集合的关系与基本运算 总结 复习
第二讲 集合之间的基本关系及其运算
第二讲 集合之间的基本关系及其运算一.知识盘点知识点一:集合间的基本关系注意:1.A B A B B AA B A B A B A B =⇔⊆⊆⎧⊆⎨⊂⇔⊆≠⎩且且2.涉及集合间关系时,不要忘记空集和集合本身的可能性。
3.集合间基本关系必须熟记的3个结论(1)空集是任意一个集合的子集;是任意一个非空集合的真子集,即,().A B B Φ⊆Φ⊂≠Φ(2)任何一个集合是它自身的子集,空集只有一个子集即本身 (3)含有n 个元素的集合的子集的个数是2n 个,非空子集的个数是21n - ;真子集个数是21n - ,非空真子集个数是22n -。
知识点二:集合的基本运算运算 符号语言 Venn 图 运算性质交集{}|A B x x A =∈∈且x B()(),AB A A B B ⊆⊆ (),AA A AB B A ==A B A A B =⇔⊆ A Φ=Φ并集{}|A B x x A x B =∈∈或()(),A A B B A B ⊆⊆ (),A A A A B B A ==,A B B A B A A =⇔⊆Φ=补集{}|U C A x x U x A =∈∉且,U U C U C U =ΦΦ=()(),U U U C C A A A C A U ==()U AC A =Φ()()()U U U C A B C A C B = ()()()U U U C A B C A C B =二.例题精讲Ep1.下列说法正确的是A. 高一(1)班个子比较高的同学可以组成一个集合B. 集合{}2|,x N x x ∈= 则用列举法表示是{}01,UAC. 如果{}264,2,m m ∈++2, 则实数m 组成的集合是{}-22,D. {}{}(){}222||,|x y xy y x x y y x =====解析:A.与集合的确定性不符;B.对;C.与集合的互异性不符;D 。
{}2|x y x R == ,{}{}2||0y y x y y ==≥ ,(){}2,|x y y x = 是二次函数2y x = 的点集Ep2.已知集合A={}2|1log ,kx N x ∈<< 集合A 中至少有三个元素,则A.K>8B.K ≥ 8C.K>16D.K ≥ 16解析:由题设,集A 至少含有2,3,4三个元素,所以2log 4k> ,所以k>16.Ep3.已知集合M={}{}2|,|,x y x R N x x m m M =∈==∈ ,则集合M 、N 的关系是A.M N ⊂B.N M ⊂C.R M C N ⊆D.R N C M ⊆ 解析:[]1,1M =- ,{}|01N x x =≤≤ ,故选B.Ep4.已知集合M={}0,1 ,则满足M N M = 的集合N 的个数是 A.1 B.2 C.3 D.4 解析:M N M =,故N M ⊆ ,故选D.Ep5已知集合{}{}2|1,|1M x x N x ax ==== ,如果N M ⊆ ,则实数a 的取值集合是{}.1A {}.1,1B - {}.0,1C {}.1,0,1D -解析:{}1,1M =- , N M ⊆,故N 的可能:{}{}{},1,1,1,1Φ-- ,故a 的取值集合{}1,0,1-Ep6.已知集合{}{}2|20180,|lg(3)A x x x B x N y x =-+≥=∈=- ,则集合A B 的子集的个数是解析:{}|02018A x x =≤≤ ,{}{}|3-x>00,1,2B x N =∈= ,故{}0,1,2A B = 故子集个数328=A.4B.7C.8D.16Ep7.已知集合{}{}2|2,|M x x x N x x a =<+=> ,如果M N ⊆ ,则实数a 的取值范围是.(,1]A -∞- .(,2]B -∞ .[2,)C +∞ .[1,)D -+∞解析:{}|12M x x =-<< ,M N ⊆,故1a ≥-Ep8.已知集合{}2|30A x N x x *=∈-< 则满足B A ⊆ 的集合B 的个数是 A.2 B.3 C.4 D.8 解析:{}{}|03=12A x N x *=∈<<, ,故选CEp9.已知集合{}{}|12,|13,M x x N x x M N =-<<=≤≤=则.(1,3]A - B.(1,2]- .[1,2)C D.(2,3]解析:选CEp10.如果集合{}{}(1)2|10,|log 0,x A x x B x -=-≤≤=≤则A B={}.|11A x x -≤< {}.|11B x x -<≤ {}.0C {}.|11D x x -≤≤ 解析:{}10||0111x B x x x x ⎧->⎫⎧==≤<⎨⎨⎬-≤⎩⎩⎭,故选D.Ep11.设集合 {}{}2|11,|,,()R A x x B y y x x A A C B =-<<==∈=则{}.|01A x x ≤< {}.|10.B x x -<< {}|01C x x =<< {}.|11D x x -<<解析:{}|01B y y =≤<,则{}|01R C B y y =<≥或y,(){}{}{}|11|01|10R AC B x x y y y x x =-<<<≥=-<<或 选B.Ep12.已知集合{}{}2|11,|20,A x x B x x x =-<<=--<则 )R C A B =(.(1,0]A - .[1,2)B - .[1,2)C .(1,2]D解析:{}|12B x x =-<< ,{}|11R C A x x x =≤-≥或 (){}|12R C A B x x =≤< ,选C.三.总结提高1.题型归类(1)2个集合之间的关系判断(2)已知2个集合之间的关系,求参数问题 (3)求子集或真子集的个数问题 (4)2个有限集之间的运算(5)1个有限集和1个无限集之间的运算 (6)2个无限集之间的运算(7)已知集合的运算结果,求参数问题 2.方法总结(1)判断集合间关系的方法a.化简集合,从表达式中寻找两个集合之间的关系b.用列举法表示集合,从元素中寻找关系c.利用数轴,在数轴上表示出两个集合(集合为数集),比较端点之间的大小关系,从而确定两个集合之间的关系。
