2020北京各区一模数学试题分类汇编--函数与导数(解析版)

合集下载

2020北京各区一模数学试题分类汇编--解析几何(原卷版)

2020北京各区一模数学试题分类汇编--解析几何(原卷版)

1 / 122020北京各区一模数学试题分类汇编—解析几何(2020海淀一模)已知双曲线2221(0)y x b b-=>则b 的值为( )A. 1B. 2C. 3D. 4(2020海淀一模) 已知点P (1,2)在抛物线C 2:2y px =上,则抛物线C 的准线方程为___.(2020西城一模) 设双曲线2221(0)4x y b b -=>的一条渐近线方程为y x =,则该双曲线的离心率为____________.(2020西城一模) 设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A. 22(3)2x y -+=B. 22(3)8x y -+=C. 22(3)2x y ++=D. 22(3)8x y ++=(2020东城一模) 若顶点在原点的抛物线经过四个点(1,1),1(2,)2,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是________.(2020东城一模) 已知圆C 与直线y x =-及40x y +-=的相切,圆心在直线y x =上,则圆C 的方程为( )2 / 12A. ()()22112x y -+-= B. ()()22112x y -++= C. ()()22114x y ++-= D. ()()22114x y +++=(2020东城一模) 已知曲线C 的方程为221x y a b-=,则“a b >”是“曲线C 为焦点在x 轴上的椭圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(2020东城一模) 抛物线24x y =的准线与y 轴的交点的坐标为( )A. 1(0,)2-B. (0,1)-C. (0,2)-D. (0,4)-(2020丰台一模) 已知双曲线M :2213y x -=的渐近线是边长为1的菱形OABC 的边OA ,OC 所在直线.若椭圆N :22221x y a b+=(0a b >>)经过A ,C 两点,且点B 是椭圆N 的一个焦点,则a =______.(2020丰台一模) 过抛物线C :22y px =(0p >)的焦点F 作倾斜角为60︒的直线与抛物线C 交于两个不同的点A ,B (点A 在x 轴上方),则AFBF的值为( ) A.13B.43D. 33 / 12(2020丰台一模) 圆()2212x y -+=的圆心到直线10x y ++=的距离为( )A. 2C. 1D.2(2020朝阳区一模) 已知抛物线C :22(0)y px p =>的焦点为F ,准线为l ,点A 是抛物线C 上一点,AD l ⊥于D .若4AF =,60DAF ∠=︒,则抛物线C 的方程为( )A. 28y x =B. 24y x =C. 22y x =D. 2y x =(2020朝阳区一模) 在ABC 中,AB BC =,120ABC ∠=︒.若以A ,B 为焦点的双曲线经过点C ,则该双曲线的离心率为( )A.B.2C.12D.(2020朝阳区一模) 数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).4 / 12给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;的正方形,使得曲线C 在此正方形区域内(含边界). 其中,正确结论的序号是________.(2020石景山一模) 圆2228130+--+=x y x y 的圆心到直线10ax y +-=的距离为1,则a =( )A. 43-B. 34-C.D. 2(2020石景山一模)已知F 是抛物线C :24y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =______.(2020怀柔一模) 已知抛物线22y px =的焦点与双曲线2214x y -=的右顶点重合,则抛物线的焦点坐标为__________;准线方程为___________.(2020怀柔一模)6.已知圆C 与圆(x -1)2+y 2=1关于原点对称,则圆C 的方程为( ) A. x 2+y 2=1 B. x 2+(y +1)2=1 C. x 2+(y -1)2=1 D. (x +1)2+y 2=15 / 12(2020密云一模) 如果直线1ax by +=与圆22:1C x y +=相交,则点(),M a b 与圆C 的位置关系是( )A. 点M 在圆C 上B. 点M 在圆C 外C. 点M 在圆C 内D. 上述三种情况都有可能(2020密云一模) 已知斜率为k 的直线l 与抛物线2:4C y x =交于A ,B 两点,线段AB 的中点为()()1,0M m m >,则斜率k 的取值范围是( )A. (,1)-∞B. (,1]-∞C. (1,)+∞D. [1,)+∞(2020密云一模) 双曲线221y x -=的焦点坐标是_______________,渐近线方程是_______________.(2020顺义区一模) 直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,当AOB ∆的面积达到最大时,k =________.(2020顺义区一模) 抛物线()220y px p =>的焦点是双曲线22x y p -=的一个焦点,则p =( )A. B. 8 C. 4 D. 1(2020延庆一模) 已知双曲线221169x y C -=:的右焦点为F ,过原点O 的直线与双曲线C 交于,A B 两点,且60AFB ∠=︒,则BOF 的面积为( )6 / 12A.B.C.32D.92(2020延庆一模) 经过点()2,0M -且与圆221x y +=相切的直线l 的方程是____________.(2020海淀一模) 已知椭圆C :22221(0)x y a b a b+=>>12(,0),(,0),(0,)A a A a B b -,12A BA ∆的面积为2.(I)求椭圆C 的方程;(II)设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P ,直线1A M 与直线2A B 交于点Q .求证:△BPQ 为等腰三角形.(2020西城一模) 设椭圆22:12x E y +=,直线1l 经过点()0M m ,,直线2l 经过点()0N n ,,直线1l 直线2l ,且直线12l l ,分别与椭圆E 相交于A B ,两点和C D ,两点.7 / 12(Ⅰ)若M N ,分别为椭圆E 的左、右焦点,且直线1l x ⊥轴,求四边形ABCD 的面积;(Ⅱ)若直线1l 的斜率存在且不为0,四边形ABCD 为平行四边形,求证:0m n +=; (Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD 能否为矩形,说明理由.(2020东城一模) 已知椭圆22:36C x y +=的右焦点为F . (1)求点F 的坐标和椭圆C 的离心率;(2)直线():0l y kx m k =+≠过点F ,且与椭圆C 交于P ,Q 两点,如果点P 关于x 轴的对称点为'P ,判断直线'P Q 是否经过x 轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.8 / 12(2020丰台一模) 已知椭圆C :22221y x a b +=(0a b >>)的离心率为2,点1,0P 在椭圆C 上,直线0y y =与椭圆C 交于不同的两点A ,B. (1)求椭圆C 的方程;(2)直线PA ,PB 分别交y 轴于M ,N 两点,问:x 轴上是否存在点Q ,使得2OQN OQM π∠+∠=?若存在,求出点Q 的坐标;若不存在,请说明理由.9 / 12(2020朝阳区一模) 已知椭圆2222:1(0)x y C a b a b+=>>,圆222:O x y r +=(O 为坐标原点).过点(0,)b 且斜率为1的直线与圆O 交于点(1,2),与椭圆C 的另一个交点的横坐标为85-. (1)求椭圆C 的方程和圆O 的方程;(2)过圆O 上的动点P 作两条互相垂直的直线1l ,2l ,若直线1l 的斜率为(0)k k ≠且1l 与椭圆C 相切,试判断直线2l 与椭圆C 的位置关系,并说明理由.(2020石景山一模) 已知椭圆C :22221x y a b +=(0a b >>)的右焦点为()1,0F,离心率为2.直线l 过点F 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1)求椭圆C 的方程;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)延长线段OM 与椭圆C 交于点P ,若四边形OAPB 为平行四边形,求此时直线l 的斜率.10 / 12(2020怀柔一模)已知椭圆()222210x y a b a b +=>>,离心率为2.(1)求椭圆的方程;(2)设,A B 是椭圆上关于坐标原点对称的两点,且点A 在第一象限,AE x ⊥轴,垂足为E ,连接BE 并延长交椭圆于点D ,证明:ABD ∆是直角三角形.(2020密云一模)已知椭圆2222:1(0)x y C a b a b +=>>()0,1A .11 / 12 (1)求椭圆C 的标准方程;(2)点P 是椭圆上异于短轴端点A ,B 的任意一点,过点P 作PQ y ⊥轴于Q ,线段PQ 的中点为M .直线AM 与直线1y =-交于点N ,D 为线段BN 的中点,设O 为坐标原点,试判断以OD 为直径的圆与点M 的位置关系.(2020顺义区一模)已知椭圆C :223412x y +=.(1)求椭圆C 的离心率;(2)设,A B 分别为椭圆C 的左右顶点,点P 在椭圆C 上,直线AP ,BP 分别与直线4x =相交于点M ,N .当点P 运动时,以M ,N 为直径的圆是否经过x 轴上的定点?试证明你的结论.(2020延庆一模)已知椭圆22221(0)x ya ba bG+=>>:的左焦点为(),F且经过点(),,C A B分别是G的右顶点和上顶点,过原点O的直线l与G交于,P Q两点(点Q在第一象限),且与线段AB交于点M.(1)求椭圆G的标准方程;(2)若3PQ=,求直线l的方程;(3)若BOP△的面积是BMQ的面积的4倍,求直线l的方程.12/ 12。

2020北京各区一模数学试题分类汇编--函数与导数(原卷版)

2020北京各区一模数学试题分类汇编--函数与导数(原卷版)

1 / 112020北京各区一模数学试题分类汇编--函数与导数(2020海淀一模)已知函数f (x )=|x -m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A. [-1,+∞) B. (-∞,-1] C. [-2,+∞) D. (-∞,-2](2020西城一模)设函数()210100x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( )A. (]0101, B. (]099, C. (]0100, D. ()0+∞,(2020西城一模)下列函数中,值域为R 且为奇函数的是( ) A. 2y x =+B. y sinx =C. 3y x x =-D. 2x y =(2020东城一模)设函数()()120f x x x x=+-<,则()f x ( ) A. 有最大值 B. 有最小值C. 是增函数D. 是减函数(2020丰台一模)已知函数()e 1,0,,0.x x f x kx x ⎧-≥=⎨<⎩若存在非零实数0x ,使得()()00f x f x -=成立,则实数k 的取值范围是( ) A. (),1-∞-B. (],1-∞-C. ()1,0-D. [)1,0-2 / 11(2020丰台一模)已知132a =,123b =,31log 2c =,则( ) A. a b c >> B. a c b >>C. b a c >>D. b c a >>(2020朝阳区一模)下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是( ) A. 3y x = B. 21y x =-+C. 2log y x =D. ||2x y =(2020朝阳区一模)已知函数222,1,()2ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()2af x ≥在R 上恒成立,则实数a 的取值范围为( )A. (-∞B. 3[0,]2C. [0,2]D.(2020石景山一模)下列函数中,既是奇函数又在区间()0,∞+上单调递减的是( )A. 22y x =-+B. 2x y -=C. ln y x =D. 1y x=(2020石景山一模)设()f x 是定义在R 上的函数,若存在两个不等实数12,x x R ∈,使得()()121222f x f x x x f ++⎛⎫= ⎪⎝⎭,则称函数()f x 具有性质P ,那么下列函数:3 / 11①()1,00,0x f x x x ⎧≠⎪=⎨⎪=⎩;②()2f x x =;③()21f x x =-;具有性质P 的函数的个数为( ) A. 0 B. 1 C. 2 D. 3(2020怀柔一模)若函数()(cos )xf x e x a =-在区间(,)22ππ-上单调递减,则实数a 的取值范围是___________.(2020怀柔一模)函数f(x)=|log 2x|的图象是( )A. B.C. D.4 / 11(2020密云一模)已知函数21,0()(2),0x x f x f x x -⎧-≤=⎨->⎩,若关于x 的方程3()2f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是_______________.(2020顺义区一模)11.若函数()2,01,0x e x f x x x ⎧≤=⎨->⎩,则函数()1y f x =-的零点是___________.(2020顺义区一模)当[]0,1x ∈时,若函数()()21f x mx =-的图象与()2mg x x =+的图象有且只有一个交点,则正实数m 的取值范围是( )A. [)2,+∞B. (]50,2,+2U ⎡⎫∞⎪⎢⎣⎭C. 5,2⎡⎫+∞⎪⎢⎣⎭D. (][)20,1,+U ∞(2020顺义区一模)若3log 0.2a =,0.22b =,20.2c =,则( ) A. a c b << B. a b c <<C. c a b <<D. b c a <<(2020延庆一模)下列函数中,是奇函数且在其定义域上是增函数的是( )A. 1y x=B. y tanx =C. x x y e e -=-D. 2,02,0x x y x x +≥⎧=⎨-<⎩(2020海淀一模)已知函数()x f x e ax =+.5 / 11(I )当a =-1时,①求曲线y = f (x )在点(0,f (0))处的切线方程; ②求函数f (x )的最小值;(II )求证:当()2,0a ∈-时,曲线() y f x =与1y lnx =-有且只有一个交点.(2020西城一模)设函数()()22f x alnx x a x =+-+,其中.a R ∈(Ⅰ)若曲线()y f x =在点()()22f ,处切线的倾斜角为4π,求a 的值; (Ⅱ)已知导函数()'f x 在区间()1e ,上存在零点,证明:当()1x e ∈,时,()2f x e >-.6 / 11(2020东城一模)已知函数()ln 1a f x x x=--. (1)若曲线()y f x =存在斜率为-1的切线,求实数a 的取值范围; (2)求()f x 的单调区间; (3)设函数()ln x ag x x+=,求证:当10a -<<时, ()g x 在()1,+∞上存在极小值.(2020丰台一模)已知函数()()ln 1f x a x x x =+-+.(1)若曲线()y f x =在点()()e,e f 处的切线斜率为1,求实数a 的值; (2)当0a =时,求证:()0f x ≥;7 / 11(3)若函数()f x 在区间()1,+?上存在极值点,求实数a 的取值范围.(2020朝阳区一模)已知函数()11xx f x e x +=--. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)判断函数()f x 的零点的个数,并说明理由;(3)设0x 是()f x 的一个零点,证明曲线xy e =在点00(,)x x e 处的切线也是曲线ln y x =的切线.8 / 11(2020石景山一模)已知函数()2f x x =(0x >),()lng x a x =(0a >).(1)若()()f x g x >恒成立,求实数a 的取值范围;(2)当1a =时,过()f x 上一点()1,1作()g x 的切线,判断:可以作出多少条切线,并说明理由.9 / 11(2020怀柔一模)已知函数()ln ,()x f x x g x e ==. (1)求()y f x =在点(1,(1))f 处的切线方程; (2)当0x >时,证明:()()f x x g x <<;(3)判断曲线()f x 与()g x 是否存在公切线,若存在,说明有几条,若不存在,说明理由.(2020密云一模)已知函数()()1xf x e ax =+,a R ∈.(1)求曲线()y f x =在点()()0,0M f 处的切线方程; (2)求函数()f x 的单调区间; (3)判断函数()f x 的零点个数.10 / 11(2020顺义区一模)已知函数2()2ln f x x a x =-,其中a R ∈ (1)当2a =时,求曲线()y f x =在点()()1,1A f 处的切线方程; (2)若函数()f x 存在最小值Q ,求证:1Q ≤.11 / 11(2020延庆一模)已知函数()2221,1ax a f x x +-=+其中0a ≠ (1)当1a =时,求曲线()y f x =在原点处的切线方程;(2)若函数()f x 在[)0,+∞上存在最大值和最小值,求a 的取值范围..。

2020年北京市海淀区高考数学一模试卷(附答案详解)

2020年北京市海淀区高考数学一模试卷(附答案详解)

2020年北京市海淀区高考数学一模试卷1.在复平面内,复数i(2−i)对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知集合A={x|0<x<3},A∩B={1},则集合B可以是()A. {1,2}B. {1,3}C. {0,1,2}D. {1,2,3}3.已知双曲线x2−y2b2=1(b>0)的离心率为√5,则b的值为()A. 1B. 2C. 3D. 44.已知实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A. b−a<c+aB. c2<abC. cb >caD. |b|c<|a|c5.在(1x−2x)6的展开式中,常数项为()A. −120B. 120C. −160D. 1606.如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动.当圆M滚动到圆M′时,圆M′与直线l相切于点B,点A运动到点A′,线段AB的长度为3π2,则点M′到直线BA′的距离为()A. 1B. √32C. √22D. 127.已知函数f(x)=|x−m|与函数g(x)的图象关于y轴对称.若g(x)在区间(1,2)内单调递减,则m的取值范围为()A. [−1,+∞)B. (−∞,−1]C. [−2,+∞)D. (−∞,−2]8.某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为()A. √5B. 2√2C. 2√3D. √139.若数列{a n}满足a1=2,则“∀p,r∈N∗,a p+r=a p a r”是“{a n}为等比数列”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10.形如22n+1(n是非负整数)的数称为费马数,记为F n.数学家费马根据F0,F1,F2,F3,F4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F5不是质数,那么F5的位数是()(参考数据:lg2≈0.3010)A. 9B. 10C. 11D. 1211.已知点P(1,2)在抛物线C:y2=2px上,则抛物线C的准线方程为______.12.在等差数列{a n}中,a1=3,a2+a5=16,则数列{a n}的前4项的和为______.13.已知非零向量a⃗,b⃗ 满足|a⃗|=|a⃗−b⃗ |,则(a⃗−12b⃗ )⋅b⃗ =______.14.在△ABC中,AB=4√3,∠B=π4,点D在边BC上,∠ADC=2π3,CD=2,则AD=;△ACD的面积为.15.如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记P运动的路程为x,点P 到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是______.16.如图,在三棱柱ABC−A1B1C1中,AB⊥平面BB1C1C,AB=BB1=2BC=2,BC1=√3,点E为A1C1的中点.(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)求二面角A−BC−E的大小.17.已知函数f(x)=2cos2ω1x+sinω2x.(Ⅰ)求f(0)的值;(Ⅱ)从①ω1=1,ω2=2;②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f(x)在[−π2,π6]上的最小值,并直接写出函数f(x)的一个周期.18.科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.如图是某公司从2010年到2019年这10年研发投入的数据分布图:其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.19.已知函数f(x)=e x+ax.(Ⅰ)当a=−1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(Ⅱ)求证:当a∈(−2,0)时,曲线y=f(x)与y=1−lnx有且只有一个交点.20.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√32,A1(−a,0),A2(a,0),B(0,b),△A1BA2的面积为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设M是椭圆C上一点,且不与顶点重合,若直线A1B与直线A2M交于点P,直线A1M与直线A2B交于点Q.求证:△BPQ为等腰三角形.21.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈N∗,使得a2n−1+a2n=ka n对任意的n∈N∗成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.答案和解析1.【答案】A【解析】【分析】本题考查复数的代数表示法及其几何意义,属于基础题.首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2−i)=−i2+2i=1+2i,∴复数对应的点的坐标是(1,2),这个点在第一象限,故选A.2.【答案】B【解析】解:∵A={x|0<x<3},A∩B={1},∴集合B可以是{1,3}.故选:B.根据A={x|0<x<3},A∩B={1},即可得出集合B可能的情况.本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.3.【答案】B=1(b>0)的离心率为√5,【解析】解:双曲线x2−y2b2可得√b2+1=√5,解得b=2,1故选:B.利用双曲线的离心率公式,列出方程,求解b即可.本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.4.【答案】D【解析】解:(法1)根据数轴可得c<b<a<0且|c|>|b|>|a|,对于A:因为c<b,a<0,所以c+a<c,b−a>b,则c+a<c<b−a,即c+a< b−a,故A错误;对于B:因为c<b<a<0,|c|>|b|>|a|,所以c2>b2>a2,且b2>ab,所以c2> b2>ab,则c2>ab,故B错误;对于C:因为b<a<0,所以1b >1a,则cb<ca,故C错误;对于D:因为|b|>|a|,且c<0,所以|b|c<|a|c,故D正确,(法2)不妨令c=−5,b=−4,a=−1,则c+a=−6<b−a=−3,故A错误;c2=25>ab=4,故B错误;cb =54<ca=5,故C错误;故选:D.法1:根据数轴得到c<b<a<0且|c|>|b|>|a|,结合不等式基本性质逐一进行判断即可;法2:用特值法带入验证即可.本题考查不等式的相关应用,考查合情推理,属于中档题.5.【答案】C【解析】解:由题意得:T k+1=(−2)k C6k x2k−6,令2k−6=0得k=3,故常数项为T4=(−2)3C63=−160.故选:C.先求出通项,然后令x的指数为零即可.本题考查二项式展开式通项的应用和学生的运算能力,属于基础题.6.【答案】C【解析】解:根据条件可知圆周长=2π,因为BA =32π=34×2π,故可得A’位置如图:∠A′M′B =90°,则△A′M′B 是等腰直角三角形, 则M′到A′M 的距离d =√22r =√22,故选:C .根据条件可得圆旋转了34个圆,作图可得到△A′M′B 是等腰直角三角形,进而可求得M′到A′M 的距离.本题考查点到直线的距离,考查圆旋转的长度求法,数中档题.7.【答案】D【解析】解:根据题意,函数f(x)=|x −m|与函数g(x)的图象关于y 轴对称.若g(x)在区间(1,2)内单调递减, 则f(x)在区间(−2,−1)上递增,而f(x)=|x −m|={x −m,x ≥m −x +m,x <m ,在区间(m,+∞)上为增函数,则有m ≤−2,即m 的取值范围为(−∞,−2]; 故选:D .根据题意,分析可得f(x)在区间(−2,−1)上递增,将f(x)写成分段函数的形式,分析可得f(x)在区间(m,+∞)上为增函数,据此可得m 的取值范围.本题考查函数的单调性,涉及函数之间的对称性、不等式的解法,属于基础题.8.【答案】C【解析】解:根据几何体的三视图可得直观图为:该几何体为四棱锥体, 如图所示:所以最长的棱长AB =√22+22+22=2√3. 故选:C .首先把三视图转换为直观图,进一步求出最大棱长.本题考查的知识要点:三视图和直观图形之间的转换,几何体的棱长的求法和应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.【答案】A【解析】解:“∀p,r∈N∗,a p+r=a p a r”,取p=n,r=1,则a n+1=2a n,∴{a n}为等比数列,充分性成立.若{a n}为等比数列,则a p+r=2×q p+r−1,a p a r=22⋅q p+r−2,只有q=2时才能成立,必要性不成立.∴数列{a n}满足a1=2,则“∀p,r∈N∗,a p+r=a p a r”是“{a n}为等比数列”的充分不必要条件.故选:A.利用等比数列的定义、通项公式即可判断出结论.本题考查了等差数列的通项公式,充分必要条件的判断,考查了推理能力与计算能力,属于基础题.10.【答案】B【解析】【分析】本题考查指对数运算,考查学生阅读理解能力.根据所给定义表示出F5≈109.632×109,进而即可判断出其位数.【解答】解:根据题意,F5=225+1=232+1≈232=10lg232=1032lg2≈1032×0.3010= 109.632=100.632×109,因为1<100.632<10,所以F5的位数是10.故选:B.11.【答案】x=−1【解析】解:把点P(1,2)代入抛物线方程有,4=2p,∴p=2,=−1.∴抛物线的准线方程为x=−p2故答案为:x=−1.把点P的坐标代入抛物线的方程可求得p,而准线方程为x=−p2,从而得解.本题考查抛物线的方程、准线方程等,考查学生的运算能力,属于基础题.12.【答案】24【解析】解:设等差数列{a n}的公差为d,∵a1=3,a2+a5=16,∴2×3+5d=16,解得d=2.则数列{a n}的前4项的和=4×3+4×32×2=24.故答案为:24.利用等差数列的通项公式求和公式即可得出.本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.13.【答案】0【解析】解:因为非零向量a⃗,b⃗ 满足|a⃗|=|a⃗−b⃗ |,∴a⃗2=a⃗2−2a⃗⋅b⃗ +b⃗ 2⇒a⃗⋅b⃗ =12b⃗ 2;则(a⃗−12b⃗ )⋅b⃗ =a⃗⋅b⃗ −12b⃗ 2=0.故答案为:0.把所给条件平方整理得到a⃗⋅b⃗ =12b⃗ 2;代入数量积即可求解结论.本题考查向量的数量积以及模长的应用,考查向量的表示以及计算,考查计算能力.14.【答案】4√22√6【解析】【分析】本题主要考查正弦定理以及三角形的面积,属于基础题目.先根据正弦定理求得AD,进而求得三角形的面积.【解答】 解:如图:因为在△ABC 中,AB =4√3,∠B =π4,点D 在边BC 上,∠ADC =2π3,CD =2,所以:ADsin∠ABD =ABsin∠ADB ⇒AD =4√3×sinπ4sin π3=4√2;S △ACD =12⋅AD ⋅CD ⋅sin∠ADC =12×4√2×2×sin 2π3=2√6;故答案为:4√2,2√6.15.【答案】①②【解析】解:由题可得函数f(x)={3+(x −3)2,0≤x <63+(x −9)2,6≤x <123+(x −15)2,12≤x ≤18,作出图象如图:则当点P 与△ABC 顶点重合时,即x =0,6,12,18时,f(x)取得最大值12,故①正确; 又f(x)=f(18−x),所以函数f(x)的对称轴为x =9,故②正确;由图象可得,函数f(x)图象与y =kx +3的交点个数最多为6个,故方程最多有6个实根,故③错误. 故答案为:①②.写出函数解析式并作出图象,数形结合进行逐一分析.本题考查命题的真假性判断,涉及函数的应用、图象与性质,数形结合思想,逻辑推理能力,属于难题.16.【答案】(Ⅰ)证明:因为AB ⊥平面BB 1C 1C ,C 1B ⊂平面BB 1C 1C 所以AB ⊥C 1B .在△BCC 1中,BC =1,BC 1=√3,CC 1=2,所以BC 2+BC 12=CC 12. 所以CB ⊥C 1B .因为AB ∩BC =B ,AB ,BC ⊂平面ABC , 所以C 1B ⊥平面ABC .(Ⅱ)解:由(Ⅰ)知,AB ⊥C 1B ,BC ⊥C 1B ,AB ⊥BC , 如图,以B 为原点建立空间直角坐标系B −xyz .则B(0,0,0),E(−12,√3,1),C(1,0,0).BC ⃗⃗⃗⃗⃗ =(1,0,0),BE ⃗⃗⃗⃗⃗ =(−12,√3,1). 设平面BCE 的法向量为n ⃗ =(x,y,z), 则{n⃗ ⋅BC ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BE ⃗⃗⃗⃗⃗ =0, 即{x =0,−12x +√3y +z =0. 令y =√3则x =0,z =−3, 所以n ⃗ =(0,√3,−3).又因为平面ABC 的法向量为m ⃗⃗⃗ =(0,1,0), 所以cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ ||n ⃗⃗ |=12. 由题知二面角A −BC −E 为锐角,所以其大小为π3.【解析】(Ⅰ)证明AB ⊥C 1B .CB ⊥C 1B .利用直线与平面垂直的判断定理证明C 1B ⊥平面ABC .(Ⅱ)以B 为原点建立空间直角坐标系B −xyz.求出平面BCE 的法向量,平面ABC 的法向量,利用空间向量的数量积求解二面角的大大小即可,本题考查二面角的平面角的求法,直线与平面垂直的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题.17.【答案】解:(Ⅰ)由函数f(x)=2cos 2ω1x +sinω2x ,则f(0)=2cos 20+sin0=2;(Ⅱ)选择条件①,则f(x)的一个周期为π;由f(x)=2cos 2x +sin2x=(cos2x +1)+sin2x =√2(√22sin2x +√22cos2x)+1 =√2sin(2x +π4)+1;因为x ∈[−π2,π6],所以2x +π4∈[−3π4,7π12];所以−1≤sin(2x +π4)≤1, 所以1−√2≤f(x)≤1+√2; 当2x +π4=−π2,即x =−3π8时,f(x)在[−π2,π6]取得最小值为1−√2. 选择条件②,则f(x)的一个周期为2π; 由f(x)=2cos 2x +sinx=2(1−sin 2x)+sinx=−2(sinx −14)2+178;因为x ∈[−π2,π6],所以sinx ∈[−1,12];所以当sinx =−1,即x =−π2时,f(x)在[−π2,π6]取得最小值为−1.【解析】(Ⅰ)由函数f(x)的解析式求出f(0)的值; (Ⅱ)选择条件①时f(x)的一个周期为π,利用三角恒等变换化简f(x),再求f(x)在[−π2,π6]的最小值. 选择条件②时f(x)的一个周期为2π,化简f(x),利用三角函数的性质求出f(x)在[−π2,π6]的最小值.本题考查了三角函数的图象与性质的应用问题,也考查了转化与运算能力,是基础题.18.【答案】解:(Ⅰ)设事件A 为“从2010年至2019年中随机选取一年,研发投入占当年总营收的百分比超过10%”,从2010年至2019年一共10年,其中研发投入占当年总营收的百分比超过10%有9年, 所以P(A)=910.(Ⅱ)由图表信息,从2010年至2019年10年中有5年研发投入超过500亿元,所以X 的所有可能取值为0,1,2.且P(X =0)=C 52C 102=29;P(X =1)=C 51C 51C 102=59;P(X =2)=C 52C 102=29.所以X 的分布列为:故X 的期望E(X)=0×29+1×59+2×29=1.(Ⅲ)从两个方面可以看出,该公式是比较重视研发的:一、从2010年至2019年,每年的研发投入是逐年增加的(2018年除外),并且增加的幅度总体上逐渐加大;二、研发投入占营收的比例总体上也是逐渐增加的,虽然2015年往后有些波动,但是总体占比还是较高的.【解析】(Ⅰ)按照古典概型概率计算公式计算即可;(Ⅱ)显然这是一个超几何分布,按照超几何分布的概率计算方法,分别算出随机变量X 取0,1,2时的概率,然后画出分布列,即可求期望;(Ⅲ)结合折线图从“每年的研发投入”“研发投入占营收比”的变化来分析即可. 本题考查离散型随机变量的分布列、期望的求法,注意对题意的理解需到位、准确.同时考查学生的数学建模的素养,属于中档题.19.【答案】解:(Ⅰ)①当a =−1时,f(x)=e x −x ,则 f′(x)=e x −1.所以f′(0)=0. 又f(0)=1,所以曲线y =f(x)在点(0,f(0))处的切线方程为y =1; ②令f′(x)=0,得x =0,此时f′(x),f(x)随x 的变化如下:可知f(x)min =f(0)=1,函数f(x)的最小值为1. (Ⅱ)证明:由题意可知,x ∈(0,+∞),令g(x)=e x +ax +lnx −1,则g′(x)=e x +1x +a , 由(Ⅰ)中可知e x −x ≥1,故 e x ≥1+x ,因为a ∈(−2,0),则g′(x)=e x +1x+a ≥(x +1)+1x+a ≥2√x ⋅1x+a +1=3+a >0,所以函数g(x)在区间(0,+∞)上单调递增, 因为g(1e)=e 1e +ae−2<e 12−2<0,又因为g(e)=e e +ae >e 2−2e >0, 所以g(x)有唯一的一个零点.即函数y =f(x)与y =1−lnx 有且只有一个交点.【解析】本题考查导数的几何意义,利用导数研究函数的最值,函数的零点等问题,考查运算求解能力及推理论证能力,属于中档题.(Ⅰ)①将a =−1代入,求导,求出切线斜率及切点,利用点斜式方程即得解; ②求出函数函数f(x)的单调性情况,进而得出最值;(Ⅱ)即证函数g(x)=e x +ax +lnx −1仅有一个零点,利用导数可知函数g(x)在区间(0,+∞)上单调递增,结合零点存在性定理即得证.20.【答案】解:(Ⅰ)由题{ca=√32,ab =2,a 2=b 2+c 2.解得{a =2,b =1.所以椭圆方程为x 24+y 2=1.( II)解法1证明:设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1 由{y =k(x −2),y =12x +1.解得点P(4k+22k−1,4k 2k−1). 由{y =k(x −2),x 24+y 2=1.得(4k +1)x 2−16k 2x +16k 2−4=0, 则2x M =16k 2−44k 2+1.所以x M =8k 2−24k 2+1,y M =−4k4k 2+1.即M(8k 2−24k 2+1,−4k4k 2+1).k A 1M =−4k 4k 2+18k 2−24k 2+1+2=−14k .于是直线A 1M 的方程为y =−14k (x +2),直线A 2B 的方程为y =−12x +1.由{y =−14k (x +2)y =−12x +1解得点Q(4k+22k−1,−22k−1). 于是x P =x Q ,所以PQ ⊥x 轴. 设PQ 中点为N ,则N 点的纵坐标为4k 2k−1+−22k−12=1.故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP|=|BQ|, 所以△BPQ 为等腰三角形. 解法2证明:设M(x 0,y 0)(x 0≠±2,y 0≠±1)则x 02+4y 02=4. 直线A 2M 方程为y =yx 0−2(x −2),直线A 1B 方程为y =12x +1.由{y =y0x 0−2(x −2),y =12x +1.解得点P(2x 0+4y 0−42y 0−x 0+2,4y 02y0−x 0+2).直线A 1M 方程为y =yx 0+2(x +2),直线A 2B 方程为y =−12x +1.由{y =yx 0+2(x +2),y =−12x +1.解得点Q(2x 0−4y 0+42y 0+x 0+2,4y 02y0+x 0+2).x P −x Q =2x 0+4y 0−42y 0−x 0+2−2x 0−4y 0+42y 0+x 0+2=2(x 0+2y 0−2)(2y 0+x 0+2)−2(x 0−2y 0+2)(2y 0−x 0+2)(2y 0−x 0+2)(2y 0+x 0+2)=2[(x 0+2y 0)2−4)−(4−(x 0−2y 0)2](2y 0−x 0+2)(2y 0+x 0+2)=0.于是x P =x Q ,所以PQ ⊥x 轴.y P +y Q =4y 02y0−x 0+2+4y 02y 0+x 0+2=4y 0(4y 0+4)(2y 0−x 0+2)(2y 0+x 0+2)=4y 0(4y 0+4)(2y 0+2)2−x 02=2.故PQ 中点在定直线y =1上.从上边可以看出点B 在PQ 的垂直平分线上,所以|BP|=|BQ|, 所以△BPQ 为等腰三角形.【解析】(Ⅰ)由题{ca=√32,ab =2,a 2=b 2+c 2.,求出a ,b ,即可得到椭圆方程.(II)解法1,设直线A 2M 方程为y =k(x −2)(k ≠0且k ≠±12),直线A 1B 方程为y =12x +1,通过联立直线与椭圆方程组,求出M 坐标,Q 坐标,推出|BP|=|BQ|,即可证明△BPQ 为等腰三角形.(x−2),解法2,设M(x0,y0)(x0≠±2,y0≠±1)则x02+4y02=4.直线A2M方程为y=y0x0−2x+1.通过联立直线与椭圆方程组,求出P,Q坐标,转化推出|BP|=直线A1B方程为y=12|BQ|,得到△BPQ为等腰三角形.本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力,是难题.21.【答案】解:(Ⅰ)①数列{a n}具有“性质Ψ(2)”;②数列{a n}不具有“性质Ψ(2)”.(Ⅱ)证明:先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n−1+a2n=2a n,又因为a n+1≥a n,所以0≤a2n−a n=a n−a2n−1≤0,进而有a n=a2n结合a n+1≥a n有a n=a n+1=⋯=a2n,即“数列{a n}为常数列”;再证“必要性”:若“数列{a n}为常数列”,则有a2n−1+a2n=2a1=2a n,即“数列{a n}具有“性质Ψ(2)”.(Ⅲ)首先证明:a n+1−a n≥2.因为{a n}具有“性质Ψ(4)”,所以a2n−1+a2n=4a n.当n=1时,有a2=3a1=3.又因为a2n−1,a2n,a n∈N∗,且a2n>a2n−1,所以有a2n≥2a n+1,a2n−1≤2a n−1,进而有2a n+1≤a2n≤a2n+1−1≤2a n+1−2,所以2(a n+1−a n)≥3,结合a n+1,a n∈N∗可得:a n+1−a n≥2.然后利用反证法证明:a n+1−a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N∗满足:a2k+1−a2k≥3或a2k+2−a2k+1≥3,进而有4(a k+1−a k)=(a2k+2+a2k+1)−(a2k+a2k−1)=(a2k+2−a2k)+(a2k+1−a2k−1)=[(a2k+2−a2k+1)+(a2k+1−a2k)]+[(a2k+1−a2k)+(a2k−a2k−1)]≥12.又因为a k+1−a k∈N∗,所以a k+1−a k≥3依此类推可得:a2−a1≥3,矛盾,所以有a n+1−a n≤2.综上有:a n+1−a n=2,结合a1=1可得a n=2n−1,经验证,该通项公式满足a2n−1+a2n=4a n,所以:a n=2n−1.【解析】(Ⅰ)①②利用已知条件及其定义解验证判断出结论.(Ⅱ)先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n−1+a2n=2a n,根据a n+1≥a n,可得0≤a2n−a n=a n−a2n−1≤0,进而有a n=a2n,结合a n+1≥a n即可证明结论.再证“必要性”:若“数列{a n}为常数列”,容易验证a2n−1+a2n=2a1= 2a n,即可证明.(Ⅲ)首先证明:a n+1−a n≥2.根据{a n}具有“性质Ψ(4)”,可得a2n−1+a2n=4a n.当n=1时,有a2=3a1=3.由a2n−1,a2n,a n∈N∗,且a2n>a2n−1,可得a2n≥2a n+1,a2n−1≤2a n−1,进而有2a n+1≤a2n≤a2n+1−1≤2a n+1−2,可得2(a n+1−a n)≥3,可得:a n+1−a n≥2.然后利用反证法证明:a n+1−a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N∗满足:a2k+1−a2k≥3或a2k+2−a2k+1≥3,进而有4(a k+1−a k)=(a2k+2+ a2k+1)−(a2k+a2k−1)=[(a2k+2−a2k+1)+(a2k+1−a2k)]+[(a2k+1−a2k)+(a2k−a2k−1)]≥12.又因为a k+1−a k∈N∗,可得a k+1−a k≥3,依此类推可得:a2−a1≥3,矛盾.综上有:a n+1−a n=2,结合a1=1可得a n=2n−1,本题考查了新定义、等差数列的通项公式、数列递推关系、反证法、转化方法、方程以不等式的性质,考查了推理能力与计算能力,属于难题.。

