(六三制)综合能力训练 数学 七年级上册 期末检测题

合集下载

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word 含答案)一、选择题1.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a >bB .ab <0C .b a ->0D .+a b >02.如图所示的图形绕虚线旋转一周,所形成的几何体是( )A .B .C .D .3.自南京地铁四号线开通以来,最高单日线路客运量是 2017 年 12 月 7 日的 191000 人次,数字 191000 用科学计数法表示为( ) A .19.1×410B .1.91×510C .19.1×510D .0.191×6104.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤5.2-的相反数是( ) A .2-B .2C .12D .12-6.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点。

该几何体模型可能是( ) A .球 B .三棱锥C .圆锥D .圆柱7.方程去分母后正确的结果是( ) A .B .C .D .8.若a ,b 互为倒数,则4ab -的值为 A .4-B .1-C .1D .09.下列说法错误的是( )A .同角的补角相等B .对顶角相等C .锐角的2倍是钝角D .过直线外一点有且只有一条直线与已知直线平行10.若x >y ,则下列式子错误的是( ) A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >3311.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有( )A .1个B .2个C .3个D .4个12.下列图形,不是柱体的是( ) A .B .C .D .13.某商品原价为m 元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n 元,则m ,n 的大小关系为( ) A .m n =B .0.91n m =C .30%n m =-D .30%n m =-14.3-的绝对值是( ) A .3-B .13-C .3D .3±15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.若∠α=40° 15′,则∠α的余角等于________°. 17.若221x x -++= 4,则2247x x -+的值是________.18.在0,1,π,227-这些数中,无理数是___________ . 19.若单项式322m x y-与3-x y 的差仍是单项式,则m 的值为__________.20.当温度每下降100℃时,某种金属丝缩短0.2mm .把这种15℃时15mm 长的金属丝冷却到零下5℃,那么这种金属丝在零下5℃时的长度是__________mm . 21.若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是______. 22.已知数轴上点A ,B 分别对应数a ,b .若线段AB 的中点M 对应着数15,则a +b 的值为_____.23.-6的相反数是 . 24.如果单项式1b xy+-与23a xy -是同类项,那么()2019a b -=______.25.若代数式2434x x +-的值为 1,则代数式2314x x --的值为_________. 三、解答题26.已知,22321A x xy x =+--,2+1B x xy =-+,且36A B +的值与x 的取值无关,求y 的值.27.我们规定,若关于x 的一元一次方程()0mx n m =≠的解为n m -,则称该方程为差解方程,例如:2554x =的解为525544x ==-,则该方程2554x =就是差解方程.请根据上边规定解答下列问题(1)若关于x 的一元一次方程31x a =+是差解方程,则a =______.(2)若关于x 的一元一次方程3x a b =+是差解方程且它的解为x a =,求代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值(提示:若1m n m ++=,移项合并同类项可以把含有m 的项抵消掉,得到关于n 的一元一次方程,求得1n =-)28. a ※b 是新规定的这样一种运算法则:a ※b=a 2+2ab ,例如3※(-2)=32+2×3×(-2)=-3 (1)试求(-2)※3的值 (2)若1※x=3,求x 的值 (3)若(-2)※x=-2+x ,求x 的值.29.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程: ①59415x x -=+;②91554y y +-= (1)①中的x 表示 ; ②中的y 表示 .(2)请选择其中一种方法,写出完整的解答过程.30.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.31.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm(1)求AC的长(2)若点E在直线AD上,且EA=2cm,求BE的长32.有三条长度均为a的线段,分别按以下要求画圆.(1)如图①,以该线段为直径画一个圆,记该圆的周长为C1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C2,请指出C1和C2的数量关系,并说明理由;(2)如图③,当a=11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为.(直接填写答案,结果保留π)33.为响应国家节能减排的号召,鼓励人们节约用电,保护能源,某市实施用电“阶梯价格”收费制度.收费标准如表:居民每月用电量单价(元/度)不超过50度的部分0.5超过50度但不超过200度的部分0.6超过200度的部分0.8已知小智家上半年的用电情况如表(以200度为标准,超出200度记为正、低于200度记为负)一月份二月份三月份四月份五月份六月份﹣50 +30 ﹣26 ﹣45 +36 +25根据上述数据,解答下列问题(1)小智家用电量最多的是 月份,该月份应交纳电费 元; (2)若小智家七月份应交纳的电费200.6元,则他家七月份的用电量是多少?四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。

七年级(上)期末数学综合检测题(一)及答案(精品适用)

七年级(上)期末数学综合检测题(一)及答案(精品适用)

26.爷爷与孙子下棋,爸爸赢一盘记为 1 分,孙子赢一盘记为 3 分,两人下了 12 盘(未出 现和棋)后,得分相同,他们各赢了多少盘?(5 分)
- 4 -
27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌 的乒乓球和乒乓球拍。乒乓球拍每副定价 30 元,乒乓球每盒定价 5 元,经洽谈后,甲店 每买一副球拍赠一盒乒乓球,乙店全部按定价的 9 折优惠。该班需球拍 5 副,乒乓球若 干盒(不小于 5 盒) 。问: (1)当购买乒乓球多少盒时,两种优惠办法付款一样? (2)当购买 15 盒、30 盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么? (8 分)
A M C N B
- 5 -
参考答案
一、 题号 答案 二、 11:97°27′55″ 12:-5b 13:移项;等式性质 1 14: 2 1 D 2 C 3 C 4 C 5 C 6 B 7 D 8 A 9 A 10 B
15: -1 16: 75° 17: 30° 18: 两点之间,线段最短。 19:4x+3=107. 20、70 三、 21: -61 22: (1) x=4/3; (2) x=-22/3; (3) x=-9.2 23: 9°55′ 24: 54; 25: 24cm 26:爷爷赢了 9 盘,孙子赢了 3 盘。 27: (1)当购买乒乓球 20 盒时,两种优惠办法付款一样 (2)当购买 15 盒、30 盒乒乓球时,去甲店购买要 525 元, 去 乙店购买要 540 元 所以,去甲店购买。 28: (1)线段 MN=7cm (2) (3)MN=b/2, MN 的长度等于 AC 与 BC 的差的一半。
4 2
) D、不同于以上答案
10、将(a+b)+2(a+b)-4(a+b)合并同类项后是( A、a+b B、-(a+b)

数学七年级上册 期末试卷综合测试卷(word含答案)

数学七年级上册 期末试卷综合测试卷(word含答案)

