人教版八年级上册数学 最短路径问题
人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案
三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。
数学人教版八年级上第十三章134 课题学习 最短路径问题
13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】课本P85页问题1练习、如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址【例2】P86页问题2【课堂检测】课本P93页、15题。
人教版数学八年级上册13.4最短路径问题教案
其次,在新课讲授环节,我发现学生们对轴对称性质的理解较为扎实,但在将其应用于最短路径问题的求解过程中,部分学生还是显得有些吃力。针对这一点,我在讲解过程中尽量放慢速度,通过详细的步骤解析和直观的图形演示,帮助他们理解。在之后的课堂中,我还需要加强对学生的个别辅导,确保他们能够真正掌握这一知识点。
(2)确定最短路径问题中的对称轴:在实际问题中,确定对称轴可能较为困难,尤其是当问题涉及多个线段或点时。
难点解析:通过具体例子,展示如何寻找和确定线段、点到线段的最短路径问题中的对称轴。
(3)计算最短路径长度的方法:在确定对称轴和对称点后,如何进行有效计算,避免复杂和繁琐的步骤。
难点解析:教授学生运用几何图形的直观和代数计算相结合的方法,简化计算过程,如利用勾股定理等。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、最短路径问题的求解方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了人教版数学八年级上册13.4节“最短路径问题”。这节课让我感受到了学生们对几何问题的热情,也让我意识到了一些教学中的亮点和需要改进的地方。
4.培养学生的团队合作意识,通过小组讨论和合作完成最短路径问题的求解,提高学生的沟通与协作能力。
三、教学难点与重点
1.教学重点
(1)轴对称图形的性质及其应用:轴对称图形的对称轴、对称点等基本概念,以及如何利用这些性质解决最短路径问题。
13.4课题学习 最短路径问题 课件(共31张PPT) 初中数学人教版八年级上册
l C
B′
【探究2】如图,A 和 B 两地在一条河的两岸,现要在河上 造一座桥 MN. 桥造在何处可使从 A 到 B 的路径 AMNB 最 短(假定河的两岸是平行的直线,桥要与河垂直)?
如图所示:将河的两岸看成两条平行线 a 和 b,N 为直线 b上的一个动点,MN 垂直于直线 b,交直线 a 于点 M.当 点 N 在什么位置的时候,AM+MN+NB 的值最小?
P 地把河水引向 M、N 两地.下列四种方案中,最节省材料的是( D )
A.
B.
C.
D.
解析:依据垂线段最短,以及两点之间,线段最短, 可得最节省材料的是:
故选:D.
练习 6 如图所示,某条护城河在 CC 处直角转弯,河宽均为 5m,
从 A 处到达 B 处,须经过两座桥(桥宽不计,桥与河垂直),设 护城河以及两座桥都是东西、南北方向的,如何选址造桥可使从 A 处到 B 处的路程最短?请确定两座桥的位置.
∵在△A′N′B中,A′B<A′N′+BN′,
∴A′N+NB<A′N′+BN′.
A
即A′N+NB+MN<A′N′+BN′+M′N′. A′ ∴AM+NB+MN<AM′+BN′+M′N′.
即AM+NB+MN的值最小.
M′
M
N′ N
B
a b
练习 1 如图所示,军官从军营 C 出发先到河边(河流用 AB 表示)饮马,再 去同侧的 D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将
A
点C,则点C 即为所求的位置, 可以使得 AC+BC 的值最小.
人教八年级数学上册最短路径问题
如图,点A,B是直线l同侧不重合的两点,在直线l上求作一点C,使得
AC+BC的长度最短.作法:①作点B关于直线l的对称点B′;②连接AB′,与直
线l相交于点C,则点C为所求作的点.在解决这个问题时没有用到的知识或方
法是( )
A.转化思想 B.三角形两边之和大于第三边
∙B A∙
C.两点之间,线段最短
l
∙B
题转化为“两点之间,线段最短”来解决,该
A∙
过程用到了“转化思想”,“两点之间,线段
l
C
最短”,验证是否为最短距离时利用了三角形
两边之和大于第三边.
B′
随堂练习 2
两棵树的位置如图所示,树的底部分别为点A,B,有一只昆虫沿着A至B的路径在 地面爬行,小树的树顶D处有一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C 处,问小虫在AB之间何处被小鸟抓住时,小鸟飞行路程最短,在图中画出该点的 位置.