高中数学集合知识总结
高中数学知识总结高中数学集合知识总结集合语言是现代数学的基本语言,使用集合语言可以简洁、准确地表达数学的一些相关内容.以下是小编搜集整合了高中数学集合知识,希望可以帮助大家更好的学习这些知识。
高中数学知识总结篇1一、集合间的关系1.子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。
2.真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。
3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。
子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的基本关系二、集合的运算1.并集并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}2.交集交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}3.补集三、高中数学集合知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
集合的全部知识点总结
集合的全部知识点总结集合是数学中的一个基本概念,广泛应用于各个领域。
本文将对集合的相关概念、运算、性质以及其在实际中的应用进行总结。
一、集合的基本概念1. 集合的定义:集合是由确定的元素组成的整体,没有重复元素,顺序不重要。
2. 元素和集合的关系:元素是集合的组成部分,用于描述集合的特征。
3. 表示方法:- 列举法:将集合的所有元素逐个列举出来。
- 描述法:通过一定的特征或条件来描述集合。
4. 空集和全集:- 空集:不含有任何元素的集合,用符号∅表示。
- 全集:包含所有元素的集合,用符号U表示。
二、集合的运算1. 交集:两个集合中具有相同元素的部分构成的新集合,用符号∩表示。
2. 并集:两个集合的所有元素组成的新集合,用符号∪表示。
3. 差集:一个集合中去掉与另一个集合共有元素后的新集合,用符号-表示。
4. 互补集:在全集中与某个集合没有交集的元素所构成的新集合,用符号A'表示。
5. 笛卡尔积:由两个集合的所有有序对构成的集合,用符号×表示。
三、集合的性质1. 包含关系:集合A包含于集合B,表示为A⊆B,当且仅当A的每个元素都是B的元素。
2. 相等关系:如果两个集合A和B互相包含,即A⊆B且B⊆A,则称A和B相等,表示为A=B。
3. 幂集:一个集合的所有子集所构成的集合,用符号P(A)表示。
4. 交换律、结合律和分配律:集合的交换律、结合律与数的运算性质类似,具有相似的性质。
四、集合的应用1. 概率论与统计学:集合论为概率论和统计学提供了重要的数学基础,通过对事件的集合进行分析与运算。
2. 数据库管理系统:集合运算在数据库查询和数据处理中起着重要的作用,用于筛选、合并和处理数据。
3. 逻辑学与集合论关系:集合论与逻辑学相辅相成,通过集合的运算和逻辑连接词(与、或、非)进行逻辑推理。
4. 集合在数学证明中的应用:集合的性质和运算方式在数学证明中经常被使用,可以简化证明过程。
总结:集合是数学中不可或缺的重要概念,它具有基本的定义、运算和性质。
集合间的基本关系及运算
1.2集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆B或B⊇A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B。
3、真子集:如果A ⊆B,且A ≠B,那么集合A称为集合B的真子集,A⊂≠B .4、设A ⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作S C A5、元素与集合、集合与集合之间的关系6、有限集合的子集个数(1)n个元素的集合有n2个子集(2)n个元素的集合有n2-1个真子集(3)n个元素的集合有n2-1个非空子集(4)n个元素的集合有n2-2个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A⋂B。
8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A⋃B。
9、集合的运算性质及运用【知识应用】1.理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x∈A能推出x∈B。
【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1},B=Z (2)A={1,3,5,15},B={x|x是15的正约数}【L】例2.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m取值范围。
【C】例3. 已知集合A⊆{0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一一写出。