2020年北京各区高三一模数学分类---解析几何

2020年北京各区高三一模数学分类---解析几何
其中,正确结论的序号是________.
【答案】①②
【分析】将 代入 也成立得①正确;利用不等式可得 ,故②正确;联立 得四个交点,满足条件的最小正方形是以 为中点,边长为2的正方形,故③不正确.
【详解】对于①,将 代入 得 成立,故曲线 关于直线 对称,故①正确;
对于②,因为 ,所以 ,所以 ,
所以曲线 上任意一点到原点的距离都不超过 ,故②正确;
A. B. C. D.
【答案】C
【分析】设双曲线的实半轴长,半焦距分别为 ,根据双曲线的定义可得 ,根据余弦定理可得 ,再根据离心率公式即可求得结果.
【详解】设双曲线 实半轴长,半焦距分别为 ,因为 ,所以 ,
因为以 , 为焦点的双曲线经过点 ,所以 , ,
在三角形 中由余弦定理得 ,
所以 ,解得 ,所以 ,
所以 , ,则
因为 ,所以椭圆 的半焦距
设椭圆 的左焦点为 ,则 ,连接 ,由椭圆的定义可得
即 ,解得 ,故答案为:
【点睛】本题主要考查双曲线的基本性质以及椭圆的基本性质,其中利用定义求 是解题的关键,属于中档题.
9.(2020朝阳一模)已知抛物线 : 的焦点为 ,准线为 ,点 是抛物线 上一点, 于 .若 , ,则抛物线 的方程为()
A. B. C. D.【答源自】B【分析】根据抛物线的定义求得 ,然后在直角三角形中利用 可求得 ,从而可得答案.
【详解】根据抛物线的定义可得 ,又 ,所以 ,
所以 ,解得 ,所以抛物线 的方程为 .故选:B
【点睛】本题考查了抛物线的定义,利用定义得 是解题关键,属于基础题.
10.(2020朝阳一模)在 中, , .若以 , 为焦点的双曲线经过点 ,则该双曲线的离心率为()

2020北京各区一模数学试题分类汇编--大题压轴(解析版)

2020北京各区一模数学试题分类汇编--大题压轴(解析版)

a6 9+10=19 Qa§a 4a 3=16 矛盾;
若 a3 6, 则 a4 6 矛盾 .
所以 a1 =1, a2 3, a3=5, a 4=7 ,
所以猜想 a. 2. 1 .
证明如下:假设命题不成立,
设 r min i N |a 2i 1 4i 3 或 a2i 4i 1 ( r 3 ),
考虑数列 {0} ,当 0 二 a. 2r 4 4( r 2 )时具有性质
(注 : 对于 n 的两个 正整数分拆” a1, a2, , ak 与 b, b, , bm ,当且仅当 k m 且
ai bi, a2 b2, , ak bm 时,称这两个 正整数分拆”是相同的 .)
【解 析】 ( I ) 整数 4 的所有“正整数分拆”为:
1,1,1,1 , 1,1,2 , 1,3 , 2,2 , 4
且对 n
3, m 1 2n 2
综上 , m 的值为 2,3,4 .
2 都为整数,所以 n
(3 ) 对于 n
1, 令 Sn a1 a2 L a n,
Si 1
S
n
a
n1
Sn n Si 1 n
又对每一个 n ,
鱼都为正整数,所以乩
n
Sn n1
S1
m , 其中“ ”至多出现 m
故存在正整数 M
m,当 n
M 时,必有 - SL± n1
经验证 , 此数列具有性质 T .
所以, n 的最小值为 10.
( 3) 反证法:假设结论不成立,即对任意
当 n 为偶数时,设 a1,a2,...,a k 是每个数均为偶数的“正整数分拆”,
1 的拆分,故 fn gn ;
则它至少对应了 1,1,...,1 和 1,1,...,a 1 1,a 2 1,...,a k 1 的均为奇数的“正整数分拆”,

2020年北京高三一模汇编导数

2020年北京高三一模汇编导数

2020年北京高三一模汇编导数1.(海淀)已知函数()e x f x ax =+.(Ⅰ)当1a =-时,①求曲线()y f x =在点(0,(0))f 处的切线方程;②求函数()f x 的最小值;(Ⅱ)求证:当(2a ∈-,0)时,曲线()y f x =与1ln y x =-有且只有一个交点.2.(西城)设函数 其中(Ⅰ)若曲线 在点 处切线的倾斜角为 ,求 的值; (Ⅱ)已知导函数 在区间 上存在零点,证明:当 时, . 即函数()y f x =与1ln y x =-有且只有一个交点.3.(朝阳)已知函数()11e x x xf x -+=-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)判断函数()f x 的零点的个数,并说明理由;(Ⅲ)设0x 是()f x 的一个零点,证明曲线e x y =在点00(,e )x x 处的切线也是曲线ln y x =的切线.4.(丰台)已知函数()()ln 1f x x a x x =+-+.(Ⅰ)若曲线()y f x =在点(e (e))f ,处的切线斜率为1,求实数a 的值;(Ⅱ)当0a =时,求证:()0f x ≥;(Ⅲ)若函数()f x 在区间(1)+∞,上存在极值点,求实数a 的取值范围.5.(石景山)已知函数2()(0),()ln (0)f x x x g x a x a =>=>.(Ⅰ)若()()f x g x >恒成立,求实数a 的取值范围;(Ⅱ)当1a =时,过()f x 上一点11(,)作()g x 的切线,判断:可以作出多少条切线,并说明理由.6.(房山)已知函数32()22f x x ax =-+.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)讨论函数()f x 的单调性;(Ⅲ)若0a >,设函数()|()|g x f x =,()g x 在[1,1]-上的最大值不小于3,求a 的取值范围.7.(门头沟)已知函数()sin ln 1f x x x =+-。

2020年北京各区高三一模数学试题分类汇编(一)

2020年北京各区高三一模数学试题分类汇编(一)

2020年北京各区高三一模数学试题分类汇编(一)复数(2020海淀一模)(1)在复平面内,复数i(2i)-对应的点位于(A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(2020西城一模)2.若复数z =(3−i)(1+i),则|z|= (A)2√2(B)2√5(C)√10(D)20(2020东城一模)(3) 已知21i ()1ia +a =-∈R ,则a =(A) 1 (B) 0 (C) 1- (D)2-(2020朝阳一模)(11)若复数21iz =+,则||z =________. (2020石景山一模) 2. 在复平面内,复数5+6i , 3-2i 对应的点分别为A,B.若C 为线段AB 的中点,则点C对应的复数是 A. 8+4iB. 2+8iC. 4+2iD. 1+4i(2020丰台一模)3. 若复数z 满足i 1iz=+,则z 对应的点位于(A )第一象限(B )第二象限(C )第三象限(D )第四象限(2020西城5月诊断)02.若复数z 满足i 1i z ⋅=-+,则在复平面内z 对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限集合(2020海淀一模)(2)已知集合{ |0 3 }A x x =<<,A B ={ 1 },则集合B 可以是(2020西城一模)1.设集合A ={x|x <3},B ={x|x <0,或x >2},则A ∩B = (A)(−∞,0)(B)(2,3) (C)(−∞,0)∪(2,3)(D)(−∞,3)(2020东城一模)(1) 已知集合{}1>0A x x =-,{}1012B =-,,,,那么A B =(A){}10-, (B) {}01, (C) {}1012-,,, (D) {}2(2020朝阳一模)(1)已知集合{}1,3,5A =,{}|(1)(4)0B x x x =∈--<Z ,则AB =(A ){ 1 2 }, (B ){ 1 3 }, (C ){ 0 1 2 },, (D ){ 1 2 3 },,(A ){}3(B ){}1,3 (C ){}1,2,3,5 (D ){}1,2,3,4,5(2020石景山一模)1. 设集合}4321{,,,=P ,},3|||{R x x x Q ∈≤=,则Q P ⋂等于 A. {}1 B. {}1,23,C. {}34,D. {}3,2,1,0,1,2,3---(2020西城5月诊断)01.设集合{}3A x x =<,{}2,B x x k k ==∈Z ,则AB =(A ){}0,2 (B ){}2,2-(C ){}2,0,2-(D ){}2,1,0,1,2--(2020丰台一模)1.若集合{|12}A x x =∈-<<Z ,2{20}B x x x =-=,则AB =(A ){0} (B ){01},(C ){012},,(D ){1012}-,,,(2020石景山一模)15. 石景山区为了支援边远山区的教育事业,组织了一支由13名一线中小学教师组成的支教团队,记者采访其中某队员时询问这个团队的人员构成情况,此队员回答:①有中学高级教师;②中学教师不多于小学教师;③小学高级教师少于中学中级教师;④小学中级教师少于小学高级教师;⑤支教队伍的职称只有小学中级、小学高级、中学中级、中学高级;⑥无论是否把我计算在内,以上条件都成立.由此队员的叙述可以推测出他的学段及职称分别是_______、_______.计数原理(2020朝阳一模)(6)现有甲、乙、丙、丁、戊5种在线教学软件,若某学校要从中随机选取3种作为教师“停课不停学”的教学工具,则其中甲、乙、丙至多有2种被选取的概率为 (A )23 (B ) 25 (C ) 35 (D ) 910(2020石景山一模)5. 将4位志愿者分配到博物馆的3个不同场馆服务,每个场馆至少1人,不同的分配 方案有( )种 A. 36B. 64C. 72D. 81二项式定理(2020海淀一模)(5)在61(2)x x-的展开式中,常数项为(A )120- (B )120(C )160- (D )160(2020西城一模)11.在(x +1x )6的展开式中,常数项为.(用数字作答)(2020东城一模)(12) 在62()x x+的展开式中常数项为 . (用数字作答)三角函数与解三角形(2020海淀一模)(6)如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π2,则点M '到直线BA '的距离为 (A )1 (B )32 (C )22(D )12(2020西城一模)9.已知函数f(x)=sinx1+2sinx 的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有 ①绕着x 轴上一点旋转180°; ②沿x 轴正方向平移; ③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称. (A)①③(B)③④(C)②③(D)②④(2020东城一模)(7)在平面直角坐标系中,动点M 在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周.若点M 的初始位置坐标为(,)1322,则运动到3分钟时,动点M 所处位置的坐标是 (A)(,)3122 (B) (,)-1322(C) (,)-3122(D) (,)--3122(2020朝阳一模)(8)已知函数()=3sin()(>0)f x ωxφω的图象上相邻两个最高点的距离为π,则“6ϕπ=”是“()f x 的图象关于直线3x π=对称”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(2020石景山一模)(2020丰台一模)9. 将函数()sin (0)f x x ωω=>的图象向左平移π2个单位长度后得到函数()g x 的图象,且(0)1g =,下列说法错误..的是 (A )()g x 为偶函数(B )π()02g -=(C )当5ω=时,()g x 在π[0]2,上有3个零点(D )若()g x 在π[]50,上单调递减,则ω的最大值为9(2020西城5月诊断)05.在ABC ∆中,若::4:5:6a b c =,则其最大内角的余弦值为(A )18(B )14(C )310 (D )35(2020西城5月诊断)13.设函数2()sin 22cos f x x x =+,则函数()f x 的最小正周期为____;若对于任意x ∈R ,都有()f x m ≤成立,则实数m 的最小值为____.(2020西城一模)14.函数f(x)=sin(2x +π4)的最小正周期为 ;若函数f(x)在区间(0,α)上单调递增,则α的最大值为.(2020海淀一模)(14)在△ABC中,AB =4B π∠=,点D 在边BC 上,23ADC π∠=,2CD =,则AD = ;△ACD 的面积为 . (2020东城一模)(14)ABC 是等边三角形,点D 在边AC 的延长线上,且3AD CD =,BD =则CD = ,sin ABD ∠= .(2020海淀一模)(17)(本小题共14分)已知函数212()2cos sin f x x x ωω=+. (Ⅰ)求(0)f 的值;(Ⅱ)从①11ω=,22ω=; ②11ω=,21ω=这两个条件中任选一个,作为题目的已知条件,求函数()f x 在[2π-,7.函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π,则()f x 满足A. 在0,3π⎛⎫⎪⎝⎭上单调递增B. 图象关于直线6x π=对称C. 32f π⎛⎫= ⎪⎝⎭D. 当512x π=时有最小值1-]6π上的最小值,并直接写出函数()f x 的一个周期. 注:如果选择两个条件分别解答,按第一个解答计分。

2020年北京市东城区高考数学一模试卷 (解析版)

2020年北京市东城区高考数学一模试卷 (解析版)

