立体几何中角度与距离求法

合集下载

立体几何中夹角与距离的计算(绝对精品)

立体几何中夹角与距离的计算(绝对精品)

第三节 立体几何中夹角与距离的计算一、求距离:1、点到平面的距离:①直接法:平面外一点P 在该平面上的射影为P ′,则线段PP ′的长度就是点到平面的距离, “一找二证三计算”;②等体积法:三棱锥换顶点等体积法。

2、直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;3、平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。

点到平面的距离平面到平面的距离直线到平面的距离⇒⎩⎨⎧ 二、求夹角1、两条异面直线所成的角:求法:先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;2、直线和平面所成的角:“一找二证三求”,三步都必须要清楚地写出来。

除特殊位置外,主要是指平面的斜线与它在平面内的射影之间的夹角;3、二面角:通常的作法有:①定义法:在二面角的棱上任取一点O (常指特殊点),过点O 分别在两个半平面内作垂直于棱的射线OA 和OB ,则∠AOB 即为所求二面角的平面角;②三垂线定理或逆定理:过一个半平面内一点P 向另一个半平面作垂线PA ,过点A 向棱作垂线AB ,连接PB ,则∠PAB 即为所求二面角的平面角;③自空间一点作棱垂直的垂面,截二面角得两条射线所成的角,俗称垂面法.④射影面积法解之,cos θ=SS ',其中S 为斜面面积,S ′为射影面积,θ为斜面与射影面所成的二面角题型一:异面直线的夹角及二面角例1、如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=12A(I) 求异面直线BF 与DE 所成的角的大小; (II) 证明平面AMD ⊥平面CDE ; (III )求二面角A-CD-E 的余弦值题型二:点面距离例2、如题(19)图,在四棱锥S ABCD -中,ADBC 且AD CD ⊥;平面CSD ⊥平面ABCD ,,22CS DS CS AD ⊥==;E 为BS 的中点,2,3CE AS ==.求:(Ⅰ)点A 到平面BCS 的距离; (Ⅱ)二面角E CD A --的大小.题型三:线面距离例3、如题(18)图,在五面体ABCDEF 中,AB ∥DC ,2BAD π∠=,2CD AD ==,四边形ABFE 为平行四边形,FA ⊥平面ABCD ,3,7FC ED ==(Ⅰ)直线AB 到平面EFCD 的距离; (Ⅱ)二面角F AD E --的平面角的正切值.题型四:线面夹角例4、如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E.(Ⅰ)证明:平面1A DE ⊥平面11ACC A (Ⅱ)求直线AD 和平面1A DE 所成角的正弦值题型五:点到面的距离例5、在长方体ABCD—A1B1C1D1中,AB=4,BC=3,CC1=2,如图:(1)求证:平面A1BC1∥平面ACD1;(2)求(1)中两个平行平面间的距离;(3)求点B1到平面A1BC1的距离。

知识讲解空间向量在立体几何中的应用三——距离的计算

知识讲解空间向量在立体几何中的应用三——距离的计算

知识讲解空间向量在立体几何中的应用三——距离的计算距离是立体几何中一个重要的概念,用来描述两个点、线或平面之间的远近关系。

在立体几何中,可以使用空间向量的知识来计算距离。

本篇文章将介绍三种常见的空间向量在立体几何中计算距离的方法。

第一种方法是点到点距离的计算。

设立体空间中有两个点A(x1,y1,z1)和B(x2,y2,z2),则点A到点B的距离可以通过空间向量表示为:AB=√((x2-x1)²+(y2-y1)²+(z2-z1)²)例如,如果点A的坐标是(1,2,3),点B的坐标是(4,5,6),则点A到点B的距离为:AB=√((4-1)²+(5-2)²+(6-3)²)=√(3²+3²+3²)=√(27)≈5.196第二种方法是点到直线距离的计算。

设立体空间中有一条直线L和一个点P(x0,y0,z0),要计算点P到直线L的距离,可以通过先计算点P到直线上的一点Q的距离,再计算点Q到直线上的两个点A和B的距离,其计算公式为:d(P,L)=AB=,PP_A×PP_B,/,A-B其中,×表示两个向量的叉乘运算,,表示向量的模,P_A和P_B分别是点P到直线上的两个垂足点。

第三种方法是点到平面距离的计算。

设立体空间中有一个平面平面α和一个点P(x0,y0,z0),要计算点P到平面α的距离,可以通过计算点P到平面上的一点Q的距离,其计算公式为:d(P,α)=PQ·n/,n其中,·表示两个向量的点乘运算,n表示平面的法向量。

需要注意的是,当计算点到直线或点到平面的距离时,我们需要先确定直线或平面上的一个点,然后再计算该点到目标点的距离。

综上所述,空间向量在立体几何中的应用可以帮助我们计算点到点、点到直线和点到平面的距离。

这些计算方法在实际问题中非常有用,例如计算物体的尺寸、相机的视距等等。

立体几何中的求距离问题

立体几何中的求距离问题

**立体几何中的求距离问题**1. **定义与公式**在立体几何中,距离是一个重要的概念。

它表示点与点之间、线与线之间、面与面之间的最短距离。

对于两点A和B,它们之间的距离称为AB的距离,用公式表示为:AB = sqrt[(x2 - x1)² + (y2 - y1)² + (z2 - z1)²]。

2. **求解方法**求两点间的距离主要依赖于坐标变换和勾股定理。

首先,需要确定两点的三维坐标,然后通过计算两坐标之间的差的平方,再开方得到距离。

3. **实际应用**在实际生活中,距离的概念广泛应用于各种场景,如地理学中的地球距离、物理学中的物体间距离、工程学中的结构尺寸等。

在科学研究和工程实践中,计算距离是一个必不可少的步骤。

4. **易错点**在计算距离时,容易出现错误的地方包括单位不一致、坐标表示错误或计算错误等。

为了避免这些问题,需要仔细检查并确保所有的单位和坐标都是正确的。

5. **真题演练**给定两点A(1,2,3)和B(4,5,6),求AB的距离。

解:根据公式,AB的距离为:sqrt[(4-1)² + (5-2)² + (6-3)²] = sqrt(9+9+9) = 3*sqrt(3)6. **知识点总结**求两点间的距离主要依赖于坐标变换和勾股定理。

在实际应用中,计算距离是一个重要的步骤。

为了避免错误,需要仔细检查坐标和单位。

7. **未来学习建议**在未来的学习中,可以进一步探索距离在不同领域的应用,如医学影像分析、地理信息系统等。

同时,可以尝试解决更复杂的几何问题,如多维空间中的距离计算、曲面上的最短路径等。

此外,可以学习更多关于向量和矩阵的知识,这些工具对于解决复杂的几何问题非常有帮助。

专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.8  立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。

