数值计算方法总复习_科学出版社

合集下载

数值计算方法复习

数值计算方法复习

数值计算方法复习数值计算方法是利用数值计算机进行数值计算的方法,广泛应用于科学计算、工程计算和统计计算等领域。

本文将对数值计算方法进行全面的复习介绍,包括数值计算的基本概念、数值计算的误差分析、数值求解非线性方程的方法、插值与拟合方法、数值积分与微分方法以及常微分方程数值解法等内容。

数值计算的基本概念包括数值计算方法的定义、数值计算的基本运算规则和数值计算的基本误差理论。

数值计算方法是一种利用有限的计算机算力和存储器容量来解决数学问题的方法。

数值计算的基本运算规则包括加减乘除等基本运算规则,以及数值计算中常用的数值算法。

数值计算的基本误差理论是指在进行数值计算时,由于各种原因所导致的计算结果与精确结果之间的差距,主要包括舍入误差、截断误差和舍入误差。

数值计算的误差分析是数值计算方法中非常重要的一部分,它可以帮助我们评估数值计算的精度和可靠性。

误差分析的主要方法有绝对误差分析和相对误差分析两种。

绝对误差分析是指通过计算数值解与精确解之间的差距来评估数值计算的误差。

相对误差分析是指通过计算数值解与精确解之间的相对差距来评估数值计算的误差。

误差分析的结果可以用来指导我们选择合适的数值计算方法和优化数值计算过程,以提高计算的精度和可靠性。

数值求解非线性方程是数值计算中的重要问题之一,它在科学计算和工程计算中得到了广泛的应用。

数值求解非线性方程的方法有迭代法、二分法、割线法、牛顿法等。

其中,迭代法是一种基本的数值求解方法,它通过不断迭代更新初始近似解来逼近方程的根。

二分法是一种简单有效的数值求解方法,它通过不断将区间二分来逼近方程的根。

割线法是一种迭代法,它通过利用函数在两个初始近似解之间的割线来逼近方程的根。

牛顿法是一种基于函数导数的迭代法,它通过利用切线来逼近方程的根。

插值与拟合方法是数值计算中常用的方法之一,它们可以通过给定的数据点来构造一个函数,以实现数据的近似表示和计算。

插值方法是利用已知数据点来构造一个函数,使得该函数在这些数据点上的取值与已知的数据点相等。

(完整word版)《数值计算方法》复习资料全

(完整word版)《数值计算方法》复习资料全

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

数值计算方法复习要点

数值计算方法复习要点

第一章引论计算方法解决问题的主要思想计算方法的精髓:以直代曲、化繁为简1、采用“构造性”方法构造性方法是指具体地把问题的计算公式构造出来。

这种方法不但证明了问题的存在性,而且有了具体的计算公式,就便于编制程序上机计算。

2、采用“离散化”方法把连续变量问题转为求离散变量问题。

例:把定积分离散成求和,把微分方程离散成差分方程。

3、采用“递推化”方法将复杂的计算过程归结为简单过程的多次重复。

由于递推算法便于编写程序,所以数值计算中常采用“递推化”方法。

4、采用“近似代替”方法计算机运算必须在有限次停止,所以数值方法常表现为一个无穷过程的截断,把一个无限过程的数学问题,转化为满足一定误差要求的有限步来近似替代。

算法的可行性分析时间复杂度、空间复杂度分析算法的复杂性(包含时间复杂性和空间复杂性)。

时间复杂度是算法耗费时间的度量。

算法的空间复杂度是指算法需占用存储空间的量度算法的可靠性分析良态算法、病态算法一个算法若运算过程中舍入误差的积累对最后计算结果影响很大,则称该算法是不稳定的或病态算法,反之称为稳定算法或良态算法。