2.解题方法:证明2个集合相等的方法:(1)若A、B两个集合是元素较少的有限集,可用列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足的条件是否一致,若均一致,则两集合相等。
(2)利用集合相等的定义证明A⊆B,且B⊆A,则A=B.【J】例1.下列各组中的两个集合相等的有()(1)P={x|x=2n,n∈Z}, Q={x|x=2(n-1),n∈Z}(2)P={x|x=2n-1,n∈N+}, Q={x|x=2n+1,n∈N+}(3) P={x|2x-x=0}, Q={x|x=1(1)2n+-,n∈Z}【L】例2.已知集合A={x|x=12kπ+4π,k∈Z},B={x|x=14kπ+2π,k∈Z},判断集合A与集合B是否相等。
集合的关系及其基本运算
集合的关系及其基本运算知识精要1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。
记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A 注:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合。
(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。
(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。
记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。
注:空集是任何集合的子集。
Φ⊆A空集是任何非空集合的真子集。
Φ A若A ≠Φ,则Φ A任何一个集合是它本身的子集。
A A ⊆易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。
如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。
如Φ⊆{0}。
不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。
3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。
记作A B (读作“A 交B ”),即A B ={x|x ∈A ,且x ∈B }。
集合知识点总结复习
集合知识点总结复习一、集合的基本概念1. 集合的定义集合是由若干个元素组成的整体。
一个集合通常用大写字母A、B、C等表示,集合中的元素用小写字母a、b、c等表示。
2. 集合的表示方法(1)列举法:直接列出集合中的所有元素,用大括号{}括起来。
例如:A={1, 2, 3, 4, 5}。
(2)描述法:通过一个性质或条件来描述集合中的元素。
例如:A={x|x是正整数,且x<6}。
3. 包含关系若集合A中所有的元素都属于集合B,则称A是B的子集,用符号A⊆B表示。
若A是B 的子集,且A≠B,则称A是B的真子集,用符号A⊂B表示。
4. 互斥和互补两个集合没有共同的元素,则称它们是互斥的。
若集合A与集合B的交集为空集,则称A 与B互斥。
若全集S中的元素中除了属于集合A的元素外,其他的都属于A的补集,记作A'。
5. 空集不包含任何元素的集合称为空集,记作{}或∅。
二、集合的运算1. 交集若元素x同时属于集合A和集合B,则x是A与B的交集,记作A∩B。
即A∩B={x|x∈A 且x∈B}。
2. 并集将属于集合A或集合B的元素组成的集合称为A与B的并集,记作A∪B。
即A∪B={x|x∈A 或x∈B}。
3. 差集集合A中所有属于A但不属于B的元素所组成的集合称为A与B的差集,记作A-B。
即A-B={x|x∈A 且x∉B}。
4. 补集全集S中除了属于A的元素外,其他都属于A的补集,记作A'。
5. 幂集集合A所有子集所构成的集合称为A的幂集,记作P(A)。
例如:A={1,2},则P(A)={{},{1},{2},{1,2}}。
三、集合运算的性质1. 交换律A∪B=B∪A,A∩B=B∩A。
2. 结合律(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。
3. 分配律A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。
4. 吸收律A∪(A∩B)=A,A∩(A∪B)=A。
高中数学中集合运算与关系式的性质与运算总结
高中数学中集合运算与关系式的性质与运算总结在高中数学中,集合运算与关系式是非常重要的概念和工具。
它们不仅在数学中有着广泛的应用,也在其他学科中起到关键的作用。
本文将从不同的角度总结集合运算与关系式的性质与运算,帮助读者更好地理解和应用这些概念。
一、集合运算的性质1. 交集的性质:对于任意两个集合A和B,它们的交集A∩B包含了同时属于A和B的元素。
交集满足交换律、结合律和分配律。
即A∩B=B∩A,(A∩B)∩C=A∩(B∩C),A∩(B∪C)=(A∩B)∪(A∩C)。
2. 并集的性质:对于任意两个集合A和B,它们的并集A∪B包含了属于A或B的元素。
并集也满足交换律、结合律和分配律。
即A∪B=B∪A,(A∪B)∪C=A∪(B∪C),A∪(B∩C)=(A∪B)∩(A∪C)。
3. 差集的性质:对于任意两个集合A和B,它们的差集A-B包含了属于A但不属于B的元素。
差集不满足交换律和结合律。
即A-B≠B-A,(A-B)-C≠A-(B-C)。