立体几何中的向量方法1:求空间角、距离

立体几何中的向量方法1:求空间角、距离

立体几何中的向量方法——求空间角、距离1.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求平面间夹角的大小如图所示,平面π1与π2相交于直线l ,点R 为直线l 上任意一点,过点R ,在平面π1上作直线l 1⊥l ,在平面π2上作直线l 2⊥l ,则l 1∩l 2=R .我们把直线l 1和l 2的夹角叫作平面π1与π2的夹角.已知平面π1和π2的法向量分别为n 1和n 2.当0≤〈n 1,n 2〉≤π2时,平面π1与π2的夹角等于〈n 1,n 2〉;当π2<〈n 1,n 2〉≤π时,平面π1与π2的夹角等于π-〈n 1,n 2〉. 2.点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.[难点正本 疑点清源]1.向量法通过空间坐标系把空间图形的性质代数化,避免了寻找平面角和垂线段等诸多麻烦,使空间点线面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.2.利用平面的法向量求二面角的大小时,当求出两半平面α、β的向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补.3.求点到平面距离的方法:①垂面法:借助面面垂直的性质来作垂线,其中过已知点确定已知面的垂面是关键;②等体积法,转化为求三棱锥的高;③等价转移法;④法向量法.1.若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为_______.答案 41133解析 ∵n·a =-8-3+3=-8,|n |=16+1+1=32, |a |=4+9+9=22,∴cos 〈n ,a 〉=n·a|n|·|a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133. 2.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于________. 答案 30°解析 由题意得直线l 与平面α的法向量所在直线的夹角为60°,∴直线l 与平面α所成的角为90°-60°=30°.3.从空间一点P 向二面角α—l —β的两个面α,β分别作垂线PE ,PF ,垂足分别为E ,F ,若二面角α—l —β的大小为60°,则∠EPF 的大小为__________. 答案 60°或120°4. 如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO —A ′B ′C ′D ′,A ′C 的中点E 与AB 的中点F 的距离为________.答案22a 解析 由图易知A (a,0,0),B (a ,a,0),C (0,a,0),A ′(a,0,a ).∴F ⎝⎛⎭⎫a ,a 2,0,E ⎝⎛⎭⎫a 2,a 2,a 2. ∴EF =⎝⎛⎭⎫a -a 22+⎝⎛⎭⎫a 2-a 22+⎝⎛⎭⎫0-a 22 =a 24+a 24=22a .5.在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中点,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于________.答案 155解析 以D 为原点,分别以DA 、DC 、DD1为x 轴、y 轴、z 轴建立空间直角坐标系,∴F (1,0,0),D 1(0,0,2),O (1,1,0),E (0,2,1),∴FD 1→=(-1,0,2), OE →=(-1,1,1),∴cos 〈FD 1→,OE →〉=1+25·3=155.题型一 求异面直线所成的角例1 如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,点E 是正方形BCC 1B 1的中心,点F 、G 分别是棱C 1D 1、AA 1的中点,设点E 1、G 1分别是点E 、G 在平面DCC 1D 1内的正投影.(1)证明:直线FG 1⊥平面FEE 1;(2)求异面直线E 1G 1与EA 所成角的正弦值.思维启迪:本题可方便地建立空间直角坐标系,通过点的坐标得到向量坐标,然后求解. (1)证明 以D 为原点,DD 1→、DC →、DA →分别为z 轴、y 轴、x 轴的正向,12|DD 1→|为1个单位长度建立空间直角坐标系.由题设知点E 、F 、G 1、E 1的坐标分别为(1,2,1),(0,1,2),(0,0,1),(0,2,1), ∴FE 1→=(0,1,-1),FG 1→=(0,-1,-1),EE 1→=(-1,0,0), ∴FG 1→·EE 1→=0,FG 1→·FE 1→=0⇒FG 1→⊥EE 1→,FG 1→⊥FE 1→, 又∵EE 1∩FE 1=E 1.∴FG 1⊥平面FEE 1.(2)解 由题意知点A 的坐标为(2,0,0),又由(1)可知EA →=(1,-2,-1),E 1G 1→=(0,-2,0),∴cos 〈EA →,E 1G 1→〉=EA →·E 1G 1→|EA →|·|E 1G 1→|=63,∴sin 〈EA →,E 1G 1→〉=1-cos 2〈EA →,E 1G 1→〉=33.探究提高 用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来求解,而两异面直线所成角的范围是θ∈⎝⎛⎦⎤0,π2,两向量的夹角α的范围是[0,π],所以要注意二者的区别与联系,应有cos θ=|cos α|.如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2.E 、F 分别是线段AB 、BC 上的点,且EB =BF =1.求直线EC 1与FD 1所成的角的余弦值.解 以A 为原点,AB →、AD →、AA 1→分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有D 1(0,3,2),E (3,0,0),F (4,1,0),C 1(4,3,2),于是EC 1→=(1,3,2),FD 1→=(-4,2,2),设EC 1与FD 1所成的角为β,则:cos β=|EC 1→·FD 1→||EC 1→|·|FD 1→|=1×(-4)+3×2+2×212+32+22×(-4)2+22+22=2114,∴直线EC 1与FD 1所成的角的余弦值为2114.题型二 求直线与平面的夹角例2 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH是四棱锥的高,E 为AD 的中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 夹角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴,线段HA 的长为单位长度,建立空间直角坐标系(如图),则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0.可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1,故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0,P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量,则⎩⎪⎨⎪⎧ n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又P A →=(1,0,-1),所以|cos 〈P A →,n 〉|=24.所以直线P A 与平面PEH 夹角的正弦值为24.探究提高 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的投影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面的夹角.已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,且AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 夹角的大小.(1)证明 设P A =1,以A 为原点,AB ,AC ,AP 所在直线分别为x ,y ,z 轴的正方向建立空间直角坐标系如图所示,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).所以CM →=(1,-1,12),SN →=(-12,-12,0).因为CM →·SN →=-12+12+0=0,所以CM ⊥SN .(2)解 设平面CMN 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·CM →=x -y +12z =0n ·CN →=(x ,y ,z )·⎝⎛⎭⎫12,-1,0=12x -y =0.∴y =12x ,z =-x ,取x =2,则n =(2,1,-2)为平面CMN 的一个法向量.∴cos 〈n ·SN →〉=n ·SN →|n |·|SN →|=(2,1,-2)·⎝⎛⎭⎫-12,-12,022+1+(-2)2·⎝⎛⎭⎫-122+⎝⎛⎭⎫-122+02=-22.∴〈n ·SN →〉=135°, 故SN 与平面CMN 夹角的大小为45°. 题型三 求平面间的夹角例3 (2012·广东)如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE .(1)证明:BD ⊥平面P AC ;(2)若P A =1,AD =2,求平面BPC 与平面PCA 夹角的正切值.思维启迪:利用图中的P A ⊥平面ABCD 、ABCD 为矩形的条件建立空间直角坐标系,转化为向量问题.(1)证明 ∵P A ⊥平面ABCD ,BD 平面ABCD , ∴P A ⊥BD .同理由PC ⊥平面BDE 可证得PC ⊥BD . 又P A ∩PC =P ,∴BD ⊥平面P AC . (2)解 如图,分别以射线AB ,AD ,AP 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系. 由(1)知BD ⊥平面P AC , 又AC 平面P AC , ∴BD ⊥AC .故矩形ABCD 为正方形,∴AB =BC =CD =AD =2. ∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,1). ∴PB →=(2,0,-1),BC →=(0,2,0),BD →=(-2,2,0). 设平面PBC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PB →=0,n ·BC →=0, 即⎩⎪⎨⎪⎧2·x +0·y -z =0,0·x +2·y +0·z =0, ∴⎩⎪⎨⎪⎧z =2x ,y =0,取x =1得n =(1,0,2). ∵BD ⊥平面P AC ,∴BD →=(-2,2,0)为平面P AC 的一个法向量.cos 〈n ,BD →〉=n ·BD →|n |·|BD →|=-1010.设平面BPC 与平面PCA 夹角为α, ∴cos α=1010,sin α=1-cos 2α=31010.∴tan α=sin αcos α=3,即平面BPC 与平面PCA 夹角的正切值为3.探究提高 求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为⎣⎡⎦⎤0,π2.(2011·辽宁)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ;(2)求平面QBP 与平面BPC 的夹角的余弦值.(1)证明 如图,以D 为坐标原点,线段DA 的长为单位长,以DA 、DP 、DC 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1), PQ →=(1,-1,0).所以PQ →·DQ →=0,PQ →·DC →=0, 即PQ ⊥DQ ,PQ ⊥DC .又DQ ∩DC =D ,所以PQ ⊥平面DCQ .又PQ 平面PQC ,所以平面PQC ⊥平面DCQ .(2)解 依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0, 即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).同理,设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0,可取m =(1,1,1).所以cos 〈m ,n 〉=-155. 故平面QBP 与平面BCP 的夹角的余弦值为-155. 题型四 求空间距离例4 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示. 求点B 到平面CMN 的距离.思维启迪:由平面SAC ⊥平面ABC ,SA =SC ,BA =BC ,可知本题可以取AC 中点O 为坐标原点,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,用向量法求解.解 取AC 的中点O ,连接OS 、OB .∵SA =SC ,AB =BC , ∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC , 平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,又∵BO 平面ABC ,∴SO ⊥BO .如图所示,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz ,则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2). ∴CM →=(3,3,0),MN →=(-1,0,2),MB →=(-1,3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·n =3x +3y =0MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1).∴点B 到平面CMN 的距离d =|n ·MB →||n |=423.探究提高 点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法.如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →, ∴|BH →·n |=|n ·BM →|=|BH →|·|n |,∴|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.(2012·大纲全国)已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2B. 3C. 2D .1答案 D解析 以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2),易知AC 1∥平面BDE .设n =(x ,y ,z )是平面BDE 的法向量.则⎩⎪⎨⎪⎧n ·BD →=2x +2y =0n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量. 又DA →=(2,0,0),∴点A 到平面BDE 的距离是d =|n ·DA →||n |=|-1×2+0+0|(-1)2+12+(-2)2=1. 故直线AC 1到平面BED 的距离为1.典例:(12分)如图,已知在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=1,直线BD 与平面AA 1B 1B 所成的角为30°,AE 垂直BD 于点E ,F 为A 1B 1的中点.(1)求异面直线AE 与BF 所成角的余弦值; (2)求平面BDF 与平面AA 1B 夹角的余弦值.审题视角 (1)研究的几何体为长方体,AB =2,AA 1=1. (2)所求的是异面直线所成的角和平面间的夹角. (3)可考虑用空间向量法求解. 规范解答解 (1)以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图所示).[2分]由于AB =2,BD 与平面AA 1B 1B 的夹角为30°,即∠ABD =30°,∴AD =233,[3分]∴A (0,0,0),B (2,0,0),D ⎝⎛⎭⎫0,233,0,F (1,0,1).