煤的工艺性质

合集下载

煤的工艺性质煤的粘结与成焦机理

煤的工艺性质煤的粘结与成焦机理

三、买卖合同的类别
4.按照买卖的标的物的数量,买卖合同可以分为批发买卖 和零售买卖。
5.按照买卖合同是否即时清结,买卖合同可以分为即时买 卖和非即时买卖。
6.按照价金的支付次数,买卖合同可以分为一次付款买卖 和分期付款买卖。
三、买卖合同的类别
7.按照交付货物的次数,买卖合同可以分为一次供货买卖 和分期供货买卖。
第五章 煤的工艺性质
➢煤的热解 ➢煤的黏结与成焦机理 ➢煤的黏结性(结焦性)指标 ➢煤炭气化和燃烧的工艺性质 ➢煤的铝甑低温干馏试验 ➢煤的可选性 ➢煤的发热量
第二节 煤的黏结和成焦机理
黏结过程:具有黏结性的煤在高温热解时,从煤 粉分解开始,经过胶质状态到生成半焦的过程称 为黏结过程。
结焦过程:而从煤粉开始分解到最后形成焦块的 整个过程称为结焦过程。
透气性对煤黏结影响:若透气性差,则膨胀压力大,有利于黏 结(能促进煤粒间黏结);反之,透气性好,膨胀压力小,不 易黏结。
煤化程度、煤岩组分以及加热的速度影响胶质体的够数量的液相产物,热 稳定性较好,气体不易析出,胶质体的透气性差,黏结性好。 镜质组的胶质体的透气性差、壳质组较好、惰质组不产生胶质 体。提高加热速度可使某些反应提前进行,使胶质体中的液相 量增加,使胶质体的透气性变差。
1-煤;2-含有气泡的液相胶质体;3-半焦
1、胶质体液相来源: ①煤热解时,结构单元之间结合比较薄弱的桥键断裂,生
成自由基,其中一部分分子量不太大,含氢较多,使自由 基稳定化,形成液体产物;
②在热解时,结构单元上的脂肪侧链脱落大部分挥发逸出, 少部分参加缩聚反应形成液态产物;
③煤中原有的低分子量化合物——沥青受热熔融变为液态; ④残留的固体部分在液态产物中部分溶解和胶熔。

煤的工艺性质 煤的燃点(煤化学课件)

煤的工艺性质 煤的燃点(煤化学课件)

燃点
混合
以4.5~5℃/min的 速度加热
煤样 爆燃
煤样爆燃时的加热 温度即为煤的燃点。
用不同的氧化剂、不同的 操作方法特别是不同的氧 化剂会得到不同的燃点。
规范性 很强
实验室测出的煤的燃点是相 对值,并不能直接代表煤在 日常生活中和在工业条件下 的煤开始燃烧的温度。但它 们有对应关系,总的趋势是 一致的。
燃点测定意义
煤样燃点的测定可以辅助判断煤炭变质程度、自燃的难易程度 以及判断煤样是否被变质。
思考题:煤的燃点测定过程中加入氧化剂的作用?
一般煤化程度越低的煤越容易自燃。
如褐煤和长焰煤很容易自燃着火;气煤、肥煤和焦煤 稍次,瘦煤、贫煤和无烟煤自燃着火的倾向最小一般 随煤化程度升高,自然趋势减小。
(3)根据燃点变化判断煤是否被氧化。
氧化程度
还原煤样燃点℃- 原煤样燃点℃ 还原煤样燃点℃- 氧化煤样燃点℃
上式的计算值越大,煤被氧化的程度越高,煤氧化或风化后燃 点明显降低,据此能判断煤的氧化程度。
随煤化程度的增加而增高。变质程度高的煤燃点高,变质程度低 的煤燃点低。
煤种 褐煤 长焰煤 气煤 肥煤 焦煤 无烟煤
燃点 260-290 290-330
330340
340350
370-380
400以上
(2)煤的燃点与自燃的关系
A
煤的燃点与自
燃的关系
B
可以根据氧化煤样与还原煤样的燃点温度之差 △T(℃)来判断煤自燃的难易程度。
煤的燃点
煤的燃点
煤加热到开始燃烧时的温度,叫做煤的燃点(也称着火点, 临界温度,发火温度)。
燃点的测定方法
将粒度小于0.2mm的 空气干燥煤样,干燥 后与亚硝酸钠以1: 0.75的质量比混合放 入燃点测定仪中。

