y=﹣x+10在第一象限内一个动点.1求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;2当△OPA的面积为10时,求点P的坐标.=OA•y,然后把y转换成x,即可求得△OPA的分析1根据三角形的面积公式S△OPA面积S与x的函数关系式;2把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.解答解1∵A8,0,∴OA=8,|=×8×﹣x+10=﹣4x+40,0<x<10.S=OA•|yP2当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为,.点评本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.27.2014春•高安市期末已知正比例函数y=m﹣1的图象在第二、四象限,求m的值.分析当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.解答解:∵正比例函数y=m﹣1,函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.点评此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.28.2015春•荔城区期末如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P2,p在第一象限,直线PA交y轴于点C0,2,直线PB交y轴于点D,此时,S △AOP=6.1求P的值;2若S△BOP =S△DOP,求直线BD的函数解析式.分析1过点P作PF⊥y轴于点F,则PF=2.求出S△COP 和S△COA,即OA×2=4,则A﹣4,0,则|p|=3,由点P在第一象限,得p=3;2根据S△BOP =S△DOP,得DP=BP,即P为BD的中点,作PE⊥x轴,设直线BD的解析式为y=kx+bk≠0,求得k,b.得出直线BD的函数解析式.解答解:1过点P作PF⊥y轴于点F,则PF=2.∵C0,2,∴CO=2.∴S△COP=×2×2=2.∵S△AOP =6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A﹣4,0,∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;2过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP =S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E2,0,F0,3.∴OB=2PF=4,OD=2PE=6,∴B4,0,D0,6.设直线BD的解析式为y=kx+bk≠0,则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.点评本题考查了用待定系数法求一次函数的解析式,三角形面积的求法以及相交线、平行线的性质.29.2016春•费县期末在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.1将直线y=2x向下平移2个单位后对应的解析式为y=2x﹣2 ;2求点A的坐标;3若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.分析1根据将直线y=2x向下平移2个单位后,所以所对应的解析式为y=2x﹣2;2根据题意,得到方程组,求方程组的解,即可解答;3利用等腰直角三角形的性质得出图象,进而得出答案.解答解:1根据题意,得,y=2x﹣2;故答案为:y=2x﹣2.2由题意得:解得:∴点A的坐标为2,2;3如图所示,∵P是x轴上一点,且满足△OAP是等腰直角三角形,P点的坐标为:2,0或4,0.点评此题主要考查了一次函数平移变换以及等腰直角三角形的性质等知识,得出A点坐标是解题关键.30.2015春•监利县期末已知y与x+2成正比例,且当x=1时,y=﹣6.1求y与x的函数关系式.2若点a,2在此函数图象上,求a的值.分析用待定系数法求出函数的关系式,再把点a,2代入即可求得a的值.解答解:1∵y与x+2成正比例∴可设y=kx+2,把当x=1时,y=﹣6.代入得﹣6=k1+2.解得:k=﹣2.故y与x的函数关系式为y=﹣2x﹣4.2把点a,2代入得:2=﹣2a﹣4,解得:a=﹣3点评本题要注意利用一次函数的特点,列出方程,求出未知数从而求得其解析式.把所求点代入即可求出a的值.31.2015春•闵行区期末已知把直线y=kx+bk≠0沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.1求直线y=kx+bk≠0的解析式;2求直线y=kx+bk≠0与坐标轴围成的三角形的周长.分析1根据题意求出平移后解析式;。

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习

中考数学-一次函数正比例函数的图像及性质(含答案)专题练习一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±13.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=04.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或35.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)7.正比例函数y=kx(k≠0)的图像在第二、四象限,则一次函数y=x+k的图像大致是()A. B. C. D.8.下列点不在正比例函数y=﹣2x的图象上的是()A. (5,﹣10)B. (0,0)C. (2,﹣1)D. (1,﹣2)9.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=010.关于函数y=﹣x,下列结论正确的是()A. 函数图象必过点(﹣2,﹣1)B. 函数图象经过第1、3象限C. y随x的增大而减小D. y随x的增大而增大11.下列式子中,表示y是x的正比例函数的是()A.y=x﹣1B.y=2xC.y=2x2D.y2=2x12.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A. 正方形的面积S随着边长x的变化而变化B. 正方形的周长C随着边长x的变化而变化C. 水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t(min)的变化而变化D. 面积为20的三角形的一边a随着这边上的高h的变化而变化13.P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中,正确的是A. y1>y2B. y1<y2C. 当x1<x2时,y1<y2D. 当x1<x2时,y1>y214.下列四个点中,在正比例函数的图象上的点是()A. (2,5)B. (5,2)C. (2,—5)D. (5,—2)15.若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A. (﹣3,﹣2)B. (2,3)C. (3,﹣2)D. (﹣2,3)16.下列关系中,是正比例关系的是()A. 当路程s一定时,速度v与时间tB. 圆的面积S与圆的半径RC. 正方体的体积V与棱长aD. 正方形的周长C与它的一边长a17.下列问题中,两个变量成正比例关系的是()A. 等腰三角形的面积一定,它的底边和底边上的高B. 等边三角形的面积与它的边长C. 长方形的长确定,它的周长与宽D. 长方形的长确定,它的面积与宽18.下列各点中,在正比例函数y=-2x图象上的是()A. (-2,-1)B. (1,2)C. (2,-1)D. (1,-2)19.一次函数y=4x,y=﹣7x,y=的共同特点是()A. 图象位于同样的象限B. y随x增大而减小C. y随x增大而增大D. 图象都过原点二、填空题20.已知正比例函数y=kx(k是常数,k≠0),y随x的增大而减小,写出一个符合条件的k的值为________.21.写出一个正比例函数,使其图象经过第二、四象限:________.22.若函数y=(2m+6)x+(1﹣m)是正比例函数,则m的值是________.23.写一个图象经过第二、四象限的正比例函数:________24.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.答案解析部分一、单选题1.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A. 增大B. 减小C. 不变D. 不能确定【答案】B【考点】正比例函数的图象和性质【解析】【解答】∵点(2,-3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B【分析】首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可2.已知函数y=x+k+1是正比例函数,则k的值为()A.1B.﹣1C.0D.±1【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:由题意,得k+1=0,解得k=﹣1,故选:B.【分析】根据正比例函数的定义,可得答案.3.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A. k>﹣B. k<﹣C. k=D. k=0 【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选B.【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.4.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A. ﹣9B. ﹣3C. 3D. ﹣3或3 【答案】C【考点】正比例函数的图象和性质【解析】【解答】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,9)代入y=kx得k2=9,解得k1=﹣3,k2=3,∴k=3,故选C.【分析】根据正比例函数的性质得k>0,再把(k,9)代入y=kx得到关于k的一元二次方程,解此方程确定满足条件的k的值.5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1< x2时,y1>y2,则m的取值范围是()A. m<0B. m>0C.D.【答案】D【考点】正比例函数的图象和性质【解析】【分析】由题目所给信息“当x1<x2时,y1>y2”可以知道,y随x的增大而减小,则由一次函数性质可以知道应有:1-2m<0,进而可得出m的取值范围.【解答】由题目分析可知:在正比例函数y=(1-2m)x中,y随x的增大而减小由一次函数性质可知应有:1-2m<0,即-2m<-1,解得:m>.【点评】此题主要考查了一次函数的图象性质,只有掌握它的性质才能灵活运用.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,﹣3),(﹣4,6)B. (﹣2,3),(4,6)C. (﹣2,﹣3),(4,﹣6)D. (2,3),(﹣4,6)【答案】A【考点】正比例函数的图象和性质【解析】【分析】根据正比例函数关系式y=kx,可得k=,再依次分析各选项即可判断。