又AE ⊥BD ,故由平面几何知识得AE =1,从而E ⎝⎛⎭⎫12,32,0,[4分]因为AE →=⎝⎛⎭⎫12,32,0,BF →=(-1,0,1),∴AE →·BF →=⎝⎛⎭⎫12,32,0·(-1,0,1)=-12,|AE →|=1,|BF →|=2,[6分]设AE 与BF 所成角为θ1,则cos θ1=|AE →·BF →||AE →||BF →|=⎪⎪⎪⎪-121×2=24.[8分]故异面直线AE 与BF 所成角的余弦值为24. (2)设平面BDF 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ n ·BF →=0n ·BD →=0,得⎩⎪⎨⎪⎧-x +z =0-2x +233y =0,∴z =x ,y =3x ,取x =1,得n =(1,3,1).[10分] 求得平面AA 1B 的一个法向量为m =AD →=⎝⎛⎭⎫0,233,0.设平面BDF 与平面AA 1B 的夹角的大小为θ2.则cos θ2=|cos 〈m ,n 〉|=|m·n||m||n |=|0+2+0|233×5=155.[12分]利用向量求空间角的步骤: 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法 向量)坐标.第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和 答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性 作用.(2)本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范. (3)将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.方法与技巧1.若利用向量求角,各类角都可以转化为向量的夹角来运算.(1)求两异面直线a 、b 的夹角θ,须求出它们的方向向量a ,b 的夹角,则cos θ= |cos 〈a ,b 〉|.(2)求直线l 与平面α的夹角θ可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|. (3)求平面间夹角θ,可先求出两个平面的法向量n 1,n 2所成的角,则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.2.求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段. 失误与防范1.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2.求点到平面的距离,有时利用等积法求解可能更方便.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1 . 已知正方体ABCD —A 1B 1C 1D 1如图所示,则直线B 1D 和CD 1所成的角为( )A .60°B .45°C .30°D .90°答案 D解析 以A 为原点,AB 、AD 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体边长为1,则射线CD 1、B 1D 的方向向量分别是CD 1→=(-1,0,1),B 1D →=(-1,1,-1),cos 〈CD 1→,B 1D →〉=1+0-12×3=0,∴两直线所成的角为90°.2.在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( )A .4B .2C .3D .1答案 B解析 P 点到平面OAB 的距离为d =|OP →·n||n |=|-2-6+2|9=2,故选B.3 . 如图所示,已知正方体ABCD —A 1B 1C 1D 1,E 、F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .90°答案 B解析 以D 为原点,分别以射线DA 、DC 、DD 1为x 轴、y 轴、z 轴的非负半轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝⎛⎭⎫12,12,1, F ⎝⎛⎭⎫12,0,12, EF →=⎝⎛⎭⎫0,-12,-12,DC →=(0,1,0), ∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.提醒 两异面直线的方向向量的夹角与异面直线所成的角相等或互补.4.在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 的夹角的余弦值为( )A.12 B.23C.33D.22答案 B解析 以A 为原点建立如图所示的空间直角坐标系,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2. ∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23. 即所求的角的余弦值为23.二、填空题(每小题5分,共15分)5 . 如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是________.答案 60°解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.6.长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为________.答案 3010解析 建立坐标系如图,则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2), ∴BC 1→=(-1,0,2),AE →=(-1,2,1),∴cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→||AE →|=3010. 7.设正方体ABCD —A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是________.答案 233解析 如图建立空间直角坐标系,则D 1(0,0,2),A 1(2,0,2), D (0,0,0),B (2,2,0), ∴D 1A 1→=(2,0,0), DA 1→=(2,0,2),DB →=(2,2,0),设平面A 1BD 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1),∴点D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.三、解答题(共22分)8.(10分)如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,P A 与平面ABD 所成的角为60°,在四边形ABCD 中,∠ADC =∠DAB =90°,AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线P A 与BC 所成的角的余弦值. 解 (1)建立如图空间直角坐标系,∵∠ADC =∠DAB =90°,AB =4,CD =1,AD =2, ∴A (2,0,0),C (0,1,0),B (2,4,0).由PD ⊥平面ABCD ,得∠P AD 为P A 与平面ABCD 所成的角, ∴∠P AD =60°.在Rt △P AD 中,由AD =2,得PD =23,∴P (0,0,23).(2)∵P A →=(2,0,-23),BC →=(-2,-3,0),∴cos 〈P A →,BC →〉=2×(-2)+0×(-3)+(-23)×0413=-1313,∴P A 与BC 所成的角的余弦值为1313. 9.(12分)如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ;(2)求平面PBD 与平面ABD 的夹角的大小. (1)证明 如图,建立空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3), ∴AP →=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0). ∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC . 又∵P A ∩AC =A ,∴BD ⊥面P AC .(2)解 设平面ABD 的法向量为m =(0,0,1), 设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3), ∴⎩⎨⎧-23x +2y =0,-23x +3z =0解得⎩⎪⎨⎪⎧y =3x ,z =233x . 令x =3,则n =(3,3,2),∴cos 〈m ,n 〉=m·n |m||n |=12.∴平面PBD 与平面BDA 夹角的大小为60°.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( )A.19 B.495 C.295 D.23答案 B解析 设正方体的棱长为2,以D 为坐标原点,DA 为x 轴,DC 为y轴,DD 1为z 轴建立空间直角坐标系,可知CM →=(2,-2,1),D 1N →=(2,2,-1),cos 〈CM →,D 1N →〉=-19,sin 〈CM →,D 1N →〉=459.2.在正三棱柱ABC —A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 的夹角的正弦值为( )A.22B.155C.64D.63答案 C解析 建立如图所示的空间直角坐标系,设AB =2,则C 1(3,1,0)、A (0,0,2),AC 1→=(3,1,-2),平面BB 1C 1C 的一个法向量为n =(1,0,0),所以AC 1与平面BB 1C 1C 所成角的正弦值为|AC 1→·n ||AC 1→||n |=38=64.故选C.3.如图,设动点P 在棱长为1的正方体ABCD —A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B=λ.当∠APC为钝角时,则λ的取值范围是 ( )A.⎝⎛⎭⎫0,13B.⎝⎛⎭⎫0,12C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫13,1 答案 D解析 由题设可知,以DA →、DC →、DD 1→为单位正交基底,建立如图所示的空间直角坐标系,则有A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1). 由D 1B →=(1,1,-1)得D 1P →=λD 1B →=(λ,λ,-λ),所以P A →=PD 1→+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1), PC →=PD 1→+D 1C →=(-λ,-λ,λ)+(0,1,-1) =(-λ,1-λ,λ-1).显然∠APC 不是平角,所以∠APC 为钝角等价于cos ∠APC =cos 〈P A →,PC →〉=P A →·PC →|P A →||PC →|<0,这等价于P A →·PC →<0, 即(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)2=(λ-1)(3λ-1)<0,得13<λ<1.因此,λ的取值范围为⎝⎛⎭⎫13,1. 二、填空题(每小题5分,共15分)4.(2012·陕西)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成的角的余弦值为________.答案55解析 不妨令CB =1,则CA =CC 1=2.可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC →1=(0,2,-1),AB →1=(-2,2,1),∴cos 〈BC →1,AB →1〉=BC →1·AB →1|BC →1||AB →1|=4-15×9=15=55>0.∴BC →1与AB →1的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55.5.(2012·大纲全国)三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为________.答案 66解析 连接A 1B 交AB 1于点O ,取A 1C 1的中点D ,连接B 1D 、DO .∵O 、D 分别为A 1B 、A 1C 1的中点,∴OD ∥BC 1,∴∠DOB 1或其补角即为异面直线AB 1与BC 1所成的角.设各棱长为a ,则DB 1=32a .∵∠A 1AB =60°,∴OB 1=AO =32a .又∵BC 1→=BB 1→+BC →=AA 1→+AC →-AB →, ∴BC 1→2=(AA 1→+AC →-AB →)2 =AA 1→2+2AA 1→·AC →+AC →2-2AA 1→·AB →-2AC →·AB →+AB →2 =a 2+2a 2cos 60°+a 2-2a 2cos 60°-2a 2cos 60°+a 2 =2a 2,∴|BC 1→|=2a .∴OD =12BC 1=22a .在△DOB 1中,由余弦定理得cos ∠DOB 1=⎝⎛⎭⎫32a 2+⎝⎛⎭⎫22a 2-⎝⎛⎭⎫32a 22·32a ·22a =66,∴AB 1与BC 1所成角的余弦值为66.6.在四面体P -ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为________.答案 33a解析 根据题意,可建立如图所示的空间直角坐标系Pxyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的 距离.∵P A =PB =PC ,∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝⎛⎭⎫a 3,a 3,a 3. ∴PH =⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02+⎝⎛⎭⎫a 3-02=33a .∴点P 到平面ABC 的距离为33a . 三、解答题7.(13分)(2012·北京)如图(1),在Rt △ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图(2).(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. (1)证明 ∵AC ⊥BC ,DE ∥BC ,∴DE ⊥AC . ∴DE ⊥A 1D ,DE ⊥CD ,∴DE ⊥平面A 1DC , 又A 1C 平面A 1DC ,∴DE ⊥A 1C . 又∵A 1C ⊥CD ,∴A 1C ⊥平面BCDE .(2)解 如图所示,以C 为坐标原点,建立空间直角坐标系C -xyz则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B →=0, n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0),∴⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3,∴n =(2,1,3). 设CM 与平面A 1BE 所成的角为θ. ∵CM →=(0,1,3),∴sin θ=|cos 〈n ,CM →〉|=⎪⎪⎪⎪⎪⎪n ·CM →|n |·|CM →|=48×4=22. ∴CM 与平面A 1BE 所成角的大小为π4.(3)解 线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ′,y ′,z ′),则m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),∴⎩⎨⎧2y ′-23z ′=0,px ′-2y ′=0.令x ′=2,则y ′=p ,z ′=p 3,∴m =⎝⎛⎭⎫2,p ,p 3. 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.∴线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.。