数学七年级上册期末试卷综合测试卷(word含答案)一、选择题1.下列说法中不正确的是()A.两点之间线段最短B.过直线外一点有且只有一条直线与这条直线平行C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.若 AC=BC,则点 C 是线段 AB 的中点2.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.1003.下列合并同类项结果正确的是( )A.2a2+3a2=6a2B.2a2+3a2=5a2C.2xy-xy=1 D.2x3+3x3=5x6 4.如图正方体纸盒,展开后可以得到()A.B.C.D.5.下列说法错误的是()A.同角的补角相等B.对顶角相等C.锐角的2倍是钝角D.过直线外一点有且只有一条直线与已知直线平行6.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.经过一点,有无数条直线C.垂线段最短D.经过两点,有且只有一条直线7.在 3.14、227、 0、 、1.6这 5个数中,无理数的个数有()A.1 个B.2 个C.3 个D.4 个8.下列叙述中正确的是()①线段AB可表示为线段BA; ② 射线AB可表示为射线BA;③ 直线AB可表示为直线BA; ④ 射线AB和射线BA是同一条射线. A.①②③④B.②③C.①③D.①②③9.﹣3的相反数是()A .13- B .13C .3-D .310.将方程21101136x x ++-=去分母,得( ) A .2(2x +1)﹣10x +1=6 B .2(2x +1)﹣10x ﹣1=1 C .2(2x +1)﹣(10x +1)=6 D .2(2x +1)﹣10x +1=1 11.无论x 取什么值,代数式的值一定是正数的是( ) A .(x +2)2 B .|x +2| C .x 2+2 D .x 2-2 12.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点13.据统计,2020年元旦到高邮市旅游的旅客约为15000人,数据15000用科学计数法可表示为( ) A .50.1510⨯B .51.510⨯C ..41510⨯D .31510⨯14.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .15.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( ) A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元二、填空题16.3615︒'的补角等于___________︒___________′. 17.计算:82-+-=___________. 18.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 19.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.20.用一副三角尺可以直接得到或可以拼出的锐角的个数总共有___________个. 21.在数轴上到-3的距离为4个单位长度的点表示的数是___.22.若关于x 的方程3k-5x+9=0的解是非负数,则k 的取值范围为______ .23.已知数轴上点A ,B 分别对应数a ,b .若线段AB 的中点M 对应着数15,则a +b 的值为_____.24.如图,AB =24,点C 为AB 的中点,点D 在线段AC 上,且AD =13CB ,则DB 的长度为___.25.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____.三、解答题26.解方程:(1)-5x +3=-3x -5; (2)4x -3(1-x )=11.27.如图,OC 是一条射线,OD 、OE 分别是AOC ∠和BOC ∠的平分线.(1)如图①,当80AOB ∠=︒时,则DOE ∠的度数为________________;(2)如图②,当射线OC 在AOB ∠内绕O 点旋转时,∠BOE 、EOD ∠、DOA ∠三角之间有怎样的数量关系?并说明理由;(3)当射线OC 在AOB ∠外如图③所示位置时,(2)中三个角:∠BOE 、EOD ∠、DOA ∠之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC 在AOB ∠外如图④所示位置时,∠BOE 、EOD ∠、DOA ∠之间数量关系是____________.28.小红周日花了76元买了四种食品,如下表格记录了她的支出,其中部分金额被油渍污染.若鲜奶和酸奶一共买了10盒,鲜奶4元/盒,酸奶5元/盒,则小红当天买了几盒鲜奶?29.如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且()232+4=0ab b +-.(1)a = ,b = ;(2)在数轴上是否存在一点P ,使2PA PB OP -=,若有,请求出点P 表示的数,若没有,请说明理由?(3)点M 从点A 出发,沿A O A →→的路径运动,在路径A O →的速度是每秒2个单位,在路径O A →上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN =1?30.已知方程532x x -=与方程2463k x x +-=的解互为相反数,求5417k ⎛⎫- ⎪⎝⎭的值. 31.如图所示是一个几何体的表面展开图.(1)该几何体的名称是 .(2)根据图中所给信息,求该几何体的体积(结果保留π) 32.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体.33.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =, ①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =; (2)如果2t s =时,1CD cm =,试探索AP 的值.四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.35.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 36.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示) 37.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ? 38.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l 上以A ,B ,C ,D 为端点的线段共有 条;②若AC =5cm ,BD =6cm ,BC =1cm ,点P 为直线l 上一点,则PA +PD 的最小值为 cm ;(2)若点A 在直线l 上向左运动,线段BD 在直线l 上向右运动,M ,N 分别为AC ,BD 的中点(如图2),请指出在此过程中线段AD ,BC ,MN 有何数量关系并说明理由; (3)若C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,E ,F 两点同时从C ,D 出发,分别以2cm/s ,1cm/s 的速度沿直线l 向左运动,Q 为EF 的中点,设运动时间为t ,当AQ+AE+AF=32AD 时,请直接写出t 的值. 39.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.40.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).41.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.42.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?43.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据线段公理,平行公理,垂线段最短等知识一一判断即可.【详解】A.两点之间,线段最短,正确;B.经过直线外一点,有且只有一条直线与这条直线平行,正确;C.直线外一点与这条直线上各点连接的所有线段中,垂线段最短,正确;D.当A、B、C三点在一条直线上时,当AC=BC时,点 C 是线段 AB 的中点;故错误;故选:D.【点睛】本题考查线段公理,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B解析:B【解析】【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可. 【详解】解:设商品的进价为x 元,售价为每件0.8×200元,由题意得 0.8×200=x+40 解得:x=120答:商品进价为120元. 故选:B . 【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.3.B解析:B 【解析】 【分析】根据合并同类项的法则,进行求解即可. 【详解】解:222235a a a +=,故A 错误;B 正确;2xy xy xy -=,故C 错误;333235x x x +=,故D 错误;故选:B. 【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.4.A解析:A 【解析】 【分析】根据折叠后白色圆与蓝色圆所在的面的位置进行判断即可. 【详解】A.两个白色圆和一个蓝色圆折叠后互为邻面,符合题意;B.两个白色圆所在的面折叠后是对面,不符合题意;C.白色圆与一个蓝色圆所在的面折叠后是对面,不符合题意;D.白色圆与一个蓝色圆所在的面折叠后是对面,不符合题意. 故答案选A. 【点睛】本题考查了正方体的展开图,解决本题的关键是熟练掌握正方体的展开图,明白对面相隔不相邻这一原则.5.C解析:C 【解析】【分析】根据补角的定义、对顶角的定义、锐角的钝角的定义以及平行公理对每一项进行解答判断即可.【详解】根据补角的定义:两角之和等于180°,同角或等角的补角相等,A正确;对顶角定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,对顶角度数的大小相等,B正确;锐角的范围0°<锐角<90°,90°<钝角<180°,锐角的2倍不一定是钝角,C错误.平行公理:经过直线外一点,有且只有一条直线与已知直线平行.D正确.故答案选C.【点睛】本题考查了补角、对顶角、锐角钝角的定义及平行公理,熟练掌握它们的定义是解决本题的关键.6.A解析:A【解析】【分析】由题干图片可知,剪痕是一条线段,而被减掉的部分是两条有共同端点的线段,据此进行解答即可.【详解】解:剪痕是一条线段,而被减掉的部分是两条有共同端点的线段,根据两点之间线段最短可解释该现象,故选择A.【点睛】本题考查了两点之间,线段最短概念的实际运用.7.A解析:A【解析】【分析】根据无理数的定义确定即可.【详解】解:在 3.14、227、 0、π、1.6这 5个数中,π为无理数,共1个.故选:A.【点睛】本题考查实数的分类,无限不循环的小数为无理数. 8.C解析:C【解析】【分析】依据线段、射线以及直线的概念进行判断,即可得出正确结论.【详解】解:①线段AB可表示为线段BA,正确;②射线AB不可表示为射线BA,错误;③直线AB可表示为直线BA,正确;④射线AB和射线BA不是同一条射线,错误;故选:C.【点睛】本题主要考查了线段、射线以及直线的概念,解题时注意:射线用两个大写字母表示时,端点的字母放在前边.9.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.10.C解析:C【解析】【分析】方程的分母最小公倍数是6,方程两边都乘以6即可.【详解】方程两边都乘以6得:2(2x+1)﹣(10x+1)=6.故选:C.【点睛】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.11.C解析:C【解析】【分析】分别求出每个选项中数的范围即可求解.【详解】A.(x+2)2≥0;B.|x+2|≥0;C.x2+2≥2;D.x2﹣2≥﹣2.故选:C.【点睛】本题考查了正数与负数、绝对值和平方数的取值范围;掌握平方数和绝对值的意义是解题的关键.12.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.13.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】15000用科学计数法可表示为:.41510故选:C【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.D解析:D【解析】【分析】根据余角、补角的定义计算.【详解】根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点睛】本题考查了余角和补角的定义,根据余角的定义来判断,记住两角之和为90°,与两角位置无关.15.B解析:B【解析】【分析】科学记数法的一般形式为:a×10n,在本题中a应为8.5,10的指数为4-1=3.【详解】解:8 500亿元= 8.5×103亿元故答案为B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题16.45【解析】【分析】根据补角定义直接解答.【详解】的补角等于:180°−=143°45′.故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题解析:45【解析】【分析】根据补角定义直接解答.【详解】︒'=143°45′.3615︒'的补角等于:180°−3615故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题的关键是熟记补角的概念.17.【解析】【分析】根据有理数的运算法则即可求解.【详解】-8+2=-6故填:-6.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.解析:6-【解析】【分析】根据有理数的运算法则即可求解.【详解】82-+-=-8+2=-6故填:-6.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.18.0【解析】【分析】根据题意,有,则,然后利用整体代入法进行求解,即可得到答案.【详解】解:根据题意,有,∴,∴;故答案为:0.【点睛】本题考查了求代数式的值,解题的关键是得到,熟解析:0【解析】【分析】根据题意,有24a b -=,则122a b -=,然后利用整体代入法进行求解,即可得到答案. 【详解】解:根据题意,有24a b -=, ∴122a b -=, ∴1122()22022a b a b -+=--=-=; 故答案为:0.【点睛】 本题考查了求代数式的值,解题的关键是得到122a b -=,熟练运用整体代入法进行解题. 19.1【解析】【分析】根据可知AB 的长度,再根据为线段的中点,可知AC 的长度,从而可求答案.【详解】∵∴AB=DA+DB=8+6=14∵为线段的中点∴∴CD=DA-AC=8-7=1故解析:1【解析】【分析】根据8,6DA DB ==可知AB 的长度,再根据C 为线段AB 的中点,可知AC 的长度,从而可求答案.【详解】∵8,6DA DB ==∴AB=DA+DB=8+6=14∵C 为线段AB 的中点 ∴1=72AC BC AB ==∴CD=DA -AC=8-7=1故答案为1.【点睛】 本题考查的是线段中点的性质,熟知线段中点的性质是解题的关键.20.【解析】【分析】用三角板画出角,是用角度加减法.比如:画个75°的角,先将30°角在纸上画出来,再将45°角叠加就画出了75°角.【详解】用一副三角板可以画出:15°、30°、45°、60解析:5【解析】【分析】用三角板画出角,是用角度加减法.比如:画个75°的角,先将30°角在纸上画出来,再将45°角叠加就画出了75°角.【详解】用一副三角板可以画出:15°、30°、45°、60°、75°五个锐角.故填:5.【点睛】用三角板直接画特殊角的步骤:先画一条射线,再把三角板所画角的一边与射线重合,顶点与射线端点重合,最后沿另一边画一条射线,标出角的度数.21.1或【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单解析:1或7【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单位长度的点表示数是1和−7.故答案为1和−7.【点睛】本题主要考查了数轴的特征和应用,以及分类讨论思想的应用,要熟练掌握.22.k≥3.【解析】【分析】先求出x的值,然后根据x为非负数,解不等式,求出k的取值范围.【详解】解方程得:x=3k+9,则解得:.故答案为.【点睛】考查解一元一次不等式,一元一次解析:k≥3.【解析】【分析】先求出x 的值,然后根据x 为非负数,解不等式,求出k 的取值范围.【详解】解方程得:x =3k +9,则390k +≥,解得:3k ≥-.故答案为3k ≥-.【点睛】考查解一元一次不等式,一元一次方程的解,解一元一次方程,根据方程列出不等式是解题的关键.23.【解析】【分析】由线段AB 的中点对应的数为15,可知点A 、B 两点分别在点M 的两侧,画出符合题意的图形,由数轴上两点之间的距离和点与数的对应关系求出a+b 的值为30.【详解】解:如图所示:解析:【解析】【分析】由线段AB 的中点对应的数为15,可知点A 、B 两点分别在点M 的两侧,画出符合题意的图形,由数轴上两点之间的距离和点与数的对应关系求出a +b 的值为30.【详解】解:如图所示:∵点A 、B 对应的数为a 、b ,∴AB =a ﹣b ,∴152a b a --=, 解得:a +b =30,故答案为:30.【点睛】本题主要考查数轴,线段中点,数形结合是解题的关键.24.【解析】【分析】根据线段中点的定义可得,再求出,然后根据代入数据计算即可得解.【详解】∵AB=24,点C 为AB 的中点,,,,∴DB=AB ﹣AD =24﹣4=20.故答案为:20.解析:【解析】【分析】 根据线段中点的定义可得12BC AB =,再求出AD ,然后根据DB AB AD =-代入数据计算即可得解.【详解】∵AB =24,点C 为AB 的中点, 11241222CB AB ∴==⨯=, 13AD CB =, 11243AD ∴=⨯=, ∴DB =AB ﹣AD =24﹣4=20.故答案为:20.【点睛】本题考查了两点间的距离,掌握线段中点的定义,灵活运用数形结合思想是解题的关键. 25.14【解析】【分析】先将代数式(5x+2)﹣(3xy ﹣5y )化简为:5(x+y )﹣3xy+2,然后把x+y =3,xy =1代入求解即可.【详解】解:∵x+y =3,xy =1,∴(5x+2)﹣解析:14【解析】【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【详解】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14【点睛】本题考查了整式的加减,解答本题的关键在于将代数式(5x+2)-(3xy-5y)化简为:5(x+y)-3xy+2,然后把x+y=3,xy=1代入求解.三、解答题26.(1)x=4;(2)x=2.【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)移项得:-5x+3x=-5-3合并得:﹣2x=﹣8,解得:x=4;(2)去括号得:4x﹣3+3x=11,移项得:4x+3x=11+3移项合并得:7x=14,解得:x=2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.∠+∠=∠,详见解析;(3)不成立,27.(1)40︒;(2)BOE DOA EOD∠+∠=∠;∠+∠=∠,详见解析;(4)BOE DOA EODBOE EOD DOA【解析】【分析】(1)(2)根据角平分线定义得出∠DOC=12∠AOC,∠EOC=12∠BOC,求出∠DOE=12(∠AOC+∠BOC)=12AOB,即可得出答案;(3)根据角平分线定义得出∠DOC=1 2∠AOC,∠EOC=12∠BOC,求出∠DOE=12(∠AOC−∠BOC)=12∠AOB,即可得出答案;(4)根据角平分线定义即可求解.【详解】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=12∠AOC,∠EOC=12∠BOC,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=12∠AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=12∠AOC,∠EOC=12∠BOC,∠DOE=∠COD−∠EOC=12∠AOC−12∠BOC=∠AOD−∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.【点睛】本题考查了角的有关计算和角平分线定义,能够求出∠DOE=12∠AOB是解此题的关键,求解过程类似.28.小红当天买了4盒鲜奶.【解析】【分析】根据“买鲜奶的钱+买酸奶的钱=买奶的总钱数”这一等量关系,设小红当天买了x盒鲜奶,列出一元一次方程,解决即可.【详解】设小红当天买了x 盒鲜奶.4x +5(10 ̶x )=76-30x =4答:小红当天买了4盒鲜奶.【点睛】本题考查了一元一次方程的应用问题,解决本题的关键是找出各数据之间存在的等量关系.29.(1)a=-8,b=4;(2)-1或6;(3)115秒,135秒或234秒. 【解析】【分析】(1)根据()232+4=0ab b +-,利用绝对值及偶次方的非负性即可求出;(2)若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,分三种情况讨论; (3)当MN =1时,根据运动情况,可分三种情形讨论,列出方程解答.【详解】(1)解:(1)∵()232+4=0ab b +-,∴ab=-32,b-4=0,∴a=-8,b=4.(2)根据题意,若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,线段AB 的中点表示的数为-2,设点P 表示的数为x ,分三种情况讨论:①当-2≤x<0时,则x+8-(4-x )=2(-x ),解得:x=-1;②当0≤x<4时,则x+8-(4-x )=2x ,方程无解③当x≥4时,则x+8-(x-4)=2x ,解得:x=6.综上:存在点P ,表示的数为-1或6.(3)设运动时间为t ,根据运动情况,可知MN=1的情况有三种:①M 在A →O 上,且M 在N 左侧,则2t+3t+1=12,解得t=115. ②M 在A →O 上,且M 在N 右侧,则2t+3t-1=12,解得t=135. ③M 在O →A 上,且N 到达点A ,此时,M 在A →O 上所用时间为8÷2=4(s ), M 在O →A 上速度为4个单位每秒,∵MN=1,∴(8-1)÷4=74, ∴此时时间t=4+74=234, 综上:当MN=1时,时间为115秒,135秒或234秒. 【点睛】本题考查了数轴上的动点问题、一元一次方程的应用、数轴、偶次方,解题的关键是:(1)利用偶次方的非负性,求出a ,b 的值;(2)分清多种情况找准等量关系,正确列出一元一次方程.30.-1【解析】【分析】先分别求出两方程的解,根据相反数的定义求出k 的值,再代入代数式即可求解.【详解】解:解方程532x x -=,得1x =, 根据题意,方程2463k x x +-=的解为1x =-, 把1x =-代入方程2463k x x +-=,得()214163k --⨯-=, 解,得72k =. 所以55447111772k ⎛⎫⎛⎫-=-⨯=- ⎪ ⎪⎝⎭⎝⎭. 【点睛】此题主要考查解方程的应用,解题的关键熟知一元一次方程的解法.31.(1)圆柱;(2)该几何体的体积为3π.【解析】【分析】(1)依据展开图中有长方形和两个全等的圆,即可得出结论;(2)依据圆柱的体积计算公式,即可得到该几何体的体积.【详解】(1)该几何体的名称是圆柱,故答案为:圆柱;(2)该几何体的体积=π×12×3=3π.【点睛】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.32.(1)见解析;(2)26;(3)2.【解析】【分析】(1)依据画几何体三视图的原理画出视图;(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,根据(1)中的三视图即可求解.(3)利用左视图的俯视图不变,得出可以添加的位置.【详解】(1)三视图如图:(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,所以该几何体的表面积为 2×(4+3+5)=24cm 2(3)∵添加后左视图和俯视图不变,∴最多可以在第二行的第一列和第二列各添加一个小正方体,∴最多可以再添加2个小正方体.【点睛】本题考查了画三视图以及几何体的表面积,正确得出三视图是解答此题的关键.33.(1)①3cm;②见解析;(2)9AP =或11cm.【解析】【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=, 当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.四、压轴题34.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可;(1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++; (1)1111...12233420192020++++⨯⨯⨯⨯ =111111 (22320192020)-+-++- =112020- =20192020; (2)∵|2||4|0a b -+-=,∴a-2=0,b-4=0,。