煤的工艺性质

煤的工艺性质

煤的工艺性质为了提高煤的综合利用价值,必须了解、研究煤的工艺性质,以满足各方面对煤质的要求。

煤的工艺性质主要包括:粘结性和结焦性、发热量、化学反应性、热稳定性、透光率、机械强度和可选性等。

1.粘结性和结焦性性是指煤在干馏过程中,由于煤中有机质分解,熔融而使煤粒能够相互粘结成块的性能。

结焦性是指煤在干馏时能够结成焦炭的性能。

煤的粘结性是结焦性的必要条件,结焦性好的煤必须具有良好的粘结性,但粘结性好的煤不一定能单独炼出质量好的焦炭。

这就是为什么要进行配煤炼焦的道理。

粘结性是进行煤的工业分类的主要指标,一般用煤中有机质受热分解、软化形成的胶质体的厚度来表示,常称胶质层厚度。

胶质层越厚,粘结性越好。

测定粘结性和结焦性的方法很多,除胶质层测定法外,还有罗加指数法、奥亚膨胀度试验等等。

粘结性受煤化程度、煤岩成分、氧化程度和矿物质含量等多种因素的影响。

煤化程度最高和最低的煤,一般都没有粘结性,胶质层厚度也很小。

2.发热量是指单位重量的煤在完全燃烧时所产生的热量,亦称热值,常用106J/kg表示。

它是评价煤炭质量,尤其是评价动力用煤的重要指标。

国际市场上动力用煤以热值计价。

我国自1985年6月起,改革沿用了几十年的以灰分计价为以热值计价。

发热量主要与煤中的可燃元素含量和煤化程度有关。

为便于比较耗煤量,在工业生产中,常常将实际消耗的煤量折合成发热量为2.930368×107J/kg的标准煤来进行计算。

3.化学反应性又称活性。

是指煤在一定温度下与二氧化碳、氧和水蒸汽相互作用的反应能力。

它是评价气化用煤和动力用煤的一项重要指标。

反应性强弱直接影响到耗煤量和煤气的有效成分。

煤的活性一般随煤化程度加深而减弱。

4.热稳定性又称耐热性。

是指煤在高温作用下保持原来粒度的性能。

它是评价气化用煤和动力用煤的又一项重要指标。

热稳定性的好坏,直接影响炉内能否正常生产以及煤的气化和燃烧效率。

5.透光率指低煤化程度的煤(褐煤、长焰煤等),在规定条件下用硝酸与磷酸的混合液处理后,所得溶液对光的透过率称为透光率。

煤化学 第五章(三)

煤化学 第五章(三)
图5-9
流动度曲线
3.几种烟煤的基氏流动度曲线
图5-10
几种烟煤的基氏流动度曲线
四、罗加指数
1.测定罗加指数的方法要点:
将空气干燥煤样和标准无烟煤, 在坩埚内混合均匀并铺平,加上钢质 砝码,在850℃下焦化、后,称量m; 筛分→筛上物 m1 →筛上物装入罗加转 鼓中转磨→筛分→筛上物 m2 →筛上物 在转鼓中重复转动→筛分→筛上物 m3 →筛上物再一次进行转鼓试验→筛 上物m4。
图5-6为一典型烟煤的体积膨胀曲线示意图。 T1——软化温度,即膨胀杆下降 0.5m时的温度(℃); T2—— 开始膨胀温度,即膨胀杆下降到最低点后开始上 升的温度(℃); T3——固化温度,膨胀杆停止移动时的温度(℃); a——最大收缩度,%; b——煤的膨胀度,%。
图 a 为典型烟煤的体积膨胀曲线,煤的膨胀曲线 超过零点后达到水平,这种情况称为“正膨胀”;
煤的黏结性和结焦性关系: 结焦性包括保证结焦过程能够顺利进 行的所有性质,黏结性是结焦性的前提和 必要条件。
测定煤黏结性和结焦性的方法可以分为 以下三类: (1)根据胶质体的数量和性质进行测定,如 胶质层厚度、基氏流动度、奥亚膨胀度等。 (2)根据煤黏结惰性物料能力的强弱进行测 定,如罗加指数和黏结指数等。 (3)根据所得焦块的外形进行测定,如坩埚 膨胀序数和葛金指数等。
将粒度小于0.15mm的煤样10g与1mL
水混匀,在钢模内按规定方法压制成煤笔
(长 60mm ),放在一根内部非常光洁的标
准口径的膨胀管内,其上放置一根连有记录
笔的能在管内自由滑动的钢杆(膨胀杆)。
二、奥亚膨胀度
将上述装置放入已预热到 330℃的电炉 中加热,升温速度保持 3℃/min 。加热至 500 ~ 550℃为止。在此过程中,煤受热达 到一定温度后开始分解,首先析出一部分挥 发分,接着开始软化析出胶质体。随着胶质 体的不断析出,煤笔开始变形缩短,膨胀杆 随之下降——标志煤的收缩。

煤的工业分析和工艺性质

煤的工业分析和工艺性质
• 结焦性:煤在干馏过程中结成焦炭的性能。
• 注:煤化工的重要过程之一。指煤在隔绝空气条件下加 热、分解,生成焦炭(或半焦)、煤焦油、粗苯、煤气 等产物的过程。按加热终温的不同,可分为三种: 900~1100℃为高温干馏,即焦化;700~900℃为中 温干馏;500~600℃为低温干馏(见煤低温干馏)。 煤的干馏是属于化学变化
灰分(A)
• 煤中的灰分是指煤在规定条件下完全 燃烧后剩下的固体残渣。
• 外在灰分(顶板、底板和夹矸) • 内在灰分 • 灰分越高,煤质越差。但煤灰可作为
一种资源利用,如制造复合肥,提取 氯化铝以及一些稀有元素等。
挥发分(V)
• 煤在隔绝空气的条件下,在900摄氏度加减10摄氏度的 情况下,加热7分钟,从煤中分解出来的液体(蒸汽状 态)和气体产物。
• 例如:某煤样:灰分17.5%,挥发分25.7%,水分 0.49%则固定碳为100-17.5-25.7-0.49=56.31,即为 56.31%
煤的工艺性质指标
• 煤的工艺性质是评价煤的深加工和综合利用方向的指标。 煤的工艺性质主要包括:
• 1、发热量 • 2、粘结性和结焦性 • 3、热稳定性 • 4、机械强度 • 5、可选性
发热量(Q)
• 发热量是指单位重量的煤,在完全燃烧时所产生的热量。 • 依据煤的分类,按照发热量的大小: • 褐煤:25.10--30.50MJ/kg • 烟煤:30.50--37.20MJ/kg • 无烟煤:32.20--36.10MJ/kg
粘结性和结焦性
• 粘结性:煤在干馏过程中,煤中有机质分解、熔融而使 煤粒粘结呈块的性能。
热稳定
• 煤的热稳定是指煤在燃烧或气化过程中, 在高温环境下保持原来煤块粒度的程度。