立体几何中的角度、体积、距离问题

立体几何中的角度、体积、距离问题

第02讲 玩转立体几何中的角度、体积、距离问题【学习目标】1.掌握各种角的定义,弄清异面直线所成的角与两直线所成的角,二面角与二面角的平面角,直线与平面所成的角和斜线与平面所成的角,二面角与两平面所成的角的联系与区别,弄清他们各自的取值范围。

2.细心体会求空间角的转化和数形结合思想。

3.掌握各种距离和距离的求解方法.【基础知识】知识点1.求点线、点面、线面距离的方法(1)若P 是平面α外一点,a 是平面α内的一条直线,过P 作平面α的垂线PO ,O 为垂足,过O 作OA ⊥a ,连接P A ,则以P A ⊥a .则线段P A 的长即为P 点到直线a 的距离(如图所示).(2)一条直线与一个平面平行时,这条直线上任意一点到这个平面的距离叫直线与平面的距离.(3)求点面距离的常用方法:①直接过点作面的垂线,求垂线段的长,通常要借助于某个直角三角形来求解.②转移法:借助线面平行将点转移到直线上某一特殊点到平面的距离来求解.③体积法:利用三棱锥的特征转换位置来求解.知识点2.异面直线所成角的常用方法求异面直线所成角的一般步骤:(1)找(或作出)异面直线所成的角——用平移法,若题设中有中点,常考虑中位线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设(2)所求角大小为θ.若090θ︒<≤︒,则θ即为所求;若90180θ︒<<︒,则180θ︒-即为所求.知识点3.直线与平面所成角的常用方法求平面的斜线与平面所成的角的一般步骤(1)确定斜线与平面的交点(斜足);(2)通过斜线上除斜足以外的某一点作平面的垂线,连接垂足和斜足即为斜线在平面上的射影,则斜线和射影所成的锐角即为所求的角;(3)求解由斜线、垂线、射影构成的直角三角形.知识点4.作二面角的三种常用方法(1)定义法:在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图①,则∠AOB 为二面角α-l -β的平面角.(2)垂直法:过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如图②,∠AOB 为二面角α-l -β的平面角.(3)垂线法:过二面角的一个面内异于棱上的一点A 向另一个平面作垂线,垂足为B ,由点B 向二面角的棱作垂线,垂足为O ,连接AO ,则AOB ∠为二面角的平面角或其补角.如图③,AOB ∠为二面角l αβ--的平面角.知识点5.求体积的常用方法选择合适的底面,再利用体积公式求解.【考点剖析】考点一:异面直线所成的角例1.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若2==AC BD ,且AC 与BD 所成的角为60°,则EG 的长为()A .1或2B .2或3C .1或3D .12或32考点二:线面角例2.如图,在三棱柱ABC A B C '''-中,底面ABC 是正三角形,AA '⊥底面ABC ,且1AB =,2AA '=,则直线BC '与平面ABB A ''所成角的正弦值为______.考点三:二面角例3.在四棱锥P ABCD -中,底面ABCD 是菱形,60ABC ∠=︒,PA ⊥平面ABCD ,2PA AB ==.(1)求证:PC BD ⊥;(2)求二面角P CD A --的正弦值.考点四:距离问题例4.如图,在直三棱柱111ABC A B C -中,1,,22AB BC AA AC AB BC ⊥===,E ,F 分别是11,AC AB 的中点.(1)证明:AE ∥平面11B C F .(2)求点C 到平面11B C F 的距离.考点五:体积问题例5.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为正方形,点F 为线段PC 上的点,过A ,D ,F 三点的平面与PB 交于点E .(1)证明://EF 平面ABCD ;(2)若E 为PB 中点,且2AB PA ==,求四棱锥P AEFD -的体积.【真题演练】1.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π62.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是( ) A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角1.线面平行垂直的判定;2.线面角,异面直线所成角3.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤4.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A 235D 7 5.已知正方体1111ABCD ABCD -中,E 、F 分别为11、BB CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为____________.6.如下图,在四棱锥S ABCD -中,底面ABCD 是正方形,平面SAD ⊥平面ABCD ,2SA SD ==,3AB =. (1)求SA 与BC 所成角的余弦值;(2)求证:AB SD ⊥.7.如图,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =. (1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.8.如图,在圆锥PO 中,已知2PO O 的直径2AB =,点C 在AB 上,且30CAB ∠=,D 为AC 的中点.(I )证明:AC ⊥平面POD ;(II )求直线OC 和平面PAC 所成角的正弦值.9.如图,P 是边长为1的正六边形ABCDEF 所在平面外一点,1PA =,P 在平面ABC 内的射影为BF 的中点O .(Ⅰ)证明PA ⊥BF ;(Ⅰ)求面APB 与面DPB 所成二面角的大小的余弦值.10.在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA PD =.(1)判断M 点在PB 的位置并说明理由;(2)记直线DM 与平面P AC 的交点为K ,求DK KM的值;(3)若异面直线CM 与AP M CD A --的平面角的正切值. 11.如图,在长方体1111ABCD A B C D -中,AD =1,12AB AA ==,H ,F 分别是棱11C D ,1BB 的中点.(1)判断直线HF 与平面11A BCD 的位置关系,并证明你的结论;(2)求直线HF 与平面ABCD 所成角的正弦值;(3)在线段HF 上是否存在一点Q ,使得点Q 到平面11A BCD ,若存在,求出HQ HF的值;若不存在,说明理由. 【过关检测】1.在长方体1111ABCD A B C D -中,12AB AA ==,3AD =,点E 、F 分别是棱AB 、1AA 的中点,E 、F 、1C ∈平面α,直线11A D 平面P α=,则直线BP 与直线1CD 所成角的余弦值为()A C 2.在正方体1111ABCD ABCD -中,E ,F 分别为棱AD ,11A B 的中点,则异面直线EF 与1CD 夹角的余弦值为()A D3.如图所示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=,且2PA PB AB ===,=PC 则PC 与平面P AB 所成角的余弦值等于()A B 4.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若2==AC BD ,且AC 与BD 所成的角为60°,则EG 的长为()A.1.1.125.在棱长为1的正方体1111ABCD A B C D -中,O 为正方形1111D C B A 的中心,则下列结论错误的是() A .BO AC ⊥B .BO ∥平面1ACDC .点B 到平面1ACD D .直线BO 与直线1AD 的夹角为3π 6.在正方体1111ABCD A B C D -中,,,E F G 分别为11,,BC CC BB 的中点,则下列结论中正确的是() A .1D D AF ⊥B .二面角F AEC --的正切值为2C .异面直线1A G 与EFD .点G 到平面AEF 的距离是点C 到平面AEF 的距离的2倍7.如图,AB 是半球的直径,O 为球心,4,,AB M N =依次是半圆AB 上的两个三等分点,P 是半球面上一点,且PN MB ⊥,(1)证明:平面PBM ⊥平面PON ;(2)若点P 在底面圆内的射影恰在BM 上,求二面角--A PB N 的余弦值.8.已知平面四边形ABCD ,2AB AD ==,60BAD ∠=︒,30BCD ∠=︒,现将ABD △沿BD 边折起,使得平面ABD ⊥平面BCD ,此时AD CD ⊥,点P 为线段AD 的中点.(1)求证:BP ⊥平面ACD ;(2)若M 为CD 的中点,求MP 与平面BPC 所成角的正弦值;(3)在(2)的条件下,求二面角P BM D --的平面角的余弦值.9.已知四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)当1PD =,BD =PB 与AD 所成角的余弦值;10.已知四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)已知1PD =,(Ⅰ)当BD PB 与AD 所成角的余弦值;(Ⅰ)当直线PB 与平面ABCD 所成的角为45︒时,求四棱锥P ABCD -的体积.11.在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AB BC ==,12BB =.(1)求异面直线11B C 与1A C 所成角正切值的大小;(2)求点1B 与平面1A BC 的距离.第02讲 玩转立体几何中的角度、体积、距离问题【学习目标】1.掌握各种角的定义,弄清异面直线所成的角与两直线所成的角,二面角与二面角的平面角,直线与平面所成的角和斜线与平面所成的角,二面角与两平面所成的角的联系与区别,弄清他们各自的取值范围。