数学七年级上册 期末试卷综合测试卷(word含答案)

数学七年级上册 期末试卷综合测试卷(word含答案)

数学七年级上册 期末试卷综合测试卷(word 含答案)一、选择题1.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1- 2.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是( ) A .c >0,a <0B .c <0,b >0C .c >0,b <0D .b =03.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个 B .2个 C .3个 D .4个 4.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab5.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .6.-8的绝对值是( ) A .8B .18C .-18D .-87.若x >y ,则下列式子错误的是( ) A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >338.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144°9.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( ) A .2018 B .2019C .2020D .202110.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-11.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109 B .2.85×108 C .28.5×108 D .2.85×106 12.如果向北走2 m ,记作+2 m ,那么-5 m 表示( ) A .向东走5 mB .向南走5 mC .向西走5 mD .向北走5 m13.下列各图是正方体展开图的是( ) A .B .C .D .14.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐 15.下列计算中正确的是( )A .()33a a -=B .235a b ab +=C .22243a a a -=D .332a a a +=二、填空题16.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.17.如图,已知,,AB DE BAC m CDE n ∠=︒∠=︒∕∕,则ACD ∠=___________°.18.-6的相反数是 .19.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________20.某市2019年参加中考的考生人数约为98500人,将98500用科学记数法表示为______.21.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.22.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.23.如图,从A 到B 有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是 .24.数轴上到原点的距离等于122个单位长度的点表示的数是__________. 25.计算:3-|-5|=____________.三、解答题26.解下列方程:(1)76163x x +=-;(2)253164y y---=. 27.解方程:(1)-5x +3=-3x -5; (2)4x -3(1-x )=11.28.如图,直线AB 、CD 相交于点O ,已知∠AOC =75°,∠BOE :∠DOE =2:3.(1)求∠BOE 的度数;(2)若OF 平分∠AOE ,∠AOC 与∠AOF 相等吗?为什么? 29.计算:(1)1+(―2)+|-3|; (2)2115524326⎛⎫-⨯-+⎪⎝⎭. 30.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形; (2)若30AOB ∠=︒,求出COD ∠的度数.31.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b c d=ad-bc ,当2x 43x 23-=10时,求代数式2(x-2)-3(x+1)的值.32.如图,数轴上A ,B 两点表示的数分别为a ,b ,且a ,b 满足|a +5|+(b ﹣10)2=0.(1)则a = ,b = ;(2)点P ,Q 分别从A ,B 两点同时向右运动,点P 的运动速度为每秒5个单位长度,点Q 的运动速度为每秒4个单位长度,运动时间为t (秒). ①当t =2时,求P ,Q 两点之间的距离.②在P ,Q 的运动过程中,共有多长时间P ,Q 两点间的距离不超过3个单位长度? ③当t ≤15时,在点P ,Q 的运动过程中,等式AP +mPQ =75(m 为常数)始终成立,求m 的值.33.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.36.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .37.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.38.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .39.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .(1)(特殊发现)如图1,若OC 边与OA 边重合时,求出∠COE 与∠BOD 的度数. (2)(类比探究)如图2,当三角板绕O 点旋转的过程中(其中OC 边始终在∠AOB 内部),∠COE 与∠BOD 的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC 边始终在∠AOB 内部),若OP 平分∠COB ,请画出图形,直接写出∠EOP 的度数(无须证明).40.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.41.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示); (3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.42.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.43.已知,,a b 满足()2440a b a -+-=,分别对应着数轴上的,A B 两点. (1)a = ,b = ,并在数轴上面出,A B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,点Q 到达点C 后停止运动.求点P 和点Q 运动多少秒时,,P Q 两点之间的距离为4,并求此时点Q 对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】设输入的数为x ,根据计算程序列出方程,求出方程的解即可得到x 的值.解:设输入的数为x,输出为9,根据计算程序中得:(2x-1)2=9,开方得:2x-1=3或2x-1=-3,解得:x=2或x=-1,故选D.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的计算方法.2.A解析:A【解析】【分析】根据题意分类讨论,综合情况解出即可.【详解】1.假设a为负数,那么b+c为正数;(1)b、c都为正数;(2)一正一负,因为|b|>|c|,只能b为正数,c为负数;2.假设a为正数,那么b+c为负数,b、c都为负数;(1)若b为正数,因为|b|>|c|,所以b+c为正数,则a+b+c=0不成立;(2)若b为负数,c为正数,因为|b|>|c|,则|b+c|<|b|<|a|,则a+b+c=0不成立.故选A.【点睛】本题考查绝对值的性质,关键在于分类讨论正负性.3.B解析:B【解析】【分析】直接录用等式的基本性质分析得出答案.【详解】解:①如果a=b,那么a-c=b-c,正确;②如果ac=bc,那么a=b(c≠0),故此选项错误;③由2x+3=4,得2x=4-3,正确;④由7y=-8,得y=-,故此选项错误;故选:B.【点睛】此题主要考查了等式的基本性质,正确把握性质2是解题关键.4.A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】A.﹣xy与2yx,所含字母相同,相同字母的指数也相同,是同类项.故选项A符合题意;B.2ab与2abc,所含字母不相同,不是同类项.故选项B不符合题意;C.x2y与x2z,所含字母不相同,不是同类项.故选项C不符合题意;D.a2b与ab2,所含字母相同,相同字母的指数不相同,不是同类项.故选项D不符合题意.故选A.【点睛】本题考查了同类项,关键是理解同类项定义中的两个“相同”:相同字母的指数相同.5.B解析:B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.考点:棱柱的侧面展开图.6.A解析:A【解析】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-8到原点的距离是8,所以-8的绝对值是8,故选A.7.B解析:B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.8.B解析:B【解析】【分析】由折叠的性质及平角等于180°可求出∠BEH的度数,由AB∥CD,利用“两直线平行,内错角相等”可求出∠DHE 的度数,再利用对顶角相等可求出∠CHG 的度数.【详解】由折叠的性质,可知:∠AEF =∠FEH .∵∠BEH =4∠AEF ,∠AEF +∠FEH +∠BEH =180°,∴∠AEF =16×180°=30°,∠BEH =4∠AEF =120°. ∵AB ∥CD ,∴∠DHE =∠BEH =120°,∴∠CHG =∠DHE =120°.故选:B .【点睛】 本题考查了四边形的折叠问题,掌握折叠的性质以及平行的性质是解题的关键.9.C解析:C【解析】【分析】由已知条件得到x 2﹣2x +y 2﹣2y =0,2xy =1,化简x 2+2xy +y 2﹣2(x +y )+2019为x 2﹣2x +y 2﹣2y +2xy +2019,然后整体代入即可得到结论.【详解】解:∵x 2﹣2x =2y ﹣y 2,xy =12, ∴x 2﹣2x +y 2﹣2y =0,2xy =1, ∴x 2+2xy +y 2﹣2(x+y )+2019=x 2﹣2x +y 2﹣2y +2xy +2019=0+1+2019=2020,故选:C .【点睛】本题考查代数式求值,掌握整体代入法是解题的关键.10.A解析:A【解析】【分析】根据幂的乘法运算法则判断即可.【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误;故选A.【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.11.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】285 000 000=2.85×108.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.B解析:B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】由题意知:向北走为“+”,则向南走为“﹣”,所以﹣5m 表示向南走5m.故选:B.【点睛】本题考查了具有相反意义的量.解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.13.B解析:B【解析】【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【详解】A.“田”字型,不是正方体的展开图,故选项错误;B.是正方体的展开图,故选项正确;C.不是正方体的展开图,故选项错误;D.不是正方体的展开图,故选项错误.故选:B.【点睛】本题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.14.D解析:D【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“快”是相对面,“们”与“同”是相对面,“乐”与“学”是相对面.故选:D .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.C解析:C【解析】【分析】根据乘方的定义,合并同类项法则依次对各选项进行判断即可.【详解】解:A . ()33()()()a a a a a -=-⋅-⋅-=-,故本选项错误;B . 2a 和3b 不是同类项不能合并,故本选项错误;C . 22243a a a -=,故本选项正确;D . 3332a a a +=,故本选项错误.故选C .【点睛】本题考查乘方的定义和合并同类项.在多项式中只有同类项才能合并,合并同类项法则为:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 二、填空题16.7【解析】【分析】根据线段中点求出MC 和NC ,即可求出MN ;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=AC=4,CN=BC=3,∴MN=MC+CN=4+3解析:7【解析】【分析】根据线段中点求出MC和NC,即可求出MN;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=12AC=4,CN=12BC=3,∴MN=MC+CN=4+3=7,故答案为:7.【点睛】本题考查了两点间的距离,解题的关键是利用中点的定义求解.17..【解析】【分析】利用平行线的性质和三角形的内角和即可求出.【详解】延长ED交AC于F,∵AB∥DE,∴∠3=∠BAC=m°,∠1=180°−∠3=180°−m°,∠2=180°−解析:180m n+-.【解析】【分析】利用平行线的性质和三角形的内角和即可求出.【详解】延长ED交AC于F,∵AB∥DE,∴∠3=∠BAC=m°,∠1=180°−∠3=180°−m°,∠2=180°−∠CDE=180°−n°,故∠C=∠3−∠2=m°−180°+n°=m°+n°−180°.故答案为:m°+n°−180°.【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:此题要构造辅助线,运用三角形的一个外角等于和它不相邻的两个内角和.18.6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.解析:6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.19.-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴-a=2b,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.此题主要考查了数轴上的点以及代数式求值,正确得出a ,b 之间的关系是解题关键.20.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:49.8510⨯【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】98500=49.8510⨯.故答案为:49.8510⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.25×108【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:25×108【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:225000000=82.2510⨯故答案为:82.2510⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.【解析】分析:由题意可得算式:-5+4,利用有理数的加法法则运算,即可求得答案.详解:根据题意得:-5+4=-1(℃),∴调高4℃后的温度是-1℃.故答案为-1.点睛:此题考查了有理解析:-1【解析】分析:由题意可得算式:-5+4,利用有理数的加法法则运算,即可求得答案.详解:根据题意得:-5+4=-1(℃),∴调高4℃后的温度是-1℃.故答案为-1.点睛:此题考查了有理数的加法的运算法则.此题比较简单,注意理解题意,得到算式-5+4是解题的关键.23.两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.解析:两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.24.【解析】【分析】设数轴上到原点的距离等于个单位长度的点表示的数是x,则有|x|=,进而可得出结论.【详解】解:设数轴上到原点的距离等于个单位长度的点表示的数是x,则有|x|=,解得,.解析:1 22【分析】设数轴上到原点的距离等于122个单位长度的点表示的数是x,则有|x|=122,进而可得出结论.【详解】解:设数轴上到原点的距离等于122个单位长度的点表示的数是x,则有|x|=122,解得,1x22 =±.故答案为:122±.【点睛】本题考查的知识点是数轴上点到原点的距离,需要注意的是数轴上有两个点到原点的距离相等.25.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.三、解答题26.(1)x =1;(2)y =13.【解析】【分析】根据一元一次方程的解题步骤解出即可.【详解】(1)解:10x =10x =1.(2)解:122(25)3(3)y y --=--y =-13y =13.【点睛】本题考查一元一次方程的解法,关键掌握解题方法,特别是去分母.27.(1)x =4;(2)x =2.【解析】【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)移项得:-5x +3x =-5-3合并得:﹣2x =﹣8,解得:x =4;(2)去括号得:4x ﹣3+3x =11,移项得:4x +3x =11+3移项合并得:7x =14,解得:x =2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.28.(1)30°;(2)相等,理由见解析【解析】【分析】(1)根据对顶角相等求出∠BOD 的度数,设∠BOE=2x ,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠AOF 的度数即可.【详解】(1)设∠BOE=2x ,则∠EOD=3x ,∠BOD=∠AOC=75°,∴2x+3x=75°,解得,x=15°,则2x=30°,3x=45°,∴∠BOE=30°;(2)∵∠BOE=30°,∴∠AOE=150°,∵OF 平分∠AOE ,∴∠AOF=75°,∴∠AOF=∠AOC ,【点睛】本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.29.(1)2;(2)9.【解析】【分析】(1)有理数的加减混合运算,先将绝对值化简,然后计算;(2)有理数的混合运算,使用乘法分配律使得计算简便.【详解】解:(1)1+(―2)+|-3|= 1—2+3= 2(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭=1152524+2424326-⨯⨯-⨯ = 25-8+12-20= 9【点睛】本题考查有理数的混合运算及乘法分配律,掌握运算顺序及运算法则是本题的解题关键.30.(1)详见解析;(2)COD ∠的度数为30或150︒.【解析】【分析】(1)按题目要求依次作出各种情况的图形,严格按照作图规则完成画图即可.(2)由题意知,∠AOB =30°,按照(1)中的图形,可分别写出各种情况的各角的度数.【详解】解:(1)如图1,2,3,4即为所求;(2)OC OA ⊥,OD OB ⊥ 90AOC BOD ∴∠=∠=︒①如图1,90AOB BOC ∠+∠=︒90BOC COD ∠+∠=︒ COD AOB ∴∠=∠又30AOB ∠=︒30COD ∴∠=︒ ②如图2,90AOB AOD ∠+∠=︒30AOB ∠=︒60AOD ∴=︒∠9060150COD AOC AOD ∴∠=∠+∠=︒+︒=︒③如图3,360AOB BOD COD AOC ∠+∠+∠+∠=︒360COD AOB BOD AOC ∴∠=︒-∠-∠-∠360309090=︒-︒-︒-︒150=︒④如图4,90AOB AOD ∠+∠=︒90COD AOD ∠+∠=︒COD AOB ∴∠=∠又30AOB ∠=︒30COD ∴∠=︒因此,COD ∴∠的度数为30或150︒.【点睛】主要考查了学生在学习过程中对画图的充分认识和理解,以及扎实的实际动手操作能力.31.203 -.【解析】【分析】利用题中的新定义运算方法求出x的值,代入原式计算即可得到结果.【详解】解:根据题中的新定义运算方法得:6x-4(3x-2)=10,去括号得:6x-12x+8=10,解得:x=13 -,∴2(x-2)-3(x+1)=2x-4-3x-3=-x-7=-(13 -)-7=203 -.∴代数式2(x-2)-3(x+1)的值是203 -.【点睛】考查了解一元一次方程,以及代数式求值,解一元一次方程的步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.32.(1)﹣5,10;(2)①P,Q两点之间的距离为13;②43≤t≤2;③当m=5时,等式AP+mPQ=75(m为常数)始终成立.【解析】【分析】(1)由非负性可求解;(2)①由两点距离可求解;②由P ,Q 两点间的距离不超过3个单位长度,列出不等式即可求解;③等式75AP mPQ +=(m 为常数)始终成立,由列出方程,即可求解.【详解】(1)∵a 、b 满足:|a +5|+(b ﹣10)2=0,∵|a +5|≥0,(b ﹣10)2≥0,∴:|a +5|=0,(b ﹣10)2=0,∴a =﹣5,b =10,故答案为:﹣5,10;(2)①∵t =2时,点P 运动到﹣5+2×5=5,点Q 运动到10+2×4=18,∴P ,Q 两点之间的距离=18﹣5=13;②由题意可得:|﹣5+5t ﹣(10﹣4t )|≤3, ∴43≤t ≤2; ③由题意可得:5t +m (10+4t ﹣5t +5)=75,∴5t ﹣mt +15m =75,∴当m =5时,等式AP +mPQ =75(m 为常数)始终成立.【点睛】本题考查一元一次方程的应用,非负数的性质、数轴、两点间距离等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.33.(1)见解析;(2)26;(3)2.【解析】【分析】(1)依据画几何体三视图的原理画出视图;(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,根据(1)中的三视图即可求解.(3)利用左视图的俯视图不变,得出可以添加的位置.【详解】(1)三视图如图:(2)该几何体的表面积为主视图、左视图、俯视图面积和的两倍,所以该几何体的表面积为 2×(4+3+5)=24cm 2(3)∵添加后左视图和俯视图不变,∴最多可以在第二行的第一列和第二列各添加一个小正方体,∴最多可以再添加2个小正方体.【点睛】本题考查了画三视图以及几何体的表面积,正确得出三视图是解答此题的关键.四、压轴题34.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5, ∴玩具火车的长为:5个单位长度,故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁,根据题意可得方程组为:40116y x x y x y -=+⎧⎨-=-⎩, 解得:1264x y =⎧⎨=⎩,答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关,∴12﹣2k =0,∴k =6∴3PQ ﹣kB ′A =45﹣30=15【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.35.(1)2412--;;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【解析】【分析】 ()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P 从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数24-,点C 表示数12,所以()PA 242t 242t =-+--=,PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后.【详解】()1设A 表示的数为x ,设B 表示的数是y . x 24=,x 0<∴x 24=-又y x 12-=y 241212.∴=-+=-故答案为24-;12-.()2由题意可知:t 秒后点P 表示的数是()242t 0t 18-+≤≤,点A 表示数24-,点C表示数12 ()PA 242t 242t ∴=-+--=,PC 242t 12362t =-+-=-.故答案为2t ;362t -.()3设点Q 运动了m 秒,则m 秒后点P 表示的数是122m -+.①当m 9≤,m 秒后点Q 表示的数是244m -+,则()PQ 24m 4m 122m 2=-+--+=,解得m 5=或7,当m=5时,-12+2m=-2,当m=7时,-12+2m=2,∴此时P 表示的是2-或2;②当m 9>时,m 秒后点Q 表示的数是()124m 9--,则()()PQ 124m 9122m 2=----+=, 解得2931m 33或=, 当m=293时,-12+2m=223, 当m=313时,-12+2m=263, 此时点P 表示的数是222633或. 答:P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【点睛】本题考查了数轴上两点间的距离公式以及实数与数轴的相关概念,解题时同时注意数形结合数学思想的应用,解题关键是要读懂题目的意思,根据题目给出的条件,用代数式表示出数轴上的动点代表的数,找出合适的等量关系列出方程,再求解.36.(1)3,3,1a -;(2)①42c -;②72-或152;③6 【解析】【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可. 【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=;数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -;。