正比例函数与一次函数常见题型

正比例函数与一次函数常见题型

复习旧知正比例函数一次函数例题讲解1、根据概念求解例1、。

若关于x 的函数1(1)m y n x -=+是一次函数,则m = ,n 。

2、根据函数性质求解例2、正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大。

3、结合图像性质求解例3、当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是( )A. B 。

C. D 。

4、实际问题中的图像关系例4、小明的父亲饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小明父亲离家的时间与距离之间的关系是( )5、待定系数法求解析式例5、已知直线y kx b =+经过点(1,2)和点(1-,4),求这条直线的解析式。

6、实际问题中的一次函数例6、甲市到乙市的包裹邮资为每千克0。

9元,每件另加手续费0.2元.求总邮资y (元)与包裹重量x (千克)之间的函数解析式,并计算5千克重的包裹的邮资.巩固练习0 3 4 0.7 1y(元)x(分) 1、若函数(1)3y m x =++图象经过点(1,2),则m = .2、已知函数43y x =-,当 x << 时,函数图象在第四象限.3、.已知点P (3a – 1,a + 3)是第二象限内坐标为整数的点,则整数a 的值是_______.4、若直线a x y +-=和直线b x y +=的交点坐标为(8,m ),则=+b a ____________.C. D.5、下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 为常数,且mn ≠0)的图象的是( )6.在某公用电话亭打电话时,需付电话费y (元)与通话时间 x (分钟)之间的函数关系用图象表示如图.小明打了2分钟需付费______元;小莉打了8分钟需付费_______元。