一、动力煤的分类及工艺性质

一、动力煤的分类及工艺性质

前言郑州商品交易所发布的公告显示,动力煤期货将于2013年9月挂牌上市。

该品种国内消费量达30亿吨,总价值超过1.5万亿,是目前国内所有上市商品期货品种中规模最大的品种。

煤炭是植物遗体埋藏在地下经过漫长复杂的生物化学、地球化学和物理化学作用转化而成的一种固体可燃矿产。

我国古代曾称煤炭为石涅,或称石炭。

它不仅是工农业和人民生活不可缺少的主要燃料,而且还是冶金、化工、医药等部门的重要原料。

随着近代科学技术的发展和新工艺、新方法的应用,煤炭的用途和综合利用价值将会越来越大。

美国国际能源署(IEA)在《国际能源展望2008》中预测,从2006到2030年,世界煤炭需求年均增长2%,煤炭在全球能源消费总量中的比例将稳定上升至2030年的29%。

在我国,煤炭始终是支撑经济社会发展最重要的基础能源之一,我国《能源中长期发展规划纲要(2004~2020年)》,确定了“以煤炭为主体,电力为中心,油气和新能源全面发展的战略”。

由此可见,煤炭资源的开发利用对我国乃至世界都具有举足轻重的作用。

上市交易动力煤期货,对促进国名经济平稳、健康发展具有重要的意义。

一、动力煤的分类及工艺性质1、中国煤炭分类的国家标准我国现行的煤炭分类国家标准是1986年国家颁布的GB5751—86。

该标准是从褐煤到无烟煤的全面技术分类标准,将自然界中的煤划分为14大类,其中,褐煤和无烟煤又分别划分为2个和3个小类,见下表:表1.1中国煤炭分类国家标准(GB5751-86)总体来说,对无烟煤和烟煤的划分比较简单,只用干燥无灰基挥发分(其代表符号是Vr)就可以把它们区分开来。

即挥发分小于或等于10%的都是无烟煤,挥发分大于10%的都是烟煤。

但由于烟煤的范围太大,又细分为12个小类煤。

烟煤的各小类煤主要用挥发分和“粘结指数”(代表烟煤的粘结性的一项指标)来划分。

只有到结焦性很强的肥煤阶段,才需要增加一个叫做胶质层最大厚度(Y值)的指标(也就是代表烟煤粘结性的指标)来区分肥煤和其它炼焦煤。

煤的工艺性质

煤的工艺性质
煤的工艺性质
柠檬K24
煤的工艺性质
煤的工艺性质
炼焦煤工艺性质
根据胶质层数量和性质
奥亚膨胀度 b&a
基氏流动度 α max 胶质层厚度 ymax 罗加指数 R.I 粘结指数 G.R.I 坩埚自由膨胀序数 CSN 葛金指数/葛金焦型 G-K
根据煤粘结惰性物料的能力强弱 根据试验所得焦块外形
气化用煤的工艺性质
无缝隙1块;少缝隙26块;多缝隙6块以上
小孔隙;小孔隙带大孔 隙;大孔隙
无绽边;低绽边;高绽 边;中等绽边 黑色;深灰;银灰
熔合情况
粉状;凝结;部分熔合; 全部熔合
体积曲线
——典型曲线制定
平滑下降——瘦焦煤
平滑斜降——贫煤、瘦煤
波形——主焦煤
微波行——主焦煤
大之字——气煤 之字型 小之字——1/3焦煤
>85 >85 >85 >85 >50-65 >35-50 >50-65 >65 >30-50
肥煤Ⅰ 肥煤Ⅱ 肥煤Ⅲ 气肥煤 气煤Ⅰ 气煤Ⅱ 气煤Ⅲ 气煤Ⅳ 1/2中粘煤 弱粘煤 不粘煤 长焰煤 褐煤
ymax >25 ymax >25 ymax >25 ymax >25
ymax ≤25
其他 烟煤
>5-30 ≤5 ≤5或>5-30
t1-开始软化温度;t2-开始膨胀温度;t3-固化温度 b-最大膨胀度(%);a-最大收缩度(%)
基氏流动度 α max
——表征煤的粘结性
将煤样装入有垂直搅拌器的特制煤杯中,对搅拌器加一恒定力矩并在规 定条件下加热,煤受热软化后,搅拌器开始旋转,待到塑性固化后停止旋转。 在塑性期间定期记录旋转角速度。
表征烟煤粘结性的一种指标,现在已作为我国区分煤的粘结性和结焦性能烟 煤的重要分类指标之一。 主要以1g粒度<0.2mm(具体为0.1-0.2mm占30%,<0.1mm占70%)与5g或 3g标准无烟煤(宁夏汝箕沟平峒二层无烟煤,标准水份、灰份等)混合均匀后放入专用 马弗炉中,850℃快速加热15min,所得焦炭在特定转鼓中进行二次转鼓试 验,测定G.R.I值。