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word 含答案) 一、选择题1.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b --2.如图所示的图形绕虚线旋转一周,所形成的几何体是( )A .B .C .D .3.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+=D .x x 5204204+=+- 4.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒5.下列说法: ①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有( )A .1个B .2个C .3个D .4个6.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°7.下列立体图形中,俯视图是三角形的是( )A .B .C .D .8.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小9.计算233235x y y x -的正确结果是( )A .232x yB .322x yC .322x y -D .232x y -10.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30711.如图正方体纸盒,展开后可以得到( )A .B .C .D .12.在 3.14、227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个 B .2 个 C .3 个 D .4 个13.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元 14.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3 15.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x ﹣5=y+5B .若a=b ,则ac=bcC .若a b c c =,则2a=3bD .若x=y ,则x y a a= 二、填空题16.一组“数值转换机”按下面的程序计算,如果输入的数是10,那么输出的结果为19,要使输出的结果为17,则输入的最小正整数是______.17.3615︒'的补角等于___________︒___________′.18.已知关于x 的方程345m x -=的解是1x =,则m 的值为______.19.我国南海海域的面积约为35000002㎞,该面积用科学计数法应表示为_______2㎞.20.如图,一副三角板如图示摆放,若α=70°,则β的度数为_____°.21.若代数式m 42a b 与2n 15a b +-是同类项,则n m =______.22.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______.23.﹣|﹣2|=____.24.如图,从A 到B 有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是 .25.己知:如图,直线,AB CD 相交于点O ,90COE ∠=︒,:1BOD BOC ∠∠=:5,过点O 作OF AB ⊥,则∠EOF 的度数为_______.三、解答题26.如图,直线AB,CD 相交于点O,OE 平分∠AOD,OF ⊥OC .(1)图中∠AOF 的余角是_____________ (把符合条件的角都填上);(2)如果∠1=28° ,求∠2和∠3的度数.27.已知关于x 的方程3(2)x x a -=- 的解比223x a x a +-= 的解小52,求a 的值. 28.如图,是由一些相同的小立方块搭成的几何体.(1)图中共有_____________个小正方体;(2)请在下面网格中画出该几何体的三视图.29.定义一种新运算“⊕”:a⊕b=2a﹣ab,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5(1)求(﹣2)⊕3的值;(2)若(﹣3)⊕x=(x+1)⊕5,求x的值;(3)若x⊕1=2(1⊕y),求代数式2x+4y+1的值.30.先化简,再求值:3x2+(2xy-3y2)-2(x2+xy-y2),其中x=-1,y=2.31.已知:如图,点P是数轴上表示-2与-1两数的点为端点的线段的中点.(1)数轴上点P表示的数为;(2)在数轴上距离点P为2.5个单位长度的点表示的数为;(3)如图,若点P是线段AB(点A在点B的左侧)的中点,且点A表示的数为m,那么点B表示的数是.(用含m的代数式表示)32.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.33.2017年元旦期间,某商场打出促销广告,如表所示.优惠条件一次性购物不超过200元一次性购物超过200元,但不超过500元一次性购物超过500元优惠办法没有优惠全部按九折优惠其中500元仍按九折优惠,超过500元部分按八折优惠小欣妈妈两次购物分别用了134元和490元.(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.四、压轴题34.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______. ()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.35.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .(1)(特殊发现)如图1,若OC 边与OA 边重合时,求出∠COE 与∠BOD 的度数. (2)(类比探究)如图2,当三角板绕O 点旋转的过程中(其中OC 边始终在∠AOB 内部),∠COE 与∠BOD 的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC 边始终在∠AOB 内部),若OP 平分∠COB ,请画出图形,直接写出∠EOP 的度数(无须证明).36.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.37.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数;②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?38.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.39.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.40.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?41.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word 含答案)一、选择题1.下列运算中,正确的是( ) A .325a b ab += B .325235a a a += C .22330a b ba -=D .541a a -= 2.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab3.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .4.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定5.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元. A .100 B .140 C .90 D .120 6.下列关于0的说法正确的是( )A .0是正数B .0是负数C .0是有理数D .0是无理数7.在 3.14、 227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个8.计算233235x y y x -的正确结果是( )A .232x yB .322x yC .322x y -D .232x y -9.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .10.一5的绝对值是( )A .5B .15C .15-D .-511.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-12.下列运算中,结果正确的是( ) A .3a 2+4a 2=7a 4 B .4m 2n+2mn 2=6m 2n C .2x ﹣12x =32x D .2a 2﹣a 2=213.在钟表上,下列时刻的时针和分针所成的角为90°的是( ) A .2点25分B .3点30分C .6点45分D .9点14.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( ) A .44.8310⨯ B .54.8310⨯C .348.310⨯D .50.48310⨯15.单项式24x y 3-的次数是( ) A .43-B .1C .2D .3二、填空题16.已知a b c d ,,,表示4个不同的正整数,满足23490a b c d +++=,其中1>d ,则a b c d +++的最大值是__________.17.点A 在数轴上表示的数是2,3AB -=,则点B 表示的数为__________.18.比较大小:π1-+ _________3-(填“<”或“=”或“>”).19.下图是计算机某计算程序,若开始输入2x =-,则最后输出的结果是____________.20.写出一个含a 的代数式,使a 不论取什么值,这个代数式的值总是负数__. 21.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.22.单项式-4x 2y 的次数是__.23.如图,已知直线AB 和CD 相交于点O ,射线OE 在COB ∠内部,OE OC ⊥,OF 平分AOE ∠,若40BOD ∠=,则COF ∠=__________度.24.己知:如图,直线,AB CD 相交于点O ,90COE ∠=︒,:1BOD BOC ∠∠=:5,过点O 作OF AB ⊥,则∠EOF 的度数为_______.25.计算:3-|-5|=____________.三、解答题26.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.27.计算:(1)35116()824⨯+- (2) 3242(2)(3)3--÷⨯- 28.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分AOB ∠,OE 在BOC ∠内,13BOE EOC ∠=∠.(1)若OE AC ⊥,垂足为O 点,则∠BOE 的度数为________°,BOD ∠的度数为________°;在图中,与AOB ∠相等的角有_________; (2)若32AOD ∠=︒,求EOC ∠的度数.29.(建立概念)如下图,A 、B 为数轴上不重合的两定点,点P 也在该数轴上,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.(概念理解)如下图,数轴的原点为O ,点A 表示的数为2-,点B 表示的数为4. (1)点O 到线段AB 的“靠近距离”为________;(2)点P 表示的数为m ,若点P 到线段AB 的“靠近距离”为3,则m 的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.30.如图,OC 是AOB ∠内的一条射线,OD 、OE 分别平分AOB ∠、AOC ∠.(1)若80BOC ∠=︒,40AOC ∠=︒,求DOE ∠的度数; (2)若BOC α∠=,50AOC ∠=︒,求DOE ∠的度数;(3)若BOC α∠=,AOC β∠=,试猜想DOE ∠与α、β的数量关系并说明理由. 31.计算:(1)()375244128⎛⎫-+-⨯- ⎪⎝⎭(2)()24123-+⨯-32.定义:对于一个两位数x ,如果x 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S (x ). 例如,a =13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S (13)=4.(1)下列两位数:20,29,77中,“相异数”为 ,计算:S (43)= ; (2)若一个“相异数”y 的十位数字是k ,个位数字是2(k ﹣1),且S (y )=10,求相异数y ;(3)小慧同学发现若S (x )=5,则“相异数”x 的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例. 33.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体.四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.35.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.36.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.37.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.38.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?39.如图1,点O 为直线AB 上一点,过点O 作射线OC ,OD ,使射线OC 平分∠AOD . (1)当∠BOD =50°时,∠COD = °;(2)将一直角三角板的直角顶点放在点O 处,当三角板MON 的一边OM 与射线OC 重合时,如图2.①在(1)的条件下,∠AON = °; ②若∠BOD =70°,求∠AON 的度数;③若∠BOD =α,请直接写出∠AON 的度数(用含α的式子表示).40.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.41.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).42.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.43.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word含答案)

()
A.
B.
C.
D.
二、填空题
16.若∠α=40° 15′,则∠α 的余角等于________°. 17.若∠α=68°,则∠α 的余角为_______°.
18.今年冬季某天测得的最高气温是 9℃,最低气温是 1℃,则当日温差是________℃
19.如图是一把剪刀,若∠AOB+∠COD=60°,则∠BOD=____°.
(2)若点 D 是线段 AB 的另一个圆周率点(不同于点 C),则 CD= ; (3)若点 E 在线段 AB 的延长线上,且点 B 是线段 CE 的一个圆周率点.求出 BE 的长.
27.解方程:
(1) 4 3x 6 5x ;
(2) x 2 1 2x 1 .
3
4
28.先化简,再求值: 4 3a2b ab2 3 ab2 3a2b .其中 a 1、 b 2 .
20.用两钉子就能将一根细木条固定在墙上,其数学原理是______.
21.计算: 3 3 ______.
22.已知 x 2 y 2 0 ,则1 2x 4 y 的值等于______.
23.21°17′×5=_____. 24.已知数轴上点 A,B 分别对应数 a,b.若线段 AB 的中点 M 对应着数 15,则 a+b 的值 为_____.
D.6 个
A.
B.
C.
D.
13.若