7、将函数y =2x +3的图象平移,使它经过点(2,-1).求平移后得到的直线的解析式.8、已知直线21y x =+。

4、2《一次函数与正比例函数》习题(1)21-22学年北师大版 八年级数学上册试题 一课一练

4、2《一次函数与正比例函数》习题(1)21-22学年北师大版 八年级数学上册试题 一课一练

4.2《一次函数与正比例函数》习题1一、填空题1.某人购进一批苹果到市场上零售,已知卖出苹果数量x 与售价y 的关系如下表.2.已知函数y=(m -1)x ︳m ︳+1是一次函数,则m=___.3.我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.二、选择题1.下列函数中,y 是x 的正比例函数的是( ) A .3xy =B .21y x =-C .22y x =D .21y x =-+2.下列函数(1)y x π=(2)21y x =-(3)1y x=(4)123y x -=-(5)21y x =-中,一次函数有( )个. A .1B .2C .3D .43.等腰三角形周长为20cm ,底边长ycm 与腰长xcm 之间的函数关系是( ) A .y=20-2x(0<x <10) B .y=20-2x(5<x <10) C .y=10-x(5<x <10)D .y=10-0.5x(10<x <20)4.已知y ﹣1与x 成正比例,当x =3时,y =2.则当x =﹣1时,y 的值是( ) A .﹣1B .0C .13-D .235.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A .100(0.6)y n m =+B .100()0.6y n m =+ C .(1000.6)y n m =+ D .1000.6y mn =+ 6.已知y 是x 的一次函数,下表中列出了部分对应值:A .-1B .0C .12D .27.已知函数28(3)4m y m x -=++是关于x 的一次函数,则m 的值是( ) A .3m =±B .3m ≠-C .3m =-D .3m =8.已知初一(6)班的班费总共为200元,现在要为全班x 个同学每人购买一个笔袋,笔袋单价为2元,则购买后剩余班费y 元与班级人数x 之间的函数关系式为 ( ) A .2y x =B .2002y x =-C .2200y x =-D .2002y x =+9.当2x =时,函数41=-+y x 的值是( ) A .-3B .-5C .-7D .-910.某商场存放处每周的存车量为5000辆次,其中自行车存车费是毎辆一次1元,电动车存车费为每辆一次2元,若自行车存车量为x 辆次,存车的总收入为y 元,则y 与x 之间的关系式是( )A .y =﹣x +10000B .y =﹣2x +5000C .y =x +1000D .y =x +500011.若函数||(1)2m y m x =++是一次函数,则m 的值为( ) A .1m =±B .1m =-C .1m =D .1m ≠-12.对于一次函数y =kx +b (k ,b 为常数,k ≠0)下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是( )A .5B .8C .12D .1413.若正比例函数y kx =()0k ≠,当x 的值减小1,y 的值就减小2,则当x 的值增加2时,y 的值( ) A .增加4B .减小4C .增加2D .减小214.在计算器上按照下面的程序进行操作:下表分别是x 和输入的6个数及相应的计算结果A .-26B .-30C .26D .-29三、解答题1.已知银行2006年9月的“半年期存款”年利率是2.25%,某人当年9月存入银行a 元,经过半年到期时按规定缴纳20%利息税后,得到利息b 元.问税后利息b(元)与本金a(元)成正比例吗?如果成正比例,那么求出这个比例系数.2.商店要出售一种商品,出售时要在进价的基础上加上一定的利润,其销售量x (千克)与售价y (元)之间的关系如下表.(2)此商品的销售量为10千克时,售价为多少? (3)当售价为26.05元时,商品的销售量为多少千克?3.已知函数3(2)7m y m x m -=-++. (1)当m 为何值时,y 是x 的一次函数?(2)若函数是一次函数,则x 为何值时,y 的值为3?4.写出下列各题中y 关于x 的函数关系式,并判断y 是否为x 的一次函数,是否为正比例函数. (1)长方形的面积为20,长方形的长y 与宽x 之间的函数关系式;(2)刚上市时西瓜每千克3.6元,买西瓜的总价y 元与所买西瓜x 千克之间的函数关系式; (3)仓库内有粉笔400盒,如果每个星期领出36盒,仓库内余下的粉笔盒数y 与星期数x 之间的函数关系式;(4)爸爸为小林存了一份教育储蓄,首次存入10 000元,以后每个月存入500元,存入总数y 元与月数x 之间的函数关系式.5.如图所示,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点P 从点C 出发,沿CB 向点B 运动,设点P 所走过的路程长为x ,APB ∆的面积为y .(1)求y 关于x 的函数解析式; (2)求出函数定义域.6.若y -2与x+1成正比例.当x=2时,y=11. (1)求y 与x 的函数关系式;(2)求当x=0时,y的值;(3)求当y=0时,x的值.7.学校准备添置一批计算机.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x台,方案1与方案2的费用分别为y1、y2元.(1)分别写出y1,y2的函数解析式;(2)当学校添置多少台计算机时,两种方案的费用相同?(3)若学校需要添置计算机50台,那么采用哪一种方案较省钱,说说你的理由.8.一辆装满油的小汽车在平直的公路上匀速行驶,下表是里程表及油量表中的数字:Q(L)(1)求油箱内的余油量Q(L)与这次加油后汽车行驶的路程x(km)之间的函数关系;(2)汽车从加油站开出时,里程表上的数字是多少?(精确到1km)(3)当油箱内剩余油量为2L时,油量警示灯就会亮起,这时就要给汽车加油,则这辆汽车再跑多少千米就必须进站加油?(精确到1km)答案一、填空题1.1-2.313.-1.4.﹣1. 二、选择题1.A. 2.C.3.B .4.D .5.A6.B7.D .8.B .9.C.10.A11.C . 12.C 13.A .14.D 三、解答题1.税后利息b (元)与本金a (元)成正比例.根据题意得:b 12=⨯2.25%×(1﹣20%)a 91000=a ,故比例系数为:91000.2.解:(1)0.30.05 1.30.05y x x x =++=+;(2)把10x =代入 1.30.05y x =+可得, 1.3100.0513.05y =⨯+=, 答:售价为13.05元;(3)把26.05y =代入 1.30.05y x =+, 可得:26.05 1.30.05x =+, 解得:20x, 答:商品的销售量为20千克. 3.(1)由3||(2)7m y m x m -=-++是一次函数得3120m m ⎧-=⎨-≠⎩,解得2m =-.故当2m =-时,3||(2)7m y m x m -=-++是一次函数. (2)由(1)可知45y x =-+. 当3y =时,345x =-+,解得12x =. 故当12x =时,y 的值为3. 4.(1)20y x=,不是一次函数,也不是正比例函数.(2) 3.6y x =,是正比例函数,也是一次函数. (3)36400y x =-+,是一次函数,不是正比例函数. (4)50010000y x =+,是一次函数,不是正比例函数.5.解:(1)由题意,得BP=6-x,()1186244;22y BP AC x x ∴==⨯-=- (2)因为P 在CB 上运动,BC=6,06x ∴≤≤6.(1)设y-2=k(x+1) 把当x=2时,y=11代入得 11-2=k(2+1),解得k=3, ∴y-2=3(x+1),整理得y=3x+5 (2)当x=0时,y=5;(3)当y=0时,3x+5=0,解得x=53-7.解:(1)y 1=7000x ; y 2=6000x+3000;(2)由7000x=6000x+3000,解得x=3,因此当学校添置3台计算机时,两种方案的费用相同;(3)当x=50时,y 1=7000×50=350000; y 2=6000×50+3000=303000,因为303000<350000,所以采用方案2较省钱.8.解:(1)由表格可知,汽车每行驶100km ,耗油8.5L ,即每行驶1km ,耗油0.085L , 所以油箱内的余油量Q(L)与这次加油后汽车行驶的路程x(km)之间的关系为0.08550Q x =-+. (2)从加油站开出时,汽车油箱的油量是50L.当里程表上的数字是2000时,油量表上的数字显示40. 则汽车从加油站开出时,里程表上的数字是10020001018828.5-⨯≈(km). (3)100(62)478.5⨯-≈(km).所以这辆汽车再跑47km 就必须加油。