煤化学第5章

煤化学第5章
9
Coal chemistry
5.1.2.4 吉氏流动度
该法首先由德国人吉泽勒提出,1954年,美国 材料试验协会(ASTM)制定了吉氏流动度的测 试标准,后来,波兰和日本也制定了标准,国 内在这方面的研究较少,目前尚无国家标准, 仪器设备需从国外进口,比较昂贵,测试费用 较高。
测定原理:将煤样装入预先装有搅拌桨的钢锅 中,对搅拌桨施加恒力矩。在盐浴中以3℃/min 加热煤样,随着温度的升高煤料软化、熔融产 生了塑性变化,使搅拌桨的运动呈现有规律的 变化。它开始由不动到转动,转动速度逐渐增 至最大,而后又渐变慢,直至停止。根据恒力 矩下搅拌桨的转动特性,测定煤在可塑状态的 流动性。
5 煤的工艺性质
指煤在一定加工工艺与转化进程中表现的性质 加工与转化 选煤 高温干馏 气化、燃烧 炼油、液化、 低温干馏 工艺性质 可选性 粘结性、结焦性 反应性,机械强度,热稳定性 结渣性,灰熔点,灰粘度,发热量 低温干馏性
2011 版
了解煤的工艺性质,是合理选择煤的利用途径的前提
3
Coal chemistry
15
Coal chemistry
5.1.2.5 胶质层指数测定-GB/T 479
2011 版
实践表明,Y值多数情况下能表示胶质体的数量但不一定能反映其 质量。 Y值的测定主观因素大,煤样用量大,仪器的规范性很强。 当Y值小于10 mm和Y值大于25 mm时。数据的重现性较差。 近年,通过对该仪器测试的自动化等项改进,使测试结果的精度提 高较大。
煤种可以较广泛。而有些气肥煤的αmax虽 很大。但曲线陡而尖(t 较小),说明它处 于较大流动性的时间较短,影响了它的相 容性。 吉氏流动度指标能同时反映胶质体的数量 和性质,具有明显的优点。 流动度是研究煤的流变性和热分解动力学 的有效手段,可用于指导配煤和预测焦炭 强度。

煤的粘结性

煤的粘结性

煤的工艺性煤的工艺性质包括:(1)煤的粘结性和结焦性指数;(2)煤的发热量和燃点;(3)煤的反应性;(4)煤灰熔融性和结渣性等1、煤的粘结性和结焦性煤的粘结性和结焦性,是两个有联系、有区别,又难以严格区别开来的概念。

煤的粘结性是煤粒(d<0.2mm)在隔绝空气受热后能否粘结其本身或惰性物质(即无粘结力的物质)成焦块的性质;煤的结焦性是煤粒隔绝空气受热后能否生成优质焦炭的性质。

两者都是炼焦煤的重要特性之一。

煤在干馏结焦过程中,一般要经过软化、熔合、膨胀、固化和收缩几个阶段,最后生成品质不同的焦炭。

当温度等于或高于煤的软化点(一般为315~350c)时,煤都软化成胶质体。

当温度等于或高于煤的固化点(一般为420c~450c)时,煤都结成半焦。

从软化到固化的时间愈长,煤就熔化得愈好,焦炭结构愈均匀。

为了了解煤的结焦性,人们设计了许多实验室方法,直接测试模拟工业焦化条件下所得焦炭品质(2200Kg小焦炉试验);或测试上述胶质体的某一性质也有的直接观察实验室所得焦块的性质,表征煤的结焦性。

本节只阐述与我国煤的现行分类有关的几个测试指标。

(1)煤的胶质层指数煤的胶质层指数,又称煤的胶质层最大厚度,或Y值。

它是原苏联、波兰等国家煤的分类指标之一,也是我国煤的现行分类中区分强粘结性的肥煤、气肥煤的一个分类指标。

煤的胶质层指数,是原苏联列.姆.萨保什尼可夫和列.帕.巴齐列维奇提出的。

它的测试要点是根据不同结焦性的煤在干馏过程中胶质层的厚度、收缩情况和膨胀曲线的不同,测试胶质层的最大厚度(Y值)、最终收缩度(X值)和体积曲线,来表征煤的结焦性。

其中,Y值应用的最广。

Y值是通过测试胶质层的上部层面高度和下部层面高度得出的(一般出现在520~630C之间),X值是曲线终点与零点线间的距离。

Y值、X值和体积曲线都是通过胶质层指数测试仪上的记录转筒和记录笔记记录下来的。

胶质层指数测试曲线如图30-11所示。

胶质层曲线类型如图30-12所示。

煤的性质

煤的性质

工艺技术一.煤的性质1.煤的元素组成煤的组成以有机质为主题。

煤的工艺用途只要是以煤中有机质的性质来决定的。

煤中有机质主要由:碳(C)、氢(H)、氧(O)、氮(N)、硫(S)五类元素组成,另外一些数量很少的元素如::磷(P)、氯(CL)、和砷(AS)等一般不列入有机质元素组成之内,其中C.H.O 元素占煤中有机质的95%以上。