1、直线异侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l异侧的两个点,在直线l上找一点C使得AC+BC的值最 小,此时点C就是线段AB与直线l的交点.
A∙
C l
∙B
新知探究
知识点2
2、直线同侧的两点到直线上一点距离和最短的问题.
如图,点A,B分别是直线l同侧的两个点,在直线l上找一点C使得AC+BC的值 最小,这时先作点B关于直线l的对称点的B′,连接AB′交直线l于点C(也可以作 点A关于直线l的对称点A′,连接A′B交直线l于点C),此时点C就是所求作的点.
C
∵A′C=AC=BD,
在△A′CE和△BDE中, ∠A′CE=∠B′C=BD,
则△A′CE≌△BDE(AAS),CE=DE,A′E=BE.
2024年人教版八年级上册数学第13章第4节课题学习 最短路径问题
使MN ⊥ m, 且AM 交直线n 于点N,过点N作NM ⊥
+MN+NB 最小
m 于点M,连接AM
感悟新知
特别解读 解决连接河两边两地的最短路
径问题时,可以通过平移桥的方法 转化为求直线异侧两点到直线上一 点所连线段的和最小的问题.
知2-讲
感悟新知
知2-练
例4 如图13.4-5,从A 地到B 地要经过一条小河(河的两岸 平行),现要在河上建一座桥(桥垂直于河的两岸),应 如何选择桥的位置才能使
ቤተ መጻሕፍቲ ባይዱ
课堂小结
设计最短路径 设计最短路径
两点在直 线异侧
两点在直 线同侧
利用轴对称转换
解:如图13 .4 -2,作点B 关于l 的对称点B1,连接 AB1交l 于点M,连接BM, 此时AM+BM 最短,则点 M 即为所求的分支点.
感悟新知
知1-练
1-1.如图,在正方形网格中有M,N 两点,在直线l 上求一 点P 使PM+PN 最短,则点P应选在( C ) A.A 点 B.B 点 C.C 点 D.D 点
四边形P M N Q周 长的最
小值为 P′Q′+ PQ 的值
小
线的交点即为点M,N
感悟新知
知1-讲
特别解读 1.直线异侧的两点到直线上一点的距离的和最短的问
题是根据“两点之间,线段最短”来设计的. 2.直线同侧的两点到直线上一点的距离的和最短的问
题依据两点:一是对称轴上任何一点到一组对称 点的距离相等;二是将同侧的两点转化为异侧的 两点,依据异侧两点的方法找点.
感悟新知
知1-练
例1 [情境题 生活应用]某供电部门准备在输电主干线l 上连 接一个分支线路,分支点为M,同时向新落成的A,B 两个居民小区送电.
八年级数学上册 最短路径问题 人教版
核心素养 利用轴对称和平移解决最短路径问题,让学生体会图形
的变化在解决最值问题中的作用,感悟转化思想. 例11 如图13-4-20,在由边长为1个单位长度的小正方
形组成的网格中,请分别在AB,AC上找到点E,F,使四边 形PEFQ的周长最小.
图13-4-20
解:如图13-4-21,分别作点P关于AB,点Q关于AC的对称 点P′,Q′,连接P′Q′,交AB于点E,交AC于点F,则E,F即 为所求.
图13-4-8
思路导图:
作点P关于BC的对称点
利用轴对称,求线段和最小
解:如图13-4-9,作点P关于BC的对称点P′,连接P′Q, 交BC于点M,M是所求的点.
图13-4-9
题型二 求线段和的最小值 例6 如图13-4-10,△ABC为等边三角形,高AH=10 cm, P为AH 上一动点,D为AB的中点,求PD+PB的最小值.
A.转化思想 B.三角形的两边之和大于第三边 C.两点之间,线段最短 D.三角形的一个外角大于与它不相邻的任 意一个内角
解析:∵点B和点B′关于直线l对称,且点C在l上, ∴CB=CB′.又∵AB′交l于点C,且两条直线相交只有 一个交点,∴CB′+CA的长度最短,即CA+CB的值 最小.此最短路径问题运用了“两点之间,线段最 短”,体现了转化思想,验证时运用了三角形的两 边之和大于第三边.故选D.