,则多项式

的值分别为( )
A.6,26
B.-6,26
C.-6,-26
D.6,-26
14.如图,将一个三角板 60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2
的大小是( )
A.27°40′

七年级数学上册期末复习综合水平测试

七年级数学上册期末复习综合水平测试

2010学年第一学期期末素质测试七年级数学参考答案一、选择题(本题有10小题,每小题3分,共30分)1.A2..B3.D4.B5.A6.D7.D8.C9.C二、填空题(本题有6小题,每小题3分,共18分) 11. -2,4 12. 4,3 13. 3 14.76015.6或12 (写对一个2分,二个3分) 16.2723,941,347,49(写对一个1分,对二或三个2分,对4个且不多写3分,写对4个且多写得2分)三、解答题(本题有8小题,共52分. 其中第17、18、19、20、21、22题每题6分, 第23、24每题8分) 17. 解:原式=-20-9-1 ……2分(三式化简,对1个2分,对2个4分,对3个5分)=-12 ……………6分18. 解:移项得7x-5x=-8-2 …… 2分 合并同类项得 2x=-10 ……2分∴ 5-=x …………2分(要有解题过程,仅答案只给2分) 19. 解:⑴ 4; ⑵ 4; ⑶ -6.…………各2分,共6分 20. 解:(1)7;5x+12 ………………………各2分,共4分(2)设第x 个H 字母棋子数量正好是2012个,得5x+2=2012 ……………………2分解得x=402 ……………………2分答:第402个H 字母棋子数量正好是2012个. 21.解:(1)62;…………2分 (2)27……………3分(3)∵(-10)+7+3+(-13)+4+(-5)+14+(-9)=-9 ∴班级平均分比学生A ~H 的平均分高9分.……………3分22.解:(1)50,72°…………各2分,共4分⑵ 如图…………………3分(3)30%×700=210……………… 3分23.解(1)设调去图书馆的有x 人,则去实验室的有(15-x )人,……1分根据题意可得,26+x =2[19+(15-x )] (2)解得x =14 …………2分, 答:(略). (2)不能.……………………1分设剩下的学生有x 人去图书馆,则有(154)x --人去实验室,根据题意有社团分类图126+x =2[19+(11-x )],解得x =343………………4分由此可见,去往图书馆的人数不为整数,不合题意,所以这种情况不可能. 24.解:(1)不行 ……………………3分 (2)方案(Ⅱ)可行. …… 2分 证明:在△OPM 和△OPN 中⎪⎩⎪⎨⎧===OP OP PN PM OP OM∴△OPM ≌△OPN(SSS)∴∠AOP=∠BOP(全等三角形对应角相等) …………………3分 (3)过O 点作∠AOB 的平分线OD (如图),(1)当射线OC 在∠AOB 内部时设∠COB=x 则∠AOC=x 31∵∠BOC+∠COA=∠AOB=60°∴︒=+6031x x ∴︒=45x∴︒==∠1531x AOC∴︒=︒-︒=∠151530DOC ………………2分(2)当射线OC 在∠AOB 外部时 设∠COB=x 则∠AOC=x 31 ∵∠BOC-∠COA=∠AOB=60°∴︒=-6031x x∴︒=90x∴︒==∠3031x AOC∴︒=︒+︒=∠603030DOC ………………2分所以,射线OC 与∠AOB 的平分线所成的角的度数是15°或60°.。