2020年高考数学一模试卷一、选择题1.已知集合A={x|x﹣1>0},B={﹣1,0,1,2},那么A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1,2}D.{2}2.函数的定义域为()A.(﹣1,2]B.[2,+∞)C.(﹣∞,﹣1)∪[1,+∞)D.(﹣∞,﹣1)∪[2,+∞)3.已知,则a=()A.1B.0C.﹣1D.﹣24.若双曲线的一条渐近线与直线y=2x+1平行,则b的值为()A.1B.C.D.25.如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为()A.4B.6C.8D.126.已知x<﹣1,那么在下列不等式中,不成立的是()A.x2﹣1>0B.C.sin x﹣x>0D.cos x+x>07.在平面直角坐标系中,动点M在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周.若点M的初始位置坐标为,则运动到3分钟时,动点M所处位置的坐标是()A.B.C.D.8.已知三角形ABC,那么“”是“三角形ABC为锐角三角形”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设O为坐标原点,点A(1,0),动点P在抛物线y2=2x上,且位于第一象限,M是线段PA的中点,则直线OM的斜率的范围为()A.(0,1]B.C.D.10.假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者为捕食者.现在我们来研究捕食者与被捕食者之间理想状态下的数学模型.假设捕食者的数量以x(t)表示,被捕食者的数量以y(t)表示.如图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法正确的是:()A.若在t1,t2时刻满足:y(t1)=y(t2),则x(t1)=x(t2)B.如果y(t)数量是先上升后下降的,那么x(t)的数量一定也是先上升后下降C.被捕食者数量与捕食者数量不会同时到达最大值或最小值D.被捕食者数量与捕食者数量总和达到最大值时,被捕食者的数量也会达到最大值二、填空题共5小题,每小题5分,共25分.11.已知向量(m,1),(1,﹣2),(2,3),若与共线,则实数m =.12.在(x)6的展开式中常数项为.(用数字作答)13.圆心在x轴上,且与直线l1:y=x和l2:y=x﹣2都相切的圆的方程为.14.△ABC是等边三角形,点D在边AC的延长线上,且AD=3CD,,则CD =,sin∠ABD=.15.设函数给出下列四个结论:①对∀a>0,∃t∈R,使得f(x)=t无解;②对∀t>0,∃a∈R,使得f(x)=t有两解;③当a<0时,∀t>0,使得f(x)=t有解;④当a>2时,∃t∈R,使得f(x)=t有三解.其中,所有正确结论的序号是.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD为平行四边形,AB⊥AC,AB=AC=1,PD=1.(Ⅰ)求证:AD∥平面PBC;(Ⅱ)求二面角D﹣PC﹣B的余弦值的大小.17.已知函数,且满足_______.(Ⅰ)求函数f(x)的解析式及最小正周期;(Ⅱ)若关于x的方程f(x)=1在区间[0,m]上有两个不同解,求实数m的取值范围.从①f(x)的最大值为1,②f(x)的图象与直线y=﹣3的两个相邻交点的距离等于π,③f(x)的图象过点这三个条件中选择一个,补充在上面问题中并作答.18.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,预计2020年北斗全球系统建设将全面完成.下图是在室外开放的环境下,北斗二代和北斗三代定位模块,分别定位的50个点位的横、纵坐标误差的值,其中“•”表示北斗二代定位模块的误差的值,“+”表示北斗三代定位模块的误差的值.(单位:米)(Ⅰ)从北斗二代定位的50个点位中随机抽取一个,求此点横坐标误差的值大于10米的概率;(Ⅱ)从图中A,B,C,D四个点位中随机选出两个,记X为其中纵坐标误差的值小于﹣4的点位的个数,求X的分布列和数学期望;(Ⅲ)试比较北斗二代和北斗三代定位模块纵坐标误差的方差的大小.(结论不要求证明)19.已知椭圆,它的上,下顶点分别为A,B,左,右焦点分别为F1,F2,若四边形AF1BF2为正方形,且面积为2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设存在斜率不为零且平行的两条直线l1,l2,它们与椭圆E分别交于点C,D,M,N,且四边形CDMN是菱形,求出该菱形周长的最大值.20.已知函数f(x)=x(lnx﹣ax)(a∈R).(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)有两个极值点,求实数a的取值范围;(Ⅲ)若a>1,求f(x)在区间(0,2a]上的最小值.21.数列A:x1,x2,x3,…,x n,…,对于给定的t(t>1,t∈N+),记满足不等式:x n﹣x t≥t*(n﹣t)(∀n∈N+,n≠t)的t*构成的集合为T(t).(Ⅰ)若数列A:x n=n2,写出集合T(2);(Ⅱ)如果T(t)(t∈N+,t>1)均为相同的单元素集合,求证:数列x1,x2,…,x n,…为等差数列;(Ⅲ)如果T(t)(t∈N+,t>1)为单元素集合,那么数列x1,x2,…,x n,…还是等差数列吗?如果是等差数列,请给出证明;如果不是等差数列,请给出反例.参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A={x|x﹣1>0},B={﹣1,0,1,2},那么A∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1,2}D.{2}【分析】可以求出集合A,然后进行交集的运算即可.解:∵A={x|x>1},B={﹣1,0,1,2},∴A∩B={2}.故选:D.【点评】本题考查了描述法、列举法的定义,交集的运算,考查了计算能力,属于基础题.2.函数的定义域为()A.(﹣1,2]B.[2,+∞)C.(﹣∞,﹣1)∪[1,+∞)D.(﹣∞,﹣1)∪[2,+∞)【分析】根据二次根式被开方数大于或等于0,列不等式求出解集即可.解:函数,令0,得x﹣2≥0,解得x≥2,所以f(x)的定义域为[2,+∞).故选:B.【点评】本题考查了根据二次根式被开方数大于或等于0求函数定义域的问题,是基础题.3.已知,则a=()A.1B.0C.﹣1D.﹣2【分析】把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数相等的条件求解a值.解:∵,∴2=(1+ai)(1﹣i)=1+a+(a﹣1)i,∴,即a=1.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.4.若双曲线的一条渐近线与直线y=2x+1平行,则b的值为()A.1B.C.D.2【分析】利用双曲线的渐近线方程,得到关系式,求解即可.解:双曲线的一条渐近线y=bx与直线y=2x+1平行,可得b=2.故选:D.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.5.如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为()A.4B.6C.8D.12【分析】几何体是一个三棱锥,根据三视图的数据,画出直观图,求解体积即可.解:由三视图知,几何体是一个三棱锥,D1﹣BCD,根据三棱锥的三视图的面积,设出三棱锥两两垂直的三条侧棱分别是DC=4,BC=3,DD1=2∴三棱锥的体积是4×3×2=4故选:A.【点评】本题考查由三视图求几何体的体积,考查由三视图还原平面图形,是基础题.6.已知x<﹣1,那么在下列不等式中,不成立的是()A.x2﹣1>0B.C.sin x﹣x>0D.cos x+x>0【分析】根据x<﹣1,利用函数的单调性、不等式的性质、三角函数的单调性即可判断出结论.解:∵x<﹣1,∴x2﹣1>0,x2,又∵sin x,cos x∈[﹣1,1],∴sin x﹣x>0,cos x+x<0.可得:ABC成立,D不成立.故选:D.【点评】本题考查了函数的单调性、不等式的性质、三角函数的单调性,考查了推理能力与计算能力,属于基础题.7.在平面直角坐标系中,动点M在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周.若点M的初始位置坐标为,则运动到3分钟时,动点M所处位置的坐标是()A.B.C.D.【分析】根据题意画出图形,结合图形求出3分钟转过的角度,由此计算点M所处位置的坐标.解:每12分钟转动一周,则运动到3分钟时,转过的角为2π;点M的初始位置坐标为,运动到3分钟时动点M所处位置的坐标是M′(,).故选:C.【点评】本题考查了三角函数的定义与应用问题,是基础题.8.已知三角形ABC,那么“”是“三角形ABC为锐角三角形”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】三角形ABC,那么“”⇒•0,可得A为锐角.进而判断出结论.解:三角形ABC,那么“”⇒•0,可得A为锐角.此时三角形ABC不一定为锐角三角形.三角形ABC为锐角三角形⇒A为锐角.∴三角形ABC,那么“”是“三角形ABC为锐角三角形”的必要不充分条件.故选:B.【点评】本题考查了向量数量积运算性质、简易逻辑的判定方法、三角形的分类,考查了推理能力与计算能力,属于基础题.9.设O为坐标原点,点A(1,0),动点P在抛物线y2=2x上,且位于第一象限,M是线段PA的中点,则直线OM的斜率的范围为()A.(0,1]B.C.D.【分析】设P的坐标,看可得PA的中点M的坐标,进而求出OM的斜率,由均值不等式可得其取值范围.解:设P(,y),y>0,所以PA的中点M(,),所以k OM,因为y,所以0,所以k OM∈(0,],故选:C.【点评】本题考查抛物线的性质,及均值不等式的性质,属于中档题.10.假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者为捕食者.现在我们来研究捕食者与被捕食者之间理想状态下的数学模型.假设捕食者的数量以x(t)表示,被捕食者的数量以y(t)表示.如图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法正确的是:()A.若在t1,t2时刻满足:y(t1)=y(t2),则x(t1)=x(t2)B.如果y(t)数量是先上升后下降的,那么x(t)的数量一定也是先上升后下降C.被捕食者数量与捕食者数量不会同时到达最大值或最小值D.被捕食者数量与捕食者数量总和达到最大值时,被捕食者的数量也会达到最大值【分析】根据图象数形结合,逐一进行分析即可解:由图可知,曲线中纵坐标相等时横坐标未必相等,故A不正确;在曲线上半段中观察到y(t)是先上升后下降,而x(t)是不断变小的,故B不正确;捕食者数量最大时是在图象最右端,最小值是在图象最左端,此时都不是被捕食者的数量的最值处,同样当被捕食者的数量最大即图象最上端和最小即图象最下端时,也不是捕食者数量取最值的时候,所以被捕食者数量和捕食者数量不会同时达到最大和最小值,故C正确;当捕食者数量最大时在图象最右端,x(t)∈(25,30),y(t)∈(0,50),此时二者总和x(t)+y(t)∈(25,80),由图象可知存在点x(t)=10,y(t)=100,x(t)+y(t)=110,所以并不是被捕食者数量与捕食者数量总和达到最大值时,被捕食者数量也会达到最大值,故D错误,故选:C.【点评】本题考查的知识点是函数的图象和性质,本题比较抽象,理解起来有一定的难度.二、填空题共5小题,每小题5分,共25分.11.已知向量(m,1),(1,﹣2),(2,3),若与共线,则实数m =3.【分析】先求出(m﹣1,3),再由与共线,列方程能求出实数m.解:∵向量(m,1),(1,﹣2),(2,3),∴(m﹣1,3),∵与共线,∴,解得实数m=3.故答案为:3.【点评】本题考查实数值的求法,考查平面向量坐标运算法则和向量共线的性质等基础知识,考查运算求解能力,是基础题.12.在(x)6的展开式中常数项为160.(用数字作答)【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.解:在的展开式中的通项公式为T r+1•2r•x6﹣2r,令6﹣2r=0,求得r=3,可得常数项为•23=160,故答案为:160.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.13.圆心在x轴上,且与直线l1:y=x和l2:y=x﹣2都相切的圆的方程为(x﹣1)2+y2.【分析】设所求圆的方程为(x﹣a)2+y2=r2,利用圆与直线l1:y=x和l2:y=x﹣2都相切,即可得出结论.解:设所求圆的方程为(x﹣a)2+y2=r2,因为圆与直线l1:y=x和l2:y=x﹣2都相切,则r,解得a=1,r,所以圆的方程为(x﹣1)2+y2.故答案为:(x﹣1)2+y2.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,比较基础.14.△ABC是等边三角形,点D在边AC的延长线上,且AD=3CD,,则CD =2,sin∠ABD=.【分析】根据题意画出图形,利用余弦定理求出CD的值,再利用正弦定理求出sin∠ABD 的值.解:如图所示,等边△ABC中,AD=3CD,所以AC=2CD;又,所以BD2=BC2+CD2﹣2BC•CD•cos∠BCD,即(2CD)2+CD2﹣2•2CD•CD•cos120°,解得CD=2,所以AD=6;由,即,解得sin∠ABD.故答案为:2,.【点评】本题考查了正弦、余弦定理的应用问题,也考查了运算求解能力,是基础题.15.设函数给出下列四个结论:①对∀a>0,∃t∈R,使得f(x)=t无解;②对∀t>0,∃a∈R,使得f(x)=t有两解;③当a<0时,∀t>0,使得f(x)=t有解;④当a>2时,∃t∈R,使得f(x)=t有三解.其中,所有正确结论的序号是③④.【分析】可取a=3,由一次函数的单调性和基本不等式,可得f(x)的值域,即可判断①;取a=0,判断f(x)的单调性,即可判断②;考虑a<0时,求得f(x)的值域,即可判断③;当a>2时,结合一次函数的单调性和基本不等式,以及f(x)的图象,即可判断④.解:对于①,可取a=3,则f(x),当x<0时,f(x)=3(x+1)∈(﹣∞,3);当x≥0时,f(x)=2x﹣3+23﹣x≥22,当且仅当x=3时,取得等号,故a=3时,f(x)的值域为R,∀t∈R,f(x)=t都有解,故①错误;对于②可取a=0时,f(x),可得f(x)在R上单调递增,对∀t>0,f(x)=t至多一解,故②错误;对于③,当a<0时,x<0时,f(x)=a(x+1)递减,可得f(x)>a;又x≥0时,x﹣a>0,即有2x﹣a>1,可得2x﹣a+2a﹣x>2,则f(x)的值域为(a,+∞),∀t>0,f(x)=t都有解,故③正确;对于④,当a>2时,x<0时,f(x)=a(x+1)递增,可得f(x)<a;当x≥0时,f (x)=2x﹣a+2a﹣x≥2,当且仅当x=a时,取得等号,由图象可得,当2<t<3时,f(x)=t有三解,故④正确.故答案为:③④.【点评】本题考查分段函数的运用,主要考查方程的解的个数,注意运用反例法判断命题不正确,以及数形结合思想,考查推理能力,属于中档题.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD为平行四边形,AB⊥AC,AB=AC=1,PD=1.(Ⅰ)求证:AD∥平面PBC;(Ⅱ)求二面角D﹣PC﹣B的余弦值的大小.【分析】(Ⅰ)由底面ABCD为平行四边形,得AD∥BC,再由直线与平面平行的判定可得AD∥平面PBC;(Ⅱ)过D作平行于AC的直线Dx,以D为坐标原点,建立如图所示空间直角坐标系D ﹣xyz.分别求出平面PCB与平面PCD的一个法向量,由两法向量所成角的余弦值可得二面角D﹣PC﹣B的余弦值.【解答】(Ⅰ)证明:∵底面ABCD为平行四边形,∴AD∥BC,∵BC⊂平面PBC,AD⊄平面PBC,∴AD∥平面PBC;(Ⅱ)解:过D作平行于AC的直线Dx,∵AB⊥AC,∴Dx⊥DC,又PD⊥面ABCD,∴以D为坐标原点,建立如图所示空间直角坐标系D﹣xyz.则C(0,1,0),P(0,0,1),B(1,2,0),(1,1,0),(0,﹣1,1),设平面PCB的一个法向量为,由,取y=1,得;取平面PCD的一个法向量.则cos.由图可知,二面角D﹣PC﹣B为钝角,∴二面角D﹣PC﹣B的余弦值为.【点评】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.17.已知函数,且满足_______.(Ⅰ)求函数f(x)的解析式及最小正周期;(Ⅱ)若关于x的方程f(x)=1在区间[0,m]上有两个不同解,求实数m的取值范围.从①f(x)的最大值为1,②f(x)的图象与直线y=﹣3的两个相邻交点的距离等于π,③f(x)的图象过点这三个条件中选择一个,补充在上面问题中并作答.【分析】(Ⅰ)利用二倍角公式和诱导公式化简函数f(x),若满足①,利用最大值求出a的值,写出f(x)的解析式,求出最小正周期;(Ⅱ)令f(x)=1求得方程的解,根据方程f(x)=1在区间[0,m]上有两个不同解找出这两个解,从而写出实数m的取值范围.若满足②,利用三角函数的图象与性质列出方程求得a的值,以下解法均相同.若满足③,利用f(x)的图象过点,代入求出a的值,以下解法均相同.解:(Ⅰ)函数f(x)=a sin(2x)﹣2cos2(x)=a sin(2x)﹣cos(2x)﹣1=a sin(2x)﹣sin(﹣2x)﹣1=(a+1)sin(2x)﹣1,若满足①f(x)的最大值为1,则a+1=2,解得a=1,所以f(x)=2sin(2x)﹣1;f(x)的最小正周期为Tπ;(Ⅱ)令f(x)=1,得sin(2x)=1,解得2x2kπ,k∈Z;即x kπ,k∈Z;若关于x的方程f(x)=1在区间[0,m]上有两个不同解,则x或;所以实数m的取值范围是[,).若满足②f(x)的图象与直线y=﹣3的两个相邻交点的距离等于π,且f(x)的最小正周期为Tπ,所以﹣(a+1)﹣1=﹣3,解得a=1;以下解法均相同.若满足③f(x)的图象过点,则f()=(a+1)sin1=0,解得a=1;以下解法均相同.【点评】本题考查了利用三角函数的基本性质求解析式问题,也考查了三角函数图象与性质的应用问题,是中档题.18.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,预计2020年北斗全球系统建设将全面完成.下图是在室外开放的环境下,北斗二代和北斗三代定位模块,分别定位的50个点位的横、纵坐标误差的值,其中“•”表示北斗二代定位模块的误差的值,“+”表示北斗三代定位模块的误差的值.(单位:米)(Ⅰ)从北斗二代定位的50个点位中随机抽取一个,求此点横坐标误差的值大于10米的概率;(Ⅱ)从图中A,B,C,D四个点位中随机选出两个,记X为其中纵坐标误差的值小于﹣4的点位的个数,求X的分布列和数学期望;(Ⅲ)试比较北斗二代和北斗三代定位模块纵坐标误差的方差的大小.(结论不要求证明)【分析】(Ⅰ)通过图象观察,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有3个点,由古典概率的计算公式可得所求值;(Ⅱ)通过图象可得,A,B,C,D四个点位中纵坐标误差值小于﹣4的有两个点:C,D,则X的所有可能取值为0,1,2,分别求得它们的概率,作出分布列,计算期望即可;(Ⅲ)通过观察它们的极差,即可判断它们的方差的大小.解:(Ⅰ)由图可得,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有3个点,所以从中随机选出一点,此点横坐标误差的绝对值大于10米的概率为0.06;(Ⅱ)由图可得,A,B,C,D四个点位中纵坐标误差值小于﹣4的有两个点:C,D,所以X的所有可能取值为0,1,2,P(X=0),P(X=1),P(X=2),所以X的分布列为X12P所以X的期望为E(X)=0121;(Ⅲ)北斗二代定位模块纵坐标误差的方差大于北斗三代.【点评】本题考查古典概率的求法,以及随机变量的分布列和期望的求法,方差的大小的判断,考查数形结合思想和运算能力、推理能力,属于中档题.19.已知椭圆,它的上,下顶点分别为A,B,左,右焦点分别为F1,F2,若四边形AF1BF2为正方形,且面积为2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设存在斜率不为零且平行的两条直线l1,l2,它们与椭圆E分别交于点C,D,M,N,且四边形CDMN是菱形,求出该菱形周长的最大值.【分析】(Ⅰ)由题意可得b=c,bc=2,求得b,再由a,b,c的关系可得a,进而得到所求椭圆方程;(Ⅱ)设l1的方程为y=kx+m1,C(x1,y1),D(x2,y2),设l2的方程为y=kx+m2,M(x3,y3),N(x4,y4),分别联立直线方程和椭圆方程,运用韦达定理和判别式大于0,以及弦长公式,求得|CD|,|MN|,运用菱形和椭圆的对称性可得l1,l2关于原点对称,结合菱形的对角线垂直和向量数量积为0,可得3m12﹣2k2﹣2=0,设菱形CDMN 的周长为l,运用基本不等式,计算可得所求最大值.解:(Ⅰ)因为四边形AF1BF2为正方形,且面积为2,所以b=c,且•2c•2b=2,解得b=c=1,a2=2,所以椭圆的标准方程:y2=1;(Ⅱ)设l1的方程为y=kx+m1,C(x1,y1),D(x2,y2),设l2的方程为y=kx+m2,M(x3,y3),N(x4,y4),联立可得(1+2k2)x2+4km1x+2m12﹣2=0,由△>0可得16k2m12﹣4(1+2k2)(2m12﹣2)>0,化简可得2k2+1﹣m12>0,①x1+x2,x1x2,|CD|•|x1﹣x2|•••,同理可得|MN|•,因为四边形CDMN为菱形,所以|CD|=|MN|,所以m12=m22,又因为m1≠m2,所以m1=﹣m2,所以l1,l2关于原点对称,又椭圆关于原点对称,所以C,M关于原点对称,D,N也关于原点对称,所以且,(2x1,2y1),(2x2,2y2),因为四边形CDMN为菱形,可得•0,即x1x2+y1y2=0,即x1x2+(kx1+m1)(kx2+m1)=0,即(1+k2)x1x2+km1(x1+x2)+m12=0,可得(1+k2)•km1•m12=0,化简可得3m12﹣2k2﹣2=0,设菱形CDMN的周长为l,则l=4|CD|•4,当且仅当2+2k2=1+4k2,即k2时等号成立,此时m12=1,满足①,所以菱形CDMN的周长的最大值为4.【点评】本题考查椭圆的方程和性质,考查直线和椭圆的位置关系,注意联立直线方程和椭圆方程,运用韦达定理和判别式大于0,主要考查化简运算能力和推理能力,属于难题.20.已知函数f(x)=x(lnx﹣ax)(a∈一、选择题).(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)有两个极值点,求实数a的取值范围;(Ⅲ)若a>1,求f(x)在区间(0,2a]上的最小值.【分析】(Ⅰ)先利用导数的几何意义求出切线的斜率,然后求出切线方程;(Ⅱ)先把f(x)有两个极值点转化为方程2a有两个不等的正根,再利用数形结合求出a的取值范围;(Ⅲ)先利用导函数的符号判断f(x)在区间(0,2a]上的单调性,进而解决其最小值.解:∵f(x)=x(lnx﹣ax),∴f′(x)=1+lnx﹣2ax.(Ⅰ)当a=1时,f′(1)=﹣1,f(1)=﹣1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(﹣1)=﹣(x﹣1),即y=﹣x;(Ⅱ)∵若f(x)有两个极值点,∴f′(x)=1+lnx﹣2ax=0有两个不等的正根,即2a两个不等的正根.令g(x),x>0,g′(x),令g′(x)=0⇒x=1,当x∈(0,1)时g′(x)>0,此时g(x)单调递增;当x∈(1,+∞)时g′(x)<0,此时g(x)单调递减;且g(1)=1,故0<2a<1,解得:a∈(0,).(Ⅲ)∵f(x)=x(lnx﹣ax),∴f′(x)=1+lnx﹣2ax,f″(x)2a,∵a>1,x∈(0,2a],令f″(x)=0⇒x,当x∈(0,)时,f″(x)>0,此时f′(x)单调递增;当x∈(,+∞)时,f″(x)<0,此时f′(x)单调递减,故f′(x)max=f′()=﹣ln(2a)<0,∴f(x)在(0,2a]上单调递减,故f(x)在(0,2a]上的最小值为f(2a)=2a[ln(2a)﹣2a2].【点评】本题主要考查曲线的切线方程的求法及导数的综合应用,属于一道有难度的题.21.数列A:x1,x2,x3,…,x n,…,对于给定的t(t>1,t∈N+),记满足不等式:x n﹣x t≥t*(n﹣t)(∀n∈N+,n≠t)的t*构成的集合为T(t).(Ⅰ)若数列A:x n=n2,写出集合T(2);(Ⅱ)如果T(t)(t∈N+,t>1)均为相同的单元素集合,求证:数列x1,x2,…,x n,…为等差数列;(Ⅲ)如果T(t)(t∈N+,t>1)为单元素集合,那么数列x1,x2,…,x n,…还是等差数列吗?如果是等差数列,请给出证明;如果不是等差数列,请给出反例.【分析】(Ⅰ)推导出n2﹣4≥t*(n﹣2)(∀n∈N+,n≠t),当n>2时,上式可化为n+2≥t*,5≥t*,当n=1时,上式可化为3≤t*,由此能求出T(2)为[3,5].(Ⅱ)T(t)(∀t∈N+,t>l)中均只有同一个元素,不妨设为a.当n=t+1时,有x t+1﹣x t≥a,(∀t>1),当n=t﹣1时,有x t﹣x t﹣1≤a(∀t>1),由此能证明数列x1,x2,…,x n,…为等差数列.(Ⅲ)设T(i)={a},T(j)={b},1<i<j,a≠b,由T(i)={a},知x j﹣x i≥a(j ﹣i),由T(j)={b},知:x i﹣x j≥b(i﹣j),即x j﹣x i≤b(j﹣i),从而a(j﹣i)≤x j﹣x i≤b(j﹣i),a≤b.设T(i)={t i},则t2≤t3≤…≤t n≤…,1<i<j,则t i≤t j,推导出t2=t3=t4=t5=…,由此能证明数列x1,x2,…,x n,…还是等差数列.解:(Ⅰ)由于A:,T(2)为满足不等式(n﹣t)(∀n∈N+)的t*构成的集合,∴n2﹣4≥t*(n﹣2)(∀n∈N+,n≠t),当n>2时,上式可化为n+2≥t*,∴5≥t*,当n=1时,上式可化为3≤t*,∴T(2)为[3,5].(Ⅱ)证明:对于数列A:x1,x2,x3,…,x n,…,若T(t)(∀t∈N+,t>l)中均只有同一个元素,不妨设为a,下面证明数列A为等差数列,当n=t+1时,有x t+1﹣x t≥a,(∀t>1),①当n=t﹣1时,有x t﹣x t﹣1≤a(∀t>1),②∵①②两式对任意大于1的整数均成立,∴x t+1﹣x t=a(∀t>1)成立,∴数列x1,x2,…,x n,…为等差数列.(Ⅲ)对于数列A:x1,x2,…,x n,…,不妨设T(i)={a},T(j)={b},1<i<j,a≠b,由T(i)={a},知x j﹣x i≥a(j﹣i),由T(j)={b},知:x i﹣x j≥b(i﹣j),即x j﹣x i≤b(j﹣i),∴a(j﹣i)≤x j﹣x i≤b(j﹣i),∴a≤b.设T(i)={t i},则t2≤t3≤…≤t n≤…,这说明1<i<j,则t i≤t j,∵对于数列A:x1,x2,…,x n,…,T(t)(∀t∈N+,t>1)中均只有一个元素,首先考察t=2时的情况,不妨设x2>x1,∵x2﹣x1≤t2,又T(2)为单元素集,∴x2﹣x1=t2,再证t3=x3﹣x2,证明如下:由t3=x3﹣x2,证明如下:由t3的定义可知:t3≥x3﹣x2,,∴,由t2的定义可知x3﹣x2≥t2=x2﹣x1,∴t3≥x3﹣x2,∴x3﹣x2=t3,∵t3>t2,∴t3=x3﹣x2>t2,则存在正整数m(m≥4),使得(m﹣2)t2=x m﹣x2,③∵x2﹣x1=t2≤x3﹣x2≤t3≤x4﹣x3≤…≤x k﹣x k﹣1≤…∴x m﹣x2(m﹣2)t2,这与③矛盾,∴t3=t2,同理可证t2=t3=t4=t5=…,∴数列x1,x2,…,x n,…还是等差数列.【点评】本题考查集合的求法,考查等差数列的证明,考查等比数列的判断与证明,考查推理论主能力、运算求解能力,考查化归与转化思想,是难题.。