4. 补集的性质:对于给定的全集U和集合A,A的补集A'包含了属于U但不属于A的元素。
补集满足互补律。
即(A')'=A。
二、关系式的性质1. 等价关系的性质:等价关系是一种具有自反性、对称性和传递性的关系。
自反性要求对于任意元素a,a与自身相关;对称性要求对于任意元素a和b,如果a 与b相关,则b与a相关;传递性要求对于任意元素a、b和c,如果a与b相关,b与c相关,则a与c相关。
2. 相等关系的性质:相等关系是一种特殊的等价关系。
它满足自反性、对称性和传递性。
自反性要求任意元素a与自身相等;对称性要求对于任意元素a和b,如果a与b相等,则b与a相等;传递性要求对于任意元素a、b和c,如果a与b 相等,b与c相等,则a与c相等。
3. 偏序关系的性质:偏序关系是一种具有自反性、反对称性和传递性的关系。
自反性要求任意元素a与自身相关;反对称性要求对于任意元素a和b,如果a与b相关且a≠b,则b与a不相关;传递性要求对于任意元素a、b和c,如果a与b 相关,b与c相关,则a与c相关。
高一集合知识点总结
高一集合知识点总结集合是数学中非常基础且重要的概念,它有着广泛的应用。
本文将围绕高一阶段学习的集合知识点进行总结。
一、集合的基本概念1. 集合的定义:集合是由一些具有相同特性的对象组成的整体。
2. 集合的表示方法:常用的表示方法有列举法、描述法和级数法。
3. 元素与集合的关系:一个元素可以属于一个集合,也可以不属于一个集合。
4. 空集:不含任何元素的集合称为空集。
二、集合的运算1. 并集:包含两个或多个集合中的所有元素的集合。
2. 交集:包含几个集合中共同元素的集合。
3. 差集:包含一个集合中所有不属于另一个集合的元素的集合。
4. 补集:在一个全集中,除去一个集合中的元素后,剩下的元素构成的集合。
5. 集合的运算法则:包括交换律、结合律、分配律等。
三、集合的性质1. 子集:如果一个集合的所有元素都属于另一个集合,则前者称为后者的子集。
2. 真子集:如果一个集合是另一个集合的子集,且两个集合不相等,则前者称为后者的真子集。
3. 幂集:一个集合所有子集的集合。
4. 两个集合相等的充要条件:就是它们互为子集。
5. 全集:包含研究对象的一切元素的集合。
6. 互不相交:两个集合没有共同的元素。
7. 集合的基数:一个集合所含元素的个数。
四、集合的应用1. 应用于数学证明:集合论是数学的基础理论之一,许多数学证明都涉及到集合的概念和运算。
2. 应用于概率统计:集合可以用于描述样本空间、事件和概率等概念。
3. 应用于函数关系:集合可以用于描述函数的定义域、值域和图像等概念。
4. 应用于逻辑推理:集合可以用于描述命题、逻辑关系和推理过程等。
五、常见问题与解析1. 集合的相等与包含关系:很多问题需要判断两个集合是否相等或一个集合是否包含另一个集合。
2. 集合的运算性质:有时需要利用集合的运算性质简化问题或变换表达式。
3. 幂集的计算:计算幂集需要将一个集合的所有子集列举出来。
4. 集合的守恒问题:在进行集合运算时,需要注意集合的守恒问题,即集合运算前后集合元素的变化情况。
集合的基本关系和运算
集合的基本关系和运算在初中数学中,集合是一个重要的概念,它涉及到很多基本关系和运算。
掌握了集合的基本关系和运算,可以帮助我们更好地理解和解决数学问题。
本文将从不同角度来介绍集合的基本关系和运算,希望能够为中学生和他们的父母提供一些指导和帮助。
一、集合的基本关系1. 相等关系相等关系是集合中最基本的关系之一。
当两个集合的元素完全一样时,我们说这两个集合相等。
例如,集合A={1, 2, 3},集合B={1, 2, 3},则A=B。
相等关系是一种非常直观和容易理解的关系。
2. 包含关系包含关系是指一个集合包含另一个集合的所有元素。
例如,集合A={1, 2, 3},集合B={1, 2},则B是A的子集,记作B⊆A。
包含关系可以帮助我们理解集合的大小关系。
3. 相交关系相交关系是指两个集合有共同的元素。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A和B相交,记作A∩B≠∅。
相交关系可以帮助我们找到集合中的共同元素。
4. 互斥关系互斥关系是指两个集合没有共同的元素。
例如,集合A={1, 2, 3},集合B={4, 5, 6},则A和B互斥,记作A∩B=∅。
互斥关系可以帮助我们判断集合之间的差异。
二、集合的基本运算1. 并集并集是指将两个集合中的所有元素合并到一起。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∪B={1, 2, 3, 4}。
并集运算可以帮助我们找到两个集合的所有元素。
2. 交集交集是指两个集合中共同的元素。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A∩B={2, 3}。
交集运算可以帮助我们找到两个集合的共同元素。
3. 差集差集是指从一个集合中去除另一个集合中的元素。
例如,集合A={1, 2, 3},集合B={2, 3, 4},则A-B={1}。
差集运算可以帮助我们找到一个集合相对于另一个集合的独有元素。
4. 补集补集是指一个集合相对于全集的差集。
集合知识点归纳总结
集合知识点归纳总结一、集合的定义与性质1. 集合的基本定义:集合是由一些确定的元素组成的整体。
2. 集合的表示方法:列举法、描述法、集合运算法等。
3. 集合的关系:包含关系、相等关系、互斥关系等。
4. 集合的运算:并集、交集、差集、补集等运算。