函数正比例函数一次函数测试题

函数正比例函数一次函数测试题

一次函数测试题一、函数与正比例函数1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

2、若函数y= -2x m+2是正比例函数,则m 的值是 。

3、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____ 。

4、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t (℃)与高度h (m )的函数关系式是__________。

5、下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个6、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)7、下列一次函数中,随着增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y8、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )(A) (B) (C ) (D )9、已知一个正比例函数图象过点A(1,4)(1)求这个函数的解析式;(2)画出它们的图象;10、已知y -2与x 成正比,且当x=1时,y= -6(1)求y 与x 之间的函数关系式 (2)若点(a ,2)在这个函数图象上,求a 的值11、某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费1.8元,超计划部分每吨按2.0元收费。

(1)写出该单位水费y (元)与每月用水量x (吨)之间的函数关系式:_________________ ①当用水量小于等于3000吨 ;②当用水量大于3000吨 。

(2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元。

(3)若某月该单位缴纳水费9400元,则该单位用水多少吨?二、一次函数1、已知一次函数y=kx+5的图象经过点(-1,2),则k=。

一次函数与正比例函数练习题(能力测试)

一次函数与正比例函数练习题(能力测试)

一次函数与正比例函数练习题一.选择题(共12小题)1.(2012?武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③2.(2012?潍坊)若直线y=﹣2x﹣4与直线y=4x+b的交点在第三象限,则b的取值范围是()A.﹣4<b<8 B.﹣4<b<0 C.b<﹣4或b>8 D.﹣4≤b≤83.(2012?陕西)在同一平面直角坐标系中,若一次函数y=﹣x+3与y=3x﹣5的图象交于点M,则点M的坐标为()A.(﹣1,4)B.(﹣1,2)C.(2,﹣1)D.(2,1)4.(2010?镇江)两直线l1:y=2x﹣1,l2:y=x+1的交点坐标为()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)5.(2005?贵阳)如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B,能表示这个一次函数的解析式为()A.2x﹣y+3=0 B.x﹣y﹣3=0 C.2y﹣x+3=0 D.x+y﹣3=06.(2011?潼南县)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1007.(2005?湘潭)如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5x B.y=x C.y=xD.y=x8.(2001?嘉兴)在一定温度下的饱和溶液中,溶质、溶剂质量和溶解度之间存在下列关系:.已知20℃时,硝酸钾的溶解度是31.6克,在此温度下,设x克水可溶解硝酸钾y克,则y关于x的函数关系式是()A.y=0.316x B.y=31.6x C.D.9.(2012?贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.10.(2006?太原)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是()A.B.C.D.11.(2010?陕西)一个正比例函数的图象过点(2,﹣3),它的表达式为()A.B.C.D.12.(1999?西安)已知A(0,0),B(3,2)两点,经过A、B两点的图象的解析式为()A.y=3x B.y=x C.y=xD.y=x+1二.填空题(共10小题)13.(2012?衡阳)如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则kb= _________.14.(2010?天津)已知一次函数y=2x﹣6与y=﹣x+3的图象交于点P,则点P的坐标为_________.15.(2011?厦门)如图,一系列“黑色梯形”是由x轴、直线y=x和过x轴上的正奇数1、3、5、7、9、…所对应的点且与y轴平行的直线围成的.从左到右,将其面积依次记为S1、S2、S3、…、S n、….则S1=_________,S n=_________.16.(2011?内江)在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为_________.17.(2010?上海)一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为_________.18.(2008?荆门)如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须_________.19.(2006?北京)如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为_________.20.(2005?上海)点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是_________.21.(2012?威海)如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组_________的解.22.(2006?重庆)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是_________.三.解答题(共8小题)23.(2012?营口)如图,直线分别交x轴、y轴于A、B两点,线段AB的垂直平分线分别交x轴、y轴于C、D两点.(1)求点C的坐标;(2)求△BCD的面积.24.(2012?绥化)如图,四边形ABCD为矩形,C 点在x轴上,A点在y轴上,D点坐标是(0,0),B 点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.25.(2012?牡丹江)如图,OA、OB的长分别是关于x的方程x 2﹣12x+32=0的两根,且OA>OB.请解答下列问题:(1)求直线AB的解析式;(2)若P为AB上一点,且,求过点P的反比例函数的解析式;(3)在坐标平面内是否存在点Q,使得以A、P、O、Q为顶点的四边形是等腰梯形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.26.(2012?丽水)在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.(1)求AC所在直线的函数解析式;(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.27.(2012?哈尔滨)如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=﹣x+m经过点C,交x轴于点D.(1)求m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与0,B两点重合),过点P作x轴的平行线,分别交AB,OC,DC于点E,F,G,设线段EG的长为d,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO,求此时t的值及点H的坐标.28.(2012?遵义)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量x(度)0<x≤140 __________________(2)小明家某月用电120度,需交电费_________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.29.(2012?镇江)甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1h到达B地.如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:(1)分别计算甲、乙两车的速度及a的值;(2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离S(km)与时间t(h)的函数图象.30.(2012?湛江)某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔技种植面积为24万亩.调查分析结果显示.从2009年开始,该市荔技种植面积y(万亩)随着时间x(年)逐年成直线上升,y与x之间的函数关系如图所示.(1)求y与x之间的函数关系式(不必注明自变量x的取值范围);(2)该市2012年荔技种植面积为多少万亩?。