误差的来源1、模型误差我们所建立的数学模型是对实际问题进行抽象简化而得到的。

因而总是近似的,这就产生了误差。

这种数学模型解与实际问题的解之间出现的误差,称为模型误差。

2、观测误差观测到的数据与实际数据之差。

3、截断误差数学模型的准确解与计算方法的准确解之间的误差。

4、舍入误差由于计算机字长有限,原始数据在计算机上表示会产生误差,每次计算又会产生新的误差,这种误差称为舍入误差。

绝对误差、相对误差定义2 记x*为x的近似数,称E(x)=x-x*为近似数x*的绝对误差,|E(x)|为绝对误差限。

定义3 称Er(x)=(x-x*)/x为近似数x*的相对误差。

实际运算时也将Er*(x)=(x-x*)/x*称为近似数x*的相对误差。

“四舍五入”:即尾数是4或以下则舍去,尾数是6或以上则进1,如果尾数是5,则规定:前面一位数字是偶数则舍去,奇数则进1。

数值计算方法复习

数值计算方法复习

数值计算方法复习1.数值求解数值求解是通过数值计算方法来寻找一个给定方程的数值解。

常见的数值求解方法包括二分法、牛顿法、割线法和迭代法等。

-二分法是一种用于求解单调函数方程的数值方法。

它将函数方程的解限定在一个区间内,然后通过缩小区间的方式来逼近解。

二分法的思想是通过不断将区间一分为二,并判断解是否在其中一半区间内,从而缩小解的范围。

-牛顿法是一种用于求解非线性方程的数值方法。

它利用函数方程的切线来逼近解。

牛顿法的核心思想是通过不断迭代逼近解的位置,使得迭代序列逐渐收敛到解。

-割线法是一种求解非线性方程的数值方法,类似于牛顿法。

它通过连结两个近似解点,得到一个割线,然后以割线和x轴的交点作为下一次迭代的近似解点。

-迭代法是一种通过迭代计算来逼近解的数值方法。

迭代法的核心思想是通过不断更新迭代序列的值,使得序列逐渐收敛到解。

2.插值与拟合插值与拟合是通过已知数据点来推断出未知数据点的数值计算方法。

-插值是通过已知数据点在这些点之间进行推断。

常见的插值方法包括拉格朗日插值和分段线性插值。

拉格朗日插值通过构造一个n次多项式函数来拟合已知数据点,从而推断出未知数据点的值。

分段线性插值是指将数据点之间的区间划分为若干段,然后在每段区间内使用线性插值来推断未知数据点的值。

-拟合是通过已知数据点在这些点之间进行逼近。

常见的拟合方法包括最小二乘拟合和多项式拟合。

最小二乘拟合通过使得残差的平方和最小来找到最优拟合函数。

多项式拟合是指通过构造一个n次多项式函数来拟合已知数据点,从而得到一个逼近函数。

3.数值积分数值积分是通过数值计算方法来近似计算函数的定积分。

常见的数值积分方法包括矩形法、梯形法、辛普森法和龙贝格法等。

-矩形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过函数的平均值来近似计算定积分的方法。

-梯形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过线性插值来近似计算定积分的方法。

数值计算方法复习提纲

数值计算方法复习提纲

i0
i0
2) 解之即得(1)的最小二乘解
2021/3/1
-14-
14
02:59
❖ 一般曲线拟合
利用最小二乘原理求矛盾方程组的最小二乘解(会 计算) (★)
❖ 插值条件、插值点
❖ 插值多项式
插值多项式的存在、唯一性:
❖ 故Ln(x)与Nn(x)等价
Lagrang插值多项式(★)
❖ 构造
f (
x)
n
lk (
k0
x )yk
n
(
k0
n i0
(x ( xk
xi xi
) )
yk
ik
❖ 余项
n
lk ( x ) 1
k0
❖ 线性插值、抛物插值公式及其截断误差
复习
2021/3/1
-1-
1
02:59
第一章 绪论及误差估计
误差的来源、分类(★) 误差的估计(★)
❖ 绝对误差、绝对误差限 ❖ 相对误差、相对误差限 ❖ 有效数字 ❖ 和、差、积、商的误差
数值计算(近似计算)的基本原则(★)
2021/3/1
-2-
2
02:59
第2章 非线性方程求根
非线性方程求根的基本步骤(★)
第5章 最小二乘法与曲线拟合
最小二乘原理及正规方程组的构造(计算) (★)
❖ 多项式拟合: y=a0+a1x+…+amxm (1)
1) 对应的正规方程组:CTCa=CTy
n
n
xi
CTC
i0 n
xi2
i0
....
n
xim
n
xi
i0 n
xi2

数值计算方法重点复习内容

数值计算方法重点复习内容
及其收敛性判定;
Newton迭代方法求非线性方程组的迭代格式。
➢第七章
最小二乘问题的定义、思想及其求法;
❖广义逆矩阵 A和 最小二乘解的关系;
Householder变换的定义、性质、求法及应用;
Givens变换的定义、性质、求法及应用;
➢第八章
幂法的迭代格式及其应用; ❖反幂法的迭代格式及其应用; QR方法的思想。
《数值计算方法》重点复习内容 ➢第一章
基本概念:误差的分类、绝对误差和相对误差、
有效字;
❖误差分析的原则:避免相近的数相减等。
➢第二章
二分法及对分次数的计算; ❖不动点迭代:几何意义、迭代函数的构造、迭代
格式的收敛性判定方法。
Newton迭代及其收敛性。
➢第三章
代数插值函数的定义、存在唯一性、误差估计式; ❖Lagrange插值多项式、n次Lagrange插值基函数
➢第九章
单步法的构造方法:Taylor展开法; ❖Euler公式、 Euler预报-校正公式
和经典4阶Runge-Kutta公式及其应用;
单步法的局部截断误差、收敛阶的定义;
梯形公式、Simpson公式及其余项;
复化梯形公式、复化Simpson公式及其余项; Gauss型求积公式的定义及其特点。 数值微分的三点公式计算近似导数定理。
➢第五章
常用的向量范数和矩阵范数的定义及求法;
❖列主元Gauss消去法、Doolittle分解方法;
条件数的定义及其计算。
➢第六章
了解向量序列和矩阵序列的定义、收敛性; ❖一般迭代法的形式、收敛性判定; Jacobi、Gauss-Seidel迭代格式(包括分量形式)
的性质(习题4-4)、Newton插值多项式