考点一 线段和最小问题 例9 (贵州黔南中考)如图13-4-17,直线l外不重合的两点A, B,在直线l上求作一点C,使得AC+BC的长度最短.作法为: ①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点 C,则点C为所求作的点.在解决这个问题时没有运用到的 知识或方法是( D )
人教版初中数学八年级上册第十三章 课题学习 最短路径问题
l
都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
探究新知
13.4 课题学习 最短路径问题/
作法:
B
(1)作点B 关于直线l 的对称点B′; A
C
(2)连接AB′,与直线l 相交于点C.
l
则点C 即为所求.
B′
探究新知
13.4 课题学习 最短路径问题/
问题3:你能用所学的知识证明AC +BC最短吗?
接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥. C
DF
理由:由作图法可知,AF//DD′,AF=DD′, 则四边形AFD′D为平行四边形,
C′ D ′
于是AD=FD′, 同理,BE=GE′,
E E′
由两点之间线段最短可知,GF最小.
BG
课堂检测
13.4 课题学习 最短路径问题/
拓广探索题
巩固练习
13.4 课题学习 最短路径问题/
如图,已知牧马营地在P处,每天牧马人要赶着马群先到河 边饮水,再带到草地吃草,然后回到营地,请你替牧马人 设计出最短的放牧路线.
解:如图AP+AB即为最 短的放牧路线.
探究新知
13.4 课题学习 最短路径问题/
知识点 2 利用平移知识解决造桥选址问题 如图,A和B两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处可使从A到B的路径AMNB最短(假定河的两岸 是平行的直线,桥要与河垂直)?
解:连接AB,与直线l相交于一点C.
A
C
根据“两点之间,线段最
l
短”,可知这个交点即为所求.
B
探究新知
13.4 课题学习 最短路径问题/
新人教版八年级数学上册《最短路径问题》精品课件(共15张PPT)
1.学会轴对称变换知识的应用,提高解决实际问题 的能力.
2.通过独立思考,合作探究,学会求最值问题. 3.感受数学在实际生活中的巨大作用,享受成功学 习的乐趣.
重点:应用轴对称解决实际问题. 难点:如何应用轴对称解决实际问题.
阅读课本P85-87页内容,了解本节主要内容.
探究二:造桥选址问题中的最短路径问题
3.如图,A和B两地在一条河的两岸,现要在河上造 一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假设两岸是平行的直线,桥要与河垂直)
A
C
例:如图所示,点A是货运总部,想在公路m上建一
个分部B,在公路n上建一个分部C,要使AB+BC+CA最小,
应如何建?
l CC A’
解(:1)作AB的中垂线交l于点C,如图. (2)如图.
A1 B
C
解:如图所示,B、C为两个加A油2 站的位置.
本课时学习了生活中的最短路径可以转化 为数学中最值问题.
垂线段线段ຫໍສະໝຸດ 如图,牧马人从A地出发,到一条笔直的河边l饮马, 然后到B地,牧马人到河边的什么地方饮马,可使所走 的路径最短?
探究一:在直线上找一点,使它到直线外两点距离和最小
1.点A、B分别是直线l异侧的两个点,如何在l上找 到一个点,使得这个点到点A、点B的距离的和最短.
2.由上面情景导入,当A、B两点在直线l的同侧时, 又如何求解.
1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 4、好的教师是让学生发现真理,而不只是传授知识。 5、数学教学要“淡化形式,注重实质.
人教版初中数学八年级上册13.4最短路径问题(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与最短路径相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示最短路径的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“最短路径在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《最短路径问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过如何找到两点间最短距离的情况?”(如从家到学校的最短路线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索最短路径的奥秘。
(3)在复杂图形中寻找最短路径时,可以引导学生从简单图形出发,逐步增加难度,让学生掌握解题方法;
(4)结合实际应用,可以设计一些案例,如旅行商问题、工程选址问题等,指导学生如何将所学知识运用到实际中。
在教学过程中,教师应针对这些难点和重点,运用生动形象的语言、具体实例和操作演示,帮助学生理解、掌握和运用相关知识。同时,注意关注学生的反馈,适时调整教学方法和进度,确保学生透彻理解本节课的核心内容。
(3)在实际图形中寻找最短路径,如三角形、四边形等;
(4)将现实生活中的问题转化为数学模型,利用数学知识求解。
举例:讲解最短路径概念时,可以通过实际生活中的例子(如地图上两点间的最短距离)进行说明,使学生理解并掌握这个核心概念。
2.教学难点
(1)如何将实际问题抽象为数学模型,找到最短路径;
人教版初中八年级数学上册13.4_最短路径问题ppt课件
O
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
人教版八年级数学上册第十三章课题学习最短路径问题(共30张PPT)
此时从A到B点路径最短.