(完整版)中考试题专题之11——正比例函数及一次函数

(完整版)中考试题专题之11——正比例函数及一次函数

中考试题专题之11——正比例函数及一次函数一、选择题1、下列说法不正确的是 ( ) A .一次函数不一定是正比例函数 B .不是一次函数就一定不是正比例函数C .正比例函数是特殊的一次函数D .不是正比例函数就一定不是一次函数2、无论m 、n 为何实数,直线与的交点不可能在 ( )13+-=x y n mx y += A .第一象限 B .第二象限 C .第三象限 D .第四象限3、在平面直角坐标系中,函数的图象经过 ( )234-=x y A .一、二、三象限 B .二、三、四象限C .一、三、四象限 D .一、二、四象限4、一次函数y=kx+(k-3)的函数图象不可能是 ( )5、某航空公司规定,旅客乘机所携带行李的质量(kg)与其运费(元)由如图所示的一次函数图x y 象确定,那么旅客可携带的免费行李的最大质量为 ( )A .20kgB .25kgC .28kgD .30kg 6、若正比例函数的图像经过点(-1,2),则这个图像必经过点 ( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)7、函数y=ax 和函数,它们的图象在同一坐标系内没有交点,则a 与b 的关系是 (xby =)A .同号B .异号C .互为倒数D .互为相反数二、填空题1、函数的定义域是;函数的定义域为.x y 23-=43+=x y 2、函数的定义域是;函数的定义域是 .xy 321+=24+-=x xy 3、正比例函数经过点,那么这个函数的解析式为.)6,2(-A 4、将正比例函数的图象进行上下平移,使它经过点,那么所得图象的函数解析式x y 2=)3,0(-是.5、一次函数,y 随着x 的增大而减小,则k 的取值范围是 .k x k y 3)2(+-=6、一次函数的图象经过点A ,则=k.3+=kx y )0,3(7、一次函数的图象与直线平行,并且经过点,那么解析式是 y k x b =+12+-=x y )4,0(.8、如果直线不经过第二象限,那么实数的取值范围是.m x y +=2m 9、写出一个图象不经过第一象限的一次函数: .10、如果点A 的坐标是(-1,1),点B 在函数的图象上,A 、B 两点之间的距离是2,那么x y =点B 的坐标是 .三、简答题1、一次函数平行于直线,且与双曲线的一个交点是(2,m ),求此函b kx y +=x y 6-=xy 2-=数解析式.2、在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.1)求函数y =x +3的坐标三角形的三条边长; 43-2)若函数y =x +b (b 为常数)的坐标三角形周长为16, 求此三角43-形面积.3、某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图10所示.1)第20天的总用水量为多少米3?2)当时,求y 与x 之间的函数关系式. 20≥x 3)种植时间为多少天时,总用水量达到7000米3?图10(天)第21题图。