数值计算方法复习知识点

数值计算方法复习知识点

数值计算方法复习知识点2015计算方法复习1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss-Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报—校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。

(二) 复习要求1.了解数值分析的研究对象与特点。

2.了解误差来源与分类,会求有效数字; 会简单误差估计。

3.了解误差的定性分析及避免误差危害。

(三)例题例1. 设x =0.231是精确值x *=0.229的近似值,则x 有2位有效数字。

例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x 。

例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法。

(二) 复习要求1.了解求根问题和二分法。

2.了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。

3.理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。

4.掌握牛顿法及其收敛性、下山法, 了解重根情形。

5.了解弦截法。

(三)例题1.为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A)(B)11,1112-=-=+k k x x x x 迭代公式21211,11kk x x x x +=+=+迭代公式(C)(D)迭代公式解:在(A)中,=1.076 故迭代发散。

《数值计算方法》复习资料

《数值计算方法》复习资料

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= π=3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有效数字. a1=2,相对误差限εr==0.002 5x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,a=9,相对误差限εr==0.000 056x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相对误差限为εr==0.000 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3ln2=0.69314718…,精确到10-3的近似值是多少?解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

数值计算方法主要知识点

数值计算方法主要知识点

数值计算方法主要知识点数值计算方法是数学中的一门基础课程,主要研究数值计算的理论、方法和算法。

它是现代科学和工程技术领域中不可或缺的重要工具,广泛应用于数值模拟、优化计算、数据处理等诸多领域。

下面是数值计算方法的主要知识点(第一部分)。

1.近似数与误差:数值计算的基本问题是将无法精确计算的数值通过近似计算来求得。

近似数即为真实数的近似值,其与真实值之间的差称为误差。

误差可以分为绝对误差和相对误差。

绝对误差为真实值与近似值之差的绝对值,相对误差为绝对误差与真实值的比值。

通过控制误差可以评估数值计算结果的准确性。

2.插值与多项式:插值是指通过已知离散点构造一个函数,并在给定点处对其进行近似计算。

插值函数通常采用多项式拟合,即通过已知点构造一个多项式函数,并利用此函数进行近似计算。

主要的插值方法有拉格朗日插值、牛顿插值和埃尔米特插值等。

3.数值微分与数值积分:数值微分主要研究如何通过数值方法去近似计算函数的导数。

常用的数值微分方法有差商、中心差商和插值微分等。

数值积分则是研究如何通过数值方法去近似计算函数的定积分。

常用的数值积分方法有矩形法、梯形法和辛普森法等。

4.非线性方程的数值解法:非线性方程的数值解法是指通过数值方法求解形如f(x)=0的方程。

常用的非线性方程数值解法有二分法、牛顿法和二次插值法等。

这些方法基于一些基本原理和定理,通过迭代的方式逐步逼近方程的根即可求得方程的近似解。

5.线性方程组的数值解法:线性方程组的数值解法是指通过数值方法求解形如Ax=b的线性方程组。

其中,A是一个已知的系数矩阵,b是一个已知的常数向量,x是未知的解向量。

常用的线性方程组数值解法有高斯消元法、追赶法和LU分解法等。

这些方法通过一系列的变换和迭代来求解线性方程组的解。

6.插值型和积分型数值方法:数值计算方法可以分为插值型和积分型两类。

插值型数值方法是通过插值的方式进行近似计算,如插值法和数值微分。

而积分型数值方法是通过数值积分的方式进行近似计算,如数值积分和微分方程的数值解法。

数值计算方法总结计划复习总结提纲.docx

数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲第一章数值计算中的误差分析12.了解误差 ( 绝对误差、相对误差 )3.掌握算法及其稳定性,设计算法遵循的原则。

1、误差的来源模型误差观测误差截断误差舍入误差2误差与有效数字绝对误差E(x)=x-x *绝对误差限x*x x*相对误差E r (x) ( x x* ) / x ( x x* ) / x*有效数字x*0.a1 a2 ....a n10 m若x x*110m n ,称x*有n位有效数字。

