科学技术在四渡河特大悬索桥隧道式锚碇施工中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代科学技术在悬索桥隧道式锚碇施工中的应用
(路桥华南工程有限公司)
摘要:本文介绍湖北沪蓉西高速公路四渡河特大悬索桥隧道式锚碇开挖及支护施工技术,重点阐述了拉拔模型试验、地质探测等现代科学技术在隧道式锚碇开
挖施工中的运用,为隧道式锚碇在以后的施工中提供借鉴。
关键词:科学技术隧道式锚碇运用
1.概述
四渡河特大桥是湖北沪蓉西主干道湖北宜昌至湖北恩施段中的一座特大悬索桥,所处位置为深切峡谷,地势陡峭,坡度达80°。该桥的桥面至谷底高差(达500多米)、单向纵坡及锚碇的单根可换式锚固系统等居世界第一。桥位布置图见图1.1
图1.1 四渡河特大桥桥位布置图
该桥宜昌岸锚碇设计为隧道式锚碇,恩施岸为重力式锚碇。在宜昌岸隧道式锚碇(见图1.2)的正下方约23米处为八字岭公路隧道,该区域地质围岩发育皆为与桥轴线呈25°竖向发育,岩层厚为30~50cm不等,裂隙较发育,为典型的岩溶地质,围岩一般为Ⅲ~Ⅳ。
图1.2
四渡河特大桥宜昌岸锚碇设鞍室、锚体及后锚室三部分。锚碇开挖最小断面为9.8×10.9m,最大开挖断面为14×14m,洞轴线水平方向倾角为35°,洞斜向长度左锚为71.14m,右锚为66.2m,锚体都为40m,锚体后面设2.2m的后锚室。整个锚碇开挖方量约为2.1m3,砼方量约为1.6万 m3。
为了增大锚塞体与围岩的锚固应力,原设计较普通隧道的洞周增设了反向齿坎,每4m一道,一个锚塞体设置10道。齿坎尺寸为350cm×87.5㎝,由于围岩裂隙发育,施工时无法确保齿坎的形成,后设计变更取消反向齿坎增设了Φ32结构锚杆。
2.开挖支护施工
在隧道式锚碇开挖施工中采取了“短进尺、强支护、快封闭、勤观测”的基本工艺,施工工序严格遵守“安全施工、爱护围岩、内实外美、重视环境、动态施工”的原则。
四渡河特大桥宜昌岸隧道式锚碇开挖在开始阶段分上、中、下三个台阶开挖,施工过程中,由于该锚碇正处于公路隧道的正上方且竖向距离仅约23m,考虑到开挖爆破的相互影响,惟恐对结构间围岩造成扰动,将中下台阶合并成一个台阶开挖,以减少爆破次数,并形成一个10~15长的水平工作平台。整个拱圈部分为一个上台阶,开挖过程中先对上台阶超前引进,下台阶落后4.5M跟进,开挖时采用短进尺钢拱架和锚网喷支护紧跟随的形式进行施工。工作面布置形式如图2.1所示。
图2.1锚碇开挖工作面示意图
锚碇的整个开挖均采用微台阶光面爆破开挖法,以尽量保护锚碇围岩整体结构的完好性。根据地质资料及施工过程中所积累的一些经验,结合围岩为Ⅲ~Ⅳ类围岩的实际,在施工过程中采用了如下一些参数:炮孔直径:38mm,深度1.6~1.8m,花边眼间距为30~50cm(一般采用40cm),花边眼往里40cm为周边眼,周边眼间距与花边眼相同,周边眼与花边眼呈梅花型布置,装药集中度:0.10~0.45Kg/m(根据岩层情况进行变化),起爆方式:段发电毫秒雷管;雷管连接方式:分组多头并联。