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word 含答案)一、选择题1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( ) A .两点之间,线段最短 B .过一点有无数条直线 C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离2.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( ) A .180元B .202.5元C .180元或202.5元D .180元或200元3.2-的相反数是( ) A .2-B .2C .12D .12-4.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( )A .0B .1C .2D .35.如图,C 是线段AB 上一点, AC=4,BC=6,点M 、N 分别是线段AC 、BC 的中点,则线段MN 的长是( )A .5B .92C .4D .36.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元B .145元C .150元D .160元7.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个8.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( ) A .272+x =(196-x ) B .(272-x )= (196-x )C .(272+x )= (196-x )D .×272+x = (196-x ) 9.如图所示的几何体的左视图是( )A .B .C .D .10.下列叙述中正确的是( ) A .相等的两个角是对顶角B .若∠1+∠2+∠3 =180º,则∠1,∠2,∠3互为补角C .和等于90 º的两个角互为余角D .一个角的补角一定大于这个角11.某网店销售一件商品,已知这件商品的进价为每件400元,按标价的7折销售,仍可获利20%,设这件商品的标价为x 元,根据题意可列出方程( ) A .0.740020%400x -=⨯ B .0.740020%0.7x x -=⨯ C .()120%0.7400x -⨯= D .()0.7120%400x =-⨯12.下列语句错误的是( ) A .两点确定一条直线 B .同角的余角相等 C .两点之间线段最短D .两点之间的距离是指连接这两点的线段13.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( ) A .()21313x x -+= B .()21313x x ++= C .()23113x x ++=D .()23113x x +-= 14.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且a +b +c +d =6,则点D 表示的数为( )A .﹣2B .0C .3D .5 15.-3的相反数为( )A .-3B .3C .0D .不能确定二、填空题16.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.17.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________. 18.有理数中,最大的负整数是____.19.定义一种新运算“◎”:a ◎2b a b =-,例如 2◎32231=⨯-=,若(32)x -◎(1)5x +=,则 x 的值为__________.20.已知A =5x +2,B =11-x ,当x =_____时,A 比B 大3.21.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________. 22.21°17′×5=_____. 23.6的绝对值是___.24.某地2月5日最高温度是3℃,最低温度是-2℃,则最高温度比最低温度高________. 25.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为_________三、解答题26.先化简,再求值:22223(2)(54)a b ab a b ab ---,其中21a b ==-、 27.如图,OC 是AOB ∠内的一条射线,OD 、OE 分别平分AOB ∠、AOC ∠.(1)若80BOC ∠=︒,40AOC ∠=︒,求DOE ∠的度数; (2)若BOC α∠=,50AOC ∠=︒,求DOE ∠的度数;(3)若BOC α∠=,AOC β∠=,试猜想DOE ∠与α、β的数量关系并说明理由. 28.计算:(1)715|4|--- (2)42112(3)6⎛⎫--⨯-÷-⎪⎝⎭29.工厂生产某种零件,其示意图如下(单位:mm ) (1)该零件的主视图如图所示,请分别画出它的左视图和俯视图 (2)如果要给该零件的表面涂上防锈漆,请你计算需要涂漆的面积.30.已知:如图,长方形ABCD 中,4AB =,8BC =,点M 是BC 边的中点,点P 从点A 出发,以1m/s 的速度沿着AB 方向运动再过点B 沿BM 方向运动,到点M 停止运动,点Q 以同样的速度从点D 出发沿着DA 方向运动,到点A 停止运动,设点P 运动的路程为x .(1)当2x =时,线段AQ 的长是 ;(2)当点P 在线段AB 上运动时,图中阴影部分的面积会发生改变吗?请你作出判断并说明理由.(3)在点,P Q 的运动过程中,是否存在某一时刻,使得13BP DQ =?若存在,求出点P 的运动路程,若不存在,请说明理由.31.解方程(1)()3226x x +-=; (2)212134x x +--= 32.如图,在方格纸中, A 、 B 、 C 为 3 个格点,点 C 在直线 AB 外.(1)仅用直尺,过点 C 画AB 的垂线 m 和平行线n ; (2)请直接写出(1)中直线m 、n 的位置关系.33.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.四、压轴题34.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)35.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.36.如图1,在数轴上A 、B 两点对应的数分别是6,-6,∠DCE=90°(C 与O 重合,D 点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α. ①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.37.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.38.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .39.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明PA PBPC的值不变.40.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.41.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.42.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示);(3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.43.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,其原因是两点之间,线段最短,故选:A.【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.2.C解析:C【解析】【分析】【详解】不享受优惠即原价,打九折即原价×0.9,打八折即原价×0.8.因此可得200×0.9=180,200×0.8=160,160<162<180,由此可知一次性购书付款162元,可能有两种情况.即162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选C.考点:打折销售问题3.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .4.D解析:D【解析】 【分析】由任意三个相邻数之和都是4,可知a 1、a 4、a 7、…a 3n+1相等,a 2、a 5、a 8、…a 3n+2相等,a 3、a 6、a 9、…a 3n 相等可以得出a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,求出x 问题得以解决. 【详解】解:由任意三个相邻数之和都是37可知: a 1+a 2+a 3=4 a 2+a 3+a 4=4 a 3+a 4+a 5=4 …可以推出:a 1=a 4=a 7=…=a 3n+1, a 2=a 5=a 8=…=a 3n+2, a 3=a 6=a 9=…=a 3n , ∴a 3n +a 3n+1+a 3n+2=4∵a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,21009004,1,2a a x a x =-=-= ∴a 2+ a 100+ a 900= a 2+ a 1+ a 3=4 即-4+x-1+2x=4 解得:x=3 故选:D. 【点睛】本题考查规律型中的数字的变化,解题的关键是找出数的变化规律“a 1=a 4=a 7=…=a 3n+1,a 2=a 5=a 8=…=a 3n+2,a 3=a 6=a 9=…=a 3n (n 为自然数)”.本题属于基础题,难度不大,解题关键是根据数列中数的变化找出变化规律.5.A解析:A 【解析】 【分析】根据线段中点的性质,可得MC ,NC 的长,根据线段的和差,可得答案. 【详解】解:(1)由点M 、N 分别是线段AC 、BC 的中点,得MC=12AC=12×4=2,NC=12BC=12×6=3. 由线段的和差,得: MN=MC+NC=2+3=5; 故选:A. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出MC ,NC 的长是解题关键.6.B解析:B【分析】根据售价-进价=利润这一等量关系,列方程求解即可.【详解】解:设标价为x元,依题意得:0.8x-100=16,解得x=145.即标价为145元.故答案选B.【点睛】本题考查了一元一次方程解应用题,解决本题的关键是找到题目中蕴含的等量关系. 7.C解析:C【解析】【分析】根据线段的中点,即可找到线段之间的数量关系.【详解】∵点C是AB的中点,点D是BC的中点,∴AC=BC,CD=BD,∵CD=CB-BD=AC-BD,∴①正确,∵AD-BC=AC+CD-BC=CD,∴②正确,∵2AD-AB=2AC+2CD-AB=2CD=2BD BD,∴③错误,∵CD=12BC, BC=12AB,即CD=14AB,∴④错误,综上只有两个是正确的,故选C.【点睛】本题考查了线段中点的性质,属于简单题,灵活利用相等的线段等量代换是解题关键. 8.C解析:C【解析】试题解析:解:设应该从乙队调x人到甲队,196﹣x=(272+x),故选C.点睛:考查了一元一次方程的应用,得到调动后的两队的人数的等量关系是解决本题的关键.9.A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.10.C解析:C【解析】【分析】根据余角、补角、对顶角的定义进行判断即可.【详解】解:A、两个对顶角相等,但相等的两个角不一定是对顶角;故A错误;B、补角是两个角的关系,故B错误;C、如果两个角的和是一个直角,那么这两个角互为余角;故C正确;D、锐角的补角都大于这个角,而直角和钝角不符合这样的条件,故D错误.故选:C.【点睛】此题考查对顶角的定义,余角和补角.若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.11.A解析:A【解析】【分析】设这件商品的标价为x元,根据题意即可列出方程.【详解】设这件商品的标价为x元,根据题意可列出方程x-=⨯0.740020%400故选A.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系进行列方程. 12.D解析:D【解析】【分析】根据两点确定一条直线,同角的余角相等,线段的性质,两点之间的距离即可判断.【详解】A.两点确定一条直线是正确的,不符合题意;B.同角的余角相等是正确的,不符合题意;C.两点之间,线段最短是正确的,不符合题意;D.两点之间的距离是指连接这两点的线段的长度,原来的说法是错误的,符合题意.故选D.本题考查了对直线的性质,余角或补角,线段的性质的理解和运用,知识点有:两点确定一条直线,同角的余角或补角相等,两点之间线段最短.13.C解析:C【解析】【分析】设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.【详解】解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .【点睛】本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.14.D解析:D【解析】【分析】设出其中的一个数,根据各个数在数轴的位置,表示出其它的数,列方程求解即可.【详解】设点D 表示的数为x ,则点C 表示的数为x ﹣3,点B 表示的数为x ﹣4,点A 表示的数为x ﹣7,由题意得,x +(x ﹣3)+(x ﹣4)+(x ﹣7)=6,解得,x =5,故选:D .【点睛】考查数轴表示数的意义,根据点在数轴上的位置得出所表示的数是正确解答的关键. 15.B解析:B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解:-3的相反数为3;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.二、填空题16.7【解析】【分析】根据线段中点求出MC和NC,即可求出MN;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=AC=4,CN=BC=3,∴MN=MC+CN=4+3解析:7【解析】【分析】根据线段中点求出MC和NC,即可求出MN;【详解】解:∵M、N分别是AC、BC的中点,AC=8,BC=6,∴MC=12AC=4,CN=12BC=3,∴MN=MC+CN=4+3=7,故答案为:7.【点睛】本题考查了两点间的距离,解题的关键是利用中点的定义求解.17.2x+8=3x-12【解析】试题解析:设共有x位小朋友,根据两种分法的糖果数量相同可得:2x+8=3x-12.故答案为:2x+8=3x-12.解析:2x+8=3x-12【解析】试题解析:设共有x位小朋友,根据两种分法的糖果数量相同可得:2x+8=3x-12.故答案为:2x+8=3x-12.18.-1.