2有效数字与误差关系( 1)m 一定时,有效数字n 越多,绝对误差限越小;( 2)x*有 n 位有效数字,则相对误差限为E r (x)110 (n 1)。

2a1选择算法应遵循的原则1、选用数值稳定的算法,控制误差传播;例I n 11n xdxex eI 0 11I n1nI n1e△ x n n! △x02、简化计算步骤,减少运算次数;3、避免两个相近数相减,和接近零的数作分母;避免第二章线性方程组的数值解法1.了解 Gauss 消元法、主元消元法基本思想及算法;2.掌握矩阵的三角分解,并利用三角分解求解方程组;(Doolittle 分解; Crout分解; Cholesky分解;追赶法)3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。

本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解?a11x1a12x2...a1nxn b1a21x1a22x2...a2nxn b2...an1x1an 2x2...annxn b n两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。

一、Gauss消去法1、顺序G auss 消去法记方程组为:a11(1) x1a12(1) x2... a1(1n) x n b1(1)a21(1) x1a22(1) x2... a2(1n) x n b2(1)...a n(11) x1a n(12) x2... a nn(1) x nb n(1)消元过程:经n-1步消元,化为上三角方程组a11(1) x1b1(1)a 21(2) x1a22(2 ) x2b2( 2 )...a n(1n) x1a n(n2) x2...a nn(n ) x nb n( n )第k步若a kk(k)0( k 1)( k)a ik(k )(k )( k 1)( k )a ik(k )( k)aij aij a kk(k )akj bi b i a kk(k )b k k 1,...n 1 i, j k 1,....,n回代过程:x n b n(n)/ a nn(n)nx i (b i(i )a ij(i ) x j ) / a ii(i)(i n 1, n 2,...1)j i 12、G auss—Jordan消去法避免回代,消元时上下同时消元3、G auss 列主元消去法例:说明直接消元,出现错误0.00001x12x22x1x23由顺序G auss 消去法,得x21, x10 ;Ga uss 列主元消去法原理:每步消元前,选列主元,交换方程。

数值计算方法复习

数值计算方法复习

数值计算方法复习数值计算方法是数学中的一门重要学科,主要研究如何用数值方法来解决实际问题。

它是一门综合学科,涵盖了数值逼近、插值法、数值积分、数值微分、微分方程数值解等内容。

数值计算方法在科学计算和工程技术中有广泛的应用,它的发展对于实现科学方法的自动化和智能化有着重要的意义。

下面我将对数值计算方法的几个重要内容进行复习。

数值逼近是数值计算方法中的一项基础内容,它涉及到如何用有限的计算资源来逼近一个函数的值。

最简单的逼近方法是线性逼近,即用一条直线来逼近函数。

对于一些函数f(x),我们可以用两个端点处的函数值f(a)和f(b)来确定一条直线y=ax+b。

这就是所谓的线性逼近。

在实际计算中,我们经常遇到的是多项式逼近问题,即用一个多项式来逼近函数。

多项式逼近有多种方法,其中最常用的是最小二乘法。

最小二乘法的基本思想是在给定的数据点上,找出一个多项式,使其在这些点上的残差之和最小。

这个问题可以通过求解一个线性方程组来实现。

插值法是数值计算方法中的另一个重要内容,它涉及到如何用已知数据构造一个与这些数据点相吻合的函数。

常用的插值方法有拉格朗日插值法和牛顿插值法。

拉格朗日插值法是通过一个多项式来逼近已知的数据点,使得这个多项式在已知数据点上的值与给定的数据点吻合。

牛顿插值法是通过差商来逼近已知的数据点,也是一种多项式插值方法。

数值积分是数值计算方法中的重要内容之一,它涉及到如何用数值方法来近似计算一个函数的积分。

常用的数值积分方法有矩形法、梯形法和辛普森法。

矩形法是将积分区间分成若干个小矩形,然后计算这些小矩形的面积之和。

梯形法是将积分区间分成若干个梯形,然后计算这些梯形的面积之和。

辛普森法是将积分区间分成若干个小区间,然后用一个二次多项式来逼近每个小区间上的函数。

数值微分是数值计算方法中的另一个重要内容,它涉及到如何用数值方法来近似计算一个函数的导数。

常用的数值微分方法有向前差商、向后差商和中心差商。

数值计算方法总复习.docx

数值计算方法总复习.docx

数值计算方法总复习第一章算法与误差 第二章非线性方程求解 第三章线性代数方程求解 第四章函数插值与曲线拟合 第五章数值积分与数值微分 第六章當微分方程的数值解法 Chap. 1 (1)关于数值计算方法,What,特点教窗才算方法是应用数学的一个分支, 又称数值分析或计算方法,它是研究数字计算机求解各种数学问题的数值方法及其理论的一门科学,是程序设计 和对数值结果进行分析的依据和基础。