2020北京市各城区一模数学试题分类汇编及答案——导数

2020北京市各城区一模数学试题分类汇编及答案——导数

2020北京市各城区一模数学试题分类汇编及答案——导数YQ (19)(本小题14分)已知函数2221()1ax a f x x +-=+,其中0a >.(Ⅰ)当1a =时,求曲线()y f x =在原点处的切线方程;(Ⅱ)若函数()f x 在[0,)+∞上存在最大值和最小值,求a 的取值范围.(Ⅰ)解:222)1()1(2)(1+-='=x x x f a 时,当.∴切线的斜率2)0(='=f k ; 0)0(=f∴曲线)(x f y =在原点处的切线方程为:x y 2=. ……………5分 (Ⅱ)2222)1(2)12()1(2)(+-+-+='x xa ax x a x f22222222221()(1)(1)ax a x a ax x a x x -+-+--+==++()()……………7分(1)当时,0>a 0100)(21>=<-=⇒='a x a x x f ;则的变化情况如下表:随、x x f x f )()(')上单调递减,)上单调递增,在(在(+∞∴,11,0)(x f ……………9分法1:2)1()(aaf x f =∴的最大值为……………10分,1)0()(0)(2恒成立)时,,(存在最小值,则若-=≥∞+∈a f x f x x f1112222-≥+-+a x a ax 即:xa a x a ax 12112222≤-⇔-≥∴)(在),0(+∞∈x 恒成立,0212≤-∴a a .1001,02≤<∴≤-∴>a a a ,Θ ……………13分所以a 的取值范围为]1,0(. ……………14分法2:2)1()(a af x f =∴的最大值为; ……………10分当1x a>时,22ax >,222110ax a a +->+>, 0)(,→+∞→∴x f x 时;即]1,0[a x ∈时,22()[1,]f x a a ∈-;)1[∞+∈,a x 时,2()0]f x a ∈(, 01)0()(2≤-=a f x f 存在最小值,则若,10≤<∴a所以a 的取值范围为]1,0(. ……………14分 用趋近说:0)(,→+∞→∴x f x 时,论述不严谨,扣1(2)当时,0<a 0100)(21<=>-=⇒='ax a x x f ;. 则的变化情况如下表:随、x x f x f )()(')上单调递增,)上单调递减,在(在(+∞--∴,,0)(a a x f法1:1)()(-=-∴a f x f 的最小值为.2()[0()1,f x x f x a ∈+∞≤-若存在最大值,则,)时,恒成立2222111ax a a x +-≤-+即:xa a x a ax 12112222≤-⇔-≤∴)(在),0(+∞∈x 恒成立,101,0,02122-≤∴≥-∴<≤-∴a a a aa ,Θ.综上:a 的取值范围是]1,0(]1,Y -∞-(. 法2:1)()(-=-∴a f x f 的最小值为;当x a >-时,222ax a <-,222110ax a a +-<--<,0)(,→+∞→∴x f x ;(论述不严谨,扣1分)即[0,]x a ∈-时,]1,1[)(2--∈a x f ;[)x a ∈-+∞,时,)0,1[)(-∈x f01)0()(2≥-=a f x f 存在最大值,则若, 1.a ≤-综上:a 的取值范围是]1,0(]1,Y -∞-(.XC 19.(本小题满分14分)设函数2()ln (2)f x a x x a x =+-+,其中a ∈R(Ⅰ)若曲线()y f x =在点(2,(2)f )处切线的倾斜角为4π,求a 的值; (Ⅱ)已知导函数()f x 在区间(1,e )上存在零点,证明:当x ∈(1,e )时, 2()f x e >-SJS 20. (本小题14分)已知函数2()(0),()ln (0)f x x x g x a x a =>=>. (Ⅰ)若()()f x g x >恒成立,求实数a 的取值范围;(Ⅱ)当1a =时,过()f x 上一点11(,)作()g x 的切线,判断:可以作出多少条切线,并说明理由.解:(Ⅰ)令2(=()()ln (0)h x f x g x x a x x -=->)…………1分 所以222()=2a x a h x x x x-'-=令222()=0x a h x x-'=,解得x = …………3分当x 变化时,(),()h x h x '的变化情况如下表:…………5分所以在(0,)+∞的最小值为ln 2222a a a a h a =-=- ……6分 令 0h > 解得02a e <<. 所以当02a e <<时,()0h x >恒成立,即()()f x g x >恒成立. ………7分 (Ⅱ)可作出2条切线. …………8分 理由如下:当1a =时,()ln g x x =.设过点11(,)的直线l 与()ln g x x =相切于点00(,)P x y , …………9分则0001()1y g x x -'=- 即000ln 111x x x -=-整理得000ln 210x x x -+= …………10分 令()ln 21m x x x x =-+,则()m x 在(0,)+∞上的零点个数与切点P 的个数一一对应.()ln 1m x x '=-,令()ln 10m x x '=-=解得x e = . …………11分当x 变化时,(),()m x m x '的变化情况如下表:所以 ()m x 在(0,)e 上单调递减,在(,)e +∞上单调递增.且2222211124()ln 110m e e e e e =⨯-+=-+> ()ln 2110m e e e e e =⨯-+=-+<2222()ln 2110m e e e e =⨯-+=> …………13分所以 ()m x 在21(,)e e和2(,)e e 上各有一个零点,即ln 210x x x -+=有两个不同的解. 所以 过点11(,)可作出ln y x =的2条切线. …………14分PG 19.(本小题15分)已知函数2()(),xx ax a f x e +-=其中a ∈R . (I)当a=0时,求f(x)在(1,f(1))的切线方程; (II)求证:f(x)的极大值恒大于0.MY 19.(本小题满分14分)已知函数()е(1)xf x ax =+,a ∈R .(Ⅰ)求曲线()y f x =在点(0,(0))M f 处的切线方程; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)判断函数()f x 的零点个数. 19.(本小题满分14分) (Ⅰ)解:因为()()e1x f x ax =+,x ∈R , 所以()'()e1xf x ax a x =++∈R ,.'(0)1k f a ==+,又因为(0)1f =,所以切线方程为=(+1)1y a x +.(Ⅱ)解:因为()'()e 1xf x ax a x a =++∈∈R R ,,,(1)当0a =时因为'()e 0,xf x x =>∈R ,所以()f x 的单调增区间是(),-∞+∞,无单调减区间. (2)当0a ≠时令'()0f x =,则11x a=--. ① 当时,()f x 与'()f x 在上的变化情况如下:所以()f x 的单调减区间是()a -∞,-1-,单调增区间是(1,)a--+∞. ②当0a <时,()f x 与'()f x 在R 上的变化情况如下:所以()f x 的单调增区间是()a-∞,-1-,单调减区间是(1,)a--+∞. 综上所述,当0a =时,()f x 的单调增区间是(),-∞+∞,无单调减区间;当0a >时,()f x的单调减区间是1()a -∞,-1-,单调增区间是1(1,)a--+∞;当0a <时,()f x 的单调增区间是1()a -∞,-1-,单调减区间是1(1,)a--+∞. (Ⅲ)解:方法一因为()()e1,xf x ax x =+∈R ,所以令()0f x =,得10ax +=. (1)当0a =时,方程无解,此时函数()f x 无零点; (2)当0a ≠时,解得1x a=-, 此时函数()f x 有唯一的一个零点.综上所述,当0a =时,函数()f x 无零点;当0a ≠时,函数()f x 有一个零点. 方法二(1)当0a =时 因为()e 0xf x =>,所以函数()f x 无零点;(2)当0a >时因为10a <-1-,(0)10f =>,()f x 在区间1(1,)a--+∞单调递增, 所以()f x 在区间1(1,)a --+∞内有且仅有唯一的零点;若1(,1)x a ∈-∞--,则11(1)10ax a a a+<--+=-<,又因为e 0x >,所以()()e 10xf x ax =+<.即函数()f x 在区间1()a-∞,-1-内没有零点. 故当0a >时,()f x 有且仅有唯一的零点.(3)当0a <时因为111(1)е()0a f a a ----=->,111(1)е0a f a a--=<,并且()f x 在区间1(1,)a --+∞单调递减, 所以()f x 在区间1(1,)a --+∞内有且仅有唯一的零点;若1(,1)x a ∈-∞--,则11(1)10ax a a a+>--+=->,又因为e 0x >,所以()()e 10xf x ax =+>.即函数()f x 在区间1()a-∞,-1-内没有零点.故当0a <时,()f x 有且仅有唯一的零点.综上所述:当0a =时,函数()f x 无零点;当0a ≠时,函数()f x 有一个零点.MTG 20.(本小题满分15分)已知函数()sin ln 1f x x x =+-。

【精品解析】北京市2020年高考数学最新联考试题分类大汇编(3)函数与导数

【精品解析】北京市2020年高考数学最新联考试题分类大汇编(3)函数与导数

精品解析:北京市2020年高考数学最新联考试题分类大汇编(3)函数与导数试题解析一、选择题:(5)(北京市东城区2020年1月高三考试文科)设0x >,且1xxb a <<,则 (A )01b a <<< (B )01a b <<< (C ) 1b a << (D ) 1a b << 【答案】C【解析】因为0x >,且1xxb a <<,所以1b a <<。

8.(北京市西城区2020年1月高三期末考试理科)已知点(1,1)A --.若曲线G 上存在两点,B C ,使ABC △为正三角形,则称G 为Γ型曲线.给定下列三条曲线:① 3(03)y x x =-+≤≤; ②22(20)y x x =--≤≤; ③ 1(0)y x x=->. 其中,Γ型曲线的个数是( ) (A )0(B )1(C )2(D )3 【答案】C【解析】对于①,3(03)y x x =-+≤≤的图像是一条线段,记为,BB '如图(1)所示,从的图象是圆222x y +=在第二象限的部分,如图(2)所示,显然,无论点B 、C 在何处,△ABC 都不可能为正三角形,所以②不是Γ型曲线。

对于③,1(0)y x x=->表示双曲线在第四象限的一支,如图(3)所示,显然,存在点B,C ,使△ABC 为正三角形,所以③满足; 综上,Γ型曲线的个数为2,故选C.7. (2020年3月北京市朝阳区高三一模文科)某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对A 种产品 征收销售额的%x 的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年xy y=-x+3 OAB 'C '增加了70%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于14万元,则x 的最大值是A. 2B. 6.5C. 8.8D. 10【答案】D【答案】C3.(北京市西城区2020年4月高三第一次模拟文)若2log 3a =,3log 2b =,41log 3c =,则下列结论正确的是( D ) (A )a c b << (B )c a b << (C )b c a <<(D )c b a <<(8)(北京市东城区2020年4月高考一模理科)已知函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是(A )(),1-∞ (B )(],1-∞ (C )()0,1 (D )[)0,+∞【答案】A(8)(北京市东城区2020年4月高考一模文科)设集合1[0,)2A =,1[,1]2B =,函数1,,()22(1),.x x Af xx x B⎧+∈⎪=⎨⎪-∈⎩若x A∈,且[()]f f x A∈,则x的取值范围是(A)(41,0] (B) (21,41] (C)(21,41) (D) [0,83] 【答案】C“函数y=f(x)在R上单调递减”的(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件【答案】A8.(2020年3月北京市丰台区高三一模文科)已知定义在R上的函数()y f x=满足(2)()f x f x+=,当11x-<≤时,3()f x x=.若函数()()logag x f x x=-至少有6个零点,则a的取值范围是(A) (1,5)(B)1(0,)[5,)5+∞U(C)1(0,][5,)5+∞U(D)1[,1)(1,5]5U二、填空题:(11)(北京市东城区2020年1月高三考试文科)已知函数3,0,()(1),0,x xf xf x x≤⎧=⎨->⎩那么5()6f 的值为 . 【答案】12-【解析】55111()(1)()3()66662f f f =-=-=-=-(13)(北京市东城区2020年1月高三考试文科)对于函数()lg 21f x x =-+,有如下三个命题:①(2)f x +是偶函数;②()f x 在区间(),2-∞上是减函数,在区间()2,+∞上是增函数;③(2)()f x f x +-在区间()2,+∞上是增函数.其中正确命题的序号是 .(将你认为正确的命题序号都填上)【答案】①②【解析】:函数()f x 和(2)f x +的图像如图所示,由图像可知①②正确;函数2(2)()lg lg 2lglg 122x f x f x x x x x +-=--==+--,由复合函数的单调性法则,可知函数(2)()f x f x +-在区间()2,+∞上是减函数。

2020北京各区中考一模分类汇编-专题04 一次函数与反比例函数综合(答案含解析)

2020北京各区中考一模分类汇编-专题04 一次函数与反比例函数综合(答案含解析)

专题04 一次函数与反比例函数综合一.解答题(共15小题)1.(2020•丰台区一模)在平面直角坐标系xOy 中,一次函数4y x =+的图象与y 轴交于点A ,与反比例函数ky x=的图象的一个交点为M . (1)求点A 的坐标;(2)连接OM ,如果MOA ∆的面积等于2,求k 的值.【分析】(1)通过计算自变量为0对应的一次函数值得到A 点坐标;(2)利用一次函数图象上点的坐标特征,设M 点的坐标为(,4)t t +,根据三角形面积公式得到14||22t ⨯⨯=,求出t 得到M 点的坐标,然后利用反比例函数图象上点的坐标特征求k 的值. 【解答】解:(1)当0x =,44y x =+=, (0,4)A ∴;(2)设M 点的坐标为(,4)t t +, MOA ∆的面积等于2,∴14||22t ⨯⨯=,解得1t =或1t =−, M ∴点的坐标为(1,5)或(1,3)−,当M 点的坐标为(1,5)时,155k =⨯=; 当M 点的坐标为(1,3)−时,133k =−⨯=−, 综上所述,k 的值为5或3−.2.(2020•燕山一模)如图,在平面直角坐标系xOy 中,直线3:2l y x =与反比例函数(0)k y x x =>的图象交于点(2,)A a . (1)求a ,k 的值;(2)横,纵坐标都是整数的点叫做整点.点(,)P m n 为射线OA 上一点,过点P 作x 轴,y 轴的垂线,分别交函数(0)k y x x =>的图象于点B ,C .由线段PB ,PC 和函数(0)ky x x=>的图象在点B ,C 之间的部分所围成的区域(不含边界)记为W . ①若PA OA =,求区域W 内的整点个数;②若区域W 内恰有5个整点,结合函数图象,直接写出m 的取值范围.【分析】(1)将点A 坐标代入解析式,可求a ,k 的值; (2)①先求出点P 坐标,结合函数图象可求解;②分两种情况讨论,结合函数图象可求解.【解答】解:(1)直线3:2l y x =与反比例函数(0)k y x x =>的图象交于点(2,)A a .∴3232a =⨯=, ∴点(2,3)A ,反比例函数ky x=过点A , 326k ∴=⨯=;(2)①点P 为射线OA 上一点,且PA OA =, A ∴为OP 中点, (2,3)A ,∴点P 的坐标为(4,6),将4x =代入6y x=中,得32y =,将6y =代入6y x=中,得1x =, PB ,PC 分别垂直于x 轴和y 轴, 3(4,)2B ∴,(1,6)C ,如图,结合函数图象可知,区域W内有5个整点;②当点P在点A下方时,如图,结合函数图象可知,当213m…时,区域W内有5个整点;当点P在点A上方时,如图,结合函数图象可知,当1043m <…时,区域W 内有5个整点; 综上所述:当213m <…或1043m <…时,区域W 内有5个整点;3.(2020•海淀区一模)在平面直角坐标系xOy 中,直线3x =与直线112y x =+交于点A ,函数(0,0)k y k x x =>>的图象与直线3x =,直线112y x =+分别交于点B ,C . (1)求点A 的坐标.(2)横、纵坐标都是整数的点叫做整点.记函数(0,0)ky k x x=>>的图象在点B ,C 之间的部分与线段AB ,AC 围成的区域(不含边界)为W .①当1k =时,结合函数图象,求区域W 内整点的个数; ②若区域W 内恰有1个整点,直接写出k 的取值范围.【分析】(1)根据题意列方程即可得到结论;(2)①当1k =时,求得B 、C 的坐标,根据图象得到结论; ②分两种情况根据图象即可得到结论. 【解答】解:(1)直线3x =与直线112y x =+交于点A , ∴3112x y x =⎧⎪⎨=+⎪⎩,解得352x y =⎧⎪⎨=⎪⎩,5(3,)2A ∴;(2)①当1k =时,根据题意1(3,)3B ,(1C −,在W 区域内有1个整数点:(2,1); ②若区域W 内恰有1个整点,当C 点在直线3x =的左边时,如图1,在W 区域内有1个整数点:(2,1),12k ∴<…;当C 点在直线3x =的右边时,如图2,在W 区域内有1个整数点:(4,4),1620k ∴<…;综上,当区域W 内恰有1个整点时,12k <…或1620k <…4.(2020•平谷区一模)在平面直角坐标系xOy 中,反比例函数(0)ky x x=>的图象G 与直线:24l y x =−交于点(3,)A a . (1)求k 的值;(2)已知点(0P ,)(0)n n >,过点P 作平行于x 轴的直线,与图象G 交于点B ,与直线l 交于点C .横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段AC ,BC 围成的区域(不含边界)为W .①当5n =时,直接写出区域W 内的整点个数;②若区域W 内的整点恰好为3个,结合函数图象,直接写出n 的取值范围.【分析】(1)把(3,)A a 代入24y x =−求得2a =,然后根据待定系数法即可求得k 的值; (2)①当5n =时,得到B 为6(5,5),9(2C ,5),结合图象于是得到结论;②分两种情况,根据图象即可得到结论.【解答】解:(1)反比例函数(0)ky x x=>的图象G 与直线:24l y x =−交于点(3,)A a . 2342a ∴=⨯−=,(3,2)A ∴,反比例函数(0)ky x x=>的图象G 经过(3,2)A , 326k ∴=⨯=;(2)①当5n =时,则B 为6(5,5),9(2C ,5),∴在W 区域内有3个整数点:(2,4),(3,3),(3,4);②由图1可知,若区域W 内的整点恰好为3个,当P 点在A 点的上方时,则45n <…; 当P 点在A 点的下方时,则01n <<,综上所述,若区域W 内恰有3个整点,n 的取值范围为:45n <…或01n <<5.(2020•顺义区一模)已知:在平面直角坐标系xOy 中,函数(0,0)ny n x x=≠>的图象过点(3,2)A ,与直线:l y kx b =+交于点C ,直线l 与y 轴交于点(0,1)B −. (1)求n 、b 的值;(2)横、纵坐标都是整数的点叫做整点.记函数(0,0)ny n x x=≠>的图象在点A ,C 之间的部分与线段BA ,BC 围成的区域(不含边界)为W .①当直线l 过点(2,0)时,直接写出区域W 内的整点个数,并写出区域W 内的整点的坐标; ②若区域W 内的整点不少于5个,结合函数图象,求k 的取值范围.【分析】(1)把(3,2)A 代入(0,0)ny n x x=≠>中可得n 的值;把点(0,1)B −代入y kx b =+中可得b 的值;(2)①将(2,0)代入1y kx =−可得:直线解析式为112y x =−,画图可得整点的个数; ②分两种情况:直线l 在OA 的下方和上方,画图计算边界时k 的值,可得k 的取值. 【解答】解:(1)点(3,2)A 在函数ny x=的图象上, 6n ∴=,点(0,1)B −在直线:l y kx b =+上, 1b ∴=−;(2)①当直线l 过点(2,0)时,直线解析式为112y x =−,解方程6112x x =−得11x =−,21x =(1C , 而(0,1)B −,如图1所示,区域W 内的整点有(3,1)一个;②(ⅰ)当直线l 在BA 下方时,若直线l 与x 轴交于点(3,0),结合图象,区域W 内有4个整点, 此时:310k −=,∴13k =.当直线l 与x 轴的交点在(3,0)右侧时,区域W 内整点个数不少于5个,103k ∴<<.(ⅱ)当直线l 在BA 上方时,若直线l 过点(1,4),结合图象,区域W 内有4个整点, 此时14k −=,解得5k =.结合图象,可得5k >时,区域W 内整点个数不少于5个, 综上,k 的取值范围是103k <<或5k >. 6.(2020•东城区一模)如图,一次函数(0)y kx b k =+≠的图象与反比例函数(0,0)my m x x=≠>的图象在第一象限内交于点A ,B ,且该一次函数的图象与y 轴正半轴交于点C ,过A ,B 分别作y 轴的垂线,垂足分别为D ,E .已知(1,4)A ,14CD CE =. (1)求m 的值和一次函数的解析式;(2)若点M 为反比例函数图象在A ,B 之间的动点,作射线OM 交直线AB 于点N ,当MN 长度最大时,直接写出点M 的坐标.【分析】(1)先把A 点坐标代入my x=中求出m 得到反比例函数解析式为4y x =;再证明CDA CEB ∆∆∽,利用相似比求出4BE =,则利用反比例函数解析式确定B 点坐标,然后利用待定系数法求一次函数解析式; (2)利用点A 与点B 关于直线y x =对称,反比例函数4y x=−关于y x =对称可判断当OM 的解析式为y x =时,MN 的长度最大,然后解方程组4y x y x⎧=⎪⎨⎪=⎩得此时M 点的坐标.【解答】解:(1)把(1,4)A 代入my x=得144m =⨯=, ∴反比例函数解析式为4y x=;BD y ⊥轴,AD y ⊥轴, //AD BE ∴, CDA CEB ∴∆∆∽,∴CD AD CE BE =,即114BE =,4BE ∴=,当4x =时,4414y x ===, (4,1)B ∴,把(1,4)A ,(4,1)B 代入y kx b =+得441k b k b +=⎧⎨+=⎩,解得15k b =−⎧⎨=⎩,∴一次函数解析式为5y x =−+;(2)点A 与点B 关于直线y x =对称,反比例函数4y x=−关于y x =对称, ∴当OM 的解析式为y x =时,MN 的长度最大,解方程组4y x y x ⎧=⎪⎨⎪=⎩得22x y =⎧⎨=⎩或22x y =−⎧⎨=−⎩, ∴此时M 点的坐标为(2,2).7.(2020•石景山区一模)如图,在平面直角坐标系xOy 中,直线3y x =+与函数(0)ky x x=>的图象交于点(1,)A m ,与x 轴交于点B .(1)求m ,k 的值;(2)过动点(0P ,)(0)n n >作平行于x 轴的直线,交函数(0)ky x x=>的图象于点C ,交直线3y x =+于点D .①当2n =时,求线段CD 的长;②若CD OB …,结合函数的图象,直接写出n 的取值范围.【分析】(1)先利用一次函数解析式确定m 的值得到A 点坐标,然后把A 点坐标代入ky x=得到k 的值; (2)①利用C 、D 的纵坐标都为2得到C 点和D 点的横坐标,然后求两横坐标之差得到线段CD 的长; ②先确定(3,0)−,由于C 、D 的纵坐标都为n ,根据一次函数和反比例函数图象上点的坐标特征可表示出4(C n,)n ,(3,)D n n −,讨论:当点C 在点D 的右侧时,先利用CD OB =得到4(3)3n n −−=,解得12n =,22n =−(舍去),再结合图象可判断当02n <…时,CD OB …;当点C 在点D 的左侧时,先利用CD OB =得到433n n−−=,解得13n =23n =,再结合图象可判断当3n …CD OB …. 【解答】解:(1)直线3y x =+经过点(1,)A m , 134m ∴=+=,反比例函数ky x=的图象经过点(1,4)A , 144k ∴=⨯=;(2)①当2n =时,点P 的坐标为(0,2),当2y =时,42x=,解得2x =, ∴点C 的坐标为(2,2),当2y =时,32x +=,解得1x =−, ∴点D 的坐标为(1,2)−,2(1)3CD ∴=−−=;②当0y =时,30x +=,解得3x =−,则(3,0)B −当y n =时,4n x=,解得4x n =,∴点C 的坐标为4(n,)n ,当y n =时,3x n +=,解得3x n =−, ∴点D 的坐标为(3,)n n −,当点C 在点D 的右侧时, 若CD OB =,即4(3)3n n−−=,解得12n =,22n =−(舍去), ∴当02n <…时,CD OB …; 当点C 在点D 的左侧时,若CD OB =,即433n n−−=,解得13n =+23n =−,∴当3n …CD OB …,综上所述,n 的取值范围为02n <…或3n …8.(2020•西城区一模)在平面直角坐标系xOy 中,直线1:2(0)l y kx k k =+>与x 轴交于点A ,与y 轴交于点B ,与函数(0)my x x=>的图象的交点P 位于第一象限.(1)若点P 的坐标为(1,6), ①求m 的值及点A 的坐标; ②PB PA = 13; (2)直线2:22l y kx =−与y 轴交于点C ,与直线1l 交于点Q ,若点P 的横坐标为1, ①写出点P 的坐标(用含k 的式子表示); ②当PQ PA …时,求m 的取值范围.【分析】(1)①把(1,6)P 代入函数(0)my x x=>即可求得m 的值,直线1:2(0)l y kx k k =+>中,令0y =,即可求得x 的值,从而求得A 的坐标;②把P 的坐标代入2y kx k =+即可求得k 的值,进而求得B 的坐标,然后根据勾股定理求得PB 和PA ,即可求得PBPA的值; (2)①把1x =代入2y kx k =+,求得3y k =,即可求得(1,3)P k ;②分别过点P 、Q 作PM x ⊥轴于M ,QN x ⊥轴于N ,则点M 、点N 的横坐标1,22k+,若PQ PA =,则1PQ PA =,根据平行线分线段成比例定理则1PQ MN PA MA ==,得出3MN MA ==,即可得到2213k+−=,解得1k =,根据题意即可得到当1PQ MNPA MA=…时,1k …,则33m k =…. 【解答】解:(1)①令0y =,则20kx k +=, 0k >,解得2x =−, ∴点A 的坐标为(2,0)−,点P 的坐标为(1,6), 166m ∴=⨯=;②直线1:2(0)l y kx k k =+>函数(0)my x x=>的图象的交点P ,且(1,6)P ,62k k ∴=+,解得2k =,24y x ∴=+,令0x =,则4y =, (0,4)B ∴,点A 的坐标为(2,0)−,PA ∴PB =,∴13PB PA =, 故答案为13;(2)①把1x =代入2y kx k =+得3y k =, (1.3)P k ∴;②由题意得,222kx k kx +=−,解得22x k=+, ∴点Q 的横坐标为22k+, 221(0)k k+>>, ∴点Q 在点P 的右侧,如图,分别过点P 、Q 作PM x ⊥轴于M ,QN x ⊥轴于N ,则点M 、点N 的横坐标1,22k+, 若PQ PA =,则1PQPA=, ∴1PQ MNPA MA==,MN MA ∴=,2213k∴+−=,解得1k =, 3MA =, ∴当1PQ MNPA MA=…时,1k …, 33m k ∴=…,∴当PQ PA …时,3m ….9.(2020•通州区一模)已知:在平面直角坐标系xOy 中,对于任意的实数(0)a a ≠,直线2y ax a =+−都经过平面内一个定点A . (1)求点A 的坐标; (2)反比例函数by x=的图象与直线2y ax a =+−交于点A 和另外一点(,)P m n . ①求b 的值;②当2n >−时,求m 的取值范围.【分析】(1)解析式化为2(1)2y ax a a x =+−=+−,即可求得;(2)①根据待定系数法即可求得;②根据反比例函数的性质即可判定点(,)P m n 在第一象限或第三象限两种情况,分别讨论即可. 【解答】解:(1)2(1)2y ax a a x =+−=+−,∴当1x =−时,2y =−,∴直线2y ax a =+−都经过平面内一个定点(1,2)A −−;(2)①反比例函数by x=的图象经过点A , 1(2)2b ∴=−⨯−=;②若点(,)P m n 在第一象限,当2n >−时,0m >, 若点(,)P m n 在第三象限,当2n >−时,1m <−, 综上,当2n >−时,0m >或1m <−.10.(2020•延庆区一模)在平面直角坐标系xOy 中,将点(2,4)A 向下平移2个单位得到点C ,反比例函数(0)my m x=≠的图象经过点C ,过点C 作CB x ⊥轴于点B . (1)求m 的值;(2)一次函数(0)y kx b k =+<的图象经过点C ,交x 轴于点D ,线段CD ,BD ,BC 围成的区域(不含边界)为G ;若横、纵坐标都是整数的点叫做整点. ①3b =时,直接写出区域G 内的整点个数.②若区域G 内没有整点,结合函数图象,确定k 的取值范围.【分析】(1)点(2,4)A 向下平移2个单位得到点(2,2)C ,将点C 的坐标代入函数表达式,即可求解; (2)①将点C 的坐标和b 代入一次函数表达式,求出132y x =−+,从而得出(6,0)D ,由图象可得,区域G内只有一个整点(3,1)H ,即可求解;②参考上图可知,区域G 内的有一个整点时,该点坐标为(3,1),将坐标(3,1)代入一次函数表达式y kx b =+,求出1k =−,故若区域G 内没有整点,则1k −….【解答】解:(1)点(2,4)A 向下平移2个单位得到点C , ∴点(2,2)C .反比例函数(0)my m x=≠的图象经过点C , 将点C 的坐标代入上式得:22m =, 解得:4m =;(2)①将点C 的坐标代入一次函数y kx b =+得:22k b =+①, 当3b =时,则12k =−,故一次函数的表达式为:132y x =−+,令0y =,则1302x −+=,解得:6x =,即点(6,0)D ,由一次函数表达式作出下图,由图象可得,区域G 内只有一个整点(3,1)H , 故区域G 内的整点个数为1;②参考上图可知,区域G 内的有一个整点时,该点坐标为:(3,1), 将坐标(3,1)代入一次函数表达式y kx b =+得:13k b =+②,联立①②并解得:14k b =−⎧⎨=⎩,即1k =−,故若区域G 内没有整点,则1k −….11.(2020•房山区一模)在平面直角坐标系xOy 中,反比例函数ky x=的图象与一次函数21y x =−的图象交于A 、B 两点,已知(,3)A m −. (1)求k 及点B 的坐标;(2)若点C 是y 轴上一点,且5ABC S ∆=,直接写出点C 的坐标.【分析】(1)由直线21y x =−经过点(,3)A m −,把3y =−代入解析式即可求出m 的值;再根据反比例函数经过点A 即可得出k 的值;联立两个函数解析式即可求出点B 的坐标;(2)求出直线AB 与y 轴的交点坐标,再根据A 、B 两点的横坐标以及三角形的面积公式解答即可. 【解答】解:(1)把3y =−代入21y x =−得1x =−, (1,3)A ∴−−;又反比例函数ky x=的图象经过点A , 3k ∴=,321y x y x ⎧=⎪⎨⎪=−⎩,解得1113x y =−⎧⎨=−⎩,22322x y ⎧=⎪⎨⎪=⎩, 3(2B ∴,2).(2)设直线AB 的解析式为y kx b =+, 则3322k b k b −+=−⎧⎪⎨+=⎪⎩,解得21k b =⎧⎨=−⎩.∴直线AB 的解析式为21y x =−,所以直线AB与y轴交于点(0,1)−,设点C的纵坐标为y,当点C在y轴的正半轴时,13(1)(1)522y+⨯+=,解得3y=,当点C在y轴的负半轴时,13(1)(1)522y−−⨯+=,解答5y=−,∴点C的坐标为(0,3)或(0,5)−.12.(2020•门头沟区一模)在平面直角坐标系xOy中,一次函数(0)y x m m=+≠的图象与y轴交于点A,过点(0,2)B m且平行于x轴的直线与一次函数(0)y x m m=+≠的图象,反比例函数4myx=的图象分别交于点C,D.(1)求点D的坐标(用含m的代数式表示);(2)当1m=时,用等式表示线段BD与CD长度之间的数量关系,并说明理由;(3)当BD CD…时,直接写出m的取值范围.【分析】(1)直接将点B的坐标代入反比例函数4myx=中可得点D的坐标;(2)把1m=代入可得B和D的坐标,从而得C的坐标,根据两点的距离公式可得2BD CD=;(3)根据两点的距离公式,由BD CD …列不等式,解出即可,因为4my x=中0m ≠,可得结论. 【解答】解:(1)过点(0,2)B m 且平行于x 轴的直线与反比例函数4my x=的图象交于点D , ∴点D 的纵坐标为2m ,42mm x∴=,2x =, (2,2)D m ∴;(2)当1m =时,(0,2)B ,(2,2)D ,过点(0,2)B m 且平行于x 轴的直线与一次函数(0)y x m m =+≠的图象交于点C , 2m x m ∴=+,x m =,(,2)C m m ∴, (1,2)C ∴,2BD ∴=,1CD =, 2BD CD ∴=;(3)(0,2)B m ,(,2)C m m ,(2,2)D m , 2BD ∴=,|2|CD m =−,BD CD …,|2|2m ∴−…,4m ∴…或0m <.13.(2020•朝阳区一模)在平面直角坐标系xOy 中,直线1y =与一次函数y x m =−+的图象交于点P ,与反比例函数my x=的图象交于点Q ,点(1,1)A 与点B 关于y 轴对称. (1)直接写出点B 的坐标;(2)求点P ,Q 的坐标(用含m 的式子表示);(3)若P ,Q 两点中只有一个点在线段AB 上,直接写出m 的取值范围.【分析】(1)根据关于y 轴对称的两点,其纵坐标相等横坐标互为相反数,即可写出点B 的坐标;(2)把1y =代入y x m =−+,求出x ,进而得到点P 的坐标;把1y =代入my x=,求出x ,进而得到点Q 的坐标;(3)由点P ,Q 的坐标,可知点P 在点Q 的左边.当P ,Q 两点中只有一个点在线段AB 上时,分两种情况进行讨论:①只有P 点在线段AB 上;②只有Q 点在线段AB 上.分别列出关于m 的不等式组,求解即可. 【解答】解:(1)点(1,1)A 与点B 关于y 轴对称, ∴点B 的坐标是(1,1)−;(2)把1y =代入y x m =−+,得1x m =−+,解得1x m =−, ∴点P 的坐标为(1,1)m −;把1y =代入my x=,得1m x =,解得x m =,∴点Q 的坐标为(,1)m ;(3)点P 的坐标为(1,1)m −,点Q 的坐标为(,1)m , ∴点P 在点Q 的左边.当P ,Q 两点中只有一个点在线段AB 上时,分两种情况: ①只有P 点在线段AB 上时,由题意,得1111m m −−⎧⎨>⎩剟,解得12m <…;②只有Q 点在线段AB 上时,由题意,得1111m m −<−⎧⎨−⎩剟,解得10m −<….综上可知,所求m 的取值范围是10m −<…或12m <….14.(2020•密云区一模)如图,在平面直角坐标系xOy 中,直线:1l y x =−的图象与反比例函数(0)ky x x=>的图象交于点(3,)A m . (1)求m 、k 的值;(2)点(p P x ,0)是x 轴上的一点,过点P 作x 轴的垂线,交直线l 于点M ,交反比例函数(0)ky x x=>的图象于点N .横、纵坐标都是整数的点叫做整点.记(0)ky x x=>的图象在点A ,N 之间的部分与线段AM ,MN 围成的区域(不含边界)为W .①当5p x =时,直接写出区域W 内的整点的坐标为;②若区域W 内恰有6个整点,结合函数图象,求出p x 的取值范围.【分析】(1)将点A 坐标代入解析式,可求m ,k 的值;(2)①根据题意先求M ,N 两点,根据A 、M 、N 点的坐标即求出整点个数.②分两种情况讨论,结合函数图象可求解.【解答】解:(1)直线:1l y x =−的图象与反比例函数(0)ky x x=>的图象交于点(3,)A m .312m ∴=−=, ∴点(3,2)A ,反比例函数ky x=过点A , 326k ∴=⨯=;(2)①当5p x =时,M 、N 两点的坐标为(5,4)M 、6(5,)5N .(3,2)A .∴区域W 内的整点的坐标为(4,2).②当点P 在点A 左边时,如图1,结合函数图象可知,当01p x <<时,区域W 内有6个整点;当点P 在点A 右时,如图2,结合函数图象可知,当67P x <…时,区域W 内有6个整点; 综上所述:当01p x <<或67P x <…时,区域W 内有6个整点.15.(2020•大兴区一模)在平面直角坐标系xOy 中,直线5x =与直线3y =,x 轴分别交于点A ,B ,直线(0)y kx b k =+≠经过点A 且与x 轴交于点(9,0)C .(1)求直线y kx b =+的表达式;(2)横、纵坐标都是整数的点叫做整点.记线段AB ,BC ,CA 围成的区域(不含边界)为W . ①结合函数图象,直接写出区域W 内的整点个数;②将直线y kx b =+向下平移n 个单位,当平移后的直线与区域W 没有公共点时,请结合图象直接写出n 的取值范围.【分析】(1)根据图形,可以得到点A的坐标,再根据直线y kx b=+过点A和点C,从而可以得到直线y kx b=+的表达式;(2)①根据题意和图象,可以得到区域W内的整点个数;②根据平移的特点和图象,可以得到n的取值范围.【解答】解:(1)由图可得,点A的坐标为(5,3),直线y kx b=+过点(5,3)A,点(9,0)C,∴5390k bk b+=⎧⎨+=⎩,得34274kb⎧=−⎪⎪⎨⎪=⎪⎩,即直线y kx b=+的表达式是32744y x=−+;(2)①由图象可得,区域W内的整点的坐标分别为(6,1),(6,2),(7,1),即区域W内的整点个数是3个;②由图象可知,当点A向下平移3个单位长度时,直线y kx b=+与区域W没有公共点,即n的取值范围是3n….。