二、集合的分类1. 空集与全集:空集是不包含任何元素的集合,全集是指定范围内的所有元素的集合。
2. 子集与真子集:如果一个集合中的所有元素都是另一个集合的元素,则称前者为后者的子集;若两个集合既有子集关系又不相等,则称前者为后者的真子集。
3. 有限集与无限集:元素个数有限的集合称为有限集,元素个数无限的集合称为无限集。
三、集合的运算1. 并集:将两个或多个集合中的所有元素都放在一起,得到的新集合即为并集。
2. 交集:两个集合中共有的元素组成的集合称为交集。
3. 差集:从一个集合中减去另一个集合的元素,得到的新集合称为差集。
4. 补集:相对于某个全集,与该集合不相交的元素组成的集合称为补集。
四、集合的表示与应用1. 集合的表示方法:列举法、描述法、集合运算法等。
2. 集合的应用场景:数学、计算机科学、概率论等领域中都有集合的应用。
3. 集合的问题求解:通过集合的运算和性质,解决实际问题中的集合相关的计算和逻辑推理。
五、集合的常用性质与定理1. 幂集:一个集合的所有子集构成的集合称为幂集。
2. 对称差:两个集合的对称差是指两个集合的并集减去交集。
3. 德摩根定律:集合运算中的德摩根定律包括并集的德摩根定律和交集的德摩根定律。
4. 集合的基数:集合的基数是指集合中元素的个数。
5. 区间表示法:用数轴上的区间来表示集合。
六、集合的应用举例1. 数学中的集合:数学中的各种概念和定理都可以用集合的语言来表达和证明。
2. 数据库中的集合:数据库中的查询、连接和操作都可以用集合的概念来描述和实现。
3. 概率论中的集合:概率论中的事件和样本空间都可以用集合的概念来表示和计算。
集合论中的集合关系与运算规律总结
集合论中的集合关系与运算规律总结集合论是数学的一个重要分支,研究的是集合及其内部关系和运算规律。
在集合论中,我们需要了解集合之间的关系和运算规律,以便能够正确地进行集合的操作和推理。
本文将对集合关系和运算规律进行总结,以帮助读者更好地理解和应用集合论知识。
一、集合的关系在集合论中,常见的集合关系有包含关系、相等关系、交集关系、并集关系和互斥关系。
1. 包含关系:表示一个集合包含另一个集合中的所有元素。
用符号“⊆”表示。
例如,若集合A包含集合B的所有元素,则可以表示为A⊆B。
2. 相等关系:表示两个集合拥有相同的元素。
用符号“=”表示。
例如,若集合A包含元素a、b、c,集合B也包含元素a、b、c,则可以表示为A=B。
3. 交集关系:表示两个集合中共有的元素构成的新集合。
用符号“∩”表示。
例如,若集合A={1, 2, 3},集合B={2, 3, 4},则A∩B={2, 3}。
4. 并集关系:表示两个集合中所有元素组成的新集合。
用符号“∪”表示。
例如,若集合A={1, 2, 3},集合B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。
5. 互斥关系:表示两个集合没有共同的元素。
用符号“∅”表示。
例如,若集合A={1, 2, 3},集合B={4, 5, 6},则A∩B=∅。
二、集合的运算规律在集合论中,常用的集合运算有交集、并集、差集和补集。
下面将对这些运算规律进行总结。
1. 交集运算:表示两个集合中共有的元素组成的新集合。
用符号“∩”表示。
交集运算满足交换律、结合律和吸收律。
- 交换律:A∩B=B∩A,即交换两个集合的位置不会改变交集结果。
- 结合律:(A∩B)∩C=A∩(B∩C),即无论先求哪两个集合的交集,再与第三个集合求交集,结果都是相同的。
- 吸收律:A∩(A∪B)=A,表示一个集合与它自身的并集的交集是它本身。
2. 并集运算:表示两个集合中所有元素组成的新集合。
用符号“∪”表示。
高一数学集合知识点总结
高一数学集合知识点总结一、集合的基本概念1. 集合是由元素组成的整体,元素是集合的构成要素。
2. 集合的表示方法:列举法和描述法。
3. 集合的基本运算:并集、交集、差集和补集。
二、集合的性质及运算规律1. 交换律:A∪B = B∪A,A∩B = B∩A。
2. 结合律:(A∪B)∪C = A∪(B∪C),(A∩B)∩C = A∩(B∩C)。
3. 分配律:A∪(B∩C) = (A∪B)∩(A∪C),A∩(B∪C) = (A∩B)∪(A∩C)。
4. 幂等律:A∪A = A,A∩A = A。
5. 吸收律:A∪(A∩B) = A,A∩(A∪B) = A。
6. 对偶律:(A∪B)' = A'∩B',(A∩B)' = A'∪B'。
三、集合的关系和判断1. 包含关系:子集和真子集。
- 子集:若集合A中的每个元素都属于集合B,则A是B的子集,记作A⊆B。
- 真子集:若A是B的子集且A≠B,则A是B的真子集,记作A⊂B。
2. 相等关系:两个集合A和B相等,当且仅当A是B的子集且B是A的子集,记作A=B。
3. 元素关系:属于和不属于。
- 属于:若元素a是集合A的元素,则记作a∈A。
- 不属于:若元素a不是集合A的元素,则记作a∉A。
4. 判断问题:- 空集:空集是任何集合的子集。
- 空集的子集:空集是任何集合的子集。
- 空集与非空集的关系:空集不是任何非空集的子集。
四、集合的应用1. 集合的应用于元素的归类和分类问题。
2. 集合的应用于概率问题,如事件的集合、样本空间等。
3. 集合的应用于数学推理和证明,如集合的运算规律的证明。
五、常见问题及解答1. 如何用集合表示一个范围?- 使用描述法:例如,表示大于1小于10的整数集合可以表示为{x | 1 < x < 10}。
2. 如何求两个集合的并集、交集、差集和补集?- 并集:将两个集合中的元素合并在一起,并去除重复的元素。