应用计算机解决科学计算问题包括以下几个过程:提出实际问题;建立数 学模型;选用数值计算方法;程序设计和上机计算。

可见数值计算方法是进行 科学计算全过程的一个重要环节。

计算机计算的特点:(1)运算速度快;(2)但只能完成加、减、乘、除和 一些逻辑运算。

所以,各种复朵的数学问题 T 归结为四则运算 ------------- 9 编程指令。

把对数学问题的解法归纳为有加、减、乘、除等基本运算,并对运算顺序 有完整而准确的描述的算法称为数值计算方法或简称数值算法。

研究各种算法 和和关理论的一门课程。

§1.2误差一、 误差的来源数分为两类:精确数(准确数、真值); 近似数/近似值。

1) 模型课差或描述误差2) 测量误差(观测误差)3) 截断误并(方法误并)4) 舍入误差(计算误差):数值计算关心的是截断谋差(方法谋差)和舍入谋差(计算谋差) 二、误差限和有效数字1. 误差限的定义设Z 是准确值Z 的某个近似值,如果根据具体测量或计算的情况,可以事 先估计出误差的绝对值不超过某个正数5即:关于《数值计算方法》IZ - Z| W £则称£为近似值的谋差限。

或称在允许谋差£的情况下,结果z是“准确的”・2.误差限和有效数字在表示一个近似数时,常常用到“有效数字”,有效数字和谋差限都是用来定量表示误差的大小,且它们之间有对应关系。

有效数字的定义:设数x的近似值T=0內兀2…乙xl(T ,其中灯是0到9之间的任一个数,但力工0门二1,2,3.・・,n正整数,刃整数,若lx-x* l< jxlO,n-n则称x*为x的具有n位有效数字的近似值,准确到第n位,x 1x2...xn是/ 的有效数字。

数值计算方法复习知识点

数值计算方法复习知识点

数值计算方法复习知识点数值计算方法是研究计算数值解的方法和数值计算的理论。

它是计算数学的一个分支,主要用于解决无法用解析方法求解的数学模型问题。

本文将综述数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。

一、插值与逼近1.插值:插值是利用已知数据点构造一个函数,使得该函数在给定的数据点上与已知函数完全相等。

常见的插值方法有拉格朗日插值和牛顿插值。

2. 逼近:逼近是从已知数据点构造一个函数,使得该函数在给定的数据点附近与已知函数近似相等。

逼近常用的方法有最小二乘逼近和Chebyshev逼近。

二、数值微分与数值积分1.数值微分:数值微分是通过计算差分商来近似计算函数的导数。

常见的数值微分方法有前向差分、后向差分和中心差分。

2.数值积分:数值积分是通过近似计算定积分的值。

常见的数值积分方法有中矩形法、梯形法和辛普森法。

三、线性方程组的直接解法与迭代解法1.直接解法:直接解法是通过一系列数学运算直接计算线性方程组的解。

常见的直接解法有高斯消元法和LU分解法。

2. 迭代解法:迭代解法是通过迭代计算逼近线性方程组的解的方法。

常见的迭代解法有Jacobi迭代法和Gauss-Seidel迭代法。

四、常微分方程的数值解法1.常微分方程:常微分方程是描述动力系统的数学模型,常用来描述物理系统、生物系统等。

常微分方程的数值解法主要包括初始值问题的一阶常微分方程和常微分方程组的数值解法。

2.常微分方程的数值解法:常微分方程的数值解法有欧拉方法、改进的欧拉方法、龙格-库塔方法等。

这些方法都是将微分方程转化为递推方程,通过迭代计算逼近微分方程的解。

总结:数值计算方法是求解数学模型的重要工具,在科学计算、工程设计和经济管理等领域有广泛的应用。

本文回顾了数值计算方法的一些重要知识点,包括插值与逼近、数值微分与数值积分、线性方程组的直接解法与迭代解法以及常微分方程的数值解法。

数值计算方法总复习

数值计算方法总复习

数值计算方法总复习第一章算法与误差第二章非线性方程求解第三章线性代数方程求解第四章函数插值与曲线拟合第五章数值积分与数值微分第六章常微分方程的数值解法Chap.1 (1)关于数值计算方法,What,特点一、关于《数值计算方法》数值计算方法是应用数学的一个分支,又称数值分析或计算方法,它是研究数字计算机求解各种数学问题的数值方法及其理论的一门科学,是程序设计和对数值结果进行分析的依据和基础。