每个循环爆破后,立即进行危石及松动围石的清理,然后进行下一断面的控制测量,一为检测本次循环爆破的效果,二为下一循环的施爆布孔进行指导。在测量后,辅助风镐对个别未达到开挖尺寸的位置进行修整,以保证开挖尺寸。在保证了开挖尺寸后,即进行初喷5cm砼封闭围岩,防止围岩的进一步风化及保证施工安全。并开始
钢拱架和间距为1.2m(横向)x1.0m(纵向)间距的Ф22钢筋锚杆的钻孔安装及I
10
Ф8钢筋网的安装,再进行复喷完成初衬施工,保证整个初衬厚度不小于15㎝。初衬后对未能及时落地的上台阶钢拱架增设两根3m长的Ф22钢筋锁脚锚杆,以作为钢架的承力点。
锚碇开挖施工过程中,对裂隙较发育、夹泥较多及溶洞断层处,采取锚杆加密加长,钢筋网增加连接钢筋的方法及时加固处理。锚杆间距最密处为0.5mx0.5m,最长增加至5m。钢筋网外增设Ф12的连接钢筋。在处理完毕后,进行观测一段时间,在连续观测几次中均无明显变化后,可视该部位为已处理安全。
由于锚碇开挖的特殊性,开挖空顶时间不能过长,且锚碇开挖出渣工程量较大,故在开挖初期采用大挖机出渣;在锚碇掘进较深后,由于倾斜坡度较大,且大挖机在洞内无自由旋转移动空间后,改为:小挖机装渣,窄轨道(轨距70cm,钢轨22Kg/m、枕木120x20x20cm)、绞车(25T,每个绞车容量为0.8m3)提升运输的方法出渣。3.现代科学技术的运用
由于四渡河特大桥所处区域地质为典型的岩溶地质,为了更好地将现代科学技术与工程实践有机结合,在隧道式锚碇开挖施工过程中成功地完成了国内目前规模最大,检测数据较全面的拉拔模型试验,为优化设计变更提供了数据依据;同时,也是第一次较完善地采用了物探方法,对隧道式锚碇开挖断面周围围岩进行探测,为围岩
加固提供了科学依据;为了长期监测该桥的健康营运情况,对隧道式锚碇还增设了健康监测设备,该部分设备正在随施工的进展而同步进行安装。
3.1现代科学技术检测
3.1.1 1:12模型拉拔试验
鉴于如此高载荷作用下的隧道锚碇设计及施工工作在国内外开展很少,无现成的经验可供借鉴,为了验证设计方案的可靠性并为其他类似工程提供研究资料。在实体隧道锚碇附近与其工程地质条件、岩体结构和岩性接近处进行了模型试验,依据弹性力学相似原理,按1∶12 比例制作隧道锚模型,对模型开展在不同设计载荷水平以及在不同的恒定载荷下的张拉、超张拉及流变试验。该试验先于实体锚体开挖之前已完成。该试验模型布置见图3.1。
该试验模型的反力系统由南北钢筋混凝土反力支座、支墩及反力梁等组成。反力梁设计可承受荷载不小于2400kN。试验锚碇的制作过程采用与实体隧道锚碇相同的设计标准及施工工艺。锚体建造采用与实体锚体相同等级强度的C30 级微膨胀混凝土。每个锚碇内埋设4束(每束由16 根Φ15.24mm 钢绞线组成)锚索,通过钢绞线的加载,来模拟施加实桥的张拉荷载。在分层浇筑锚碇混凝土前,采用专用P 型锚具事先将每束钢绞线按设计位置预先固定在锚洞内,最后一次性浇筑锚碇混凝土。
设计采用的实体隧道锚碇中双缆载荷为420,000kN,试验锚碇的设计荷载Pm 应为: 2916.67 kN,又因为试验时的张拉荷载是同时通过8 台千斤顶来施加,因此在1 倍设计荷载作用(1Pm)下每台千斤顶出力p 为: 364.58 kN。
为监测拉拔试验期间试验锚碇周边岩体变形及荷载变化规律,共布置了4类监测