【解析】【分析】最大的负整数是-1.【详解】在有理数中,最大的负整数是-1.故答案为-1.【点睛】本题考查了有理数,解题的关键是掌握最大的负整数是-1.解析:-1.【解析】【分析】最大的负整数是-1.【详解】在有理数中,最大的负整数是-1.故答案为-1.【点睛】本题考查了有理数,解题的关键是掌握最大的负整数是-1.19.【解析】【分析】已知等式利用题中新定义化简,整理即可求出x的值.【详解】已知等式利用题中新定义整理得:2(3x-2)-(x+1)=5,去括号得:6x-4-x-1=5,移项合并得:5x=解析:2【解析】【分析】已知等式利用题中新定义化简,整理即可求出x的值.【详解】已知等式利用题中新定义整理得:2(3x-2)-(x+1)=5,去括号得:6x-4-x-1=5,移项合并得:5x=10,解得:x=2.故答案为:2.【点睛】本题考查有理数的混合运算,解题关键是弄清题中的新定义.20.2【解析】分析:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.详解:由题意可得:A=B+3∴5x+2=(11-x)+3∴x=2故答案为2.点睛:解析:2【解析】分析:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.详解:由题意可得:A=B+3∴5x+2=(11-x)+3∴x=2故答案为2.点睛:本题考查的是一元一次方程的应用:根据题意列出一元一次方程:5x+2=(11-x)+3,然后解出该一元一次方程的解即可.是一道基础题,难度不大.21.【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵,,,,,,,,∴商的最小值为.故答案为:.【点睛】本题考解析:5 2 -【解析】【分析】根据同号两数相除为正数,异号两数相除为负数,将每两个异号的数相除,选出商的最小值.【详解】解:∵1242,422,2255,5522,3344,4433,3355,5533,∴商的最小值为5 2 -.故答案为:5 2 -.【点睛】本题考查有理数的除法,掌握除法法则是解答此题的关键.22.106°25′.【解析】【分析】按照角的运算法则进行乘法运算即可,注意满60进1.【详解】解:21°17′×5=105°85′=106°25′.故答案为:106°25′.【点睛】本题解析:106°25′.【解析】【分析】按照角的运算法则进行乘法运算即可,注意满60进1.【详解】解:21°17′×5=105°85′=106°25′.故答案为:106°25′.【点睛】本题主要考查角的运算,掌握度分秒之间的换算关系是解题的关键.23.【解析】【分析】根据绝对值的意义解答即可.【详解】解:6是正数,绝对值是它本身6.故答案为:6.【点睛】本题考查了绝对值的意义,属于应知应会题型,熟知绝对值的定义是解题关键. 解析:【解析】【分析】根据绝对值的意义解答即可.【详解】解:6是正数,绝对值是它本身6.故答案为:6.【点睛】本题考查了绝对值的意义,属于应知应会题型,熟知绝对值的定义是解题关键.24.5℃【解析】【分析】用最高气温减去最低气温即可.【详解】解:(℃).所以最高气温比最低气温高5℃故答案为:5℃.【点睛】本题考查了有理数的减法,掌握有理数的减法法则是解决本题的关键解析:5℃【解析】【分析】用最高气温减去最低气温即可.【详解】解:()32325--=+=(℃).所以最高气温比最低气温高5℃故答案为:5℃.【点睛】本题考查了有理数的减法,掌握有理数的减法法则是解决本题的关键.25.爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解: 与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上解析:爱【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解: 与“泽”字相对的面上的字是“爱”.故答案为:爱.【点睛】本题考查正方体相对两面上的字.理解正方体的平面展开图的特点,是解决此题的关键.三、解答题26.-2【解析】【分析】先根据整式的乘法去括号,再合并同类项,进行化简,再代入已知数求值即可.【详解】解:原式22226354a b ab a b ab =--+22a b ab =+()ab a b =+当a=2,b=-1时,原式21=-⨯2=-【点睛】本题考核知识点:整式化简求值. 解题关键点:掌握整式的基本运算法则.27.(1)40︒;(2)2α;(3)2DOE α∠=,与β无关 【解析】【分析】(1)由角平分线的定义可得,AOD AOE ∠∠的度数,相减即得DOE ∠的度数;(2)由角平分线的定义可用含α的代数式表示AOD ∠的度数,求出AOE ∠相减即得DOE ∠的度数;(3)由角平分线的定义可分别用含α、β的代数式表示,AOD AOE ∠∠,相减即得DOE ∠与α、β的数量关系.【详解】解:(1)80BOC ∠=︒,40AOC ∠=︒120AOB BOC AOC ︒∴∠=∠+∠= OD 、OE 分别平分AOB ∠、AOC ∠1160,2022AOD AOB AOE AOC ︒︒∴∠=∠=∠=∠= 40DOE AOD AOE ︒∴∠=∠-∠=所以DOE ∠的度数40︒.(2)BOC α∠=,50AOC ∠=︒50AOB BOC AOC α︒∴∠=∠+∠=+ OD 、OE 分别平分AOB ∠、AOC ∠150125,252222AOD AOB AOE AOC αα︒︒︒+∴∠=∠==+∠=∠= 2DOE AOD AOE α∴∠=∠-∠=所以DOE ∠的度数2α. (3)BOC α∠=,AOC β∠=AOB BOC AOC αβ∴∠=∠+∠=+ OD 、OE 分别平分AOB ∠、AOC ∠11,222222AOD AOB AOE AOC αβαββ+∴∠=∠==+∠=∠= 2DOE AOD AOE α∴∠=∠-∠= 所以2DOE α∠=,与β无关. 【点睛】本题考查了角平分线,灵活利用角平分线的定义是解题的关键.28.(1)12-;(2)107;【解析】【分析】(1)先去掉绝对值后即可计算,(2)根据有理数的运算法则即可计算.【详解】解:(1)原式=7-15-4=−12;(2)原式=-1-2×9×(-6)=-1+108=107【点睛】本题考查有理数的混合运算,涉及绝对值的性质,属于简单题,熟悉有理数运算法则,注意运算的优先级是解题关键..29.(1)见解析,(2)1042cm【解析】【分析】(1)根据左视图是从左面看得到的图形,俯视图是从上面看得到的图形进行画图即可;(2)根据观察到的各面的面积进而求得表面积即可.【详解】(1)如图所示:左视图:俯视图:(2)S表=(3×5+3×5+5×5-1×3)×2=104mm2,答:需要涂漆的面积为104mm2.【点睛】本题考查了几何体三视图的画法以及表面积的求法,注意观察角度是解题的关键. 30.(1)6;(2)阴影面积不变,理由见解析;(3)x=3或6.【解析】【分析】(1)根据AQ=AD﹣DQ,只要求出DQ即可解决问题.(2)结论:阴影部分的面积不会发生改变.根据S阴=S△APM+S△AQM计算即可.(3)分两种情形分别构建方程求解即可解问题.【详解】(1)∵四边形ABCD是矩形,∴AD=BC=8.AP=DQ=2,∴AQ=AD﹣DQ=8﹣2=6.故答案为6.(2)结论:阴影部分的面积不会发生改变.理由如下:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM12=⨯x×412+(8﹣x)×4=16,∴阴影面积不变.(3)分两种情况讨论:①当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP 13=DQ ,∴4﹣x 13=x ,∴x =3. ②当点P 在线段BM 上时,BP =x ﹣4,DQ =x .∵BP 13=DQ ,∴x ﹣413=x ,∴x =6. 综上所述:当x =3或6时,BP 13=DQ . 【点睛】本题考查了矩形的性质,一元一次方程的应用,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.31.(1)2x =;(2)25x =【解析】【分析】(1)通过去括号,移项,合并同类项,系数化1即可求解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化1,从而得到方程的解.【详解】解:(1)()3226x x +-= 3246x x +-=510x =2x =;(2)212134x x +--= ()()4213212x x +--=843612x x +-+=5=2x2=5x . 【点睛】本题考查了解一元一次方程,注意去分母时,方程两边同时乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.32.(1)如图见解析;(2)垂直.【解析】【分析】(1)根据小方格的特征过C 点画AB 的垂线和平行线;(2)观察图形得出m,n 的垂直关系,或者根据平行线的性质可得.【详解】(1)将点A向上平移3个单位,过该点和点C作直线n,用直尺过点C作直线AB的垂线m,如图:(2)观察图形可得m,n互相垂直,或根据两直线平行,同位角相等也可得m与n的夹角为90°,即m,n互相垂直.【点睛】本题考查网格画图,根据网格中小正方形的特征画图是解答此题的关键.33.BP的长为7cm或3cm.【解析】【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况,作出图形,先求得AC的长,再利用线段中点的定义求出PC的长,最后即可求出BP的长.【详解】解:当点C在线段AB上时,如图1:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=10﹣4=6(cm),∵P为线段AC的中点,∴PC=12AC=12×6=3(cm),∴BP=PC+BC=3+4=7(cm);当点C在线段AB的延长线上时,如图2:∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14(cm),∵P为线段AC的中点,∴PC=12AC=12×14=7(cm),∴BP=PC﹣BC=7﹣4=3(cm);∴BP的长为7cm或3cm.【点睛】本题考查了线段的中点以及线段的和差计算,根据题意正确画出图形、利用中点的性质转化线段之间的倍分关系是解题关键.四、压轴题34.(1)1.5k ;(2)317,1,3,55h h h h ;(3)5,20-5t 【解析】【分析】(1)根据速度,求出t=0.5时的路程,即可得到P 、C 间的距离;(2)分由A 去B ,B 返回A 两种情况,各自又分在点C 的左右两侧,分别求值即可;(3)PA 的距离为由A 去B ,B 返回A 两种情况求值.【详解】(1)由题知: 5/,4, 10v km h AC km AB km ===当0.5t h =时,50.5 2.5s vt kom ==⨯=,即 2.5AP km = 425 1.5PC AC AP k ∴=-=-=()2当小明由A 地去B 地过程中:在AC 之间时, 41355t -==(小时), 在BC 之间时, 4115t +==(小时), 当小明由B 地返回A 地过程中: 在BC 之间时, 1024135t ⨯--==(小时), 在AC 之间时, 102(41)1755t ⨯--==(小时), 故满足条件的t 值为:317,1,3,55h h h h (3)当小明从A 运动到B 的过程中,AP=vt= 5,当小明从B 运动到A 的过程中,AP= 20-vt= 20- 5t.【点睛】此题考查线段的和差的实际应用,掌握题中运用的行程题的公式,正确理解题意即可正确解题.35.13t =,233AP =或t =3,AP =11. 【解析】【分析】 根据题意可以分两种情况:①当P 向左、Q 向右运动时,根据PQ=OP+OQ+BO 列出关于t的方程求解,再求出AP 的长;②当P 向右、Q 向左运动时,根据PQ=OP+OQ-BO 列出关于t 的方程求解,再求出AP 的长.【详解】解:∵12AB =,4OB =,∴8OA =.根据题意可知,OP=t ,OQ=2t .①当P 向左、Q 向右运动时,则PQ=OP+OQ+BO ,∴245t t ++=,∴13t =. 此时OP =13,123833AP AO OP =-=-=; ②当P 向右、Q 向左运动时,PQ=OP+OQ-BO ,∴245t t +-=,∴3t =.此时3OP =,8311AP AO OP =+=+=.【点睛】本题考查数轴、线段的计算以及一元一次方程的应用问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.36.(1)45°;(2)①30°;②∠BCE=2α,证明见解析;(3)α=45-15t ,β=45+15t ,3t 2= 【解析】【分析】(1)根据角平分线的定义即可得出答案;(2)①首先由旋转得到∠ACE=120°,再由角平分线的定义求出∠ACF ,再减去旋转角度即可得到∠DCF ;②先由补角的定义表示出∠BCE ,再根据旋转和角平分线的定义表示出∠DCF ,即可得出两者的数量关系;(3)根据α=∠FCA-∠DCA ,β=∠AC 1D 1+∠AC 1F 1,可得到表达式,再根据|α-β|=45°建立方程求解.【详解】(1)∵∠ACE=90°,CF 平分∠ACE∴∠AOF=12∠ACE=45° 故答案为:45°;(2)①当t=1时,旋转角度为30°∴∠ACE=90°+30°=120°∵CF 平分∠ACE∴∠ACF=60°,α=∠DCF=∠ACF-30°=30°故答案为:30°;②∠BCE=2α,证明如下:旋转30t 度后,∠ACE=(90+30t)度∴∠BCE=180-(90+30t)=(90-30t)度∵CF 平分∠ACE∴∠ACF=12∠ACE=(45+15t)度 ∠DCF=∠ACF-30t=(45-15t)度 ∴2∠DCF=2(45-15t)= 90-30t=∠BCE即∠BCE=2α(3)α=∠FCA-∠DCA=12(90+30t)-30t=45-15t β=∠AC 1D 1+∠AC 1F 1=30t+12(90-30t)=45+15t ||45βα-=︒|30t|=45° ∴3t 2=【点睛】 本题考查了角平分线,角的旋转,角度的和差计算问题,熟练掌握角平分线的定义,找出图形中角度的关系是解题的关键.37.(1)17cm EF =;(2)EF 的长度不变,17cm EF =;(3)()12EOF AOB COD ∠=∠+∠. 【解析】【分析】 (1)根据已知条件求出BD=18cm ,再利用E 、F 分别是AC 、BD 的中点,分别求出AE 、BF 的长度,即可得到EF ;(2)根据中点得到12EC AC =,12DF DB =,由EF EC CD DF =++推导得出EF=()12AB CD +,将AB 、CD 的值代入即可求出结果; (3)由OE 、OF 分别平分AOC ∠和BOD ∠得到12COE AOC ∠=∠, 12DOF BOD ∠=∠,即可列得EOF COE COD DOF ∠=∠+∠+∠,通过推导得出()12EOF AOB COD ∠=∠+∠. 【详解】(1)∵30cm AB =,4cm CD =,8cm AC ,∴308418BD AB AC CD =--=--=cm ,。