应用计算机解决科学计算问题包括以下几个过程:提出实际问题;建立数学模型;选用数值计算方法;程序设计和上机计算。

可见数值计算方法是进行科学计算全过程的一个重要环节。

计算机计算的特点:(1)运算速度快;(2)但只能完成加、减、乘、除和一些逻辑运算。

所以,各种复杂的数学问题------→归结为四则运算------→编程指令。

把对数学问题的解法归纳为有加、减、乘、除等基本运算,并对运算顺序有完整而准确的描述的算法称为数值计算方法或简称数值算法。

研究各种算法和相关理论的一门课程。

§1.2 误差一、误差的来源数分为两类:精确数(准确数、真值);近似数/近似值。

1)模型误差或描述误差2)测量误差(观测误差)3)截断误差(方法误差)4)舍入误差(计算误差):数值计算关心的是截断误差(方法误差)和舍入误差(计算误差)二、误差限和有效数字1. 误差限的定义设Z 是准确值Z *的某个近似值,如果根据具体测量或计算的情况,可以事先估计出误差的绝对值不超过某个正数ε:即: |Z * - Z |≤ε则称ε为近似值的误差限。

或称在允许误差ε的情况下,结果Z 是“准确的”.2. 误差限和有效数字在表示一个近似数时,常常用到“有效数字”,有效数字和误差限都是用来定量表示误差的大小,且它们之间有对应关系。

有效数字的定义:设数x 的近似值m n x x x x 10.021*⨯= , 其中 xi 是0到9之间的任一个数,但x 1≠0,i=1,2,3…,n 正整数,m 整数,若nm *|x x |-⨯≤-1021 则称x *为x 的具有n 位有效数字的近似值,x *准确到第n 位,x1x2…xn 是x *的有效数字。

数值计算方法(精品)

数值计算方法(精品)

《数值计算方法》科学出版社黄明游第一章绪论1.1数值计算方法研究的对象、任务与特点一、关于本课程的名称本课程及其相近课程的名称有:《计算方法》、《数值计算》、《数值计算方法》、《数值分析》、《计算数学》、《科学计算》、《科学与工程计算》,等等。

二、数值计算方法概述(一)数值计算方法属于计算数学的范畴,是研究各种数学问题的数值方法设计、分析、有关的数学理论和具体实现的一门学科。

由于近几十年来计算机的迅速发展,数值计算方法的应用已经普遍深入到各个科学领域,很多复杂的和大规模的计算问题都可以在计算机上进行计算,新的、有效的数值计算方法不断出现。

现在,科学与工程中的数值计算已经成为各门自然科学和工程技术科学的一种重要手段,成为与实验和理论并列的一个不可缺少的环节。

所以数值计算方法既是一个基础性的,同时也是一个应用性的数学学科,与其它学科的联系十分紧密。

由于大量的问题要在计算机上求解,所以要对各种数值计算方法进行分析,其内容包括:误差、稳定性、收敛性、计算工作量、存贮量和自适应性,这些基本的概念用于刻画数值方法的适用范围、可靠性、准确性、效率和使用的方便性等。

当代实际的科学与工程计算中,计算问题往往是复杂的和综合的。

但是有一些最基础、最常用的数值计算方法,它们成为通常大学数值计算方法课程的内容。

本书主要讨论这些方法及其分析,它们包括逼近问题(函数的插值和逼近,数值积分和微分),线性代数问题(方程组和特征值问题)和非线性方程及方程组的数值解法问题,以及常微分方程的数值解法等。

这些是数值计算方法最基础的内容,不仅可以直接应用于实际计算,同时也是其它数值计算问题所用到的方法及其分析的基础。

(二)数值计算方法(或称计算方法)是研究数学问题求数值解的算法和有关理论的一门学科,它的理论与方法随计算工具的发展而发展。

在古代,人类研究的数学问题几乎总与计算有关,而计算工具的简陋,使求解问题受到很大限制。

现代科学技术日新月异,尤其是计算机技术飞速发展,人类可以用计算机进行复杂的数值计算、数据处理(包括图形,图像,声音,文字),计算机不仅是现代计算工具,而且已成了我们工作环境的一部分。

数值计算方法复习提纲

数值计算方法复习提纲

数值计算方法复习提纲第一章 数值计算中的误差分析 1.了解误差及其主要来源,误差估计;2.了解误差(绝对误差、相对误差)和有效数字的概念及其关系;3.掌握算法及其稳定性,设计算法遵循的原则。

1、 误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字绝对误差 E (x )=x-x *绝对误差限ε εε+≤≤-**x x x相对误差 ***/)(/)()(x x x x x x x E r -≈-=有效数字m n a a a x 10.....021*⨯±=若n m x x -⨯≤-1021*,称*x 有n 位有效数字。

有效数字与误差关系(1) m 一定时,有效数字n 越多,绝对误差限越小; (2)*x 有n 位有效数字,则相对误差限为)1(11021)(--⨯≤n r a x E 。

选择算法应遵循的原则1、 选用数值稳定的算法,控制误差传播; 例 ⎰=101dx e x eI xn n eI nI I n n11101-=-=- △!n x n=△x 02、 简化计算步骤,减少运算次数;3、 避免两个相近数相减,和接近零的数作分母; 避免第二章 线性方程组的数值解法1.了解Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解;Crout 分解;Cholesky 分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与Gauss-Seidel 迭代法;4.掌握向量与矩阵的范数及其性质,迭代法的收敛性及其判定 。