一次函数之正比例函数的习题

一次函数之正比例函数的习题

一次函数之正比例函数的习题一.选择题(共13小题)1.(2016•蓝田县一模)已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣12.(2016春•龙海市期中)下列图形中的图象不表示y是x的函数的是()A.B.C.D.3.(2016春•武城县校级月考)函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣24.(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠15.(2015•百色)已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.86.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=7.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣48.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<19.(2015•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限10.(2015•江西校级模拟)关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>011.(2015•杭州模拟)若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)12.(2015•陕西模拟)若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣2 B.2 C.﹣D.13.(2015•苏州校级二模)将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2) B.y=﹣2(x﹣2)C.y=﹣2x﹣2 D.y=﹣2x+2二.填空题(共8小题)14.(2016春•安定区校级月考)在函数y=+(x﹣1)0中,自变量x的取值范围是.15.(2016春•丰台区校级月考)一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是.16.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=.17.(2015•大庆模拟)写出一个函数,使得满足下列两个条件:①经过点(﹣1,1);②在x>0时,y随x的增大而增大.你写出的函数是.18.(2015•铁力市二模)函数中,自变量x的取值范围是.19.(2015•梅列区校级质检)已知,函数y=(k﹣1)x+k2﹣1,当k时,它是一次函数.20.(2015•路北区一模)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).21.(2015•武汉模拟)点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,则a+b=.三.解答题(共9小题)22.(2016春•武城县校级月考)如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家千米,小刚在体育场锻炼了分钟.(2)体育场离文具店千米,小刚在文具店停留了分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?23.(2016春•南京校级月考)小明同学骑自行车去郊外春游,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需小时,(2)小明出发两个半小时离家千米.(3)小明出发小时离家12千米.24.(2016春•石家庄校级月考)如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,(1)鸡场的长y(m)与宽x(m)的函数关系式为.(2)并求自变量的取值范围为.25.(2016•黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.26.(2016•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒y元,每天生产A种品牌的酒x瓶.(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?27.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.28.(2016春•南江县校级月考)在如图平面直角坐标系中画出函数y=﹣x+3的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)若此图象向上平移三个单位长度,得到的函数是.29.(2016春•武城县校级月考)已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?30.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?一次函数之正比例函数的习题参考答案与试题解析一.选择题(共13小题)1.(2016•蓝田县一模)已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<﹣1 B.m>﹣1 C.m≥﹣1 D.m≤﹣1【解答】解:∵正比例函数y=(m+1)x中,y的值随自变量x的值增大而减小,∴m+1<0,解得,m<﹣1;故选A.2.(2016春•龙海市期中)下列图形中的图象不表示y是x的函数的是()A.B.C.D.【解答】解:A、根据图象知给自变量一个值,有且只有一个函数值与其对应,故A是函数,B、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B是函数,C、根据图象知给自变量一个值,有的有3个函数值与其对应,故C不是函数,D、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D是函数,故选C.3.(2016春•武城县校级月考)函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣2【解答】解:∵函数y=(a+1)x a﹣1是正比例函数,∴a﹣1=1,且a+1≠0.解得a=2.故选:A.4.(2015•内江)函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠1【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.5.(2015•百色)已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.8【解答】解:∵x≥0时,y=2x+1,∴当x=2时,y=2×2+1=5.故选:A.6.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=【解答】解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.7.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B8.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<1【解答】解:由图象知:∵函数y=kx的图象经过第一、三象限,∴k>0.故选A.9.(2015•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限【解答】解:A、当x=1时,y=﹣5,错误;B、正比例函数的图象是一条经过原点的直线,正确;C、根据k<0,得图象经过二、四象限,y随x的增大而减小,错误;D、图象经过二四象限,错误;故选B.10.(2015•江西校级模拟)关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【解答】解:A、函数图象经过点(2,4),错误;B、函数图象经过第一、三象限,错误;C、y随x的增大而增大,正确;D、当x>0时,才有y>0,错误;故选C.11.(2015•杭州模拟)若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(2,﹣3),所以﹣3=2k,解得:k=﹣,所以y=﹣x,把这四个选项中的点的坐标分别代入y=﹣x中,等号成立的点就在正比例函数y=﹣x的图象上,所以这个图象必经过点(﹣2,3).故选D.12.(2015•陕西模拟)若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣2 B.2 C.﹣D.【解答】解:∵函数y=kx的图象过点(2,1),∴把点的坐标代入函数解析式可得1=2k,解得k=,故选D.13.