M N
P Q
G
H B1 B
同样,当A、B两点之间有4、5、 6,...n条河时,我们仍可以利用平 移转化桥长来解决问题.
例如: 沿垂直于河岸方向平移A点
依次至A1、A2、A3 ,..., An,平移距离分别等于各自河宽, AnB交第n条河近B点河岸于Nn,建桥 MnNn,连接MnAn-1交第(n-1)条河近 B点河岸与Nn-1,建桥Mn-1Nn-1,..., 连接M1A交第一条河近B点河岸于N1, 建桥M1N1,此时所走路径最短.
献 。 现 将 主 要工作 报告 一 、 关 心 爱 护学生 。经常 耐心细 致地做 学生的 思想教 育工作 ,有时可 以说达 到了废 寝 忘 食 的 地 步。特 别是在 抗击非 典期间 ,对学生 的生命 安全高 度负责 ,从协助校领导
制 定 各 项 预 防措施 到学生 病情的 监控和 学生的 诊治陪 护等都 凡事躬 亲。自 己带领 的 由 党 团 员 组成的 陪护小 组,不怕 死,不怕 累,出 色完成 了学校 交给的 陪护学 生的任 务 。 XX 年 7月 ,音 专 001班 黄德华 被骗到 合浦搞 传销,我 接到求 救电话 后,马上 与杨小 林 等 同 志 赶 赴合浦 解救学 生,回到 南宁后 ,又自己 掏钱为 学生购 好了返回龙州的车票
桥MN和PQ在中间,且方向不 能改变,仍无法直接利用“两 点之间,线段最短”解决问题, 只有利用平移变换转移到两侧 或同一侧先走桥长.
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
人教版八年级数学上册1最短路径问题教学课件
如图,在直线 上求作一点 ,使得 + 最短.
、 在直线 异侧
′
、 在直线 同侧
例:造桥选址问题
例
如图, 和 两地在一条河的两岸,现要在河上造一座桥
. 桥造在何处可使从 到 的路径 最短(假定
河的两岸是平行的直线,桥要与河垂直)?
作 ′ 关于直线 的对称点 ′′.
′
′
′
′′
连接 ′′,与直线 交于一点即
为所求点 .
问题
在直线 上求作两点 ,,使
得四边形 的周长最小.
练习 已知线段 ,点 、 在直线 的同侧,在直线 上求
作两点 ,(点 在点 的左侧)且 = ,使得
四边形 的周长最小.
思考
哪些点是定点?
哪些点是动点?
思考
问题是否可以简化?
问题转化为:
当点 在什么位置时, + + + 最小.
问题转化为:当点 在什么位置时, + 最小.
′
思考
通过哪种图形的变化(轴对称,平移等),
座桥 .桥造在何处可使从 到 的路径
最短(假定河的两岸是平行的直线,桥要与河垂直)?
当点 在直线 的什么位置时,
+ + 最小?
实际问题用数学语言表达.
最短路径问题八年级数学上(人教版)学习教案
B
P′ P Q′ Q
连接A′′B,与直线l交于一点 即为所求点Q.
l
A′′
问题:在直线l上求作两点P,Q , 使得四边形APQB的周长最小.
练习 已知线段a,点A、B在直线l的同侧,在直线l上求作 两点P,Q (点P在点Q的左侧)且PQ=a,使得四 边形APQB的周长最小. 作法:
a A A′
B
将点A沿直线l的方向平移A′, 使得AA′=a. 作A′关于直线l的对称点A′′
当点N在直线b的什么位置时,AM+MN+NB最小?
当点N在直线b的什么位置时,AM+MN+NB最小?
A
Ma Nb
B
思考: 问题能否简化?
问题转化为:当点N在直线b的什么位置时,AM+NB最小?
A
Ma Nb
B
问题转化为:当点N在直线b的什么位置时,AM+NB最小?
A
A
Ma Nb
B
B
思考: 能否通过图形的变化(轴对称,平移等),
A
实际问题用数学语言表达.
Ma Nb
B
总结 当点N在直线b的什么位置时,AM+MN+NB最小? 转化1:当点N在直线b的什么位置时,AM+NB最小?