高三数学集合知识点归纳总结
高三数学集合知识点归纳总结数学是一门总结归纳的学科,集合论就是数学中重要的一个分支。
在高三数学学习中,集合知识点是必不可少的一部分。
为了帮助同学们更好地掌握集合知识,下面对高三数学集合知识点进行归纳总结。
一、集合的概念与表示方法集合是由确定的、具有某种特定性质的对象组成的整体。
表示方法主要有朴素方法、列举法和描述法。
在表示集合时,需要注意元素的顺序不重要、元素的个数可以是有限个或无限个、元素不重复等特点。
二、集合间的关系与运算1. 集合间的关系包含关系、相等关系、互斥关系等是集合之间的基本关系。
例如,若集合A包含于集合B,则称A为B的子集,记作A⊆B。
2. 集合的运算交集、并集、差集和补集是集合运算的基本操作。
交集表示同时属于两个集合的元素组成的集合,记作$A \cap B$;并集表示两个集合的所有元素组成的集合,记作$A \cup B$;差集表示属于一个集合而不属于另一个集合的元素组成的集合,记作$A - B$;补集表示在全集中不属于某个集合的元素组成的集合,记作$\bar{A}$。
三、集合的性质1. 互补律对于任何集合A,有$A \cup \bar{A} = U$,$A \cap \bar{A} =\emptyset$。
2. 幂集与子集关系集合A的幂集是指A的所有子集组成的集合。
对于元素个数为n的集合A,A的幂集共有$2^n$个元素。
3. 数集与集合数集是由数组成的集合,包括自然数集、整数集、有理数集和实数集等。
数集是集合的一个特殊实例。
四、集合的应用1. Venn图Venn图是以圆或矩形等几何图形来表示集合之间的关系,方便同学们直观地理解和比较集合的运算和关系。
2. 集合的应用问题集合论在实际问题中有着广泛的应用,例如在调查统计中进行数据分析、在概率论中确定事件的集合等等。
五、题目解析与示例1. 题目解析通过解析一些典型题目,帮助同学们更好地理解和掌握集合知识点。
2. 示例(1)已知集合A = {1, 2, 3},集合B = {2, 3, 4},求$A \cup B$和$A \cap B$。
高中数学必修一专题复习
第一章集合与函数概念知识架构第一讲 集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:三:集合的基本运算①两个集合的交集:A B = {}x x A x B ∈∈且; ②两个集合的并集: AB ={}x x A x B ∈∈或;③设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。
难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。
重难点: 1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性, 在解题过程中最易被忽视,因此要对结果进行检验; 2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,如{})(x f y x =、{})(x f y y =、{})(),(x f y y x =等的差别,如果对集合中代表元素认识不清,将导致求解错误:(3)Venn 图是直观展示集合的很好方法,在解决集合间元素的有关问题和集合的运算时常用Venn 图。
3.集合间的关系的几个重要结论 (1)空集是任何集合的子集,即A ⊆φ (2)任何集合都是它本身的子集,即A A ⊆(3)子集、真子集都有传递性,即若B A ⊆,C B ⊆,则C A ⊆ 4.集合的运算性质(1)交集:①A B B A =;②A A A = ;③φφ= A ;④A B A ⊆ ,B B A ⊆ ⑤B A A B A ⊆⇔= ;(2)并集:①A B B A =;②A A A = ;③A A =φ ;④A B A ⊇ ,B B A ⊇ ⑤A B A B A ⊆⇔= ; (3)交、并、补集的关系 ①φ=A C A U ;U A C A U =②)()()(B C A C B A C U U U =;)()()(B C A C B A C U U U =★热点考点题型探析考点一:集合的定义及其关系题型1:集合元素的基本特征[例1](2008年理)定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为( )A .0;B .2;C .3;D .6[解题思路]根据A B *的定义,让x 在A 中逐一取值,让y 在B 中逐一取值,xy 在值就是A B *的元素[解析]:正确解答本题,必需清楚集合A B *中的元素,显然,根据题中定义的集合运算知A B *={}4,2,0,故应选择D【名师指引】这类将新定义的运算引入集合的问题因为背景公平,所以成为高考的一个热点,这时要充分理解所定义的运算即可,但要特别注意集合元素的互异性。
《集合》知识点总结
《集合》知识点总结一、集合的基本概念1、集合:一些指定的对象集在一起就成为一个集合,其中每一个对象称为元素。
2、集合的表示:用大括号{}或小括号()表示,元素与集合的关系为“属于”或“不属于”。
3、集合的特性:确定性、互异性、无序性。
二、常见集合的表示方法1、自然数集:N2、整数集:Z3、有理数集:Q4、实数集:R三、集合的运算1、交集:取两个集合的公共元素组成的集合,记作A∩B。
2、并集:把两个集合合并起来,记作A∪B。
3、补集:把属于一个集合但不在该集合的元素组成的集合,记作CuA。
四、集合间的关系1、子集:若一个集合A的每一个元素都是另一个集合B的元素,则称A是B的子集。