立体几何第六课用空间向量求距离和角度

立体几何第六课用空间向量求距离和角度

立体几何第六课 §用空间向量求距离和角度一、知识点向量的常用方法 ①点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α的距离为②.异面直线间的距离 :d =(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③.直线AB 与平面所成角:sin||||AB marc AB m β⋅=(m 为平面α的法向量).④.求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).二、例题1.如图,已知正三棱柱111ABC A B C -的侧棱长和底面边长为1,M 是底面BC 边上的中点,N 是侧棱1CC 上的点,且12CN C N =。

(Ⅰ)求二面角1B AM N --的平面角的余弦值;(Ⅱ)求点1B 到平面AMN 的距离。

2.如图,在四棱锥S ABCD -中,平面SAD ⊥平面ABCD .底面ABCD 为矩形,,AD AB =,SA SD a ==.(Ⅰ)求证:CD SA ⊥;(Ⅱ)求二面角C SA D --的大小. 3.如图,在三棱柱ABC —A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∠B 1A 1C 1=90°,D 、E 分别为CC 1和A 1B 1的中点,且A 1A=AC=2AB=2. (I)求证:C 1E∥平面A 1BD ; (Ⅱ)求点C 1到平面A 1BD 的距离.4.如图,在四棱锥ABCD P -中,底面ABCD 是菱形,060BAD =∠,2AB =,1PA =,⊥PA 平面ABCD ,E 是PC 的中点,F 是AB 的中点. (Ⅰ) 求证:BE ∥平面PDF ;(Ⅱ)求证:平面PDF ⊥平面PAB ;(Ⅲ)求平面PAB 与平面PCD 所成的锐二面角的大小.5.已知四边形ABCD 满足AD ∥BC ,12BA AD DC BC a ====,E 是BC 的中点,将BAE ∆沿着AE翻折成1B AE ∆,使面1B AE ⊥面AECD ,F 为1B D 的中点. (Ⅰ)求四棱1B AECD -的体积;(Ⅱ)证明:1B E ∥面ACF ;(Ⅲ)求面1ADB 与面1ECB 所成二面角的余弦值.6.如图,在四棱锥S —ABCD 中,SD ⊥底面ABCD ,底面ABCD是矩形,且SD AD ==,E 是SA 的中点。

8.8_立体几何中的向量方法(Ⅱ)——求空间角与距离

8.8_立体几何中的向量方法(Ⅱ)——求空间角与距离

3.点面距的求法 如图,设 AB 为平面 的一条斜线段,n 为平面 的 法向量,则 B 到平面 的距离 d=
AB n n
基础自测 1.如果平面的一条斜线与它在这个平面上的射 影的方向向量分别是 a=(1,0,1), b=(0,1,1), 那么,这条斜线与平面所成的角是( D ) A.90° B.30° C.45° D.60° 1 1 解析 ∵cos〈a,b〉= = , 2· 2 2
变式训练 1 如图所示,在棱长为 2 的正方体 ABCD—A1B1C1D1 中,E、F 分别为 A1D1 和 CC1 的中点.1求证:EF∥平面 ACD1; 2求异面直线 EF 与 AB 所成角的余弦值; 3在棱 BB1 上是否存在一点 P,使得二面角 P—AC—B 的大小为 30° ?若存在,求出 BP 的长,若不存在,请说明理由.
思维启迪: 建立空间直角坐标系, 求出各点及向量的坐标,
求出 AB 与 EG 夹角的余弦值的绝对值即可. 1
解 如图所示,建立空间直角坐标系,坐标原点为 C, 设 CA=2a,则 A2a,0,0,B0,2a,0,D0,0, 1 , A12a , 0 , 2,Ea , a , 1 , G(
2 在 Rt△D1DE1 中,D1E1= DE2+DD1 1
= AE2+AD2+DD2= 12+32+22= 14. 1 1 在 Rt△D1DF 中,FD1= FD2+DD2 1
2 = CF2+CD2+DD1= 22+42+22= 24.
在△E1FD1 中,由余弦定理得: D1E2+FD2-E1F2 21 1 1 cos∠E1D1F= = . 14 2×D1E1×FD1 21 ∴直线 EC1 与 FD1 所成的角的余弦值为 . 14
探究提高

立体几何公式大全

立体几何公式大全

立体几何公式大全一、空间向量的基础公式:向量式坐标式数量积cos a b a b q×=×=121212x x y y z z ++a b^ 0a b ×= =121212x x y y z z ++=0 //a b (0b ¹ )a b l =(0,l >方向相同;0,l <方向相反)=111(,,)x y z =l 222(,,)x y z 即:12x x l =,12y y l =,12z z l =模a2a a= =222111x y z ++夹角q (0a ¹,0b ¹)cos ab a b q ×=×=121212222222111222x x y y z z x y z x y z ++++++二、求角和距离公式:求异面直线a 与b 所成角q:121212222222111222cos a bx x y y z z a b x y z x y z q ×++==×++++ KP115/例1 JP60/例3 求直线a 与平面a 所成角q :sin a n a nq ×=× (n表示平面a 的法向量)KP125/例1 二面角l a b --的大小q : 设1q 为平面a 的法向量1n 与平面b 的法向量2n的夹角:则12112cos n n n n q ×=× :求二面角q 步骤:一、瞄:瞄一下看二面角q 是锐角还是钝角;二、求:先求平面a 的法向量1n与平面b 的法向量2n ,而后用12112cos n n n n q ×=×求出1n 与2n 的夹角1q;三、定:同锐相等:若;三、定:同锐相等:若q是锐角,1q 也是锐角,则1q q =;同钝相等:若q 是锐角,1q 也是锐角,则1q q =;锐钝互补:若q 是锐角,1q 也是锐角,则1180q q =-JP69/例3(2) KP127/例2(2)点P 到平面a 的距离d: 注:注:1、直线l //平面a ,求直线l 与平面a 的距离的距离 d:只要在l 上取一点P 仍然用此公式;仍然用此公式;2、平面b //平面a ,求平面a 与平面b 的距离的距离 d:只要在平面b 上取一点P 仍然用此公式;式;APn d n×=注:点A 为平面a 上的任意一点,n为平面a 的法向量的法向量JP71/例2 三、求法向量步骤:三、求法向量步骤:(1) 设法向量(,,)n x y z = ,利用法向量n与平面上的两相交直线方向向量垂直数量积为0建立两个方程;建立两个方程;(2) 求出x 等于多少z, y 等于多少z;并令z=1进而求出x,y,从而得到法向量n;或者求出x 等于多少y, z 等于多少y;并令y=1进而求出x,z,从而得到法向量n;或者求出y 等于多少x, z 等于多少x;并令x=1进而求出y,z,从而得到法向量n;(3) 把所求的法向量n代入方程组检验!代入方程组检验! 四、法向量n的在证明题中用处: (1) 线面平行:l l n a Ë^ 平面且Û//l a 平面:参见JP65/例2 (证明线面平行问题只要转成去求线的向量与法向量数量积为0即可)即可)(2) 面面平行:12//n nÛ//a b 平面平面:参见JP65/例2 (证明面面平行问题只要转成去证两个法向量存在一个倍数关系问题即可)(证明面面平行问题只要转成去证两个法向量存在一个倍数关系问题即可) (3) 线面垂直://l n l a Û^平面:(证明线面垂直问题只要转成求证线的向量与法向量存在一个倍数关系即可) (4) 面面垂直:12n n ^Ûa b ^平面平面:参见JP65/例3 (证明面面垂直问题只要转成去求两法向量数量积为0即可)即可)(整理不易,望同学们好好珍惜利用!)。

高中数学优质课件【立体几何中的向量方法——求空间角与距离】

高中数学优质课件【立体几何中的向量方法——求空间角与距离】

面直线 AB 和 CD 所成角的余弦值为________.
1 4
解析:设等边三角形的边长为 2.取 BC 的
中点 O,连接 OA,OD.因为等边三角形 ABC 和
BCD 所在平面互相垂直,所以 OA,OC,OD 两
两垂直,以 O 为坐标原点,OD,OC,OA 所在
直线分别为 x 轴、y 轴、z 轴建立如图所示的空间
直角坐标系.
则 A(0,0, 3),B(0,-1,0),C(0,1,0),D( 3,0,0), 所以A→B=(0,-1,- 3),C→D=( 3,-1,0), 所以 cos〈A→B,C→D〉=|AA→→BB|·|CC→→DD|=2×1 2=14, 所以异面直线 AB 和 CD 所成角的余弦值为14.
1 2 3 45
4.在空间直角坐标系 Oxyz 中,平面 OAB 的一个法向量为 n=(2,
-2,1),已知点 P(-1,3,2),则点 P 到平面 OAB 的距离 d 等于( )
A.4
B.2
C.3
D.1
B 解析:P 点到平面 OAB 的距离为 d=|O→|Pn·|n|=|-2-96+2|=2.
12345
B1(1,1, 3),所以A→D1=(-1,0, 3),D→B1=(1,1, 3).设异面直线
AD1 与 DB1 所成的角为 θ,
所以 cos θ=|AA→→DD11|·|DD→→BB11|=2×2
5=5 5.Fra bibliotek所以异面直线
AD1