北京市顺义区2020届高三数学第一次模拟考试试题(含解析)

北京市顺义区2020届高三数学第一次模拟考试试题(含解析)

北京市顺义区2020届高三数学第一次模拟考试试题(含解析)考生须知:1.本试卷共5页,共两部分,20道小题,满分150分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和班级.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.第一部分(选择题共40分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项)1.设集合()(){}=310M x x x -+<,{}04N x x =<<,则M N =( )A. ()0,3B. ()1,4-C. 0,1D. ()1,3-【答案】A 【解析】 【分析】先化简M ,再和N 求交集.【详解】解:()(){}{}=310|13M x x x x x -+<=-<<, 又因为{}04N x x =<< 所以{}|03M N x x =<<,即()0,3.故选:A【点睛】本题考查集合的交集运算,属于基础题. 2.设复数12i1iz +=-,则z 在复平面内对应的点在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】先把复数化成z a bi =+的形式,即可得出对于的象限.【详解】解:()()()()21211212213131112222i i i i i i i z i i i i ++++++-+=====-+--+ 所以z 在复平面内对应的点在第二象限. 故选:B【点睛】本题考查复数的运算和几何意义,属于基础题. 3.若3log 0.2a =,0.22b =,20.2c =,则( ) A. a c b <<B. a b c <<C. c a b <<D.b c a <<【答案】A 【解析】 【分析】利用对数函数、指数函数的单调性求解. 【详解】解:33log 0.2log 10a =<=,0.20221b =>=, 2000.20.21c <<==,所以01a c b ,即a c b <<. 故选:A【点睛】本题考查三个数大小的比较,是基础题,要注意对数函数、指数函数的单调性的合理运用.4.若1b a >>,则下列不等式一定正确的是( ) A. 2ab >B. 2a b +<C.11a b< D.2b aa b+> 【答案】D 【解析】 【分析】利用不等式的性质,特殊值排除法和基本不等式解题. 【详解】因为:1b a >>对于A :当34,23ab ,所以34223ab ,故A 错误;对于B :因为1b a >>,所以2a b +>,故B 错误; 对于C :因为1b a >>,所以1101b a<<<,故C 错误;对于D :因为1b a >>,所以2b a a b +≥=, 又因为1b a >>,则b aa b ≠,故不取等,即2b a a b+>,故D 正确; 故选:D【点睛】本题考查了不等式的性质、基本不等式的性质,考查了推理能力与计算能力.5.抛物线()220y px p =>的焦点是双曲线22x y p -=的一个焦点,则p =( )A. B. 8 C. 4 D. 1【答案】B 【解析】 【分析】分别求出抛物线与双曲线的焦点,两焦点为同一焦点,即可得出p 的值. 【详解】解:抛物线()220y px p =>的焦点为,02p ⎛⎫⎪⎝⎭, 双曲线22x y p -=,为221x y p p-=,则22c p =,c =焦点为:)或(),所以有2p=,解得0p =或8p =,又因为0p >, 所以8p =. 故选:B【点睛】本题考查抛物线与双曲线的焦点,是基础题.6. 如图,一个简单空间几何体的三视图其主视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则此几何体的侧面积是A. 43+B. 12C. 43D. 8【答案】D 【解析】试题分析:由三视图知:原几何体是一个正四棱锥,正四棱锥的底面边长为23,所()23+1=2,所以该几何体的侧面积为1=224=82s ⨯⨯⨯. 考点:三视图;四棱锥的侧面积.点评:解决这类题的关键是准确分析出几何体的结构特征,发挥自己的空间想象力,把立体图形和平面图形进行对照,找出几何体中的数量关系.7.设非零向量a ,b 满足()2a b a -⊥,则“a b =”是“a 与b 的夹角为3π”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】根据向量垂直数量积等于零,利用充分性、必要性的定义即可求解.【详解】由()2a b a -⊥,则()20a b a -⋅=,即220a a b -⋅=22cos ,0a a b a b ⇒-=,若a b =,则1cos ,2a b =,即a 与b 的夹角为3π,充分性满足;若a 与b 的夹角为3π,则20a a b -=,由0a ≠,所以a b =,必要性满足;所以“a b =”是“a 与b 的夹角为3π” 充分必要条件. 故选:C【点睛】本题考查了充分性、必要性定义,同时考查了向量的数量积定义运算,属于基础题. 8.当[]0,1x ∈时,若函数()()21f x mx =-的图象与()2mg x x =+的图象有且只有一个交点,则正实数m 的取值范围是( ) A. [)2,+∞B. (]50,2,+2⎡⎫∞⎪⎢⎣⎭C. 5,2⎡⎫+∞⎪⎢⎣⎭D.(][)20,1,+∞【答案】B 【解析】 【分析】根据题意,由二次函数的性质分析可得()()21f x mx =-为二次函数,在区间10,m ⎛⎫⎪⎝⎭为减函数,在区间1,1m为增函数,分01m <≤和1m 两种情况,结合图象分析两个函数的单调性与值域,即可得出正实数m 的取值范围.【详解】解:当[]0,1x ∈时,又因为m 为正实数, 函数()()21f x mx =-的图象二次函数, 在区间10,m ⎛⎫ ⎪⎝⎭为减函数,在区间1,1m 为增函数; 函数()22m mg x x x =+=+,是斜率为1的一次函数. 最小值为min2mg x ,最大值为max12m g x ; ①当11m≥时,即01m <≤时, 函数()()21f x mx =-在区间0,1 为减函数,()2mg x x =+在区间0,1 为增函数,()f x 的图象与()g x 的图象有且只有一个交点,则()()max min f x g x ≥,()()max min 00f g ≥即()2012mm ⨯-≥,解得2m ≤, 所以01m <≤ ②当101m<<时,即1m 时, 函数()()21f x mx =-在区间10,m ⎛⎫ ⎪⎝⎭为减函数,在区间1,1m 为增函数, ()2mg x x =+在区间0,1 为增函数, ()f x 的图象与()g x 的图象有且只有一个交点,则()()max min f x g x ≥()()max min 00f g ≥即()()21f x mx =-的图象与()2mg x x =+的图象有且只有一个交点 ()()()()10011m f g f g ⎧>⎪≥⎨⎪<⎩,()()2201021112m m m m ⎧⨯-≥+⎪⎪⎨⎪⨯-≥+⎪⎩ 解得12m <≤或52m >综上所述:正实数m 的取值范围为(]50,2,+2⎡⎫∞⎪⎢⎣⎭. 故选:B【点睛】本题考查函数的交点问题,涉及函数单调性的应用,关键是确定实数m 的分类讨论.第二部分(非选择题共110分)二、填空题(本大题共6个小题,每小题5分,共30分) 9.sin 6π⎛⎫-= ⎪⎝⎭____. 【答案】12- 【解析】【分析】根据诱导公式三将角化为正角,再计算对应的三角函数值. 【详解】解:1sin sin 662ππ⎛⎫-=-=- ⎪⎝⎭. 故答案为:12-【点睛】本题考查诱导公式和特殊角的三角函数.10.设n S 为公比1q ≠的等比数列{}n a 的前n 项和,且13a ,22a ,3a 成等差数列,则q =__________,42S S =________. 【答案】 (1). 3 (2). 10 【解析】 【分析】先设等比数列的通项公式11n n a a q -=,再根据13a ,22a ,3a 成等差数列,利用等差中项列方程,求出公比,再代入42S S 即可解出本题.【详解】解:设等比数列的通项公式11n n a a q -=,又因为13a ,22a ,3a 成等差数列,所以213322a a a =+⨯,即211143q a a a q =+,又因为等比数列中10a ≠,则243q q =+,解得1q =或3q =,又因为1q ≠,所以3q =.所以()()41444222211113*********11a q S q q S q a q q-----=====-----. 故答案为:(1).3 (2). 10【点睛】本题考查等比数列的通项公式、等差中项以及等比数列的前n 项和公式,属于基础题.11.若函数()2,01,0x e x f x x x ⎧≤=⎨->⎩,则函数()1y f x =-的零点是___________.【答案】0 【解析】 【分析】先令()1y f x =-等于0,再根据分段函数分情况求解. 【详解】解:要求函数()1y f x =-的零点, 则令()10y f x =-=,即1f x,又因为:()2,01,0x e x f x x x ⎧≤=⎨->⎩,①当0x ≤时,()xf x e =,1x e =,解得0x =.②当0x >时,()21f x x =-,211x -=,解得x =,所以x =.综上所以,函数()1y f x =-的零点是0.故答案为:0【点睛】本题考查函数的零点,以及已知函数值求分段函数的定义域,属于基础题. 12.在ABC ∆中,若8ac =,7a c +=,3B π=,则b =_________.【答案】5 【解析】 【分析】根据余弦定理和三角形的边之间的关系求解. 【详解】解:因为在ABC ∆中,8ac =,7a c +=,3B π=,由余弦定理:2222cos b a c ac B =+-, 2222cos3b ac ac ac ,22172828252b所以5b =.故答案为:5【点睛】本题题考查余弦定理求三角形的边,属于基础题.13.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,当AOB ∆的面积达到最大时,k =________. 【答案】±1 【解析】 【分析】由圆的方程找出圆心O 坐标和半径r ,同时把直线的方程整理为一般式方程,然后利用点到直线的距离公式表示出圆心O 到直线的距离d ,即为圆O 中弦AB 的弦心距,根据垂径定理得到垂足为弦AB 的中点,由圆的半径,弦心距及弦的一半构成的直角三角形,利用勾股定理表示出弦AB 的长度,然后利用三角形的面积公式底乘以高除2,用含有d 的式子表示出三角形AOB ∆的面积,2a b+<求出面积的最大值,以及面积取得最大值时d 的值,从而列出关于k 的方程,求出方程的解即可得到面积最大时k 的值. 【详解】解:由圆22:1O x y +=, 得到圆心坐标为()0,0O ,半径1r =, 把直线的方程为:1l y kx =+,整理为一般式方程得::10l kx y -+=, .圆心()0,0O 到直线AB 的距离211dk弦AB 的长度AB ==2222111212111AOBk k Sk k k k k, 又因为1122k kkk,12AOBS当且仅当1kk时取等号,AOB S 取得最大值,最大值为12. 解得1k =± 故答案为:±1【点睛】此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,直线的一般式方程,点到直线的距离公式,垂径定理,勾股定理,以及基本不等式的应用,当直线与圆相交时,常常由弦长的一半,弦心距,以及圆的半径构造直角三角形,利用勾股定理来解决问题.14.某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本; ②图(2)对应的方案是:保持票价不变,并降低成本; ③图(3)对应的方案是:提高票价,并保持成本不变; ④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是____________.(填写所有正确说法的编号) 【答案】②③ 【解析】 【分析】根据图象可知盈利额y 与观影人数x 成一次函数关系,再分别根据(2)和(3)的图象进行分析即可得出答案.【详解】解:由图象(1)可设盈利额y 与观影人数x 的函数为y kx b =+,0,0k b ><,即k 为票价,当0k =时,y b =,则b -为固定成本, 由图象(2)知,直线向上平移,k 不变即票价不变,b 变大,则b -变小,成本减小.故①错误,②正确;由图象(3)知,直线与y 轴的交点不变,直线斜率变大,k 变大,即提高票价,b 不变,则b -不变,成本不变.故③正确,④错误; 故答案为:②③【点睛】本题考查一次函数图象的变化,以及k 和b 对一次函数图象的影响,是基础题. 三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤) 15.函数()()23sin cos 3sin 0f x x x x ωωωω=⋅-+>的部分图象如图所示.(1)求ω的值; (2)求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值与最小值及对应的x 的值. 【答案】(1)1ω=;(2)()max 1f x =,此时12x π=;()3minf x =,此时3x π=-;【解析】 【分析】(1)首先利用二倍角公式以及两角和的正弦公式的逆应用将函数化为()()sin 232sin 20223x f x x x ωπωωω⎛⎫=+=+> ⎪⎝⎭,根据三角函数的图像可得5263T πππ⎛⎫=-= ⎪⎝⎭,利用周期公式22T πω=即可求解.(2)由(1)可得函数()()sin 203f x x πω⎛⎫=+> ⎪⎝⎭,利用正弦函数的性质即可求解.【详解】(1)由()()23sin cos 3sin 0f x x x x ωωωω=⋅-+>, 则()()1332sin cos 1cos 2222f x x x x ωωω=⋅--+ ()sin 23cos 2sin 20223x x x ωπωωω⎛⎫=+=+> ⎪⎝⎭, 由三角函数的图像可知5263T πππ⎛⎫=-=⎪⎝⎭, 所以()202T ππωω==>,解得1ω=. (2)由(1)可得()()sin 203f x x πω⎛⎫=+> ⎪⎝⎭, 因为33x ππ-≤≤,所以233x πππ-≤+≤,当232x ππ+=即12x π=时,函数()max 1f x =;当233x ππ+=-即3x π=-时,函数()32minf x =-. 【点睛】本题考查了三角恒等变换、根据三角函数图像求解析式、三角函数的性质,属于基础题.16.已知四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥平面ABCD ,PD AB =,E 是PB 的中点.(1)求证:平面PBC ⊥平面PCD ;(2)求二面角E AD B --的大小;(3)试判断AE 所在直线与平面PCD 是否平行,并说明理由.【答案】(1)证明见解析(2)45︒(3)AE 与平面PCD 不平行,详见解析 【解析】 【分析】(1)先根据条件证BC ⊥平面PCD ,又因为BC ⊂平面PBC ,所以可以证得平面PBC ⊥平面PCD .(2)根据条件得,,DA DC DP 两两垂直,以此建立空间直角坐标系,求出平面ADB 的法向量(0,0,1)DP =,设平面ADE 的法向量(,,)n x y z =,求出法向量(0,1,1)n =-,根据公式求出两个法向量的余弦值,即可得出二面角E AD B --的大小.(3)依题意可证AD ⊥平面PCD ,则平面PCD 的法向量为(1,0,0)DA =,又∵1111,,02222AE AE DA ⎛⎫=-⋅⋅=-≠ ⎪⎝⎭,则AE 与DA 不垂直,证得AE 与平面PCD 不平行.【详解】(1)证明:∵ABCD是正方形BC CD ∴⊥∵PD ⊥平面ABCD , BC ⊂平面ABCD ,∴PD BC ⊥ ∵PD CD D ⋂=,PD CD ⊂平面PCD ∴BC ⊥平面PCD 又∵BC ⊂平面PBC ∴平面PBC ⊥平面PCD(2)∵PD ⊥平面ABCD , ,AD CD ⊂平面ABCD ∴,PD AD PD CD ⊥⊥ 又∵ABCD 是正方形∴AD CD ⊥ ∴,,DA DC DP 两两垂直∴以D 为原点如图建系,设1PD AB∴0,0,0D (),(1,0,0)A ,(0,1,0)C ,(1,1,0)B ,(0,0,1)P , 111,,222E ⎛⎫⎪⎝⎭∴111(1,0,0),,,222DA DE ⎛⎫== ⎪⎝⎭又∵PD ⊥平面ABCD∴平面ADB 的法向量(0,0,1)DP = 设平面ADE 的法向量(,,)n x y z = 则DA n ⊥,DE n ⊥∴01110222DA n x DE n x y z ⎧⋅==⎪⎨⋅=++=⎪⎩ 令1z =,得1,0y x =-=∴(0,1,1)n =- ∴2cos ,2||||12DP n DP n DP n ⋅<>===⋅⋅∴二面角E AD B --的大小为45︒(3)∵PD AD ⊥,AD CD ⊥ ,PD CD D ⋂= 又,PD CD ⊂平面PCD ,∴AD ⊥平面PCD ∴平面PCD 的法向量为(1,0,0)DA =又∵1111,,02222AE AE DA ⎛⎫=-⋅⋅=-≠ ⎪⎝⎭∴AE 与DA 不垂直,∴AE 与平面PCD 不平行【点睛】本题考查线面平行、面面垂直的证明,考查用向量法求二面角的夹角,是立体几何中的基础题,掌握证明的条件是解题的关键.17.某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:[30,40),[40,50),[90,100],整理得到如下频率分布直方图:(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;(3)若规定分数在[80,90)为“良好”,[]90,100为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X ,求X 的分布列和数学期望.【答案】(1)180人(2)0.1(3)详见解析 【解析】 【分析】(1)根据样本总人数100人,中男生有55人,则可算出女生45人.再根据总人数是400人,按样本中的女生人数与样本总人数的比例即可估算出的估计总体中女生人数. (2)由表可用1减去及格人数的概率得到不及格人数的概率.(3)设“样本中“良好”或“优秀””为事件B ,则()0.20.10.3B P =+=,根据二项分布列出频率分布列,计算数学期望【详解】解:(1)∵样本中男生有55人,则女生45人 ∴估计总体中女生人数45400180100⨯=人 (2)设“不及格”为事件A ,则“及格”为事件A∴()1()1(0.20.40.20.1)0.1P A P A =-=-+++=(3)设“样本中“良好”或“优秀””为事件B ,则()0.20.10.3B P =+= 依题意可知:~(3,0.3)X B3(0)0.7P B ==,1123(1)0.30.7P X C == 22133(2)0.30.7,(3)0.3P X C X P ====所以,X 的分布列为()30.30.9E X np ==⨯=【点睛】本题考查频率分布直方图的概率问题,概率分布问题注意一些常用的概率分布,如二项分布,超几何分布等,会计算概率,正确列出分布列,正确计算数学期望及方差. 18.已知函数2()2ln f x x a x =-,其中a R ∈(1)当2a =时,求曲线()y f x =在点()()1,1A f 处的切线方程; (2)若函数()f x 存在最小值Q ,求证:1Q ≤. 【答案】(1)230x y +-=(2)证明见解析 【解析】 【分析】(1)将2a =代入函数2()2ln f x x a x =-,对函数求导,将1x =代入导函数求斜率,将1x =代入原函数求切点,最后用点斜式求曲线()y f x =在点()()1,1A f 处的切线方程;(2)先求导得()22()(0)x a f x x x-'=>,讨论当0a ≤时,()0f x '≥恒成立,则()f x 在(0,)+∞单调递增,()f x 无最小值.当0a >时,令()0f x '=得x =x =分别讨论(x ∈时和 )x ∈+∞时的单调性,得出所以()f x 存在最小值,ln Q f a a a ==-.再对新函数求导,根据单调性即可得出最大值为1,则1Q ≤得证.【详解】解:(1)2a =时,22()4ln ,(1)1f x x x f =-=4()2f x x x'=-切线斜率(1)242k f '==-=-曲线()y f x =在点(1,(1))A f 处的切线方程为:12(1)y x -=--即:230x y +-=(2)()222()2(0)x a a f x x x x x-'=-=> ①当0a ≤时,()0f x '≥恒成立()f x 在(0,)+∞单调递增,()f x 无最小值②当0a >时,由()0f x '=得x =x =(x ∈时,()0f x '<,()f x 在(单调递减)x ∈+∞时,()0f x '>,()f x 在)+∞单调递增所以()f x 存在最小值,ln Q f a a a ==-下面证明1Q ≤.设函数()ln (0),()1(ln 1)ln g a a a a a g a a a '=->=-+=-由()0g a '=得1a =,易知()g a 在(0,1)单调递增,在(1,)+∞单调递减 所以()g a 的最大值为(1)1g = 所以()1g a ≤恒成立,1Q ≤得证.【点睛】本题考查利用导数求切线方程,以及含有参数的不等式的证明,利用导数求极值,属于中档题,分类讨论是关键.19.已知椭圆C :223412x y +=. (1)求椭圆C 的离心率;(2)设,A B 分别为椭圆C 的左右顶点,点P 在椭圆C 上,直线AP ,BP 分别与直线4x =相交于点M ,N .当点P 运动时,以M ,N 为直径的圆是否经过x 轴上的定点?试证明你的结论. 【答案】(1)12(2)以MN 为直径的圆经过x 轴上的定点()1,0和()7,0,证明见解析 【解析】 【分析】(1)先将223412x y +=转化为22143x y +=,根据椭圆的性质得到,,a b c ,即可求出离心率.(2)根据椭圆方程求出(2,0),(2,0)A B -,设()00,P x y ,则2200:3412C x y +=①,分别求出直线AP 和BP 的方程,再分别与4x =相交于点 M 0064,2y x ⎛⎫⎪+⎝⎭和N 0024,2y x ⎛⎫ ⎪-⎝⎭,设以MN 为直径的圆经过x 轴上的定点()1,0Q x ,则MQ NQ ⊥,即0MQ NQ ⋅=得()()()22100124022y x x x -+=+-②,将①代入②得()2149x -= 解得11x =或17x =,得出MN 为直径的圆是过定点()1,0和()7,0.【详解】解:(1)由223412x y +=得22143x y +=,那么224,3a b ==所以2221c a b =-=解得2a =,1c =所以离心率12c e a == (2)由题可知(2,0),(2,0)A B -,设()00,P x y ,则2200:3412C x y +=① 直线AP 的方程:00(2)2y y x x =++令4x =,得0062M y y x =+,从而M 点坐标为0064,2y x ⎛⎫⎪+⎝⎭直线BP 的方程:00(2)2y y x x =-- 令4x =,得0022N y y x =-,从而N 点坐标为0024,2y x ⎛⎫⎪-⎝⎭设以MN 为直径的圆经过x 轴上的定点()1,0Q x ,则MQ NQ ⊥由0MQ NQ ⋅=得()()()22100124022y x x x -+=+-② 由①式得()2220001236994y x x =-=-,代入②得()2149x -=解得11x =或17x =所以MN 为直径的圆经过x 轴上的定点()1,0和()7,0.【点睛】本题考查已知椭圆的方程求离心率和证明椭圆中的定点问题,属于中档题.20.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且1241,3,1,a a a ===67819a a a ++=,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是等比数列,141b c ==,4164b c ==,n n n a b c =+.判断{}n a 是否具有性质P ,并说明理由; (3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”充要条件为“{}n b 是常数列”.【答案】(1)315a =(2){}n a 不具有性质P ,详见解析(3)证明见解析 【解析】 【分析】(1)根据{}n a 具有性质P ,且14=1a a =,可得25=3a a =,又因为36a a =,471a a ==,583a a ==,则367845a a a a a a =++--,代入数据即可得结果.(2)141b c ==,4164b c ==得出{}n b 的公差和{}n c 的公比,即可设{}n b 和{}n c 的通项公式,得出421204nn n n a b c n -=+=-+.因为1465a a ==,则238a =,53414a =,得出25a a ≠,所以{}n a 不具有性质P .(3)先证充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证.再证必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N ,使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得m b π>,再根据条件类推,得出{}n a 不具有性质P ,矛盾.必要性得证即可得出结论.【详解】解:(1)因为14=1a a =,所以25=3a a =,36a a =,471a a ==,583a a ==. 所以678313a a a a ++=++,又因为67819a a a ++=,解得315a = (2){}n b 的公差为21,所以()12112120n b n n =+-=-,{}n c 的公比为14,所以1416444n n n c --⎛⎫=⋅= ⎪⎝⎭所以421204n n n n a b c n -=+=-+.所以1465a a ==,238a =,53414a =,因为25a a ≠, 所以{}n a 不具有性质P . (3)证明充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=. 充分性得证.证明必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠.所以{}n a 不具有性质P 矛盾.必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”【点睛】本题考查数列新定义,考查等差、等比数列的定义,考查数列为基础的证明题.。