(2015•苏州校级二模)将直线y=﹣2x向下平移两个单位,所得到的直线为()A.y=﹣2(x+2) B.y=﹣2(x﹣2)C.y=﹣2x﹣2 D.y=﹣2x+2【解答】解:由“上加下减”的原则可知,直线y=﹣2x向下平移2个单位,得到直线是:y=﹣2x﹣2.故选C.二.填空题(共8小题)14.(2016春•安定区校级月考)在函数y=+(x﹣1)0中,自变量x的取值范围是x >﹣2且x≠1.【解答】解:根据题意得:x+2≥0且x﹣1≠0,解得:x>﹣2且x≠1.故答案是:x>﹣2且x≠1.15.(2016春•丰台区校级月考)一个正比例函数的图象经过点(2,﹣4),则这个正比例函数的表达式是y=﹣2x.【解答】解:设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(2,﹣4),∴﹣4=2k,解得k=﹣2,∴这个正比例函数的表达式是y=﹣2x.故答案为:y=﹣2x.16.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=﹣.【解答】解:根据题意可得:2a+b=1,a+2b=0,解得:a=,b=﹣.故答案为:;﹣.17.(2015•大庆模拟)写出一个函数,使得满足下列两个条件:①经过点(﹣1,1);②在x>0时,y随x的增大而增大.你写出的函数是y=x2.【解答】解:y=x2经过点(﹣1,1);在x>0时,y随x的增大而增大,故答案为:y=x2.18.(2015•铁力市二模)函数中,自变量x的取值范围是3≤x≤5.【解答】解:根据题意,得,解得3≤x≤5.19.(2015•梅列区校级质检)已知,函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数.【解答】解:根据一次函数定义得,k﹣1≠0,解得k≠1.故答案为:≠1.20.(2015•路北区一模)已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).【解答】解:当x=1时,y1=x=1;当x=2时,y2=x=2,所以y1<y2.故答案为<.21.(2015•武汉模拟)点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,则a+b=﹣7.【解答】解:∵点P(3,1﹣a)在y=2x﹣1上,点Q(b+2,3)在y=2﹣x上,∴1﹣a=6﹣1,3=2﹣(b+2),∴a=﹣4,b=﹣3,∴a+b=﹣7.故答案为:﹣7.三.解答题(共9小题)22.(2016春•武城县校级月考)如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家 2.5千米,小刚在体育场锻炼了15分钟.(2)体育场离文具店1千米,小刚在文具店停留了20分钟.(3)小刚从家跑步到体育场、从体育场走到文具店、从文具店散步回家的速度分别是多少?【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店2.5﹣1.5=1(千米),由横坐标看出小刚在文具店停留了65﹣45=20(分).故答案为:2.5,15,1,20;(3)由纵坐标看出文具店距张强家1.5千米,由横坐标看出从文具店回家用了100﹣65=35(分钟),张强从文具店回家的平均速度是1.5÷35=(千米/分).答:张强从文具店回家的平均速度是千米/分钟.23.(2016春•南京校级月考)小明同学骑自行车去郊外春游,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需3小时,(2)小明出发两个半小时离家22.5千米.(3)小明出发小时或小时小时离家12千米.【解答】解:(1)由图象可知小明到达离家最远的地方需3小时;(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x﹣15,(2≤x≤3)当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米;(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30)、F(6,0),代入得y=﹣15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15)∴y=15x(0≤x≤1)分别令y=12,得x=(小时),x=(小时)答:小明出发小时或小时距家12千米.故答案为:3;22.5;小时或小时.24.(2016春•石家庄校级月考)如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,(1)鸡场的长y(m)与宽x(m)的函数关系式为y=﹣2x+35.(2)并求自变量的取值范围为8.5≤x<.【解答】解:(1)根据题意得:鸡场的长y(m)与宽x(m)有y+2x=35,即y=﹣2x+35;(2)题中有18≥y>0,∴﹣2x+35≤18,∴x≥8.5,又y>x,∴﹣2x+35>x,解得x<,则自变量的取值范围为8.5≤x<;故答案为:(1)y=﹣2x+35;(2)8.5≤x<.25.(2016•黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.【解答】解:若此等腰三角形以OA为一腰,且以A为顶点,则AO=AC1=2.设C1(x,2x),则得x2+(2x﹣2)2=22,解得,得C1(),若此等腰三角形以OA为一腰,且以O为顶点,则OC2=OC3=OA=2,设C2(x′,2x′),则得x′2+(2x′)2=22,解得=,∴C2(),又由点C3与点C2关于原点对称,得C3(),若此等腰三角形以OA为底边,则C4的纵坐标为1,从而其横坐标为,得C4(),(),(),(),所以,满足题意的点C有4个,坐标分别为:C4().26.(2016•无锡一模)某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒y元,每天生产A种品牌的酒x瓶.(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?【解答】解:(1)由题意,每天生产A种品牌的酒x瓶,则每天生产B种品牌的酒(600﹣x)瓶,∴y=20x+15(600﹣x)=9000+5x.(2)根据题意得:,解得:266≤x≤270,∵x为整数,∴x=267、268、269、270,该酒厂共有4种生产方案:①生产A种品牌的酒267瓶,B种品牌的酒333瓶;②生产A种品牌的酒268瓶,B种品牌的酒332瓶;③生产A种品牌的酒269瓶,B种品牌的酒331瓶;④生产A种品牌的酒270瓶,B种品牌的酒330瓶;∵每天获利y=9000+5x,y是关于x的一次函数,且随x的增大而增大,∴当x=267时,y有最小值,y最小=9000+5×267=10335元.27.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.【解答】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB所对应的函数表达式为y=kx+b,把A(1,50)、B(3,120)代入,得,解得:.故直线AB所对应的函数表达式为y=35x+15(1<x≤4).(3)设直线OA所对应的函数表达式为y=k1x,把A(1,50)代入,得50=k1,故直线OA所对应的函数表达式为y=50x(0≤x≤1),设直线OB所对应的函数表达式为y=k2x,把B(3,120)代入,得120=3k2,解得:k2=40.故直线OB所对应的函数表达式为y=40x(0≤x≤4).当0≤x≤4时,令50x﹣40x=5,解得x=0.5;当1<x≤3时,令35x+15﹣40x=5,解得x=2;当3<x≤4时,令40x﹣(35x+15)=5,解得x=4.综上可知:甲、乙相距5千米时x的值为0.5,2和4.28.(2016春•南江县校级月考)在如图平面直角坐标系中画出函数y=﹣x+3的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)若此图象向上平移三个单位长度,得到的函数是y=﹣x+6.【解答】解:函数y=﹣x+3与坐标轴的交点的坐标为(6,0),(0,3),经过点(6,0),(0,3)画直线,得到函数y=﹣x+3的图象,如图所示:(1)点A的坐标是(﹣4,5);(2)将y=﹣x+3向上平移三个单位后即可得到y=﹣x+6.故答案为y=﹣x+6.29.(2016春•武城县校级月考)已知,函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x增大而增大?【解答】解:(1)∵函数y=(1﹣3k)x+2k﹣1的图象过原点,∴,解得k=;(2)∵y随x增大而增大,∴1﹣3k>0,解得k<.30.(2015•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?【解答】解:(1)小敏去超市途中的速度是:3000÷10=300(米/分),在超市逗留了的时间为:40﹣10=30(分).(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家的时间为:8:55.。