A
Ma Nb
B
总结 当点N在直线b的什么位置时,AM+MN+NB最小? 转化1:当点N在直线b的什么位置时,AM+NB最小?
利用平移,实现线段的转移. 转化2:当点N在直线b的什么位置时, A′N+NB最小?
N
AM′+N′B=A′N′+N′B.
B 由两点之间,线段最短可知:
人教版八年级数学上册第十三章 1 课题学习 最短路径问题
利用轴对称求三角形的最小周长 【例题】 如图,等腰三角形ABC的底边BC的长为4,面积是16,腰 AC的垂直平分线EF分别交AC,AB边于点E,F.若点D为BC边的中点, 点M为线段EF上一动点,则△CDM周长的最小值为( ).
A.6 B.8 C.10 D.12
解析:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点, ∴AD⊥BC.∴S△ABC=12BC·AD=12·4·AD=16,解得 AD=8. ∵EF是线段AC的垂直平分线, ∴点C关于直线EF的对称点为点A, 当点M为EF与AD的交点时,AD的长为CM+MD的最小值. ∴△CDM 的最短周长为 AD+12BC=8+12×4=8+2=10. 故选C. 答案:C
3.如图,在直线l的同侧有两点A,B. (1)在图①的直线上找一点P,使PA+PB最短; (2)在图②的直线上找一点P,使PA-PB最长.
-6-
123
关闭
解:(1)作点B关于直线l的对称点C,连接AC交直线l于点P,连接BP.点P即为所 求.图略. (2)连接AB并延长,交直线l于点P.点P即为所求.图略.
-5-
知识梳理 预习自测
123
2.在平面直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴 上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最
小时,点C的坐标可能是( ).
A.(0,0) B.(0,-1) C.(0,5) D.(0,3)
关闭
D
答案
知识梳理 预习自测
点拨:有关轴对称确定最短路线的问题,通常是利用轴对称的性 质、等腰三角形的性质与判定解答.解答本类题目的技巧是借助于 图形理解题意,三角形的最短的周长一般都是利用轴对称的性质转 化为一条线段的长度.
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.(0,2)
C.(0,1)
D.(0,0)
解析:作B点关于y轴对称点B′,连接AB′,交y轴
于点C′,此时△ABC的周长最小,然后依据点A
与点B′的坐标可得到BE、AE的长,然后证明
B′
△B′C′O为等腰直角三角形即可.
C′ E
方法总结:求三角形周长的最小值,先确定动点所在 的直线和固定点,而后作某一固定点关于动点所在直 线的对称点,而后将其与另一固定点连线,连线与动 点所在直线的交点即为三角形周长最小时动点的位置.
问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决? B
A
l 想一想:对于问题2,如何将点B“移”到l 的另一侧B′处,满足直线l 上的任意一点C, 都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
方法揭晓
作法: (1)作点B 关于直线l 的对称点B′;
(2)连接AB′,与直线l 相交于点C.
B.Q是m上到A、B距离之和最短的 点,P是m上到A、B距离相等的点
C.P、Q都是m上到A、B距离之和最 短的点
D.P、Q都是m上到A、B距离相等 的点
2.如图,∠AOB=30°,∠AOB内有一定点P,且OP=
10.在OA上有一点Q,OB上有一点R.若△PQR周长最
小,则最小周长是( A )
A.10
AM+MN+BN长度改变了
3.把桥平移到和A相连. A
M
N
AM+MN+BN长 度有没有改变 呢?
B 4.把桥平移到和B相连.
问题解决
A
如图,平移A到A1,使AA1等于河宽,连 A1 接A1B交河岸于N作桥MN,此时路径 AM+MN+BN最短.
M M1
N
N1
B
理由:另任作桥M1N1,连接AM1,BN1,A1N1. 由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
B
B 抽象成
A
A
l
实际问题
C
l
数学问题
作图问题:在直线l上求作一点C,使AC+BC最短问题.
问题1 现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个 点,使得这个点到点A,点B的距离的和最短?
连接AB,与直线l相交于一点C.
根据是“两点之间,线段最短”,
A
可知这个交点即为所求.
C l
B
?
折
●B 移
思维火花 我们能否在不改变AM+MN+BN的前提下把桥转化到一侧 呢?什么图形变换能帮助我们呢?
各抒己见
1.把A平移到岸边. 2.把B平移到岸边. 3.把桥平移到和A相连. 4.把桥平移到和B相连.