2020北京各区一模数学试题分类汇编--解析几何(解析版)

2020北京各区一模数学试题分类汇编--解析几何(解析版)

2020北京各区一模数学试题分类汇编一解析几何(2020海淀一模)已知双曲线x1(b 0)的离心率为则b的值为()A. 1 B. 2 C. 3 D. 4 【答案】B【解析】由题知a2e22 . 2a +b 厂厂=5,ab 2.故选:B.(2020海淀一模)已知点P(1, 2)在抛物线C:y22px上,则抛物线C的准线方程为【答案】x 1【解析】P(1,2)在抛物线C : y22px上,2p 4, p 2,准线方程为x故答案为:x1.(2020西城一模)2詁1(b 0)的一条渐近线方程为y 2,则该双曲线的离心率为2【答案】一622 【解析】—4 岭1(b 0),一条渐近线方程为:y 2x,故bb 22,° 斥,e = X2故答案为:◎2(2020西城一模) 设A 2, 1 , B 41,则以线段AB 为直径的圆的方程是(A. (x3)2B. (x 3)2 y 2C. (x 3)2D. (x 3)2 y 2【答案】 【解析】 AB 的中点坐标为: 3,0,圆半径为rAB J22 22圆方程为(x 3)2 y 22. 故选:A .(2020东城一模) 若顶点在原点的抛物线经过四个点 (1,1), (脅),⑵1), (4, 2)中的2个点,则该抛物线的标准方程可以是【答案】x 2 8y 或y 2 x 【解析】设抛物线的标准方程为:2 x my ,不难验证 ,4,2适合,故2小x 8y ;设抛物线的标准方程为: y 2 nx , 不难验证1,1,4,22适合,故y x ;故答案为:x 2 8y 或y 2 x (2020东城一模) 已知圆C 与直线y x 及x y 4 0的相切,圆心在直线 y x 上,则圆C 的方程为() 2 2A. x 1 y 12B.圆C 与直线y4 0都相切,圆心到两直线y2a 42C 的标准方程为故选:A.【答案】B若曲线C 为焦点在x 轴上的椭圆,则满足 a即a 0,b 0,满足a b ,即必要性成立,即“ a b ”是“曲线C 为焦点在x 轴上的椭圆”的必要不充分条件故选:B.2C. x 1 y 1D.【答案】A【解析】圆心在y x 上,设圆心为 a,a ,【解析】 若a b 0,则对应的曲线为双曲线,不是椭圆, 即充分性不成立,0的距离相等,圆心坐标为1,1R 22(2020东城一模) 已知曲线 2C 的方程为—a1,则b ”是 曲线C 为焦点在x 轴上的椭圆的()A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D. 既不充分也不必要条件(2020东城一模)抛物线x 2 4y 的准线与y 轴的交点的坐标为()221 12 21 12 22a ,解得故答案为:A. (0, 1 )B. (0, 1)C. (0, 2)D. (0, 4)2【答案】B【解析】 准线方程为:,•-「,与y 轴的交点为(0, 1),故选B .2已知双曲线M : x 2 - 1的渐近线是边长为1的菱形OABC 的边OA ,OC 所在直 31( a b 0)经过A ,C 两点,且点B 是椭圆N 的一个焦点,贝U a设椭圆N 的左焦点为F 1,则斤(1,0),连接AR由椭圆的定义可得 AF 1 AB 2a(2020丰台一模)2 2线.若椭圆N :二厶2 ,2a b2【解析】因为OA 为双曲线x 2工 31的渐近线,所以k OAAOB 60所以 AD AOsin60AO cos60因为OB2OD 1,所以椭圆N 的半焦距c 1【答案】(2020丰台一模)过抛物线C:y2 2px(p 0)的焦点F作倾斜角为60的直线与抛物线C交于两AF个不同的点A,B (点A在x轴上方),则_ 的值为()BF1 4 - cA. B. C. 3 D. 33 3【答案】D【解析】设A(X A,Y A),B(X B,Y B),过点A分别作准线和x轴的垂线,垂足分别为M,N,过点B作x轴的垂线,垂足于点Q,直线AB与准线交于点D,准线与x轴交于点E3Q直线AB的倾斜角为60,MDA 30,即AD 2 AM由抛物线的定义知,AM 由于AM 〃EF,贝U AM 设直线AB的方程为y并代入y2 2px中,得:AF,贝y AD 2 EF 2p ,'、3 x —,即22 2 3p Y丁Y 2 AF,即点F为AD中点AF 2p,则YA2 psi n60 3p由于BFQ : AFN,则|AF| Y A|BF| Y Bp20,即YA Y B2 rP ,则Y B_P2"P3p 33故选:Dy 1 0的距离为(A. 2 C.【答案】B【解析】圆x 1 2的圆心坐标为(1,0)则圆心(1,0)到直线x 1 0的距离d故选:B(2020朝阳区一已知抛物线C : y22px(p 0)的焦点为F,准线为l,点A是抛物线C上一点, 模)AD l 于D.若AF 4,DAF 60,则抛物线C的方程为(A. y28xB. y2 4x 2C. y2 2xD. y2x【答案】【解析】根据抛物线的定义可得AD AF 4,1又 DAF 60,所以 AD p AF ,2所以4 p 2,解得p 2,所以抛物线C 的方程为y 2 4x .故选:B则该双曲线的离心率为()【答案】C【解析】 设双曲线的实半轴长,半焦距分别为 a,c ,因为 ABC 120,所以AC BC ,因为以A , B 为焦点的双曲线经过点 C所以 AC BC 2a ,AB BC 2c ,所以2 .3c 2c 2a ,所以2—Ua 2故选:C(2020朝阳区一模)数学中有许多寓意美好的曲线,2 23 2 2曲线C :(x y ) 4x y 被称为 四叶玫瑰线”(如图(2020朝阳区一模) 在VABC 中,AB BC , ABC 120 若以 A , B 为焦点的双曲线经过点 C ,A.B."C.D. .3在三角形 ABC 中由余弦定理得cos120oAB 2 BC 2 AC 22 AB BC4c 2 4c 2 AC 28c 2解得AC 212c 2,所以 AC 2.3c ,所示)给出下列三个结论:① 曲线C 关于直线y x 对称;② 曲线C 上任意一点到原点的距离都不超过1;③存在一个以原点为中心、边长为 ,2的正方形,使得曲线 C 在此正方形区域内(含边界)其中,正确结论的序号是 _________ .【答案】①②1 2 2 2 22,从而可得四个交点,B (22),C (吕吕,D (吕吕,依题意满足条件的最小正方形是各边以A,B,C,D 为中点,边长为2的正方形,故不存在一个以原点为中心、边长为的正方形,使得曲线 C 在此正方形区域内(含边界),故③不正确.【解析】对于①,将(y,x )代入C:(x 2 y 2)3 4x 2y 2得(y 2 x 2'3 )3 4y 2x 2成立,故曲线C 关于直线y x 对 称,故①正确;2 23 2 2 2对于②,因为 蛙 d x 2y 2 a d ,所以x 24 41,所以• ,x 2 y 2 1,所以曲线C 上任意一点到原点的距离都不超过1,故②正确;y x2对于③,联立 22 32 2得x(x y ) 4x y故答案为:①②(2020石景山一模)圆x 2 y 2 2x 8y 13 0的圆心到直线ax y 1 0的距离为1,则a ()因为点M 在抛物线上,则(普)2 4 £ •则y N 8 .4 A. -3B.3 4C.农D. 2【答案】A【解析】由x 2y 2 2x 8y 130配方得(x1)2 (y 4)24 , 所以圆心为(1,4),因为圆2 2a 4 14 x y 2x 8y 130 圆心到直线ax y 10的距离为 1, 所以- ,2 21,解得av a 13,故选A.1 y N设点N 为N (°,y N ),因为M 为FN 的中点,所以点M 为(2,一亍),Y 轴于点N .因为F 是抛物线C : y 24x 的焦点,所以点F 坐标为F (1,0).4 3A. B C. 3 D. 23 4【答案】 A【解析】由x2 y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2 y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(°,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B C. 3 D. 23 4【答案】 A【解析】由x2 y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2 y2 2x 8y 13 0 圆心到直线ax y 1 0的距离为1,a 4 1所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为(?,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B C. 3 D. 23 4【答案】 A【解析】由x2 y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2 y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a 4 1所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为J ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为J ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为J ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(°,y N),因为M为FN的中点,所以点M为J ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4),因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN设点N为N(0,y N),因为M为FN的中点,所以点M为(2 , ?),y 轴于点N .因为点M 在抛物线上,则( y N)24 1.则y N2 8 .4 3A. B. C. 3 D. 23 4【答案】 A【解析】由x2y22x 8y 13 0 配方得(x 1)2 (y 4)2 4 ,所以圆心为(1,4) ,因为圆22x2y2 2x 8y 13 0 圆心到直线ax y 1 0 的距离为1,a41所以 2 21,解得aa21243,故选 A.因为F是抛物线C : y2 4x的焦点,所以点F坐标为F(1,0).1 yN 设点N为N(0,y N),因为M为FN的中点,所以点M为$,?),y 轴于点N .因为点M 在抛物线上,则(y N)24 1.则y N2 8 .。

2020北京中考各区一模数学一次函数汇编及答案

2020北京中考各区一模数学一次函数汇编及答案

间的部分与线段 ଘ 围成的区域(不含边界)为 .
①当
时,结合函数图象,求区域 内整点的个数;
②若区域 内恰有 1 个整点,直接写出 的取值范围.
2、丰台
21.在平面直角坐标系 xOy 中,一次函数 y=x+4 的图象与 y 轴交于点 A,与反比例函数 y k 的图象的一个交点为 x M.
(1)求点 A 的坐标;
6、密云 22. 如图,在平面直角坐标系 xOy 中,直线 l: y x 1 的图象与反比例函数
y k (x 0) x
的图象交于点 A(3,m).
(1)求 m、k 的值;
(2)点 P(xp,0)是 x 轴上的一点,过点 P 作 x 轴的垂线,交直线 l 于点 M,交反比
例函数 y k( x 0 )的图象于点 N. 横、纵坐标都是整数的点叫做整点.记 y k( x 0 )
数海中的小李鱼
7
2020 中考冲刺讲义系列
11、通州
汇编是为了找到共性,看出趋势
数海中的小李鱼
8
9、延庆 23.在平面直角坐标系 xOy 中,将点 A(2,4)向下平移 2 个单位得到点 C,反比例函数 y m (m≠0)的图象经过点 C,过点 C 作 CB⊥x 轴于点 B.
x (1)求 m 的值;
(2)一次函数 y=kx+b(k<0)的图象经过点 C,交 x 轴于点 D, 线段 CD,BD,BC 围成的区域(不含边界)为 G; 若横、纵坐标都是整数的点叫做整点. ①b=3 时,直接写出区域 G 内的整点个数. ②若区域 G 内没有整点,结合函数图象,确定 k 的取值范围.
4
2020 中考冲刺讲义系列
汇编是为了找到共性,看出趋势
8、顺义

2020年北京市大兴区高考数学一模试卷 (解析版)

2020年北京市大兴区高考数学一模试卷 (解析版)