2.煤的工业分析按国家标准GB212的规定,煤中的工业分析是煤的水分(Mad)、灰分(Aad)、按发分(Vad)和固定碳(FCad)四个分析项目的总称。

利用工业分析结果可初步判断煤的质量,特别是作为燃烧的质量,利用干燥无灰基挥发分(Vdaf)及焦渣特征可以大致确定煤的牌号。

另外,从工业分析数据还可以计算煤的发热量和焦化产品的产率等。

但是为了在工业生产中使用方便,通常还会加上全硫(Sta)和低发热值(Qnet).(1).水分根据水分的结合状态可分为游离水和结晶水两大类,前者又可分为外在水分和内在水分两种。

矿物质所含的结晶水或化合水,在煤的工业中不考虑。

煤的水分测定方法多种,我国国家标准采用两种测定发发分别为(1)通氮干燥法,适用于所有煤种;(2)空气干燥法仅适用于烟煤和无烟煤。

其重点为:秤取一定量的空气干燥煤样,置于105-110℃干燥箱中干燥到恒重。

然后根据煤样的质量损失计算出水分的质量分数(空气干燥基)。

(2)灰分煤的灰分不是煤的一种固有性质,因为煤中并不含灰,灰分是煤在一定条件下完全燃烧后得到的残渣。

在焦化过程中,煤中的有机质部分分解出大量挥发物,故焦炭中的灰分无疑就高于装炉煤的灰分,且焦炭的灰分与培育炉煤的灰分成正比,并可由煤中的灰分及挥发分产率计算出来。

灰分按其存在的形态可分为内在灰分和外在灰分。

内在灰分源于原生矿物质和次生矿物质,很难用洗选法去除。

外在灰分源于外来物质比较容易洗选去除。

灰分的去除方法有缓慢和快速灰化法。

其重点是秤取一定量的空气干燥煤样,放入马弗炉中,一定温度下灼烧到质量恒定,以残留物的质量占煤样质量的百分数作为煤样灰分的测定值(空气干燥基)。

煤的工艺性质

煤的工艺性质

[ 煤的工艺性质]煤的工艺性质包括:(1)煤的粘结性和结焦性指数;(2)煤的发热量和燃点;(3)煤的反应性;(4)煤灰熔融性和结渣性等1、煤的粘结性和结焦性煤的粘结性和结焦性,是两个有联系、有区别,又难以严格区别开来的概念。

煤的粘结性是煤粒(d<0.2mm)在隔绝空气受热后能否粘结其本身或惰性物质(即无粘结力的物质)成焦块的性质;煤的结焦性是煤粒隔绝空气受热后能否生成优质焦炭的性质。

两者都是炼焦煤的重要特性之一。

煤在干馏结焦过程中,一般要经过软化、熔合、膨胀、固化和收缩几个阶段,最后生成品质不同的焦炭。

当温度等于或高于煤的软化点(一般为315〜350c)时,煤都软化成胶质体。

当温度等于或高于煤的固化点(一般为420c〜450c)时,煤都结成半焦。

从软化到固化的时间愈长,煤就熔化得愈好,焦炭结构愈均匀。

为了了解煤的结焦性,人们设计了许多实验室方法,直接测试模拟工业焦化条件下所得焦炭品质(2200Kg 小焦炉试验);或测试上述胶质体的某一性质也有的直接观察实验室所得焦块的性质,表征煤的结焦性。

本节只阐述与我国煤的现行分类有关的几个测试指标。

(1)煤的胶质层指数煤的胶质层指数,又称煤的胶质层最大厚度,或Y 值。

它是原苏联、波兰等国家煤的分类指标之一,也是我国煤的现行分类中区分强粘结性的肥煤、气肥煤的一个分类指标。

煤的胶质层指数,是原苏联列.姆.萨保什尼可夫和列.帕.巴齐列维奇提出的。

它的测试要点是根据不同结焦性的煤在干馏过程中胶质层的厚度、收缩情况和膨胀曲线的不同,测试胶质层的最大厚度(丫值)、最终收缩度(X值)和体积曲线,来表征煤的结焦性。