DB1
所成角的余弦值为
5 5.
2.有公共边的等边三角形 ABC 和 BCD 所在平面互相垂直,则异
l1与l2所成的角θ
a与b的夹角β
范围

空间几何中的角度与距离计算

空间几何中的角度与距离计算

空间几何中的角度与距离计算在空间几何中,角度与距离的计算是非常重要的。

通过正确计算角度和距离,我们能够准确描述和分析物体的位置、运动以及相互关系。

本文将介绍空间几何中常用的角度计算方法和距离计算方法。

一、角度计算在空间几何中,角度是表示物体之间相对方向关系的重要指标。

常见的角度计算方法有以下几种:1. 余弦定理余弦定理是计算三角形内角的常用方法之一。

在空间几何中,如果已知三点的坐标,可以通过余弦定理计算出这三个点所形成的夹角。

余弦定理的公式如下:cos A = (b² + c² - a²) / (2bc)其中,A为夹角的大小,a、b、c为夹角对应的边长。

2. 矢量法矢量法是一种基于向量运算的角度计算方法。

通过将空间中的两个向量进行运算,可以得到它们之间的夹角。

常见的向量法角度计算包括点乘法和叉乘法。

(1)点乘法:两个向量的点乘结果等于它们的模长相乘再乘以它们之间的夹角的余弦值。

可以通过点乘法计算向量之间的夹角。

(2)叉乘法:两个向量的叉乘结果等于它们的模长相乘再乘以它们之间的夹角的正弦值。

可以通过叉乘法计算向量之间的夹角。

3. 三角函数在空间几何中,三角函数也是用于角度计算的常用方法之一。

通过正弦、余弦和正切等三角函数的运算,可以计算出角度的大小。

三角函数的计算方法需要先将坐标系进行转换,然后根据坐标的数值,利用相应的三角函数公式进行计算。

二、距离计算在空间几何中,距离是表示物体之间远近程度的重要指标。

常见的距离计算方法有以下几种:1. 欧几里得距离欧几里得距离是空间几何中最常用的距离计算方法。

对于二维或三维空间中的两个点,欧几里得距离可以通过计算它们在各坐标轴上的差值的平方和再开方的方式得到。

欧几里得距离的公式如下:d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]其中,d为距离,(x₁, y₁, z₁)和(x₂, y₂, z₂)分别为两个点的坐标。

例谈立体几何中距离与角的向量求法

例谈立体几何中距离与角的向量求法

例谈立体几何中距离与角的向量求法立体几何中距离和角的向量求法是解决立体几何问题的重要方法之一。

在立体几何中,我们经常需要计算两点或两线之间的距离,或者计算两条线或者面之间的角度。

本文将就这一问题结合具体实例进行阐述。

一、距离的向量求法距离的向量求法,是通过向量的乘积来求解两点之间的距离。

具体步骤如下:1、定出两个点,假设为A(x1 , y1 , z1)和B(x2 , y2 , z2)。

2、由A点向B点连接一条向量,记作AB,向量的坐标表示为AB =(x2 - x1, y2 - y1, z2 - z1)。

3、计算出向量AB的模长,即AB两点之间的距离,公式为|AB| =√(x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2.例如,已知点A(1, 0, 0),点B(3, 4, 5),则向量AB = (3-1, 4-0,5-0) = (2, 4, 5),则|AB| = √(2^2 + 4^2 + 5^2)≈7.35。

二、角度的向量求法角度的向量求法,是通过向量的数量积来求解两条直线或者两个面之间的夹角。

具体步骤如下:1、定出两条直线或者两个面,假设为L1和L2。

2、求出两条直线或者两个面的法向量,法向量的坐标表示为N1和N2。

3、计算两个法向量的数量积N1 · N2,再求出两个法向量的模长|N1|和|N2|之积,其商得到的余弦值即为夹角的余弦值,公式为cosθ = (N1 · N2) / (|N1| × |N2|)。

4、通过余弦值反推出夹角的大小,即θ = arccos(cosθ)。

例如,在三维坐标系中,已知三个点A(0, 0, 0),B(1, 0, 0),C(0, 1, 0),则线段AB和线段AC所在的平面的法向量分别为N1 = (0, 0, 1)和N2 = (0, 0, 1),则cosθ = (N1 · N2) / (|N1| × |N2|) = (0 × 0 + 0 × 0 + 1 × 1) / (√(0^2 + 0^2 + 1^2) × √(0^2 + 0^2 + 1^2)) = 1,所以θ = arccos(cosθ) = 0。

立体几何中的向量方法(距离、角度)专题选择性必修第一册

立体几何中的向量方法(距离、角度)专题选择性必修第一册
3.如图,已知正方形 ABCD 的边长为 1,PD⊥平面 ABCD,且 PD=1,E,F 分别为 AB,BC 的中点.则点 D 到平面 PEF 的距离为________;直线 AC 到平 面 PEF 的距离为________.
类型一 用空间向量求距离 【典例】已知四边形ABCD是边长为4的正方形,E,F分别是边AB,AD的中 点,CG垂直于正方形ABCD所在的平面,且CG=2,求: (1)点B到直线FG的距离; (2)点B到平面EFG的距离.
05 平面与平面所成角
两个平面的法向量所成角是这两个平面的夹角吗?
, 的夹角为,cos | u v|
| u || v |
例题 如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3, ∠ACB=90°,P为BC中点,点Q,R分别在棱AA1,BB1上,A1Q=2AQ, BR=2RB1,求平面PQR与平面A1B1C1夹角的余弦值 z
D1 F
C1
N
A1
E
M B1
D
Cy
A
B
x
AB n
d
n
1.4.2 立体几何中的向量方法 ——角度问题
03 异面直线所成角
l
l
m
m
l, m的夹角为,cos | a b|
| a || b |
(0, ]
2
类型二 向量法求异面直线所成的角(数学运算,直观想象) 【典例】如图,在直三棱柱 A1B1C1-ABC 中,AB⊥AC,AB=AC=2,A1A=4, 点 D 是 BC 的中点.求异面直线 A1B 与 C1D 所成角的余弦值.
(1)证明:DC1⊥BC.
(2)求平面A1B1BD与平面C1BD的夹角的大小.
在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,

立体几何中的向量方法(二)——求空间角和距离讲义

立体几何中的向量方法(二)——求空间角和距离讲义

立体几何中的向量方法(二)——求空间角和距离讲义一、知识梳理1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则 l 1与l 2所成的角θ a 与b 的夹角β 范围]2,0(π[0,π] 求法cos θ=|a ·b ||a ||b | cos β=a ·b |a ||b | 2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |. 3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).注意:利用空间向量求距离(供选用)(1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |. 二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是]2,0(π,直线与平面所成角的范围是]2,0[π,二面角的范围是[0,π].( ) (5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( ) 题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90°3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.题组三:易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.3010D.225.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为__ __.6.过正方形ABCD 的顶点A 作线段P A ⊥平面ABCD ,若AB =P A ,则平面ABP 与平面CDP 所成的角为______.二、典型例题题型一:求异面直线所成的角典例 如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.思维升华:用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练如图所示,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.(1)求证:BD⊥平面ACFE;(2)当直线FO与平面BED所成的角为45°时,求异面直线OF与BE所成角的余弦值的大小.题型二:求直线与平面所成的角典例如图,四棱锥P ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD 上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.思维升华:利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.跟踪训练如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.题型三:求二面角典例 如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.思维升华:利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.跟踪训练 (2017·天津)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 题型四:求空间距离(供选用)典例 如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23,求点A 到平面MBC 的距离.思维升华:求点面距一般有以下三种方法:(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.跟踪训练 如图所示,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)求直线PB 与平面POC 所成角的余弦值;(2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63若存在,求出PQ QD的值;若不存在,请说明理由.注意:利用空间向量求解空间角典例 (12分)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.四、反馈练习1.在正方体A 1B 1C 1D 1—ABCD 中,AC 与B 1D 所成角的大小为( )A.π6B.π4C.π3D.π22.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52 B .-14 C.14 D .-523.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.224.已知六面体ABC —A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成的角为( )A .45°B .60°C .90°D .30°5.设正方体ABCD —A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22C.223D.2336.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°7.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是____________.8.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值为________.9.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF与平面ABC 所成的锐二面角的正切值为________.10.设二面角α—CD —β的大小为45°,A 点在平面α内,B 点在CD 上,且∠ABC =45°,则AB 与平面β所成角的大小为________.11.已知三棱锥A —BCD ,AD ⊥平面BCD ,BD ⊥CD ,AD =BD =2,CD =23,E ,F 分别是AC ,BC 的中点,P 为线段BC 上一点,且CP =2PB .(1)求证:AP ⊥DE ;(2)求直线AC 与平面DEF 所成角的正弦值.12.如图,在四棱锥P —ABCD 中,P A ⊥底面ABCD ,底面ABCD 是直角梯形,∠ADC =90°,AD ∥BC ,AB ⊥AC ,AB =AC =2,点E 在AD 上,且AE =2ED .(1)已知点F 在BC 上,且CF =2FB ,求证:平面PEF ⊥平面P AC ;(2)当二面角A —PB —E 的余弦值为多少时,直线PC 与平面P AB 所成的角为45°?13已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.3314.已知三棱锥S —ABC 中,SA ,SB ,SC 两两垂直,且SA =SB =SC =2,Q 是三棱锥S —ABC 外接球上一动点,则点Q 到平面ABC 的距离的最大值为________.15.已知三棱锥P —ABC 的所有顶点都在表面积为16π的球O 的球面上,AC 为球O 的直径.当三棱锥P —ABC 的体积最大时,二面角P —AB —C 的大小为θ,则sin θ等于( )A.23B.53C.63D.7316.如图,已知正四面体D —ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,BQ QC =CR RA=2,分别记二面角D —PR —Q ,D —PQ —R ,D —QR —P 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α。