2020年高考数学一模试卷一、选择题(共10小题)1.在复平面内,对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x=2k,k∈Z},B={x|﹣2≤x≤2},则A∩B=()A.[﹣1,1]B.[﹣2,2]C.{0,2}D.{﹣2,0,2} 3.已知等差数列{a n}的前n项和为S n,a2=0,a4=1,则S4等于()A.B.1C.2D.34.下列函数中,在区间(0,+∞)上单调递增且存在零点的是()A.y=e x B.C.D.y=(x﹣1)2 5.在(x﹣2)n的展开式中,只有第三项的二项式系数最大,则含x项的系数等于()A.﹣32B.﹣24C.8D.46.若抛物线y2=4x上一点M到其焦点的距离等于2,则M到其顶点O的距离等于()A.B.2C.D.37.已知数列{a n}是等比数列,它的前n项和为S n,则“对任意n∈N*,a n>0”是“数列{S n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.某四棱锥的三视图如图所示,如果方格纸上小正方形的边长为1,那么该几何体的最长棱的棱长为()A.3B.C.D.9.已知函数(ω>0).若关于x的方程f(x)=1在区间[0,π]上有且仅有两个不相等的实根,则ω的最大整数值为()A.3B.4C.5D.610.如图,假定两点P,Q以相同的初速度运动.点Q沿直线CD作匀速运动,CQ=x;点P沿线段AB(长度为107单位)运动,它在任何一点的速度值等于它尚未经过的距离(PB =y).令P与Q同时分别从A,C出发,那么,定义x为y的纳皮尔对数,用现在的数学符号表示x与y的对应关系就是,其中e为自然对数的底.当点P从线段AB的三等分点移动到中点时,经过的时间为()A.ln2B.ln3C.D.二、填空题共5小题,每小题5分,共25分.11.已知向量(﹣1,1),(2,t),若∥,则t=.12.若函数f(x)=cos2x﹣sin2x在区间[0,m]上单调减区间,则m的一个值可以是.13.若对任意x>0,关于x的不等式恒成立,则实数a的范围是.14.已知A(a,r),B(b,s)为函数y=log2x图象上两点,其中a>b.已知直线AB的斜率等于2,且,则a﹣b=;.15.在直角坐标系xOy中,双曲线(a>0,b>0)的离心率e>2,其渐近线与圆x2+(y﹣2)2=4交x轴上方于A,B两点,有下列三个结论:①;②存在最大值;③.则正确结论的序号为.三、解答题共6题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在△ABC中,c=1,,且△ABC的面积为.(Ⅰ)求a的值;(Ⅱ)若D为BC上一点,且______,求sin∠ADB的值.从①AD=1,②这两个条件中任选一个,补充在上面问题中并作答.17.为了调查各校学生体质健康达标情况,某机构M采用分层抽样的方法从A校抽取了m 名学生进行体育测试,成绩按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到如下频率分布直方图.根据规定,测试成绩低于60分为体质不达标.已知本次测试中不达标学生共有20人.(Ⅰ)求m的值;(Ⅱ)现从A校全体同学中随机抽取2人,以频率作为概率,记X表示成绩不低于90分的人数,求X的分布列及数学期望;(Ⅲ)另一机构N也对该校学生做同样的体质达标测试,并用简单随机抽样方法抽取了100名学生,经测试有20名学生成绩低于60分.计算两家机构测试成绩的不达标率,你认为用哪一个值作为对该校学生体质不达标率的估计较为合理,说明理由.18.如图,在三棱柱ABC﹣A1B1C1中,AB=AC=BC=AA1,∠BCC1=60°,平面ABC⊥平面BCC1B1,D是BC的中点,E是棱A1B1上一动点.(Ⅰ)若E是棱A1B1的中点,证明:DE∥平面ACC1A1;(Ⅱ)求二面角C1﹣CA﹣B的余弦值;(Ⅲ)是否存在点E,使得DE⊥BC1,若存在,求出E的坐标,若不存在,说明理由.19.已知椭圆的离心率为,且经过点(2,0),一条直线l与椭圆C交于P,Q两点,以PQ为直径的圆经过坐标原点O.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求证:为定值.20.已知函数.(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:函数f(x)有且只有一个零点.21.已知数列a1,a2,…,a10满足:对任意的i,j∈{1,2,3,4,5,6,7,8,9,10},若i≠j,则a i≠a j,且a i∈{1,2,3,4,5,6,7,8,9,10},设集合A={a i+a i+1+a i+2|i =1,2,3,4,5,6,7,8},集合A中元素最小值记为m(A),集合A中元素最大值记为n(A).(Ⅰ)对于数列:10,6,1,2,7,8,3,9,5,4,写出集合A及m(A),n(A);(Ⅱ)求证:m(A)不可能为18;(Ⅲ)求m(A)的最大值以及n(A)的最小值.参考答案一、选择题共10小题,每小题4分,共40分.在每题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】利用复数的运算法则、几何意义即可得出.解:在复平面内,复数1﹣i对应的点(1,﹣1)位于第四象限.故选:D.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2.已知集合A={x|x=2k,k∈Z},B={x|﹣2≤x≤2},则A∩B=()A.[﹣1,1]B.[﹣2,2]C.{0,2}D.{﹣2,0,2}【分析】分别求得集合A、B,利用交集定义直接求解.解:∵集合A={x|x=2k,k∈Z},B={x|﹣2≤x≤2},A∩B={﹣2,0,2}.故选:D.【点评】本题考查交集的求法,考查交集定义等基础知识,考查推理能力与计算能力,属于基础题.3.已知等差数列{a n}的前n项和为S n,a2=0,a4=1,则S4等于()A.B.1C.2D.3【分析】利用等差数列通项公式列出方程组,求出a1,d,由此能求出S4.解:∵等差数列{a n}的前n项和为S n,a2=0,a4=1,∴,解得a1,d,∴S4=41.故选:B.【点评】本题考查等差数列的前4项和的求法,考查等差数列的性质等基础知识,考查推理论证能力能力与运算求解能力,属于基础题.4.下列函数中,在区间(0,+∞)上单调递增且存在零点的是()A.y=e x B.C.D.y=(x﹣1)2【分析】根据基本初等函数的图象与性质,零点的含义,以及函数图象的变换法则,逐一判断每个选项即可.解:函数y=e x>0恒成立,不存在零点,即A不符合题意;函数恒成立,不存在零点,即B不符合题意;函数在(0,+∞)上单调递增,且当x=1时,y=0,所以函数的零点为x=1,即C正确;函数y=(x﹣1)2在(0,1)上单调递减,在(1,+∞)上单调递增,即D不符合题意.故选:C.【点评】本题考查函数的单调性和零点问题,熟练掌握基本初等函数的图象与性质是解题的关键,属于基础题.5.在(x﹣2)n的展开式中,只有第三项的二项式系数最大,则含x项的系数等于()A.﹣32B.﹣24C.8D.4【分析】根据n为偶数是,只有中间一项的二项式系数最大,由此求出n的值,然后再利用通项求出含x的项的系数.解:由已知得:n为偶数,且,故n=4.所以该二项式为(x﹣2)4,所以展开式的通项为,令4﹣k=1得k=3,故该项的系数为.故选:A.【点评】本题考查二项式展开式中二项式系数的性质以及通项的应用,属于基础题.6.若抛物线y2=4x上一点M到其焦点的距离等于2,则M到其顶点O的距离等于()A.B.2C.D.3【分析】设M的坐标,由抛物线的性质可得,到焦点的距离等于到准线的距离,求出M 的横坐标,代入抛物线的方程可得M的纵坐标,进而求出M到顶点的距离.解:设M(x0,y0),由抛物线的方程可得焦点F(1,0),准线方程为:x=﹣1,由抛物线的性质可得x0+1=2,所以x0=1,代入抛物线的方程可得|y|=2,即M(1,±2),所以|OM|,故选:C.【点评】本题考查抛物线的性质,属于中档题.7.已知数列{a n}是等比数列,它的前n项和为S n,则“对任意n∈N*,a n>0”是“数列{S n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】“对任意n∈N*,a n>0”⇒“数列{S n}为递增数列”,“数列{S n}为递增数列”⇒“对任意n∈N*,a n>0”,由此能求出结果.解:∵数列{a n}是等比数列,它的前n项和为S n,“对任意n∈N*,a n>0”⇒“数列{S n}为递增数列”,“数列{S n}为递增数列”⇒“对任意n∈N*,a n>0”,∴“对任意n∈N*,a n>0”是“数列{S n}为递增数列”的充要条件.故选:C.【点评】本题考查充分条件、必要条件、充要条件的判断,考查等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.8.某四棱锥的三视图如图所示,如果方格纸上小正方形的边长为1,那么该几何体的最长棱的棱长为()A.3B.C.D.【分析】首先把三视图转换为直观图,进一步求出几何体的最大棱长.解:根据几何体的三视图转换为直观图如下:该几何体为四棱锥体E﹣ABCD,所以该几何体的最长的棱长为DE.故选:D.【点评】本题考查的知识要点:三视图和直观体之间的转换,直观图的棱长的求法及应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.9.已知函数(ω>0).若关于x的方程f(x)=1在区间[0,π]上有且仅有两个不相等的实根,则ω的最大整数值为()A.3B.4C.5D.6【分析】当x∈[0,π]时,ωx∈[,ωπ];根据条件关于x的方程f(x)=1在区间[0,π]上有且仅有两个不相等的实根,结合正弦函数的图象,得ωπ,解得ω,即可得满足条件的ω的最大整数.解:当x∈[0,π]时,ωx∈[,ωπ];∵关于x的方程f(x)=1在区间[0,π]上有且仅有两个不相等的实根,结合正弦函数的图象,得ωπ,解得ω,可得满足条件的ω的最大整数为4.故选:B.【点评】本题考查了正弦函数的图象与性质,整体法思想与数形结合的思想方法,属于基础题.10.如图,假定两点P,Q以相同的初速度运动.点Q沿直线CD作匀速运动,CQ=x;点P沿线段AB(长度为107单位)运动,它在任何一点的速度值等于它尚未经过的距离(PB =y).令P与Q同时分别从A,C出发,那么,定义x为y的纳皮尔对数,用现在的数学符号表示x与y的对应关系就是,其中e为自然对数的底.当点P从线段AB的三等分点移动到中点时,经过的时间为()A.ln2B.ln3C.D.【分析】易知,它们的初速度相等,故Q点的速度为107,然后可以根据,求出P在中点、分点时的x,则Q点移动的距离可求,结合速度,时间可求.解:由题意,P点初始速度107即为Q点的速度.当P在靠近A点的三等分点时:,解得:x,当P在二等分点时:,解得:x=107ln2,所以经过的时间为:.故选:D.【点评】本题考查对数的计算和指数式和对数式的互化,要注意对题意的准确理解.属于基础题.二、填空题共5小题,每小题5分,共25分.11.已知向量(﹣1,1),(2,t),若∥,则t=﹣2.【分析】由向量平行的充要条件可得:﹣1×2﹣1×t=0,解之即可.解:∵向量(﹣1,1),(2,kt),且∥,∴﹣1×2﹣1×t=0,解得t=﹣2故答案为:﹣2【点评】本题考查平行向量与共线向量,属基础题.12.若函数f(x)=cos2x﹣sin2x在区间[0,m]上单调减区间,则m的一个值可以是1.【分析】由已知利用二倍角的余弦函数公式可求f(x)=cos2x,利用余弦函数的单调性可求函数的单调递减区间,结合已知可得,k∈Z,解得k=0时,m,即可求解.解:∵f(x)=cos2x﹣sin2x=cos2x,令2kπ≤2x≤2kπ+π,k∈Z,解得kπ≤x≤kπ,k∈Z,∴函数f(x)=cos2x﹣sin2x的单调递减区间为:[kπ,kπ],k∈Z,∵函数在区间[0,m]上单调递减,∴,k∈Z,解得k=0时,m,∴可得0<m.故答案为:1.【点评】本题主要考查了二倍角的余弦函数公式,余弦函数的单调性,考查了转化思想和函数思想,属于基础题.13.若对任意x>0,关于x的不等式恒成立,则实数a的范围是(﹣∞,2].【分析】利用基本不等式求出的最小值,只需a不大于其最小值即可.解:∵x>0,∴22,当且仅当x=1时取等号,又恒成立,∴a ≤2.故答案为:(﹣∞,2].【点评】本题主要考查基本不等式的应用,属于基础题.14.已知A(a,r),B(b,s)为函数y=log2x图象上两点,其中a>b.已知直线AB的斜率等于2,且,则a﹣b=1;4.【分析】利用对数性质、直线的斜率公式、两点间距离公式列出方程组,能求出a,b,s,r,由此能求出结果.解:∵A(a,r),B(b,s)为函数y=log2x图象上两点,其中a>b.直线AB的斜率等于2,且,∴,解得a,b,s=﹣log23,r=2﹣log23,∴a﹣b=1,.故答案为:1,4.【点评】本题考查两数差与两数商的求法,考查对数性质、直线的斜率公式、两点间距离公式等基础知识,考查推理能力与计算能力,属于基础题.15.在直角坐标系xOy中,双曲线(a>0,b>0)的离心率e>2,其渐近线与圆x2+(y﹣2)2=4交x轴上方于A,B两点,有下列三个结论:①;②存在最大值;③.则正确结论的序号为①③.【分析】由离心率e>2⇒b2>3a2,进而得出渐近线与x轴的夹角α的取值范围,然后求出2、2、,再研究结论的正确与否,选出正确序号即可.解:由题意可得e2,可得c2>4a2,∵c2=a2+b2,∴b2>3a2,所以渐近线的斜率k,设渐近线与x轴的夹角为α,所以tanα,α,所以两条渐近线的夹角为θ,则θ=2(α)=π﹣2α,所以θ∈(0,)∴cos,0,所以①正确;∵||,而22=[4cos()]2=16sin2α,||•||•cosθ=16sin2α•(1﹣2cos2α),∴4sin2α,α,无最大值,所以②错误;又||8sin2α>8×sin26,所以③正确;故答案为:①③.【点评】本题主要考查以圆锥曲线为素材研究向量的运算,属于中档题.三、解答题共6题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在△ABC中,c=1,,且△ABC的面积为.(Ⅰ)求a的值;(Ⅱ)若D为BC上一点,且______,求sin∠ADB的值.从①AD=1,②这两个条件中任选一个,补充在上面问题中并作答.【分析】(Ⅰ)根据三角形的面积公式求出b的值,再利用余弦定理求得a;(Ⅱ)选①时,利用正弦定理求出sin B,从而求得sin∠ADB.选②时,利用余弦定理求出cos B,从而求得sin∠ADB.解:(Ⅰ)由于c=1,,S△ABC bc sin A b•1•sin,解得b=2;由余弦定理得a2=b2+c2﹣2bc cos A,解得;(Ⅱ)若选①,则当AD=1时,在△ABC中,由正弦定理,即,所以;因为AD=AB=1,所以∠ADB=∠B;所以sin∠ADB=sin B,即.若选②,则当∠CAD=30°时,在△ABC中,由余弦定理知,.因为A=120°,所以∠DAB=90°,所以,所以sin∠ADB=cos B,即.【点评】本题考查了解三角形的应用问题,也考查了运算求解能力,是中档题.17.为了调查各校学生体质健康达标情况,某机构M采用分层抽样的方法从A校抽取了m 名学生进行体育测试,成绩按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到如下频率分布直方图.根据规定,测试成绩低于60分为体质不达标.已知本次测试中不达标学生共有20人.(Ⅰ)求m的值;(Ⅱ)现从A校全体同学中随机抽取2人,以频率作为概率,记X表示成绩不低于90分的人数,求X的分布列及数学期望;(Ⅲ)另一机构N也对该校学生做同样的体质达标测试,并用简单随机抽样方法抽取了100名学生,经测试有20名学生成绩低于60分.计算两家机构测试成绩的不达标率,你认为用哪一个值作为对该校学生体质不达标率的估计较为合理,说明理由.【分析】(Ⅰ)由频率分布直方图,低于60分的概率为0.1,由频率与频数的关系求出m;(II)每位学生成绩不低于90分的频率为0.01×10=0.1,由已知,X的所有可能取值为0,1,2,求出X的分布列和数学期望;(III)机构M抽测的不达标率为,机构N抽测的不达标率为,结合概率知识判断写出理由即可.解:(Ⅰ)由频率分布直方图知,低于60分的概率为(0.002+0.002+0.006)×10=0.1,由m×0.1=20,解得m=200;(Ⅱ)由图知,每位学生成绩不低于90分的频率为0.01×10=0.1,由已知,X的所有可能取值为0,1,2,则,,,所以X的分布列为X012P0.810.180.01所以E(X)=0×0.81+1×0.18+2×0.01=0.2,(Ⅲ)机构M抽测的不达标率为,机构N抽测的不达标率为,(以下答案不唯一,只要写出理由即可)①用机构M测试的不达标率0.1估计A校不达标率较为合理,理由:机构M选取样本时使用了分层抽样方法,样本量也大于机构N,样本更有代表性,所以能较好反映了总体的分布.②没有充足的理由否认机构N的成绩更合理,理由:尽管机构N的样本量比机构M少,但由于样本的随机性,不能排除样本较好的反映了总体的分布,所以没有充足的理由否认机构N的成绩更合理.【点评】本题考查了频率分布直方图的应用,考查了离散型随机变量的分布列和数学期望,考查运算能力,中档题.18.如图,在三棱柱ABC﹣A1B1C1中,AB=AC=BC=AA1,∠BCC1=60°,平面ABC⊥平面BCC1B1,D是BC的中点,E是棱A1B1上一动点.(Ⅰ)若E是棱A1B1的中点,证明:DE∥平面ACC1A1;(Ⅱ)求二面角C1﹣CA﹣B的余弦值;(Ⅲ)是否存在点E,使得DE⊥BC1,若存在,求出E的坐标,若不存在,说明理由.【分析】(Ⅰ)取A1C1中点为P,连结CP,EP,推导出CDEP为平行四边形,CP∥DE.由此能证明DE∥平面ACC1A1.(Ⅱ)连结C1D、AD,推导出DC1,DA,DB两两垂直.建立直角坐标系D﹣xyz,利用向量法能求出二面角C1﹣CA1﹣B的余弦值.(Ⅲ)设,则,,,,假设DE⊥BC1,则,解得λ=2,由此推导出不存在点E,使得DE⊥BC1.【解答】(Ⅰ)证明:取A1C1中点为P,连结CP,EP,在△A1B1C1中,因为E、P为A1B1、A1C1的中点,所以EP∥B1C1且.又因为D是BC的中点,,所以EP∥BC且EP=CD,所以CDEP为平行四边形,所以CP∥DE.又因为DE⊄平面ACC1A1,CP⊂平面ACC1A1,所以DE∥平面ACC1A1.(Ⅱ)解:连结C1D、AD,因为△ABC是等边三角形,D是BC的中点,所以AD⊥BC,因为BC=AA1=CC1,∠BCC1=60°,所以C1D⊥BC.因为平面ABC⊥平面BCC1B1,平面ABC∩平面BCC1B1=BC,C1D⊂平面BCC1B1,所以C1D⊥平面ABC,所以DC1,DA,DB两两垂直.如图,建立空间直角坐标系D﹣xyz,则,C(0,﹣1,0),,,设平面ACC1的法向量为(x,y,z),则,即,令x=1,得(1,,1).平面ABC的法向量为,cos,.又因为二面角C1﹣CA1﹣B为锐二面角,所以二面角C1﹣CA1﹣B的余弦值为.(Ⅲ)解:,,设,则,所以,,所以,假设DE⊥BC1,则,解得λ=2,这与已知0≤λ≤1矛盾.故不存在点E,使得DE⊥BC1.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,考查满足线线垂直的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题.19.已知椭圆的离心率为,且经过点(2,0),一条直线l与椭圆C交于P,Q两点,以PQ为直径的圆经过坐标原点O.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求证:为定值.【分析】(Ⅰ)首先利用椭圆的离心率和椭圆经过的点的坐标求出a和c的值,最后求出b,进一步求出椭圆的方程.(Ⅱ)利用分类讨论思想的应用①假设直线的斜率不存在求出结果为定值,②当直线的斜率存在时,建立直线和椭圆的方程组,进一步利用一元二次方程根和系数关系式的应用求出结果为定值.解:(Ⅰ)因为椭圆经过点(2,0),所以a=2,又因为,则c=1由b2=a2﹣c2,得b2=3,所以椭圆的标准方程为.(Ⅱ)方法一:因为以PQ为直径的圆过坐标原点O,所以OP⊥OQ.①若直线OP的斜率不存在,则P为椭圆与y轴交点,Q为椭圆与x轴交点,因此|OP|2=b2=3,|OQ|2=a2=4,则.②若直线OP的斜率存在且为0,则P为椭圆与x轴交点,Q为椭圆与y轴交点,因此|OP|2=a2=4,|OQ|2=b2=3,则.③若直线OP的斜率存在且不为0,可设直线OP方程为y=kx(k≠0),则直线OQ的方程为.联立,得,即,,即,同理,,则.方法二:①若直线l的斜率存在时,设l:y=kx+m,与椭圆方程联立得:,有(3+4k2)x2+8kmx+4m2﹣12=0,由题意,△>0,设P(x1,y1),Q(x2,y2),所以,.因为以PQ为直径的圆过原点O,由OP⊥OQ,得x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0,整理得,12(1+k2)=7m2,而.设h为O到l的距离,则|OP|•|OQ|=|PQ|•h所以,而,所以.②若直线l的斜率不存在,则有k OP=±1,不妨设k OP=1,设P(x1,y1),有x1=y1,代入椭圆方程得,,,即,综上.【点评】本题考查的知识要点:椭圆的方程的求法和应用,直线和椭圆的位置关系的应用,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.20.已知函数.(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:函数f(x)有且只有一个零点.【分析】(Ⅰ)求出函数的导数,然后分别求出x=1时的函数值、导数值,利用点斜式即可求切线方程;(Ⅱ)函数f(x)有且只有一个零点,可转化为在(0,+∞)上只有一个零点,可通过研究g(x)的单调性、极值的符号结合零点存在性定理求解.解:(Ⅰ)当a=1时,函数,x>0,所以,,,所以函数y=f(x)在点(1,f(1))处的切线方程是3x﹣4y﹣5=0.(Ⅱ)函数的定义域为(0,+∞),要使函数f(x)有且只有一个零点,只需方程(x+1)lnx﹣ax=0有且只有一个根,即只需关于x的方程在(0,+∞)上有且只有一个解.设函数,则,令h(x)=x+1﹣lnx,则,由h'(x)=0,得x=1.x(0,1)1(1,+∞)h'(x)﹣0+h(x)单调递减极小值单调递增由于h(x)min=h(1)=2>0,所以g'(x)>0,所以在(0,+∞)上单调递增,又g(1)=﹣a,,①当a=0时,g(1)=0,函数g(x)在(0,+∞)有且只有一个零点,②当a≠0时,由于,所以存在唯一零点.综上所述,对任意的a∈一、选择题函数y=f(x)有且只有一个零点.【点评】本题考查了函数的零点的判断方法,导数在研究函数单调性、极值中的应用.同时考查学生利用函数与方程思想、转化与化归思想解决问题的能力,同时考查了学生的运算能力.属于中档题.21.已知数列a1,a2,…,a10满足:对任意的i,j∈{1,2,3,4,5,6,7,8,9,10},若i≠j,则a i≠a j,且a i∈{1,2,3,4,5,6,7,8,9,10},设集合A={a i+a i+1+a i+2|i=1,2,3,4,5,6,7,8},集合A中元素最小值记为m(A),集合A中元素最大值记为n(A).(Ⅰ)对于数列:10,6,1,2,7,8,3,9,5,4,写出集合A及m(A),n(A);(Ⅱ)求证:m(A)不可能为18;(Ⅲ)求m(A)的最大值以及n(A)的最小值.【分析】(Ⅰ)A={17,9,10,18,20},m(A)=9,n(A)=20.(Ⅱ)假设m(A)≥18,设S=(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+a10=55,则S=55≥3m(A)+a10=3×18+a10,从而推导出a10=1,同理推出a1=1,a i(i=1,2,…,10)中有两个元素为1,与题设矛盾,从而m(A)不可能为18.(Ⅲ)由m(A)<18,得m(A)=17是可能的.当m(A)=17时,推导出a10≤4,a7≤4.同理可得:a i≤4(i=1,4,7,10).对于数列:1,6,10,2,7,8,3,9,5,4,A={17,18,19,20},m(A)=17,n(A)=20,从而m(A)的最大值为17;假设n(A)≤15.推导出a1=10.a4=10,矛盾,假设不成立,从而n(A)≥16.从而n(A)的最小值为16.解:(Ⅰ)解:∵数列:10,6,1,2,7,8,3,9,5,4,对任意的i,j∈{1,2,3,4,5,6,7,8,9,10},i≠j,则a i≠a j,且a i∈{1,2,3,4,5,6,7,8,9,10},设集合A={a i+a i+1+a i+2|i=1,2,3,4,5,6,7,8},集合A中元素最小值记为m(A),集合A中元素最大值记为n(A).∵10+6+1=17,6+1+2=9,1+2+7=10,2+7+8=17,7+8+3=18,8+3+9=20,3+9+5=17,9+5+4=18,∴A={17,9,10,18,20},m(A)=9,n(A)=20.(Ⅱ)证明:假设m(A)≥18,设S=(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+a10=55,则S=55≥3m(A)+a10=3×18+a10,即a10≤1,因为a i≥1(i=1,2,3,…,10),所以a10=1,同理,设S=a1+(a2+a3+a4)+(a5+a6+a7)+(a8+a9+a10)=55,可以推出a1=1,a i(i=1,2,…,10)中有两个元素为1,与题设矛盾,故假设不成立,m(A)不可能为18.(Ⅲ)解:m(A)的最大值为17,n(A)的最小值为16.①首先求m(A),由(Ⅱ)知m(A)<18,而m(A)=17是可能的.当m(A)=17时,设S=(a1+a2+a3)+(a4+a5+a6)+(a7+a8+a9)+a10=55,则S=55≥3m(A)+a10=3×17+a10,即a10≤4,又S=(a1+a2+a3)+(a4+a5+a6)+a7+(a8+a9+a10)=55,得55=S≥3m(A)+a7=51+a7,即a7≤4.同理可得:a i≤4(i=1,4,7,10).对于数列:1,6,10,2,7,8,3,9,5,4,此时A={17,18,19,20},m(A)=17,n(A)=20,满足题意.所以m(A)的最大值为17.②现证明:n(A)的最小值为16.先证明n(A)≤15为不可能的,假设n(A)≤15.设S=a1+(a2+a3+a4)+(a5+a6+a7)+(a8+a9+a10)=55,可得55≤3n(A)+a1≤3×15+a1,即a1≥10,元素最大值为10,所以a1=10.又(a1+a2+a3)+a4+(a5+a6+a7)+(a8+a9+a10)=55≤3n(A)+a4≤3×15+a4,同理可以推出a4=10,矛盾,假设不成立,所以n(A)≥16.数列为:7,6,2,8,3,4,9,1,5,10时,A={13,14,15,16},m(A)=13,n(A)=16,A中元素的最大值为16.所以n(A)的最小值为16.【点评】本题考查集合的求法,考查集合中元素的最大值和最小值的求法,考查推理论证能力能力与运算求解能力,属于中档题.。

2020届北京市东城区高三高考第一次模拟(4月)数学试题(解析版)

2020届北京市东城区高三高考第一次模拟(4月)数学试题(解析版)
单调性.
故选:A.
【点睛】
本题考查对勾型函数的性质,其中涉及到基本不等式求最值,是一道容易题.
5.已知曲线C的方程为 ,则“ ”是“曲线C为焦点在x轴上的椭圆”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】B
【解析】根据椭圆方程的特点,结合充分条件和必要条件的定义进行判断即可.
,即 为票价,
当 时, ,则 为固定成本,
由图象(2)知,直线向上平移,
不变,即票价不变,
变大,则 变小,成本减小.
故①错误,②正确;
由图象(3)知,直线与 轴的交点不变,直线斜率变大,
变大,即提高票价,
不变,则 不变,成本不变.
故③正确,④错误;
故答案为:②③
【点睛】
本题考查一次函数图象的变化,以及 和 对一次函数图象的影响,是基础题.
以 为原点,分别以 所在直线为 轴、 轴、 轴建立空间直角坐标系,如图所示
, , .

.
设平面 的法向量为 ,
则 ,即 ,令 ,则 , .
设直线 和平面 所成的角为 ,则

所以直线 和平面 所成角的正弦值为 .
【点睛】
本题考查线面垂直的性质定理和用向量的方法求空间角,考查学生的运算能力,属于中档题.
③图(3)对应的方案是:提高票价,并保持成本不变;
④图(3)对应的方案是:提高票价,并降低成本.
其中,正确的说法是____________.(填写所有正确说法的编号)
【答案】②③
【解析】根据图象可知盈利额 与观影人数 成一次函数关系,再分别根据(2)和(3)的图象进行分析即可得出答案.
【详解】

北京市各区2020年数学一模导数分类汇编

北京市各区2020年数学一模导数分类汇编

(朝阳)(20)(本小题15分)已知函数()11e x x xf x -+=-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)判断函数()f x 的零点的个数,并说明理由;(Ⅲ)设0x 是()f x 的一个零点,证明曲线e xy =在点00(,e )x x 处的切线也是曲线ln y x=的切线.解:(Ⅰ)因为()11e x x xf x -+=-,所以001010)2(e f -=+=-,()2(1)2e xx f x -'=+,02(01)203e ()f -'==+.所以曲线()y f x =在点(0,(0))f 处的切线的方程为320x y -+=. (Ⅱ)函数()f x 有且仅有两个零点.理由如下:()f x 的定义域为{|,1}x x x ∈≠R .因为22()e 0(1)xf 'x x =+>-,所以()f x 在(,1)-∞和(1,)+∞上均单调递增.因为(0)20f =>,21(2)3e 0f --=-<,所以()f x 在(,1)-∞上有唯一零点1x .因为2e (2)30f =->,545()e 904f =-<,所以()f x 在(1,)+∞上有唯一零点2x . 综上,()f x 有且仅有两个零点.(Ⅲ)曲线e xy =在点00(,e )x x 处的切线方程为000e e ()x x y x x -=-,即0000e e e x x x y x x =-+ .设曲线ln y x =在点33(,)x y 处的切线斜率为0e x ,则031e xx =,031ex x =,30y x =-,即切点为001(,)e x x -. 所以曲线ln y x =在点001(,)e x x -处的切线方程为 0001e ()ex x y x x +=-,即00e 1x y x x =--. 因为0x 是()f x 的一个零点,所以00011e xx x -+=.所以00000000011e e e (1)(1)1x x xx x x x x x -+-+=-=-=--.所以这两条切线重合. 所以结论成立. …………15分(西城二模)20.(本小题满分15分)设函数()e cos x f x a x =+,其中a ∈R . (Ⅰ)已知函数()f x 为偶函数,求a 的值; (Ⅱ)若1a =,证明:当0x >时,()2f x >;(Ⅲ)若()f x 在区间[0,π]内有两个不同的零点,求a 的取值范围. 解:(Ⅰ)函数()f x 为偶函数,所以(π)(π)f f -=,即ππe 1e 1a a --=-, ……………… 2分 解得0a =.验证知0a =符合题意. ……………… 4分(Ⅱ)()e sin x f x x '=-. ……………… 6分 由0x >,得e 1x >,sin [1,1]x ∈-, ……………… 7分 则()e sin 0x f x x '=->,即()f x 在(0,)+∞上为增函数.故()(0)2f x f >=,即()2f x >. ………………9 分(Ⅲ)由()e cos 0xf x a x =+=,得cos e xxa =-. 设函数cos ()e xxh x =-,[0,π]x ∈, ……………… 10分 则sin cos ()e xx xh x +'=. ……………… 11分令()0h x '=,得3π4x =. 随着x 变化,()h x '与()h x 的变化情况如下表所示:所以()h x 在(0,)4上单调递增,在(,π)4上单调递减. ……………… 13分又因为(0)1h =-,π(π)e h -=,3π43π()4h -=,所以当3ππ4[e ,)2a --∈时,方程cos e x x a =-在区间[0,π]内有两个不同解,且在区间3π[0,)4与3π(,π]4上各有一个解.即所求实数a 的取值范围为3ππ4[e ,)--. ……………… 15分 (房山)(20)(本小题15分)已知函数32()22f x x ax =-+.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)若0a >,设函数()|()|g x f x =,()g x 在[1,1]-上的最大值不小于3,求a 的取值范围.解:(Ⅰ)2()62f x x ax '=-由(0)0f '=,(0)2f =,得曲线()y f x =在点(0,(0))f 处的切线方程为2y =(Ⅱ)定义域为R ,()2()6223f x x ax x x a '=-=-令()0f x '=,解得120,3a x x ==若0a =,2()60f x x '=≥,()f x 在R 上单调递增;若0a >,在(),0-∞上,()0f x '>,()f x 单调递增,在(0,)3a上,()0f x '<,()f x 单调递减,在,3a ⎛⎫+∞⎪⎝⎭上,()0f x '>,()f x 单调递增; 若0a <,,3a ⎛⎫-∞ ⎪⎝⎭上,()0f x '>,()f x 单调递增,在(,0)3a上,()0f x '<,()f x 单调递减,在()0,+∞上,()0f x '>,()f x 单调递增;(Ⅲ)若0a >,函数()f x 的单调减区间为0,3a ⎛⎫ ⎪⎝⎭,单调递增区间为(,0),,3a ⎛⎫-∞+∞⎪⎝⎭. 当13a≥时,即3a ≥,由(Ⅱ)知,()f x 在[1,0]-上单调递增,在[0,1]上单调递减,则max ()max{|(1)|,|(0)|,|(1)|}max{,2,|4|}3g x f f f a a =-=-≥当13a <时,即03a <<,()f x 在[1,0]-和[,1]3a上单调递增,在[0,]3a 上单调递减,()f x 在3ax =处取得极小值3()20327a a f =-> 则max ()max{|(1)|,|(0)|,|(1)|}max{,2,4}g x f f f a a =-=-, 若max ()3g x ≥,则43a -≥,即01a <≤ 综上,实数a 的取值范围为]([)0,13,+∞U (延庆)(丰台) 19.(本小题共15分)已知函数()()ln 1f x x a x x =+-+.(Ⅰ)若曲线()y f x =在点(e (e))f ,处的切线斜率为1,求实数a 的值; (Ⅱ)当0a =时,求证:()0f x ≥;(Ⅲ)若函数()f x 在区间(1)+∞,上存在极值点,求实数a 的取值范围.(海淀)19. (本小题共15分)已知函数f (x )=e x +ax (I )当a =−1时,①求曲线y =f (x )在点(0,f(0))处的切线方程; ②求函数f (x )的最小值;(II )求证:当a ∈(−2,0)时,曲线y =f (x )与y =1−lnx 有且只有一个交点。

2020北京各区一模数学试题分类汇编--函数与导数(解析版)

2020北京各区一模数学试题分类汇编--函数与导数(解析版)