2、真子集:如果A是B的子集,且A≠B,则称A是B的真子集。
3、相等:当且仅当两个集合的元素完全相同,且不强调元素的顺序时,两个集合相等。
五、集合的基本运算性质1、若A、B为两个集合,有A∩B=B∩A。
2、若A、B为两个集合,有Cu(A∩B)=CuA∪CuB。
3、若A、B、C为三个集合,有(A∩B)∩C=A∩(B∩C)。
4、若A、B为两个集合,有(CuA)∪B=(A∪B)∩CuB。
5、若A、B、C为三个集合,有(A∪B)∩C=(A∩C)∪(B∩C)。
6、若A、B为两个集合,有(CuA)∩B=Cu(A∪B)。
7、若A、B为两个集合,有(CuA)∪(CuB)=Cu(A∩B)。
集合知识点总结一、集合、元素及其关系1、集合的基本概念:集合是一个不重复的元素的集合,常用大写字母表示集合,如A={1,2,3},B={apple,banana,cherry}。
2、集合的表示方法:常用的表示方法有列举法和描述法。
列举法是把集合中的元素一一列举出来,适用于元素数量较少的集合;描述法是用集合中元素的共同特征来描述集合,如自然数集N={n|n是自然数}。
3、集合的元素关系:如果集合A中的任意一个元素都是集合B中的元素,那么称A是B的子集,记作A⊆B。
集合的关系和运算
集合的关系和运算集合是数学中一种重要的概念,用于描述具有相同特性的元素的集合。
集合的关系和运算是研究集合之间的联系和操作的内容。
在本文中,我们将探讨集合的关系和运算,包括子集、交集、并集、差集等基本运算。
一、子集关系在集合中,如果一个集合的所有元素也同时属于另一个集合,则称前一个集合为后一个集合的子集。
用符号表示为“A⊆B”,表示集合A 是集合B的子集。
例如,假设有集合A={1, 2, 3},集合B={1, 2, 3, 4},由于A的所有元素1、2、3也同时属于B,所以A是B的子集。
用符号表示为“A⊆B”。
二、真子集关系在集合中,如果一个集合的所有元素同时属于另一个集合,且这两个集合不相等,则称前一个集合为后一个集合的真子集。
用符号表示为“A⊂B”,表示集合A是集合B的真子集。
例如,假设有集合A={1, 2},集合B={1, 2, 3},由于A的所有元素1、2同时属于B,但A不等于B,所以A是B的真子集。
用符号表示为“A⊂B”。
三、交集运算在集合中,交集是指两个集合中共同元素组成的集合。
用符号表示为“A∩B”,表示集合A和集合B的交集。
例如,假设有集合A={1, 2, 3},集合B={2, 3, 4},集合A和集合B 的交集为集合{2, 3}。
用符号表示为“A∩B={2, 3}”。
四、并集运算在集合中,并集是指两个集合中所有元素组成的集合,不包含重复元素。
用符号表示为“A∪B”,表示集合A和集合B的并集。
例如,假设有集合A={1, 2, 3},集合B={3, 4, 5},集合A和集合B 的并集为集合{1, 2, 3, 4, 5}。
用符号表示为“A∪B={1, 2, 3, 4, 5}”。
五、差集运算在集合中,差集是指从一个集合中除去与另一个集合相同的元素后所得到的集合。
用符号表示为“A-B”,表示集合A与集合B的差集。
例如,假设有集合A={1, 2, 3, 4},集合B={3, 4},集合A与集合B 的差集为集合{1, 2}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课次教学计划(教案)
通过观察就会发现,这五组集合中,集合A都是集合B的一部分,从而有:
规定:空集是任何集合的子集,即对于任意一个集合A都有A。
问题1:观察(7)和(8),集合A与集合B的元素,有何关系?
例2设集合A={1,3,a},B={1,a2-a+1},且A⊇B,求a的值
问题2:(1)集合A 是否是其本身的子集?(由定义可知,是) (2)除去与A 本身外,集合A 的其它子集与集合A 的关系如何?(包含于A ,但不等于A )
例3.已知{}{}
,B A ,ab ,a ,a B ,b ,a ,1A 2===且求实数a 、b .
设a 、b ∈R ,集合{1,a + b ,a }={0,a b
,b },则b – a =( )
(请写出解题过程)
A . 1
B . -1
C . 2
D . -2
3.真子集: 由―包含‖与―相等‖的关系,可有如下结论:
(1)A ⊆A (任何集合都是其自身的子集); (2)若A ⊆B ,而且A ≠B (即B 中至少有一个元素不在A 中),则称集合A 是集合B 的真子集(proper subset ),
记作A ⊂≠ B 。
(空集是任何非空集合的真子集) (3)对于集合A ,B ,C ,若A ⊆B ,B ⊆C ,即可得出A ⊆C ;对A ⊂≠ B ,B ⊂≠ C ,同样有A ⊂≠ C,
即:包含关系具有“传递性”。
4.证明集合相等的方法:对于集合A ,B ,若A ⊆B 而且B ⊆A ,则A=B 。
(1)证明集合A ,B 中的元素完全相同;(具体数据)(2)分别证明A ⊆B 和B ⊆A 即可。
(抽象情况)
例4.己知集合A={x |一2≤x≤5},B={x |m 十1≤x≤2m 一1},若B ⊆A,求实数m 的取值范围.
已知集合M⊆{4,7,8},且M中至多有一个偶数,则这样的集合共有( );
A 3个
B 4个
C 5个
D 6个
问题3:请看下例
分析:(借助于文氏图)集合B就是集合S中除去集合A之后余下来的集合,则有
图1—3阴影部分即表示A在U中补集C U A。
例5.己知全集U={1,2,3,4,5},A={x|x2十px十4=0,x∈U},求C U A与p
分析:C U A隐含了A⊆U,.注意不要忘.记A=¢的情形.