其中,Y 值应用的最广。

Y 值是通过测试胶质层的上部层面高度和下部层面高度得出的(一般出现在520〜630C之间),X值是曲线终点与零点线间的距离。

丫值、X 值和体积曲线都是通过胶质层指数测试仪上的记录转筒和记录笔记记录下来的。

胶质层指数测试曲线如图30-11 所示。

chap8煤的工艺性质

chap8煤的工艺性质

chap8 煤的工艺性质概述煤是一种重要的能源资源,其工艺性质对于煤的开采、转化和利用具有重要意义。

煤的工艺性质包括煤的物理性质、化学性质和燃烧性质等方面。

本文将从这三个方面分别介绍煤的工艺性质。

煤的物理性质煤的密度煤的密度是指单位体积煤的质量,通常用克/立方厘米表示。

煤的密度与煤的成分、结构和孔隙度等因素有关,不同种类的煤具有不同的密度范围。

一般来说,煤的密度越大,其含碳量越高,热值也相应较高。

煤的硬度煤的硬度是指煤的抗压能力和磨损性能,通常用摩氏硬度和洛氏硬度表示。

煤的硬度与煤的组成和构造有关,硬度较大的煤更难磨碎和磨损。

煤的硬度对于煤的选矿和煤磨矿等过程有着重要的影响。

煤的破碎性煤的破碎性是指煤在受力下的破碎性能,通常用强度指标表示。

煤的破碎性与煤的组织结构、含水率等因素有关,一般来说,含水率较高的煤更易破碎。

煤的破碎性对于煤的选矿和煤破碎工艺具有重要的影响。

煤的化学性质煤的元素组成煤的主要元素组成为碳、氢、氧、氮、硫等。

其中,碳是煤的主要元素,煤中含碳量越高,煤的能量价值也越高。

氢的含量与煤的热值和燃烧性能有关,氢含量越高,煤的热值越高。

氧、氮和硫的含量会影响煤的燃烧性能和环境影响。

煤的挥发分煤的挥发分是指在一定温度范围内被加热后从煤中挥发出的物质,主要包括水蒸气、煤油、煤气等。

煤的挥发分含量对煤的燃烧性能和利用方式有重要影响。

高挥发分的煤更适合用于煤气化和液化等过程。

煤的灰分煤的灰分是指煤在燃烧过程中不燃烧的局部,主要由无机物质组成。

煤的灰分含量与煤的纯度和燃烧性能有关,高灰分的煤对环境污染更严重,同时也会影响煤的燃烧效率。

煤的燃烧性质煤的发热量煤的发热量是指单位质量煤完全燃烧释放的热量,通常用千焦/克表示。

煤的发热量与煤的元素组成和化学键属性有关,发热量越高,煤的能量价值也越高。

煤的燃烧特性煤的燃烧特性主要包括点火温度、燃烧速率、燃尽度等指标。

不同种类的煤具有不同的燃烧特性,这些特性对于煤的燃烧过程和环境污染有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤的工艺性质 Revised as of 23 November 2020[煤的工艺性质]煤的工艺性质包括:(1)煤的粘结性和结焦性指数;(2)煤的发热量和燃点;(3)煤的反应性;(4)煤灰熔融性和结渣性等1、煤的粘结性和结焦性煤的粘结性和结焦性,是两个有联系、有区别,又难以严格区别开来的概念。

煤的粘结性是煤粒(d<)在隔绝空气受热后能否粘结其本身或惰性物质(即无粘结力的物质)成焦块的性质;煤的结焦性是煤粒隔绝空气受热后能否生成优质焦炭的性质。

两者都是炼焦煤的重要特性之一。

煤在干馏结焦过程中,一般要经过软化、熔合、膨胀、固化和收缩几个阶段,最后生成品质不同的焦炭。

当温度等于或高于煤的软化点(一般为315~350c)时,煤都软化成胶质体。

当温度等于或高于煤的固化点(一般为420c~450c)时,煤都结成半焦。

从软化到固化的时间愈长,煤就熔化得愈好,焦炭结构愈均匀。

为了了解煤的结焦性,人们设计了许多实验室方法,直接测试模拟工业焦化条件下所得焦炭品质(2200Kg小焦炉试验);或测试上述胶质体的某一性质也有的直接观察实验室所得焦块的性质,表征煤的结焦性。

本节只阐述与我国煤的现行分类有关的几个测试指标。

(1)煤的胶质层指数煤的胶质层指数,又称煤的胶质层最大厚度,或Y 值。

它是原苏联、波兰等国家煤的分类指标之一,也是我国煤的现行分类中区分强粘结性的肥煤、气肥煤的一个分类指标。

煤的胶质层指数,是原苏联列.姆.萨保什尼可夫和列.帕.巴齐列维奇提出的。

它的测试要点是根据不同结焦性的煤在干馏过程中胶质层的厚度、收缩情况和膨胀曲线的不同,测试胶质层的最大厚度(Y 值)、最终收缩度(X 值)和体积曲线,来表征煤的结焦性。

其中,Y 值应用的最广。

Y 值是通过测试胶质层的上部层面高度和下部层面高度得出的(一般出现在520~630C 之间),X 值是曲线终点与零点线间的距离。

Y 值、X 值和体积曲线都是通过胶质层指数测试仪上的记录转筒和记录笔记记录下来的。

胶质层指数测试曲线如图30-11所示。

胶质层曲线类型如图30-12所示。

250 280 310 340 370 400 430 460 490 520 550 580 610 640 670 700 7300 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 图30-11 胶质层指数测试曲线1234胶质层指数测试的允许误差。

同一煤样平行测试结果的允许误差为:Y值≤20mm误差1mm;Y值〉20mm误差2mm;X值误差3mm。

胶质层指数报出结果。

应选取在允许误差范围内的各结果的平均值。

胶质层指数表征煤的结焦性的最大优点是Y值有可加性。

这种可加性可以从单煤Y值计算到配煤Y值,可以估算配煤炼焦Y值的较佳方案。

在地质勘探中可以通过加权平均计算出几个煤层的综合Y值。

它的缺点一是规范性强,煤样粒度、升温速度、压力、煤杯材料、炉转耐火材料等都能影响测试结果。

所以必须使仪器、制样和操作等都符合严格规定;二是用样量大,一次平行测试需要煤样200克,在地质勘探中常常由于煤芯煤样数量不足而无法测试;三是胶质层指数能反映胶质层的最大厚度,但不能反映出胶质层的质量。