第19章《一次函数-》3正比例函数-学生版

第19章《一次函数-》3正比例函数-学生版

个性化教学辅导教案一.选择题(共4小题)1.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s (m)与时间t(min)的大致图象是()A.B.C.D.2.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5 A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm3.若y与x的关系式为y=30x﹣6,当x=时,y的值为()A.5B.10C.4D.﹣44.如图,一根长为5米的竹竿AB斜立于墙MN的右侧,底端B与墙角N 的距离为3米,当竹竿顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()A.B.C.D.二.解答题(共2小题)5.在同一坐标系中画出下列函数的图象:(1)y=x;(2)y=3x;(3)y=x.一.选择题(共3小题)1.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0B.1C.±1D.﹣12.正比例函数y=3x的大致图象是()A.B.C.D.3.若正比例函数y=kx 的图象经过点(﹣2,3),则k 的值为( ) A . B .﹣ C . D .﹣二.填空题(共2小题)4.已知y=(k ﹣1)x+k 2﹣1是正比例函数,则k= .5.已知正比例函数y=(1﹣2a )x ,如果y 的值随着x 的值增大而减小,则a 的取值范围是 .三.解答题(共2小题)6.已知正比例函数y=(3k ﹣1)x ,若y 随x 的增大而增大,求k 的取值范围.1. 不理解正比例函数的概念;2. 分不清正比例函数的图像和性质;知识点1:正比例函数的定义一般地,形如)0(≠=k k kx y 是常量,的函数,叫做正比例函数,其中k 叫做正比例函数.由正比例函数的定义可知:若函数为正比例函数,则其解析式可化为)0(≠=k k kx y 是常量,的形式.正比例函数解析式kx y =的结构特征:①0≠k k 是常量,;①自变量x 的次数为1.一般情况下,正比例函数中自变量的取值范围是全体实数,函数值的取值范围是全体实数.k< k0 >变式7 已知4-y 与3+x 成正比例,当2=x 时,19=y ,求y 关于x 的函数解析式.例8 已知y 是x 正比例函数,且函数图象经过点A (-3,6). (1)求y 与x 之间的函数关系式; (2)当6-=x 时,求对应的函数值y ; (3)当x 取何值时,32=y ?变式8 已知正比例函数)0(≠=k kx y 的图象经过点(1,-2),则正比例函数的解析式为( )A. x y 2=B. x y 2-=C. x y 21=D. x y 21-=一.选择题(共4小题)1.已知正比例函数y=(m+1)x ,y 随x 的增大而减小,则m 的取值范围是( )A .m <﹣1B .m >﹣1C .m≥﹣1D .m≤﹣12.若一个正比例函数的图象经过点(2,﹣3),则这个图象一定也经过点( )A .(﹣3,2)B .(,﹣1)C .(,﹣1)D .(﹣,1)3.正比例函数y=﹣3x的大致图象是()A.B.C.D.4.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0二.填空题(共3小题)5.若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为.6.写一个图象经过第二、四象限的正比例函数:.7.已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第象限.三.解答题(共3小题)8.已知关于x的正比例函数y=(5﹣2k)x.(1)当k取何值时,y随x的增大而增大;(2)当k取何值时,y随x的增大而减小.9.在同一直角坐标系上画出函数y=2x,y=﹣x,y=﹣0.6x的图象.10.已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.一.选择题(共4小题)1.对于函数,下列说法不正确的是()A.其图象经过点(0,0)B.其图象经过点(﹣1,)C.其图象经过第二、四象限D.y随x的增大而增大2.正比例函数y=x的大致图象是()A.B.C.D.3.若y=x+2﹣b是正比例函数,则b的值是()A.0B.﹣2C.2D.﹣0.54.下列各选项中的y与x的关系为正比例函数的是()A.正方形周长y(厘米)和它的边长x(厘米)的关系B.圆的面积y(平方厘米)与半径x(厘米)的关系C.如果直角三角形中一个锐角的度数为x,那么另一个锐角的度数y与x 间的关系D.一棵树的高度为60厘米,每个月长高3厘米,x月后这棵的树高度为y 厘米二.填空题(共2小题)5.若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第象限.6.若正比例函数y=(m﹣1)x,y随x的增大而减小,则m的值是.三.解答题(共3小题)7.当m为何值时函数y=(m+2)是正比例函数.8.用你认为最简单的方法画出下列函数的图象.(1)y=5x;(2)y=﹣x.9.已知y与x成正比例函数,当x=1时,y=2.求:(1)求y与x之间的函数关系式;(2)求当x=﹣1时的函数值;(3)如果当y的取值范围是0≤y≤5,求x的取值范围.一.选择题(共5小题)1.下列说法不正确的是()A.一次函数不一定是正比例函数B.不是一次函数就不一定是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数2.下列函数中,正比例函数是()A.y=B.y=x﹣1C.y=x D.y=(x﹣1)3.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1)B.(1,2)和(﹣1,﹣2)C.(1,2)和(2,1)D.(﹣1,2)和(1,2)4.函数y=的图象是()A.双曲线B.抛物线C.直线D.线段5.直线y=(3﹣π)x经过的象限是()A.一、二象限B.一、三象限C.二、三象限D.二、四象限二.填空题(共2小题)6.在正比例函数y=(k﹣2)x中,y随x的增大而增大,则k的取值范围是.7.当m=时,函数y=(2m﹣1)x3m﹣2是正比例函数.三.解答题(共3小题)8.已知函数y=(k2﹣4)x2+(k+1)x是正比例函数,且y随x的增大而减小,求这个正比例函数的解析式.9.在如图所示的平面直角坐标系中画出函数y=﹣x的图象.10.已知y﹣2与3x﹣4成正比例函数关系,且当x=2时,y=3.(1)写出y与x之间的函数解析式;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与正比例函数测
试题
Prepared on 21 November 2021
一次函数、正比例函数的概念 1、已知下列函数:①、y=-8x;②、x
y 8-=;③、y=8x 2;④、y=8x+1.其中是一次函数的有()A 、0个B 、1个C 、2个D 、3个
2、下列函数①、y=-x ;②、y=2x+11;③、y=x 2+x+1;④、x
y 1=中,是一次函数的有() A 、4个B 、1个C 、2个D 、3个
待定系数法(一次函数)
1、已知1)2(32+-=-m x m y ,当m 为何值时,y 是x 的一次函数写出这个函数的关系式
2、当m 为何值时,函数y=(m+2)x+4x-5是关于x 的一次函数(化为最简形式)
3、当a 为何值时,函数a x a x a y a +-++=-)2()1(3是关于x 的一次函数(
4、分类讨论)
5、
6、当m=时,函数1)2(3+-=-m x m y 是关于x 的一次函数,一次函数关系式是。

7、当m 为何值时,函数)4()2(32-+--=-m x m y m
是一次函数? 8、
待定系数法(正比例函数)
1、若2)3(2-+-=-n x m y m 是正比例函数,则必存在12=-m ,n-2=0,且m-3≠0,所以m=-3, n=2,这个正比例函数关系式是y=-6x 。

2、已知函数2)1(a x a y -=是正比例函数,则a 的值为。

3、已知322)2(-+=m x m m y ,如果y 是x 的正比例函数,求m 的值。

4、如果函数32)2(-+=m x m y 是正比例函数,求m 的值。

5、当k 为何值时,函数122)2(-+⋅+=k k
x k k y 是正比例函数?
6、 7、若2
2)1(m x m y --=是正比例函数,则m 的值为()
A 、1
B 、-1
C 、1或-1
D 、2-2或
8、已知函数1)1(2-++=k x k y ,当k 时,它是一次函数,当k 时,它是正比例函数。

写出函数关系式
1、已知y-3与x 成正比例,且x=2时y=7.
(1)写出y 与x 之间的函数关系式;
(2)当x=4时,求y 的值;
(3)当y=4时,求x 的值。

2、已知一次函数的图像过点p(-3,0)和点Q(0,4),求此一次函数的表达式。

3、已知某一次函数y=kx+b过点A(-4,2)且与直线y=-2x平行。

求此函数表达式。

相关文档
最新文档