2020北京各区一模数学试题分类汇编--函数与导数A. 0,101B. 0,99C. 0100D. 0,1 / 31已知函数f(x)=|x-m|与函数g(x)的图象关于y 轴对称若g(x)在区间(1, 2)内单调递减,则m 的取值范围为()A. [ -1, +口B. (-汽-1]C. [-2, +口D. (4, -2]【答案】D 【解析】 函数f (x) x m 与函数g(x)的图象关于y 轴对称,g(x)=f (- x) = x + m ,g(x)在区间(1,2)内单调递减,则-m 砛2, m? 2 ,x i 1,2,3,4,其中人 X 2 X 3 X 4,贝y * X 21,若关于x 的方程 x a a R 有四个实数解(2020海淀一模) x 3 x 4的取值范围是(【答案】B【解析】f根据图像知: X1X3故选:B .x2X410xlgx ,10,1,10 X3lg X3X3,画出函数图像,如图所示:1lg X4,故X33X4 1,且0,99 .X3 1.(2020西城一模)下列函数中,值域为R且为奇函数的是(2 / 31A.,1B.1C.(-1,0)D. 1,03 / 31【答案】C【解析】A. y x 2,值域为R ,非奇非偶函数,排除;【答案】A单调性.故选:A.xe ,x ,若存在非零实数kx, x 0.A. y x 2B. y sinxC. yx 3D. y 2x【解析】Qx0,— 222 x 4,当且仅当x —,即xx 1时取等号,f x 有最大值, 又由对勾函数的图象可知 x 在 ,0上不具B . ysinx ,值域为 1,1,奇函数,排除;C . y3x x ,值域为R ,奇函数,满足; D . y2x ,值域为0,,非奇非偶函数, 排除;故选:C .1(2020东城一模)设函数f x x -x0,则fA.有最大值B.有最小值C.是增函数D. 是减函数(2020丰台一模)已知函数fX Q ,使得f X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 312020北京各区一模数学试题分类汇编--函数与导数(2020海淀一模)已知函数f (x )=|x -m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A. [-1,+∞) B. (-∞,-1]C. [-2,+∞)D. (-∞,-2]【答案】D【解析】函数()f x x m =-与函数()g x 的图象关于y 轴对称,()=()g x f x x m \-=+,()g x 在区间(12),内单调递减, 则22m m -砛?,, 故选:D .(2020西城一模)设函数()210100x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( ) A. (]0101, B. (]099,C. (]0100, D. ()0+∞,2 / 31【答案】B【解析】()21010lg 0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,,,画出函数图像,如图所示:根据图像知:1210x x +=-,34lg lg x x =-,故341x x =,且31110x ≤<. 故()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-. 故选:B .(2020西城一模)下列函数中,值域为R 且为奇函数的是( )3 / 31A. 2y x =+B. y sinx =C. 3y x x =-D. 2x y =【答案】C【解析】A. 2y x =+,值域为R ,非奇非偶函数,排除; B. y sinx =,值域为[]1,1-,奇函数,排除;C. 3y x x =-,值域为R ,奇函数,满足;D. 2x y =,值域为()0,∞+,非奇非偶函数,排除; 故选:C .(2020东城一模)设函数()()120f x x x x=+-<,则()f x ( ) A. 有最大值 B. 有最小值C. 是增函数D. 是减函数【答案】A【解析】0x <Q ,()()112224f x x x x x ⎡⎤∴=+=--+-≤--=-⎢⎥-⎣⎦,当且仅当1x x -=-,即 1x =-时取等号,()f x ∴有最大值,又由对勾函数的图象可知()f x 在(),0-∞上不具单调性. 故选:A.(2020丰台一模)已知函数()e 1,0,,0.x x f x kx x ⎧-≥=⎨<⎩若存在非零实数0x ,使得()()00f x f x -=成立,则实数k 的取值范围是( ) A. (),1-∞-B. (],1-∞-C. ()1,0-D. [)1,0-4 / 31【答案】A【解析】不妨设00x >当0k ≥时,()00=e 10xf x ->,()000f x kx -=-≤,不存在非零实数0x ,使得()()00f x f x -=成立,则0k ≥不满足题意当k 0<时,若存在非零实数0x ,使得()()00f x f x -=成立,则方程00e 1xkx -=-有非零的正根,即函数()e 1,0x y x =->与(),0y kx x =->有交点先考虑函数()e 1,0xy x =-≥与直线y kx =-相切的情形设切点为11(,)x y ,则11111e 1x x k e y kx y ⎧-=⎪=-⎨⎪=-⎩,整理得()111e 10xx -+=令()()1e 1,0xg x x x =-+≥,则()0e xg x x '=≥,即函数()g x 在[)0,+∞上单调递增则()(0)0g x g ≥=,所以方程()111e 10xx -+=的根只有一个,且10x =,即1k -=则函数()e 1,0xy x =-≥与直线y kx =-相切时,切点为原点所以要使得函数()e 1,0xy x =->与(),0y kx x =->有交点,则1k ->,即1k <-所以实数k 的取值范围是(),1-∞- 故选:A(2020丰台一模)已知132a =,123b =,31log 2c =,则( ) A. a b c >> B. a c b >>C. b a c >>D. b c a >>【答案】C5 / 31【解析】66121342372⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭Q ,0a b ∴<<331log log 021c =<=Q b a c ∴>>故选:C(2020朝阳区一模)下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是( ) A. 3y x = B. 21y x =-+C. 2log y x =D. ||2x y =【答案】D【解析】函数3y x =是奇函数,不符合;函数21y x =-+是偶函数,但是在(0,)+∞上单调递减,不符合;函数2log y x =不是偶函数,不符合;函数||2x y =既是偶函数又在区间(0,)+∞上单调递增,符合. 故选:D(2020朝阳区一模)已知函数222,1,()2ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()2af x ≥在R 上恒成立,则实数a 的取值范围为( )A. (-∞B. 3[0,]2C. [0,2]D.【答案】C【解析】(1)当1x ≤时,由()2a f x ≥得23(2)2x a x ≥-,6 / 31当314x <≤时,2322x a x ≤-232()4x x =-恒成立,因为222333933()()()42416443332()2()2()444x x x x x x x -+-+-+==---913316()32442()4x x =-++- 令34t x =-,则104t <≤,令193()2164y t t =++,则219(1)216y t'=-0<, 所以193()2164y t t =++在1(0,]4上递减,所以11938()212444164y ≥++==⨯, 即913316()32442()4x x -++-的最小值为2, 所以此时2a ≤,当34x ≤时,2322x a x ≥-913316()32442()4x x =-++-1393[()]324416()4x x =--++-恒成立, 因为1393[()]324416()4x x --++-1324≤-⨯0=,当且仅当0x =时取等, 所以0a ≥,(2)当1x >时,由()2a f x ≥得21ln 2xa x ≤+恒成立, 令21ln 2x y x =+(1)x >,则22ln 11(ln )2x y x -'=+,7 / 31由0y '>得12x e >,由0y '<得121x e <<,所以函数21ln 2x y x =+12(1,)e 上递减,在12(,)e +∞上递增,所以x =min 22y ==+a ≤ 综上所述:02a ≤≤. 故选:C(2020石景山一模)下列函数中,既是奇函数又在区间()0,∞+上单调递减的是( )A. 22y x =-+B. 2x y -=C. ln y x =D. 1y x=【答案】D【解析】由基本函数的性质得:22y x =-+为偶函数,2xy -=为非奇非偶函数,ln y x =为非奇非偶函数,1y x=为奇函数,且在区间()0,∞+上单调递减. 故选:D(2020石景山一模)设()f x 是定义在R 上的函数,若存在两个不等实数12,x x R ∈,使得()()121222f x f x x x f ++⎛⎫= ⎪⎝⎭,则称函数()f x 具有性质P ,那么下列函数:①()1,00,0x f x x x ⎧≠⎪=⎨⎪=⎩;②()2f x x =;8 / 31③()21f x x =-;具有性质P 的函数的个数为( ) A. 0 B. 1C. 2D. 3【答案】C【解析】对于①:取121,1x x ==-,则 12()1,()1f x f x ==-此时,12(0)02x x f f +⎛⎫==⎪⎝⎭,()()121(1)022f x f x ++-==. 所以()()121222f x f x x x f ++⎛⎫=⎪⎝⎭故函数①具有性质P .对于②:假设存在两个不等实数12,x x R ∈,使得()()121222f x f x x x f ++⎛⎫=⎪⎝⎭, 则222121211222224x x x x x x x x f +++⋅+⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭. ()()22121222f x f x x x ++=. 所以22112224x x x x +⋅+22122x x +=,化简得:2221212122()0044x x x x x x +--=⇒=即:12x x =.与“存在两个不等实数12,x x R ∈,使得()()121222f x f x x x f ++⎛⎫=⎪⎝⎭” 矛盾.9 / 31故函数②不具有性质P .对于③:取12x x = 12()1,()1f x f x ==此时,12(0)12x x f f +⎛⎫==⎪⎝⎭,()()1211122f x f x ++== 所以()()121222f x f x x x f ++⎛⎫=⎪⎝⎭故函数③具有性质P . 故选:C.(2020怀柔一模)若函数()(cos )xf x e x a =-在区间(,)22ππ-上单调递减,则实数a 的取值范围是___________.【答案】)+∞. 【解析】由题可知:函数()(cos )xf x e x a =-在区间(,)22ππ-上单调递减 等价于'()0f x ≤在(,)22ππ-恒成立 即()'()cos sin 0=--≤xf x ex x a 在(,)22ππ-恒成立则cos sin 4π⎛⎫≥-=+ ⎪⎝⎭a x x x 在(,)22ππ-恒成立所以max4π⎤⎛⎫≥+⎪⎥⎝⎭⎦a x ,10 / 31由(,)22x ππ∈-,所以3,444πππ⎛⎫+∈- ⎪⎝⎭x故cos 42π⎛⎤⎛⎫+∈- ⎥ ⎪ ⎝⎭⎝⎦x(4π⎛⎫+∈- ⎪⎝⎭x所以a ≥)∈+∞a故答案为:)+∞(2020怀柔一模)函数f(x)=|log 2x|的图象是( )A. B.C. D.【答案】A【解析】易知函数值恒大于等于零,同时在(0,1)上单调递减且此时的图像是对数函数的图像关于x 轴的对称图形,在单调递增.故选A .(2020密云一模)已知函数21,0()(2),0x x f x f x x -⎧-≤=⎨->⎩,若关于x 的方程3()2f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是_______________.11 / 31【答案】(,3)-∞【解析】函数()f x 的图象如图所示:因为方程3()2f x x a =+有且只有两个不相等的实数根, 所以()y f x =图象与直线32y x a =+有且只有两个交点即可, 当过(0,3)点时两个函数有一个交点,即3a =时,32y x a =+与函数()f x 有一个交点, 由图象可知,直线向下平移后有两个交点, 可得3a <, 故答案为:(,3)-∞.(2020顺义区一模)11.若函数()2,01,0x e x f x x x ⎧≤=⎨->⎩,则函数()1y f x =-的零点是___________.【答案】0【解析】要求函数()1y f x =-的零点, 则令()10y f x =-=,即()1f x =,12 / 31又因为:()2,01,0x e x f x x x ⎧≤=⎨->⎩, ①当0x ≤时,()xf x e =,1x e =,解得0x =.②当0x >时,()21f x x =-,211x -=,解得x =,所以x =综上所以,函数()1y f x =-的零点是0或.故答案为:0(2020顺义区一模)当[]0,1x ∈时,若函数()()21f x mx =-的图象与()2mg x x =+的图象有且只有一个交点,则正实数m 的取值范围是( )A. [)2,+∞B. (]50,2,+2U ⎡⎫∞⎪⎢⎣⎭C. 5,2⎡⎫+∞⎪⎢⎣⎭D. (][)20,1,+U ∞【答案】B【解析】当[]0,1x ∈时,又因为m 为正实数,函数()()21f x mx =-的图象二次函数,在区间10,m ⎛⎫ ⎪⎝⎭为减函数,在区间[1m ,1)为增函数; 函数()22m mg x x x =+=+,是斜率为1的一次函数.13 / 31最小值为()min 2m g x =,最大值为()max 12m g x =+; ①当11m≥时,即01m <≤时, 函数()()21f x mx =-在区间[]0,1 为减函数,()2mg x x =+在区间[]0,1 为增函数, ()f x 的图象与()g x 的图象有且只有一个交点,则()()max min f x g x ≥,()()max min 00f g ≥即()2012mm ⨯-≥,解得2m ≤, 所以01m <≤ ②当101m<<时,即1m >时, 函数()()21f x mx =-在区间10,m ⎛⎫ ⎪⎝⎭为减函数,在区间[1m ,1)为增函数,()2mg x x =+在区间[]0,1 为增函数, ()f x 的图象与()g x 的图象有且只有一个交点,则()()max minf xg x ≥()()max min 00f g ≥即()()21f x mx =-的图象与()2mg x x =+的图象有且只有一个交点 ,14 / 31()()()()10011m f g f g ⎧>⎪≥⎨⎪<⎩,()()2201021112m m m m ⎧⨯-≥+⎪⎪⎨⎪⨯-≥+⎪⎩ 解得12m <≤或52m >综上所述:正实数m 的取值范围为(]50,2,+2U ⎡⎫∞⎪⎢⎣⎭.故选:B(2020顺义区一模)若3log 0.2a =,0.22b =,20.2c =,则( ) A. a c b << B. a b c <<C. c a b <<D. b c a <<【答案】A【解析】33log 0.2log 10a =<=,0.20221b =>=, 2000.20.21c <<==,所以01a c b <<<<,即a c b <<. 故选:A(2020延庆一模)下列函数中,是奇函数且在其定义域上是增函数的是( )A. 1y x=B. y tanx =C. x x y e e -=-D. 2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间,15 / 31对于B 选项,由正切函数y tanx =的图像可知不符合题意; 对于C 选项,令()xxf x e e -=-知()xx f x ee --=-,所以()()0f x f x +-=所以()x xf x e e -=-为奇函数,又x y e =在定义内单调递增,所以xy e -=-单调递增,所以函数x xy e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数. 故选:C(2020海淀一模)已知函数()x f x e ax =+. (I )当a =-1时,①求曲线y = f (x )在点(0,f (0))处的切线方程; ②求函数f (x )的最小值;(II )求证:当()2,0a ∈-时,曲线() y f x =与1y lnx =-有且只有一个交点. 【解析】 (I)当1a =-时,①函数()xf x e x =-,0(0)=1f e ∴=,()1x f x e =-',即0(0)1=0f e -'=,16 / 31∴曲线()y f x =在点()(0)0f ,处的切线方程为1y =.②令()1>0x f x e -'=,得0x >,令()1<0x f x e -'=,得0x <, 所以()f x 在(0,+)∞上单增,在(,0)-∞单减,∴函数()f x 的最小值为min ()(0)1f x f ==.(II) 当()2,0a ∈-时,曲线() y f x =与1ln y x =-有且只有一个交点. 等价于()()ln 10xg x e ax x x =++->有且只有一个零点.()()10x g x e a x x'=++>, 当()0,1x ∈时,11,1xe x>>, ()2,0a ∈-Q ,则()10x g x e a x'=++>, 当[)1,x ∈+∞时,12,0xe e x>>>, ()2,0a ∈-Q ,则()10x g x e a x'=++>, ()g x ∴在()0,∞+上单增,又1121()220e a g e e e e=+-<-<Q , ()220e g e e ae e e =+>->,由零点存在性定理得()g x 有唯一零点,即曲线() y f x =与1ln y x =-有且只有一个交点. (2020西城一模)设函数()()22f x alnx x a x =+-+,其中.a R ∈17 / 31(Ⅰ)若曲线()y f x =在点()()22f ,处切线的倾斜角为4π,求a 的值; (Ⅱ)已知导函数()'f x 在区间()1e ,上存在零点,证明:当()1x e ∈,时,()2f x e >-. 【解析】 (Ⅰ)()()2ln 2f x a x x a x =+-+,故()()'22af x x a x=+-+, ()()'42tan 1242a f a π=+-+==,故2a =. (Ⅱ) ()()()()12'220x x a af x x a x x--=+-+==,即()22,a x e =∈,存在唯一零点, 设零点为0x ,故()()000'220af x x a x =+-+=,即02a x =, ()f x 在()01,x 上单调递减,在()0,x e 上单调递增,故()()()()0220000i 0000m n ln 22ln 22a x x a x x x f x f x x x x +-+=+-+==200002ln 2x x x x =--,设()22ln 2g x x x x x =--,则()'2ln 2g x x x =-,设()()'2ln 2h x g x x x ==-,则()2'20h x x=-<,()h x 单调递减, ()()1'12h g ==-,故()'2ln 20g x x x =-<恒成立,故()g x 单调递减. ()()2min g x g e e >=-,故当()1x e ∈,时,()2f x e >-.(2020东城一模)已知函数()ln 1a f x x x=--. (1)若曲线()y f x =存在斜率为-1的切线,求实数a 的取值范围;18 / 31(2)求()f x 的单调区间;(3)设函数()ln x ag x x+=,求证:当10a -<<时, ()g x 在()1,+∞上存在极小值. 【解析】(1)由()ln 1a f x x x =--得()221'(0)a x af x x x x x+=+=>. 由已知曲线()y f x =存在斜率为-1的切线,所以()'1f x =-存在大于零的实数根,即20x x a ++=存在大于零的实数根,因为2y x x a =++在0x >时单调递增, 所以实数a 的取值范围(),0-∞. (2)由()2',0,x af x x a R x+=>∈可得 当0a ≥时, ()'0f x >,所以函数()f x 的增区间为()0,∞+; 当0a <时,若(),x a ∈-+∞, ()'0f x >,若()0,x a ∈-, ()'0f x <, 所以此时函数()f x 的增区间为(),a -+∞,减区间为()0,a -.(3)由()ln x ag x x+=及题设得()()()()22ln 1'ln ln ax f x x g x x x --==, 由10a -<<可得01a <-<,由(2)可知函数()f x 在(),a -+∞上递增, 所以()110f a =--<,取x e =,显然1e >,()ln 10a af e e e e=--=->,所以存在()01,x e ∈满足()00f x =,即存在()01,x e ∈满足()0'0g x =,所以()g x , ()'g x 在区间(1,+∞)上情况如下:x 0(1,x ) 0x 0(+x ,)∞19 / 31()'g x - 0 + ()g x ↘ 极小 ↗所以当-1<a<0时,g (x )在(1,+∞)上存在极小值. (2020丰台一模)已知函数()()ln 1f x a x x x =+-+.(1)若曲线()y f x =在点()()e,e f 处的切线斜率为1,求实数a 的值; (2)当0a =时,求证:()0f x ≥; (3)若函数()f x 在区间()1,+?上存在极值点,求实数a 的取值范围.【解析】(1)因为()()ln 1f x a x x x =+-+, 所以()ln a f x xx '=+.由题知()e ln e 1eaf '=+=, 解得0a =.(2)当0a =时,()ln 1f x x x x =-+, 所以()ln f x x '=.当()0,1x ∈时,()0f x ¢<,()f x 在区间()0,1上单调递减;当()1,x ∈+∞时,()0f x ¢>,()f x 在区间()1,+?上单调递增;所以()10f =是()f x 在区间()0,+?上的最小值.20 / 31所以()0f x ≥.(3)由(1)知,()ln ln a x x af x xxx +'=+=.若0a ≥,则当()1,x ∈+∞时,()0f x ¢>,()f x 在区间()1,+?上单调递增,此时无极值.若0a <,令()()g x f x '=, 则()21a g x x x '=-. 因为当()1,x ∈+∞时,()0g x ¢>,所以()g x 在()1,+?上单调递增.因为()10g a =<,而()()eee 10aaa g a a a -=-+=->,所以存在()01,eax -∈,使得()00g x =.()f x ¢和()f x 的情况如下:因此,当0x x =时,()f x 有极小值()0f x . 综上,a 的取值范围是(,0)-∞.21 / 31(2020朝阳区一模)已知函数()11xx f x e x +=--. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)判断函数()f x 的零点的个数,并说明理由;(3)设0x 是()f x 的一个零点,证明曲线xy e =在点00(,)x x e 处的切线也是曲线ln y x =的切线.【解析】(1)因为()11xx f x e x +=--, 所以001010)2(e f -=+=-,()2(1)2e xx f x -'=+,02(01)203e ()f -'==+.所以曲线()y f x =在点(0,(0))f 处的切线的方程为320x y -+=. (2)函数()f x 有且仅有两个零点.理由如下: ()f x 的定义域为{|,1}x x R x ∈≠.因为22()e 0(1)xf 'x x =+>-,所以()f x 在(,1)-∞和(1,)+∞上均单调递增.因为(0)20f =>,21(2)3e 0f --=-<,所以()f x 在(,1)-∞上有唯一零点1x .因为2e (2)30f =->,545()e 904f =-<,所以()f x 在(1,)+∞上有唯一零点2x . 综上,()f x 有且仅有两个零点.(3)曲线xy e =在点00(,)x x e 处的切线方程为00()-=-x x y e e x x ,即0000e e e x x x y x x =-+.22 / 31设曲线ln y x =在点33(,)x y 处的切线斜率为0e x ,则031e xx =,031e x x =,30y x =-,即切点为001(,)ex x -. 所以曲线ln y x =在点001(,)e x x -处的切线方程为 0001e ()ex x y x x +=-,即00e 1x y x x =--. 因为0x 是()f x 的一个零点,所以00011x x ex +=-. 所以00000000011e e e (1)(1)1x x xx x x x x x -+-+=-=-=--.所以这两条切线重合所以结论成立.(2020石景山一模)已知函数()2f x x =(0x >),()lng x a x =(0a >).(1)若()()f x g x >恒成立,求实数a 的取值范围;(2)当1a =时,过()f x 上一点()1,1作()g x 的切线,判断:可以作出多少条切线,并说明理由. 【解析】(1)令()()()2ln h x f x g x x a x =-=-(0x >)所以()2222a x a x x h x x='-=-令()2220x x xh a -'==,解得x =. 当x 变化时,()h x ',()h x 的变化情况如下表: .23 / 31所以在()0,∞+的最小值为ln ln 2222a a a ah a =-=- 令0h >,解得02e a <<. 所以当02e a <<时,()0h x >恒成立,即()()f x g x >恒成立. (2)可作出2条切线.理由如下:当1a =时,()ln g x x =.设过点()1,1的直线l 与()ln g x x =相切于点()00,P x y ,则()00011y g x x -'=-即000ln 111x x x -=-整理得000ln 210x x x -+=令()ln 21x x m x x -=+,则()m x 在()0,∞+上的零点个数与切点P 的个数一一对应.()ln 1m x x '=-,令()ln 10x m x '=-=解得x e =.24 / 31当x 变化时,()m x ',()m x 的变化情况如下表:所以()m x 在()0,e 上单调递减,在(),e +∞上单调递增.且2222211124ln 110m e e e e e ⎛⎫=⨯-+=-+>⎪⎝⎭()ln 2110m e e e e e =⨯-+=-+<()2222ln 2110m e e e e =⨯-+=>所以()m x 在21,e e ⎛⎫⎪⎝⎭和()2,e e 上各有一个零点,即ln 210x x x -+=有两个不同的解. 所以过点()1,1可作出ln y x=2条切线.(2020怀柔一模)已知函数()ln ,()xf x xg x e ==.(1)求()y f x =在点(1,(1))f 处的切线方程; (2)当0x >时,证明:()()f x x g x <<;(3)判断曲线()f x 与()g x 是否存在公切线,若存在,说明有几条,若不存在,说明理由.25 / 31【解析】(1)()ln f x x =的定义域(0,)+∞1()(1)1f x k f x=⇒'='=由 又(1)0f =所以()y f x =在点(1,(1))f 处的切线方程为:1y x =-. (2)设()()ln (0)h x f x x x x x =-=->,11'()101x h x x x x-=-==⇒=由, '(),()h x h x x 随变化如下:max ()(1)ln1110h x h ∴==-=-< ()f x x ∴<设()(),=-=-xs x x g x x e 则'()1e 0xs x =-<在(0,)x ∈+∞上恒成立(0,())x s x ∈+∴∞在上单调递减()(0)10()∴<=-<⇒<s x s x g x综上()()f x x g x <<(3)曲线()f x 与()g x 存在公切线,且有2条,理由如下:26 / 31由(2)知曲线()f x 与()g x 无公共点,设12,l l 分别切曲线()f x 与()g x 于2112(,ln ),(,)xx x x e ,则22112211:ln 1;:(1)x x l y x x l y e x e x x =⋅+-=⋅+-, 若12l l =,即曲线()f x 与()g x 有公切线,则222122121(1)10ln 1(1)x x x ex e x x x e x ⎧=⎪⇒-++=⎨⎪-=-⎩ 令()(1)1xh x e x x =-++,则曲线()f x 与()g x 有公切线,当且仅当()h x 有零点,'()1x h x xe =-+Q ,当0x ≤时,'()0h x >,()h x 在(),0-∞单调递增,当0x >时,()''()10=-+<xh x x e ,'()h x 在()0,∞+单调递减'(0)10,'(1)10h h e =>=-<又,所以存在0(0,1)x ∈,使得000'()10=-+=xh x x e 且当0(0,)x x ∈时,'()0,()h x h x >单调递增, 当0(,)x x ∈+∞时,'()0,()h x h x <单调递减0max 0000001()()(1)1(1)10x h x h x e x x x x x ∴==-++=-++>,27 / 31又22(2)310,(2)30--=-<=-+<h eh e所以()h x 在00(2,),(,2)-x x 内各存在有一个零点故曲线()f x 与()g x 存在2条公切线.(2020密云一模)已知函数()()1xf x e ax =+,a R ∈.(1)求曲线()y f x =在点()()0,0M f 处的切线方程; (2)求函数()f x 的单调区间; (3)判断函数()f x 的零点个数.【解析】(1)()(1)x f x e ax =+Q ,()(1)(1)x x x f x e ax ae e ax a ∴'=++=++,设曲线()y f x =在点(0M ,(0))f 处的切线的斜率为k , 则0(0)(1)(1)1x x k f e ax ae e a a ='=++=+=+, 又(0)1f =,∴曲线()y f x =在点(0M ,(0))f 处的切线方程为:1(1)y a x -=+,即(1)10a x y +-+=;(2)由(1)知,()(1)x f x e ax a '=++,故当0a =时,()0x f x e '=>,所以()f x 在R 上单调递增;当0a >时,1(,)a x a +∈-∞-,()0f x '<;1(a x a+∈-,)+∞,()0f x '>;28 / 31()f x ∴的递减区间为1(,)a a +-∞-,递增区间为1(a a+-,)+∞; 当0a <时,同理可得()f x 的递增区间为1(,)a a +-∞-,递减区间为1(a a+-,)+∞; 综上所述,0a =时,()f x 单调递增为(,)-∞+∞,无递减区间; 当0a >时,()f x 的递减区间为1(,)a a +-∞-,递增区间为1(a a+-,)+∞; 当0a <时,()f x 的递增区间为1(,)a a +-∞-,递减区间为1(a a+-,)+∞; (3)当0a =时,()0xf x e =>恒成立,所以()f x 无零点;当0a ≠时,由()(1)0x f x e ax =+=,得:1x a=-,只有一个零点. (2020顺义区一模)已知函数2()2ln f x x a x =-,其中a R ∈ (1)当2a =时,求曲线()y f x =在点()()1,1A f 处的切线方程; (2)若函数()f x 存在最小值Q ,求证:1Q ≤.【解析】(1)2a =时,22()4ln ,(1)1f x x x f =-=4()2f x x x'=-切线斜率(1)242k f '==-=-曲线()y f x =在点(1,(1))A f 处的切线方程为:12(1)y x -=--即:230x y +-=(2)()222()2(0)x a a f x x x x x-'=-=>29 / 31①当0a ≤时,()0f x '≥恒成立()f x 在(0,)+∞单调递增,()f x 无最小值②当0a >时,由()0f x '=得x =x =(x ∈时,()0f x '<,()f x在(单调递减)x ∈+∞时,()0f x '>,()f x在)+∞单调递增所以()f x 存在最小值,ln Q fa a a ==-下面证明1Q ≤.设函数()ln (0),()1(ln 1)ln g a a a a a g a a a '=->=-+=-由()0g a '=得1a =,易知()g a 在(0,1)单调递增,在(1,)+∞单调递减 所以()g a 的最大值为(1)1g = 所以()1g a ≤恒成立,1Q ≤得证.(2020延庆一模)已知函数()2221,1ax a f x x +-=+其中0a ≠ (1)当1a =时,求曲线()y f x =在原点处的切线方程;(2)若函数()f x 在[)0,+∞上存在最大值和最小值,求a 的取值范围.【解析】(1)2222(1)1()(1)x a f x x -'==+当时,. 所以切线的斜率(0)2k f '==;又(0)0f =.30 / 31所以曲线()y f x =在原点处的切线方程为:2y x =.(2)22222(1)(21)2()(1)a x ax a xf x x +-'+-=+()()22222222221()(1)(1)ax a x a ax x a x x -+-+--+==++ 当0a >时,()0f x '=解得 121,x a x a=-=则[0,)x ∈+∞时()()f x f x '、随x 的变化情况如下表:所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的最大值为21()f a a=,若()f x 存在最小值,则()0x ∈+∞,时, 2()(0)1f x f a ≥=-恒成立,即2222111ax a a x +-≥-+, 所以()2221ax a x ≥-即2112a a x-≤在(0,)x ∈+∞恒成立,31 / 31 所以2102a a -≤.又因为 0a >,所以210a -≤,则01a <≤. 当0a <时,()0f x '=解得 121,x a x a =-=则[0,)x ∈+∞时()()f x f x '、随x 的变化情况如下表:所以()f x 在()0,a -上单调递减,在(),a -+∞上单调递增, 所以()f x 的最小值为1-,若()f x 存在最大值,则()0x ∈+∞,时,2()(0)1f x f a ≤=-恒成立,即2222111ax a a x +-≤-+,所以()2221ax a x ≤-即2112a a x -≤在(0,)x ∈+∞恒成立,所以2102a a -≤.又因为 0a <,所以210a -≥,则1a ≤-. 综上所述,a 的取值范围为(,1](0,1]-∞-⋃.。

相关文档
最新文档