(2)煤的罗加指数罗加指数(),是波兰煤化学家罗加教授1949年提出的测试烟煤粘结力的指标。

现已为国际硬煤分类方案所采用。

我国1985年颁发了烟煤罗加指数测试的国家标准(GB5549-85),但在我国现行煤的分类中,罗加指数不作为分类指标。

罗加指数的测试要点:将1克煤样和5克标准无烟煤样(宁夏汝箕沟矿专用无烟煤标样,下同)混合均匀,在规定的条件下焦化,然后把所得焦渣在特定的转鼓中转磨3次,测试焦块的耐磨强度,规定为罗加指数。

其计算公式如下:=[(a+d)/2+b+c]/3Q×100式中:a——焦渣过筛,其中大于1mm焦渣的重量,g;b——第一次转鼓试验后过筛,其中大于1mm焦渣的重量,g;c——第二次转鼓试验后过筛,其中大于1mm焦渣的重量,g;d——第三次转鼓试验后过筛,其中大于1mm焦渣的重量,g;Q——焦化后焦渣总量,g;罗加指数是测试的允许误差:每一测试煤样要分别进行二次重复测试。

同一化验室平行测试误差不得超过3,不同化验室测试误差不得超过5。

取平行测试结果的算术平均值(取整数)报出。

罗加指数表征煤的粘结力的优点是煤样量少,方法简便易行。

它的缺点是,规范性也很强,对标准无烟煤的要求很严。

罗加指数区分强粘煤灵敏度不够。

(3)煤的粘结指数所得焦渣在特定的转鼓中转磨两次,测试焦渣的耐磨强度,规定为煤的粘结指数,其计算公式如下:G=10+(30m1+70m2)/m式中:m1——第一次转鼓试验后过筛,其中大于10mm的焦渣重量,g;m2——第二次转鼓试验后过筛,其中大于10mm的焦渣重量,g;m——焦化后焦渣总重量,g。

当测得的G<18时,需要重新测试,此时煤样和标准无烟煤样的比例为3:3,即3克煤样和3克无烟煤,其余与上同,计算公式如下:G=(30m1+70m2)/5m煤的粘结指数测试的允许误差:每一测试煤样应分别进行二次重复测试,G≥18时,同一化验室两次平行测试值之差不得超过3;不同化验室间报告值之差不得超过4。

G<18时,同一化验室两次平行测试值之差不得超过1;不同化验室间报告值之差不得超过2。

以平行测试结果的算术平均值为最终结果。

(4)煤的奥压膨胀度煤的奥压膨胀度(b值,%),是1926~1929年由奥蒂伯尔特创立的,193 3年又为亚纽所改进,现在西欧各国广泛采用。

在国标分类中,与葛金焦性并列作为硬煤分亚组的两种方法之一。

我国1985年以国标GB5450-85发布,并与Y值并列作为我国煤炭现行分类中区分肥煤的指标之一。

煤的奥亚膨胀度的测试要点,是将煤样制成一定规格的煤笔,置入一根标准口径的膨胀管内,按规定的升温速度加热,压在煤笔上的压杆纪录煤样在管内的体积变化,以体积曲线膨胀上升的最大距离占煤笔原始长度的百分数,表示煤的膨胀度b值的大小。

奥压膨胀度曲线如图30-14所示。

T1——软化点,体积曲线开始下降达时的温度,C;T2——始膨点,体积曲线下降到最低点后开始膨胀上升的温度,C;T3——固化点,体积曲线膨胀上升达最大值时的温度,C;b——最大膨胀度,体积曲线上升的最大距离占煤笔长度的百分数,%;a——最大收缩度,体积曲线收缩下降的最大距离占煤笔长度的百分数,%;2、煤的燃点煤的燃点时将煤加热到开始燃烧时的温度,叫做煤的燃点(也称着火点,临界温度和发火温度)。