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法

高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。

在立体几何中,空间角和空间距离是非常关键的概念。

本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。

一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。

空间角的大小是依据两个向量的夹角计算得来的。

2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。

设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。

接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。

二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。

2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。

设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。

三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。

比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。

在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。

在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。

立体几何求角、距离的解法

立体几何求角、距离的解法

立体几何求角、距离的解法考点一、空间中的夹角空间中的各种角包括异面直线所成的角,直线与平面所成的角和二面角,要理解各种角的概念定义和取值范围,其范围依次为(0°,90°]、[0°,90°]和[0°,180°]。

(1)两条异面直线所成的角求法:○1先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;○2通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是]2,0(π,向量所成的角范围是],0[π,如果求出的是钝角,要注意转化成相应的锐角(2)直线和平面所成的角 求法:“一找二证三求”,三步都必须要清楚地写出来。

除特殊位置外,主要是指平面的斜线与平面所成的角,根据定义采用“射影转化法”(3)二面角的度量是通过其平面角来实现的解决二面角的问题往往是从作出其平面角的图形入手,所以作二面角的平面角就成为解题的关键。

通常的作法有:(Ⅰ)定义法;(Ⅱ)利用三垂线定理或逆定理;(Ⅲ)自空间一点作棱垂直的垂面,截二面角得两条射线所成的角,俗称垂面法.此外,当作二面角的平面角有困难时,可用射影面积法解之,cos =SS ',其中S 为斜面面积,S ′为射影面积, 为斜面与射影面所成的二面角例题1:已知边长为1的正方体ABCD-A 1B 1C 1D 1中,O 、O 1是上下底面正方形的中心,求二面角O 1-BC-O 的大小。

2:已知边长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 为A 1D 1、C 11的中点,求平面EFCA 与底面ABCD 所成的二面角。

点评:利用平面角定义法中特殊位置的线段。

3:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。

解:设AC 与BD 交于E ,CD 1与C 1D 交于F ,连EF 是所求二面角B-EF-C 的棱,连A 1C ,易证A 1C ⊥平面BDC 1,垂足为H ,取AD 1中点O ,连OC 交EF 于G ,连GH 。