A
M
N
B
1.把A平移到岸边. AM+MN+BN长度改变了
A
A'
M
N B'
B
2.把B平移到岸边.
点A、B的坐标分别是A(3,2),B(1,3).点P在x轴上,当PA+PB
的值最小时,在图中画出点P.
y
B
A
O
P
x
B '
5.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处, 须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东 西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?
ND
E
B
方法归纳 解决最短路径问题的方法
在解决最短路径问题时,我们通常利用轴对称、平移等变换把未 知问题转化为已解决的问题,从而作出最短路径的选择.
1.如图,直线m同侧有A、B两点,A、A′关于直线m对称,A、B关于直 线n对称,直线m与A′B和n分别交于P、Q,下面的说法正确的是( A )
A.P是m上到A、B距离之和最短的 点,Q是m上到A、B距离相等的点
二 造桥选址问题
如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造 在何处可使从A到B的路径AMNB最短(假定河的两岸是平行的直 线,桥要与河垂直)?
A A
M
B N
B
如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是 AM+MN+BN,那么怎样确定什么情况下最短呢?
●A
M
M
N
N
B.15
C.20
D.30
3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC 和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从 A处把马牵到河边饮水再回家,所走的最短距离是 1000 米.
C
D
河
A
B
4.如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,
A
C
D
C′
D′
E E′ B
解:作AF⊥CD,且AF=河宽,作BG ⊥CE,且BG=河宽,连接GF,
与河岸相交于E ′,D′.作DD′,EE′即为桥. 理由:由作图法可知,AF//DD′,AF=DD′,则四边形AFD′D为平行
四边形,于是AD=FD′,
A
同理,BE=GE′,
C
D
F
由两点之间线段最短可知,GF最小.
AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1转化为AA 1+A1N1+BN1.
在△A1N1B中,因为A1N1+BN1>A1B.
因此AM1+M1N1+BN1> AM+MN+BN.
证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD,
BD∥CE, BD=CE,所以A到B的路径长为
C′
D′
E
E′
BG
拓展提升
6.(1)如图①,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三
点组成的三角形的周长最短,找出此点并说明理由.
(2)如图②,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,
使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
(3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、
哪条最短?为什么?
P
PC最短,因为垂线段最短
A BC
Dl
3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实? 三角形三边关系:两边之和大于第三边; 斜边大于直角边.
4.如图,如何做点A关于直线l的对称点? A
l A′
一 牧人饮马问题 “两点的所有连线中,线段最短”“连接直线外一点与直线上各
点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题. 现实生活中经常涉及到选择最短路径问题,本节将利用数学知识
探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.
①
②
A
③
B
P
A BC
Dl
如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧
马人到河边的什么地方饮马,可使所走的路径最短?
第十三章 轴对称
13.4 课题学习 最短路径问题
学习目标
1.能利用轴对称解决简单的最短路径问题.(难点) 2.体会图形的变化在解决最值问题中的作用,感悟转化 思想.(重点)
复习引入
1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
②最短,因为两点之间,线段最短
①
②
A
③B
2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,
造桥选 址问题
解题方法
关键是将固定线段“桥” 平移
Hale Waihona Puke AM+MN+BN=AM+MN+EM=AE+MN,
若桥的位置建在CD处,连接AC,CD,DB,CE,则A到B的路径长为
AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE中,∵AC+CE>AE,
A· M C
∴AC+CE+MN>AE+MN, 即AC+CD+DB >AM+MN+BN, 所以桥的位置建在MN处,A到B的路径最短.
F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并
说明理由. D
C
A 图①
B
A
P
O 图②
B
O
A
M
图③
N B
D C
AP C' 图①
P' A
E
P
O
F
B
图② P''
B
M' A
E
M
N
O
B F
N'
图③
原 理 线段公理和垂线段最短
最短路 牧马人饮 径问题 马 问 题
解题方法 轴对称知识+线段公理
MA
Ql
P
B
M Q
l
P
M
l
C
M
l
D
典例精析
例1 如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,
AD=5,点F是AD边上的动点,则BF+EF的最小值为( B )
A.7.5
B.5
C.4
D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点C关于直线 AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小值可转化为求CF+EF的 最小值,故连接CE即可,线段CE的长即为BF+EF的最小值.
C
在△AB′C′中,AB′<AC′+B′C′,