测定煤的燃点的方法很多,一般是将氧化剂加入或通入煤中,对煤进行加热,使煤发生爆燃或有明显的升温现象,然后求出煤爆燃或急剧升温的临界温度,作为煤的燃点。

我国测定燃点时采用亚硝酸钠做氧化剂。

在燃点测定仪中进行测定。

煤的燃点随煤化度增加而增高,风化煤的燃点明显下降。

3、煤的反应性煤的反应性又叫反应活性,是指在一定温度条件下,煤与不同的气体介质(CO2、O2和H2O蒸气)相互作用的反应能力。

反应性强的煤,在气化燃烧过程中,反应速度快、效率高。

我国测定反应性的方法是在高温下煤或焦炭还原二氧化碳的性能,以CO2还原率表示煤或焦炭在燃烧、气化和冶金中的重要指标。

反应性强的煤,在汽化燃烧过程中,反应速度快、效率高。

我国测定反应性的方法是在高温下煤或焦炭还原二氧化碳的性能,以CO2还原率表示煤或胶的反应性。

具体测定方法见GB220-89。

4、煤灰熔融性和结渣性煤灰熔融性是动力和气化用煤的重要指标。

煤灰是由各种矿物质组成的混合物,没有一个固定的熔点,只有一个熔化温度的范围。

煤灰熔融性又称灰熔点。

煤的矿物质成分不同,煤的灰熔点比其某一单个成分灰熔点低。

灰熔点的测定方法常用角锥法、见GB219-74。

将煤灰与糊精混合塑成三角锥体,放在高温炉中加热,根据灰锥形态变化确定DT(变形温度)、ST(软化温度)和FT (熔化温度)。

一般用ST评定煤灰熔融性。

图30-13奥亚膨胀曲线由于煤灰熔融性不能反映煤在气化炉中的结渣性,通常用测定煤的结渣性来判断。

测定方法见GB1572-89。

主要是将煤样送入炉内与空气气化,燃尽后冷却称重,用6mm筛分出大于6mm的渣块占总重量的百分数,称做结渣率。

5.煤的工艺性试验序号术语名称英文名称定义符号允许使用结焦性Chkingproperty煤经干馏结成焦炭的性能mm mm mm粘结性Cakingproperty煤在干馏时粘结其本身或外加惰性物质的能力mmmmmm塑性Plasticproperty煤在干馏时形成的胶质体的粘稠、流动、透气等性能mmmmmm mm膨胀性Swellingproperty煤在干馏时体积发生膨胀或收缩的性能mmmm mm mm胶质层指数(sapozhnikov)plastometerindices由勒.姆.萨波日尼柯夫提出的一种表征烟煤结焦性的指标,以胶质层最大厚度Y值,最终收缩度X值等表示mm mm mm罗加指数ROGAINDEX由布.罗加提出的一种表征烟煤粘结无烟煤能力的指标mm粘结指数CakingindexG在规定条件下以烟煤在加热后粘结专用无烟煤的能力表征烟煤粘结性的指标指数坩埚膨胀序数Crucibleswellingnumber;freeswell-ngindex以煤在坩埚中加热所得焦块膨胀程度的序号表征煤的膨胀性和粘结性的指标CSNmm自由膨胀指数奥亚膨胀度Audibertsarnudilatation由奥迪勃斯和亚尼二人提出的、以膨胀度(b)和收缩度(a)等参数表征烟煤膨胀性和粘结性的指标mm mmmm基氏流动度Giseelerfluidity由基斯勒尔提出的以测得的最大流动度表征烟煤塑性的指标mm mm mm葛金干馏试验Gray-Kingassay由葛莱和金二人提出的煤低温干馏试验方法,用以测定热分解产物收率和焦型mmmm mm mmmm铅甄干馏试验FisherSchraderassay由费舍尔和史莱德二人提出的低温干馏实验方法,用以测定焦油、半焦、热解水收率mm mm mm抗碎强度Resistancetobreakage一定粒度的煤样自由落下后抗破碎的能力mmmm mm机械强度热稳定性Thermalstability一定粒度的煤样受热后保持规定粒度的性能TSmmmmmm煤对二氧化碳的反应性Carboxyreactivity煤将二氧化碳还原为一氧化碳的能力Ammmmm结渣性Clinkeringproperty在气化或燃烧过程中,煤灰受热、软化、熔融而结渣的性质Clinmmmmmmm可磨性Grindabili-ty煤研磨成粉的难易程度mm mm mm哈氏可磨性指数Hardgrovegrindability用哈氏仪测定的可磨性表示硬煤被磨细的难易程度HGImmmm mm磨损性abrasiveness煤磨碎时对金属件的磨损能力mmmm mm mm灰渣融性Ashfusibility在规定条件下得到的随加热温度而变化的煤灰变形、软化和流动特征物理状态mmmm mm灰熔点灰粘度Ashviscosity灰在熔融状态下的粘度mmmm mm mm灰的酸度Sahacidity灰中酸性组分(硅、铝、钛等的氧化物)与碱性组分(铁、钙、镁、锰等的氧化物)之比mmmm mm mm灰的碱度ashbasicity灰的碱性组分(铁、钙、镁、锰等的氧化物)与碱性组分(硅、铝、钛等的氧化物)之比mmmm mm mmmm透光率transmittance褐煤、长焰煤在规定条件下用硝酸与磷酸的混合液处理后所得溶液的透光率Pmmm mm酸性基Acidicgroups煤中呈酸性的含氧官能团的总称,主要为羧基和酚泾基mm总酸性基mmmm腐植酸Humicacid煤中能溶于稀苛性碱和焦磷酸钠溶液的一组多种缩合的酸性基的高分子化合物HAt总腐植酸mm游离腐植酸Freehumicacid酸性基保持游离状态的腐植酸,在实际测定中包括与钾、钠结合的腐植酸mm mm mm黑腐植酸Pyrotomalenicacid一组分子量较大的腐植酸,一般呈黑色,能溶于稀苛性碱溶液,不溶于稀酸的丙酮mmmmmm mmmm黄腐植酸Fulvicacid组分子量较小的腐植酸,一般呈黄色,能溶于水、稀酸和碱溶液mmmm mm mm综腐植酸Hymatomalenicacid一组分子量中等的腐植酸,一般呈棕色,能溶于稀苛性碱溶液和丙酮,不溶于稀酸mmmmmm苯萃取物Benzeneextracts;benzenesolubleextracts褐煤中能溶于苯的部分,主要成分为蜡和树脂Eb苯抽。

相关文档
最新文档