本章主要解决线性方程组求解问题,假设n 行n 列线性方程组有唯一解,如何得到其解?⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112222212111212111)两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。

数值计算方法 第2章复习

数值计算方法 第2章复习

第2章 线性方程组直接解法一、考核知识点:高斯消元法,主元消元法(列主元消元法),追赶法,矩阵的三角分解。

二、考核要求:1.了解高斯消元法、主元消元法、追赶法的基本思想和使用条件2.掌握矩阵的三角分解(LU 分解,LDU 分解)、追赶法。

3.熟练掌握用列主元消元法求解线性方程组的方法。

三、重、难点分析例1 用列主元消元法解方程组。

⎪⎩⎪⎨⎧=++=++=++53368435532321321321x x x xx x x x x注意:每次消元时主元的选取是各列中系数最大的。

解 第1列主元为3,交换第1、2方程位置后消元得, ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=++331351313168433232321x x x x x x x第2列主35,元为交换第2、3方程位置后消元得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+=++5252331356843332321x x x x x x回代解得 2,2,1123==-=x x x例2.将矩阵A 进行三角分解(LU 分解,LDU 分解)其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1332222224A 说明:一般进行矩阵的三角分解采用紧凑格式。

即应用矩阵乘法和矩阵相等原则进行矩阵的三角分解(或代入公式求得相应元素)。

在分解时注意矩阵乘法、矩阵求逆等代数运算。

解: 9,2;1,121,21;2,2,43322123132321321232312212222113131112121131312121111=-=-=-=-==-=-====-======r r r l a l r l a r r l a r a a l a a l a r a r a r则矩阵的LU 分解为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----911224122112111332222224 因为对角阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=914D ,则⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-111212111R D U 所以矩阵的LDU 分解为 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----11121211914122112111332222224。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* *
7
设x1 , x2的近似数x , x ,则:
* 1 * 2
* * * * * * 1. e( x1 x2 ) d ( x1 x2 ) dx1 dx2 * * e( x1 ) e( x2 )
* * * * * * 2. er ( x1 x2 ) d ln( x1 x2 ) d (ln x1 ln x2 ) * * * * d ln x1 d ln x2 er ( x1 ) er ( x2 )
设 f ( x )在[a , b]上有唯一零点x ,
*
取 x0 a, x1 b,
则过P0 ( x0 , f ( x0 ))及P1 ( x1 , f ( x1 ))得弦的方程
f ( x1 ) f ( x0 ) y f ( x1 ) ( x x1 ) x1 x0
19
弦截法
• 令y=0,解得弦与x轴的交点是坐标x2
[a1 , b1 ] [a 2 , b2 ]