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。

直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。

注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。

平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。

二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。

一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中角度距离的求法一 空间向量及其运算 1 .空间向量的坐标表示及应用(1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔______________ a ⊥b ⇔__________⇔________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b|a||b|=__________.设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB →|=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则称a 与b __________,记作a ⊥b .②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________.(2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________.2.共线向量、共面向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________.推论,如图所示,点P 在l 上的充要条件是:OP →=OA →+t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →.(2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z =______.(3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.二 用向量的方法求角度 (一)知识清单1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0n·b =0.2.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=____________. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=__________. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面 内与棱l 垂直的直线,则二面角的大小 θ=____________.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=________________________________________. (二) 题型题型一 求异面直线所成的角例1如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3 AA 1=2.E 、F 分别是线段AB 、BC 上的点,且EB =BF =1. 求直线EC 1与FD 1所成的角的余弦值.解方法一以A 为原点,AB →、AD →、AA 1→分别为x 轴、y 轴、z 轴的 正向建立空间直角坐标系,则有D 1(0,3,2),E (3,0,0),F (4,1,0), C 1(4,3,2),于是EC 1→=(1,3,2),FD 1→=(-4,2,2),设EC 1与FD 1所成的角为β,则:cos β=|EC 1→·FD 1→||EC 1→|·|FD 1→|=1×(-4)+3×2+2×212+32+22×(-4)2+22+22=2114, ∴直线EC 1与FD 1所成的角的余弦值为2114. 方法二延长BA 至点E 1,使AE 1=1,连接E 1F 、DE 1、D 1E 1、DF , 有D 1C 1∥E 1E ,D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形. 则E 1D 1∥EC 1.于是∠E 1D 1F (或补角)为直线EC 1与FD 1所成 的角.在Rt △BE 1F 中, E 1F =E 1B 2+BF 2=52+12=26.在Rt △D 1DE 1中,D 1E 1=DE 21+DD 21=AE 21+AD 2+DD 21=12+32+22=14. 在Rt △D 1DF 中,FD 1=FD 2+DD 21=CF 2+CD 2+DD 21=22+42+22=24. 在△E 1FD 1中,由余弦定理得:cos ∠E 1D 1F =D 1E 21+FD 21-E 1F22×D 1E 1×FD 1=2114.∴直线EC 1与FD 1所成的角的余弦值为2114. 练习1 如图,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形, ∠ABC =π4.OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(1)证明:直线MN ∥平面OCD ; (2)求异面直线AB 与MD 所成角的大小.(1)证明作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x , y ,z 轴建立直角坐标系.A (0,0,0),B (1,0,0),P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0, O (0,0,2),M (0,0,1),N ⎝⎛⎭⎫1-24,24,0. MN →=⎝⎛⎭⎫1-24,24,-1,OP →=⎝⎛⎭⎫0,22,-2,OD →=⎝⎛⎭⎫-22,22,-2.设平面OCD 的法向量为n =(x ,y ,z ),则n ·OP →=0,n ·OD →=0.即⎩⎨⎧22y -2z =0,-22x +22y -2z =0.取z =2,解得n =(0,4,2).∵MN →·n =⎝⎛⎭⎫1-24,24,-1·(0,4,2)=0,∴MN ∥平面OCD .(2)解设AB 与MD 所成角为θ, ∵AB →=(1,0,0),MD →=⎝⎛⎭⎫-22,22,-1,∴cos θ=|AB →·MD →||AB →|·|MD →|=12,θ∈⎣⎡⎦⎤0,π2, ∴θ=π3.∴直线AB 与MD 所成的角为π3. 题型二 求直线与平面所成的角例2如图所示,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形, ∠ACB =90°,侧棱AA 1=2,D 、E 分别是CC 1、A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G . 求A 1B 与平面ABD 所成角的正弦值.解建立空间直角坐标系,坐标原点为C ,设CA =2a ,则A (2a,0,0),B (0,2a,0) D (0,0,1),A 1(2a,0,2),E (a ,a,1),G ⎝⎛⎭⎫2a 3,2a 3,13,EG →=⎝⎛⎭⎫-a 3,-a 3,-23, BD →=(0,-2a,1),·BD →=23a 2-23=0,∴a =1,EG →=⎝⎛⎭⎫-13,-13,-23,A 1B →=(-2,2,-2).∵EG →为平面ABD 的一个法向量,且cos 〈A 1B →,EG →〉=A 1B →·EG →|A 1B →||EG →|=23,∴A 1B 与平面ABD 所成角的正弦值是23.练习2如图所示,在正三棱柱ABC —A 1B 1C 1中,AB =4,AA 1=7, 点D 是BC 的中点,点E 在AC 上,且DE ⊥A 1E . (1)证明:平面A 1DE ⊥平面ACC 1A 1; (2)求直线AD 和平面A 1DE 所成角的正弦值.(1)证明由正三棱柱ABC —A 1B 1C 1的性质知,AA 1⊥平面ABC .又DE ⊂平面ABC ,所以DE ⊥AA 1.又DE ⊥A 1E ,AA 1∩A 1E =A 1, 所以DE ⊥平面ACC 1A 1 .又DE ⊂平面A 1DE , 故平面A 1DE ⊥平面ACC 1A 1.(2)解 如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标 系,则相关各点的坐标分别是A (2,0,0),A 1(2,0,7), D (-1,3,0),E (-1,0,0).易知A 1D →=(-3,3,-7),DE →=(0,-3,0),AD →=(-3,3,0).设n =(x ,y ,z )是平面A 1DE 的一个法向量, 则⎩⎪⎨⎪⎧n ·DE →=-3y =0,n ·A 1D →=-3x +3y -7z =0.解得x =-73z ,y =0. 故可取n =(7,0,-3).于是cos 〈n ,AD →〉=n ·AD →|n |·|AD →|=-374×23=-218.故直线AD 和平面A 1DE 所成角的正弦值为218. 题型三 求二面角例3如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q —BP —C 的余弦值.(1)证明如图,以D 为坐标原点,线段DA 的长为单位长,以AD 、DP 、DC 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz . 依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1), PQ →=(1,-1,0). 所以PQ →·DQ →=0,PQ →·DC →=0,即PQ ⊥DQ ,PQ ⊥DC .又DQ ∩DC =D ,所以PQ ⊥平面DCQ . 又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ . (2)解依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1).设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0. 因此可取n =(0,-1,-2).同理,设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0,可取m =(1,1,1).所以cos 〈m ,n 〉=-155.故二面角Q —BP —C 的余弦值为-155. 练习3如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC , ∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面P AC ; (2)求二面角P —BD —A 的大小.(1)证明 如图,建立坐标系,则A (0,0,0),B (23,0,0),C (23,6,0), D (0,2,0),P (0,0,3),∴AP →=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0). ∴BD →·AP →=0,BD →·AC →=0. ∴BD ⊥AP ,BD ⊥AC . 又∵P A ∩AC =A ,∴BD ⊥面P AC .(2)解设平面ABD 的法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ), 则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0解得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2), ∴cos 〈m ,n 〉=m·n |m||n |=12. ∴二面角P —BD —A 的大小为60°. 二距离的求法 1.点面距的求法①垂面法:借助面面垂直的性质来作垂线,其中过已知点确定已知面的垂面是关键 ②等体积法,转化为求三棱锥的高 ③等价转移法;④法向量法.如图,设AB 为平面α的一条斜线段,n 为平面α的法向量, 则B 到平面α的距离n BA d n⋅=2题型题型一 用向量法求空间距离例1在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示. 求点B 到平面CMN 的距离.说明:点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法.如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →, ∴|BH →·n |=|n ·BM →|=|BH →|·|n |, ∴|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.解 取AC 的中点O ,连接OS 、OB .∵SA =SC ,AB =BC ,∴AC ⊥SO ,AC ⊥BO . ∵平面SAC ⊥平面ABC ,平面SAC ∩平面ABC =AC ,∴SO ⊥平面ABC , 又∵BO ⊂平面ABC ,∴SO ⊥BO .如图所示,建立空间直角坐标系Oxyz ,则B (0,23,0),C (-2,0,0),S (0,0,22), M (1,3,0),N (0,3,2). ∴CM →=(3,3,0),MN →=(-1,0,2), MB →=(-1,3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·n =3x +3y =0MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1).∴点B 到平面CMN 的距离 d =|n ·MB →||n |=423.练习1 如图,△BCD 与△MCD 都是边长为2的正三角形,平面 MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23 .求点A 到平面MBC 的距离.解 取CD 中点O ,连接OB ,OM ,则OB ⊥CD ,OM ⊥CD . 又平面MCD ⊥平面BCD , 则MO ⊥平面BCD .取O 为原点,直线OC 、BO 、OM 为x 轴、y 轴、z 轴, 建立空间直角坐标系如图.OB =OM =3,则各点坐标分别为C (1,0,0), M (0,0,3),B (0,-3,0),A (0,-3,23).设n =(x ,y ,z )是平面MBC 的法向量,则BC →=(1,3,0),BM →=(0,3,3), 由n ⊥BC →得x +3y =0;由n ⊥BM →得3y +3z =0.取n =(3,-1,1),BA →=(0,0,23), 则点A 到平面MBC 的距离 d =|BA →·n ||n |=235=2155.题型二 用等体积法求距离例2 已知直二面角E AB D --中,四边形 ABCD 是边长为2的正方形,AE=EB,F 为CE 上的点,且ACE BF 平面⊥(1) 求证BCE AE 平面⊥, (2) 求二面角E AC B --的大小, (3) 求点D 到平面ACE 的距离练习2、如图,已知正三棱柱ABC —111C B A 的底面边长是2,D 是侧棱1CC 的中点,直线AD 与侧面11BB C C 所成的角为45. (Ⅰ)求此正三棱柱的侧棱长; (Ⅱ)求二面角C BD A --的大小; (Ⅲ)求点C 到平面ABD 的距离.解:(Ⅰ)设正三棱柱ABC —111C B A 的侧棱长为x .取BC 中点E ,连AE .ABC ∆ 是正三角形,AE BC ∴⊥.又底面ABC ⊥侧面11BB C C ,且交线为BC .AE ∴⊥侧面11BB C C .连ED ,则直线AD 与侧面11BB C C 所成的角为45ADE ∠=. 在AED Rt ∆中,tan 45AEED==,解得x =此正三棱柱的侧棱长为 注:也可用向量法求侧棱长.(Ⅱ)解法1:过E 作EF BD ⊥于F ,连AF ,⊥AE 侧面,11C C BB ∴AF BD ⊥.AFE ∴∠为二面角C BD A --的平面角 在BEF Rt ∆中,sin EF BE EBF =∠,又 1,sin 3CD BE EBF BD =∠===, ∴EF =. 又AE =∴在AEF Rt ∆中,tan 3AEAFE EF∠==,故二面角C BD A --的大小为arctan3. ABCD1A 1B 1C EF G HI解法2:(向量法,)(Ⅲ)解法1:由(Ⅱ)可知,⊥BD 平面AEF ,∴平面AEF ⊥平面ABD ,且交线为AF ,∴过E 作EG AF ⊥于G ,则EG ⊥平面ABD在AEF Rt ∆中,22333033(3)()3AE EFEG AF⨯===+E 为BC 中点,∴点C 到平面ABD 的距离为230210EG =. 解法2:取AB 中点H ,连CH 和DH ,由,CA CB =DA DB =,易得平面ABD ⊥平面CHD ,且交线为DH .过点C 作CI DH ⊥于I ,则CI 的长为点C 到平面ABD 的距离.解法3:等体积变换:由C ABD A BCD V V --=可求. 解法4:(向量法,见后)题(Ⅱ)、(Ⅲ)的向量解法: (Ⅱ)解法2:如图,建立空间直角坐标系xyz o -. 则3),(0,1,0),(0,1,0),(2,1,0)A B C D -. 设1(,,)n x y z =为平面ABD 的法向量.由⎪⎩⎪⎨⎧=⋅=⋅0,021AD n AB n 得3230y z x y z ⎧=-⎪⎨-=⎪⎩. 取1(6,3,1).n =--又平面BCD 的一个法向量2(0,0,1).n =∴10101)3()6(1)1,0,0()1,3,6(,cos 222212121=+-+-⨯⋅--=⋅>=<n n n n n n .结合图形可知,二面角C BD A --的大小为10arccos10. (Ⅲ)解法4:由(Ⅱ)解法2,1(6,3,1),n =--(0,3).CA =-∴点C 到平面ABD 的距离11n n CA d ⋅=2221)3()6()1,3,6()3,1,0(+-+---⋅-==10302. 练习题1.如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCD 1A 1B 1xyzoABCO —A ′B ′C ′D ′,A ′C 的中点E 与AB 的中点F 的 距离为_____22a ___. 2 在长方体ABCD —A 1B 1C 1D 1中,AA 1=5,AB =12,那么直线B 1C 1和平面A 1BCD 1的 距离是___6013_____.3.正方体ABCD —A 1B 1C 1D 1的棱长为1,E 、F 分别为BB 1、CD 的中点,则点F 到平面A 1D 1E 的距离为__3510______.4.在四面体P ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为___33a _____. 5.设A (2,3,1),B (4,1,2),C (6,3,7),D (-5,-4,8),则D 到平面ABC 的距离为___491717_____.6在空间直角坐标系O —xyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( B ) A. 4 B. 2 C .3 D .17已知在矩形ABCD 中,AB =4,AD =3,沿对角线AC 折叠,使面ABC 与面ADC 垂直,求B 、D 间的距离.解方法一如图,过D 、B 分别作DE ⊥AC 于点E ,BF ⊥AC 于点F ,则由已知条件得AC =5,∴DE =AD ·DC AC =125,BF =AB ·BC AC =125. ∴AE =AD 2AC =95=CF . ∴EF =AC -2AE =75.∵DB →=DE →+EF →+FB →, ∴|DB →|2=|DE →+EF →+FB →|2 =DE →2+EF →2+FB →2+2DE →·EF →+2DE →·FB →+2EF →·FB →. ∵面ADC ⊥面ABC ,而DE ⊥AC ,∴DE ⊥面ABC ,∴DE ⊥BF .(8分) ∴|DB →|2=DE →2+EF →2+FB →2=14425+4925+14425=33725.∴|DB →|=3375,故B 、D 间的距离为3375方法二过E 作FB 的平行线交AB 于P 点,以E 为坐标原点,以EP 、EC 、ED 所在直线分别为x 、y 、z 轴建立空间直角坐标系,如图.则由方法一知DE =FB =125,EF =75.(4分)∴D ⎝⎛⎭⎫0,0,125,B ⎝⎛⎭⎫125,75,0. ∴|DB →|=⎝⎛⎭⎫1252+⎝⎛⎭⎫752+⎝⎛⎭⎫-1252=3375.。

相关文档
最新文档