知识点巩固
题型一 判断集合间的关系问题
例1 下列各式中,正确的个数是( )
(1) {0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)⊆∅{0,1,2};(4)=∅{0}; (5){0,1}={(0,1)};(6)0={0}。
A . 1
B . 2
C . 3
D . 4
题型二 确定集合的个数问题
例2 已知{1,2}⊆M ⊆{1,2,3,4,5},则这样的集合M 有__________个。
题型三 利用集合间的关系求字母参数问题 1.已知集合A ={x ︱1<a x <2},B ={x ∣
x
<1},求满足A ⊆B 的实数a 的范围。
(不等式问题)
2.(2. 用数轴解题)已知A ={x ︱x <-1或x >5},B ={x ∈R ︱a <x <a + 4},若A ⊇B ,求实数a 的取值范围。
二、分类讨论思想
3. 已知集合A ={a ,a + b ,a + 2b },B ={a ,a c ,a c 2
},若A =B ,求c 的值。
2. 开放探究题 4. 已知集合A ={x ∣
a
x -= 4},集合B ={1,2,b }.
(1) 是否存在实数a ,使得对于任意实数b 都有A ⊆B ?若存在,求出对应的a 值,若不
存在,说明理由。
(2) 若A ⊆B 成立,求出对应的实数对(a ,b )
交集与并集
图(3)阴影部分是由A、B组成;图(4)集合A是集合B的真子集;
5.课堂练习:
1.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B,A∪B。
1.1.3集合的基本运算
例1设集合A={x︱-1<x<2},集合B={x︱1<x≤3},求A B.
例2A={x︱-1<x≤4},B={x︱2<x≤5},求A B.
例3若A、B、C为三个集合,A B=B C,则一定有()
A.A⊆C
B.C⊆A
C.A≠C
D.A=∅
题型二集合的并集运算
例2若集合A={1,3,x},B={1,x2},A B={1,3,x},则满足条件的实数有()
A.1个
B.2个
C.3个
D.4个
例4集合A={1,2,3,4},B⊆A,且1∈(A B),但4∉(A B),则满足上述条件的集合B的个数是()
A.1
B.2
C.4
D.8
题型四集合的补集运算
例5设全集U={1,2,x2-2},A={1,x},求C U A
例6设全集U为R,A={x︱x2-x–2=0},B={x︱x
=y+1,y∈A},求C U B
数学思想方法
一、数形结合思想
例9(用数轴解题)已知全集U={x︱x≤4},集合A={x︱-2<x<3},集合B={x︱-3<x≤3},求C U A,A B,C U(A B),(C U A) B
例10(用V e n n图解题)设全集U和集合A、B、P满足A=C U B,B=C U P,则A与P的关系是()
A.A=C U P
B.A=P
C.A⊇P
D.A⊆P
二、分类讨论思想
例11设集合A={
1
+
a
,3,5},集合B={2a+1,a2+2a,a2+2a-1},当A B={2,3}
时,求A B
创新、拓展、实践
例14(实际应用题)在开秋季运动会时,某班共有28名同学参加比赛,其中有15人参加径赛,有8人参加田赛,有14人参加球类比赛,同时参加田赛和径赛的有3人,同时参加径赛和球类比赛的有3人,没有人同时参加三项比赛,问同时参加田赛和球类比赛的有多少人?只参加径赛的同学有多少人?
例16我们知道,如果集合A⊆U,那么U的子集A的补集为C U A={x︱x∈U,且x∉A},类似地,对于集合A、B,我们把集合{x︱x∈A,且x∉B}叫做A与B的差集,记作A-B,例如A={1,2,3,5,8},B={4,5,6,7,8},则A-B={1,2,3,},B–A={4,6,7}。
据此,回答以下问题:
⑴补集与差集有什么异同点?
⑵若U是高一⑴班全体同学的集合,A是高一⑴班
全体女同学组成的集合,求U–A及C U A.
⑶在图1-1-24所示的各图中,用阴影表示集合A–B
⑷如果A–B=∅,那么A与B之间具有怎样的关系。
高考要点阐释
例2(2008·上海高考)若集合A = {x ︱x ≤2},B = {x ︱x ≥a },满足A B ={2},则实数a = _________________________________.
例3(2008·北京高考)已知集合A = {x ︱-2≤x ≤3},B = {x ︱x <-1或x >4},则集合A B 等于( )
A . {x ︱x ≤3或x >4}
B . {x ︱-1<x ≤3}
C . {x ︱3≤x <4}
D . {x ︱-2≤x <-1}
6. 拓展
例1.设数集M={x | m ≤x ≤m +4
3}, N={x |n -
3
1
≤x ≤n }, 且M 、N 都是集合{x |0≤x ≤1}的子集, 如果把b -a 叫作集合{x | a ≤x ≤b }的―长度‖, 那么集合M∩N 的―长度‖的最小值是_______________.
例2.设S 是满足下列两个条件所构成的集合:。
则
若S ,S a )2(;S 1)1(∈∈∉a
-11
求证:并写出这两个数。
中必含有两个其他数,,则在)若(;则若S S S ,S a )1(∈∈-∈22a
1
1
7.作业
1.已知集合{}{}
22
,1,3,3,21,1A a a B a a a =+-=--+,若{}3A
B =-,求实数a 的值。
2.已知集合{}8x 24x A ≤-≤=,集合{}
0a x x B ≥-=。
(1)若B A ⊆,求a 的范围;(2)若全集U=R 且B C A U ⊆,求a 的范围。