b2 a2 1 (b1 a1 ) 2
12
二分法
• 对
重复上述做法得
[a 2 , b2 ]
[a1 , b1 ] [a2 , b2 ] ...... [an , bn ] ......
• 且
bn a n 1 2
n 1
f ( x1 ) f ( x0 ) f ( x1 ) ( x2 x1 ) 0 x1 x0 x1 x0 解得 x2 x1 f ( x1 ) f ( x1 ) f ( x0 )
再由x0 , x2计算x3...... xn x0 xn 1 xn f ( xn ) f ( xn ) f ( x0 )
2
( 2)
称为Steffensen迭代函数。
17
Newton迭代法
f ( xn ) xn 1 xn f ( xn )
n 0,1,......
以此产生的序列{Xn}得到f(x)=0的近似解, 称为Newton法,又叫切线法。
18
2.4弦截法
• Newton迭代法有一个较强的要求是 f ( x) 0 且存在。因此,用弦的斜率近似的替代 f (x) 。
定义1.2.2 设x为精确数,x 为近似数,
*
若有正数和 r 满足 : | e( x ) || x x |
* *
| x* x | | er ( x* ) | r |x| 则称和 r为近似数x 的绝对误差界和相对误差界。
*
4
在实际计算绝对误差和相对误差时, 又由于准确 书 x 未知,因此常用
8
* * * * * * * * * * 3. e( x1 x2 ) x1 x2 er ( x1 x2 ) x1 x2 [er ( x1 ) er ( x2 )] * * * * x2 er ( x1 ) x1 er ( x2 )
x * * 4. er ( ) er ( x1 ) er ( x2 ) x
则有
( ( ( aijk 1) aijk ) lik akjk ),i k 1,..., n; j k 1,..., n
bi( k 1) bi( k ) lik bk( k ),i k 1,..., n
26
高斯顺序消去法
• 最后
(1 a11) [ A( n ) b ( n ) ] (1 a12)
a11 max a i1
1 i n
交 换
a11 a12 ...... a1n b1 a a 22 ...... a11 b2 21 ...... ...... ...... ...... ...... ai1 ai 2 ...... ain bi ...... ...... ...... ...... ...... a n1 a n 2 ...... a nn bn
2.2.1 迭代法及收敛性
对于 f ( x) 有时可以写成 0 如:
形式 x (x)
x3 x 1 0 x 3 x 1
或 x 1 x
3
x cos x 0 x cos x
15
迭代法及收敛性
考察方程 x (x) 。 这种方程是隐式方程,因而不能直接求出它的根。 但如果给出根的某个猜测值 x 0 , 代入 代入 反复迭代得
1 a1(n)
(2 a22) ...
( ... a22 ) n
... ...
(k (k akk ) ... akn )
(k (k ank ) ... ann )
b1(1) ( 2) b2 ... (k ) bk ... (k ) bn
25
高斯顺序消去法
则第k次消元: ( aikk ) 令lik ( k ) , i k 1,..., n,k 1,2,..., n 1 ak
27
高斯顺序消去法
• 也就是对于方程组AX=b系数矩阵做:
( (k lik aikk ) / akk ) ( k 1) (k ) (k ) aij aij lik akj b( k 1) b( k ) b( k )l i k ik i
i k 1,..., n j k 1,..., n
... ...
... ... ... ... ...
... a1(1) n
( ... a22 ) n
(2 a22) ...
... ...
... ...
(k (k akk ) ... akn )
(n ... ann)
b1(1) ( 2) b2 ... (k ) bk ... (n) bn
(k 1,2,..., n 1)
28
高斯顺序消去法
得到 A ( n ) x b( n ) 其中
(1 a11) (n) (n) [A |b ] (1 a12)
... ...
... ... ... ... ...
... ... ...
1 a1(n)
• 消元法求解线性方程组:Gauss消元法 • 分解法求解线性方程组:LU分解法、 Cholesky分解法、追赶法
高斯顺序消去法
• 设 Ax=b. 记A(1)=A b(1)=b。设
1、第一次消元。 a (1) i1
第一行 ( a
(1) 11
aii 0
) 第i行(i 2,..., n) 3,
1 ai(1 ) 令li1 (1) , i 2,3,..., n a11 (1 (1 a11) a11) ...... a1(1) n ( 2) ( 2) a22 ...... a2 n (1) ( 2) A A ...... ( 2) ( 2) an 2 ...... ann ( ( b (1) b ( 2 ) [b1(1) b2 2 ) ...... bn 2 ) ]T
计算方法 总复习
第1章 绪论
• 误差及有效数字 • 误差的传递、函数误差
误差和有效数字
定义1.2.2 设x为准确数,x*为近似数, 称
(近似数x*的) 绝对误差:e( x* ) x* x
e( x* ) * * (近似数x 的) 相对误差:er ( x ) ( x 0) x
3
误差估计
e( x * ) er ( x* ) * x
表示 er ( x* ) 。
5
有效数字
• 在工程上,误差的概念就转化为有效数字。
例如: 3.14159265 ...... 的近似数 * 3.1416 则 e( * ) 3.1416 3.14159265 ...
1 0.00000734 ...... 10 4 2 称 * 3.1416 具有五位有效数字的近似数。
*
10
第二章 非线性方程的数值解法
• • • • • 二分法 一般迭代法 Steffensen加速收敛法 Newton法 弦截法
二分法 • 用二分法(将区间对平分)求解。
令 a1 a, b1 b, c1 1 (a1 b1 ) 2 若 f (a1 ) f (c1 ) 0 则[a1 , c1 ] , 为有根区间,否则 为有根区间 [c1 , b1 ] 记新的有根区间为 [a 2 , b, 则 2]
(n xn b ( n ) / ann) n x (b ( i ) (i ) (i ) 1aij .x j ) / aii i i j i
(i n 1,...,1)
30
3.1.2 高斯主元素消去法
• Gauss列主元消元法 • 从第一列中选出绝对值最大的元素
x 中的右端得到 (x)
, x1 ( x0 )
再以x1为一个猜测值,
x (x) 的右端得
x 2 ( x1 )
xk 1 ( xk )
k 0,1,......
16
Steffensen加速收敛法 概述
• 由上式产生的序列称为Steffensen迭代序列。
[ ( x ) x ] 而 ( x ) x ( ( x ) ) 2 ( x ) x
23
高斯顺序消去法
a
( 2) ij
a l a
(1) ij
(1) i1 1 j (1) (1) i1 1 j (1) 11
a
(1) ij
a a a
(i 2,..., n; j 2,..., n)
b
( 2) i
b b l
(1) i (1) i (1) i1 (1) 11
(1) 1 i1
相关文档
最新文档