七年级数学上册 期末试卷综合测试卷(word含答案)

七年级数学上册 期末试卷综合测试卷(word含答案)

七年级数学上册 期末试卷综合测试卷(word 含答案)一、选择题1.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+ C .60101312x x +-= D .60101213x x+-= 2.如果整式x n ﹣3﹣5x 2+2是关于x 的三次三项式,那么n 等于( ) A .3B .4C .5D .63.下列各式中与a b c --的值不相等的是( )A .()a b c -+B .()a b c --C .()()a b c -+-D .()()c b a ---4.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ). A .B .C .D .5.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( ) A .115×103B .11.5×104C .1.15×105D .0.115×1066.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是( )A .高B .铁C .开D .通7.拖拉机加油50L 记作50L +,用去油30L 记作30L -,那么()5030++-等于( ) A .20B .40C .60D .808.已知点A 、B 、C 、D 在同一条直线上,线段8AB =,C 是AB 的中点, 1.5DB =.则线段CD 的长为( ) A .2.5B .3.5C .2.5或5.5D .3.5或5.59.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .10.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13 B .12C .23D .111.如图正方体纸盒,展开后可以得到( )A .B .C .D .12.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mnB .23m nC .3m nD .32m n13.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( )A .44.8310⨯B .54.8310⨯C .348.310⨯D .50.48310⨯14.某商品在进价的基础上提价70元后出售,之后打七五折促销,获利30元,则商品进价为( )元. A .90B .100C .110D .12015.下列说法正确的是( ) A .两点之间的距离是两点间的线段 B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题16.若∠α=70°,则它的补角是 . 17.若∠α=68°,则∠α的余角为_______°.18.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.19.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .20.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________ 21.有5个面的棱柱是______棱柱.22.有理数a 、b 、c 在数轴上的位置如图:化简:|b ﹣c |+2|a +b |﹣|c ﹣a |=_____.23.若代数式m 42a b 与2n 15a b +-是同类项,则n m =______.24.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.25.已知1x =-是方程23ax a =-的解,则a =__________.三、解答题26.计算下列各题: (1)1021(2)11-+--⨯ (2)2019111(3)69--÷-⨯ 27.计算:(1)35116()824⨯+- (2) 3242(2)(3)3--÷⨯- 28.解方程(1)2-3(x+1)=8 (2)531243x x +--=-29.计算:(1)253(3)-÷-; (2)1138842⎛⎫-⨯+- ⎪⎝⎭; (3)2357m n n m ---;(4)()2242x xy xy x xy ⎡⎤--+--⎣⎦. 30.如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为-12,点B 表示的数为8,点C 为线段AB 的中点.(1)数轴上点C 表示的数是 ;(2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P 、Q 相遇时,两点都停止运动,设运动时间为t (t >0)秒. ①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果) 31.已知同一平面内,∠AOB=90°,∠AOC=30°, (1)画出图形并求∠COB 的度数;(2)若OD 平分∠BOC ,OE 平分∠AOC ,求∠DOE 的度数.32.如图,点O 在直线AB 上,OC 、OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =150°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .(请用含α的代数式表示) 33.已知:如图,直线AB 、CD 相交于点O ,EO ⊥CD 于O . (1)若∠AOC=36°,求∠BOE 的度数; (2)若∠BOD :∠BOC=1:5,求∠AOE 的度数;(3)在(2)的条件下,请你过点O 画直线MN ⊥AB ,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出∠EOF 的度数.四、压轴题34.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示) 35.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 36.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.37.尺规作图是指用无刻度的直尺和圆规作图。

综合能力训练(配青岛版)七上 期末综合能力测试

综合能力训练(配青岛版)七上 期末综合能力测试

段!



已知 互为倒数则 ")! #$(
! "#("!/
!

"
)&!解方程(
)"!某商场十二月份时把某品牌彩电按标价的九
" # " # "!#"
*"
! "
"
!"*") $"!)

折出售!元旦来临之际!该商场决定再次搞促
ห้องสมุดไป่ตู้

销活动!在九折的基础上!再让利!&& 元!此


!,!
,"-",)-
!

#$&

%$",

'$""-

($",""-
!+!
*" " * ) +
)*" " ,


!


#$"*""*)2
%$""*""*)2


'$"*""*)!
($""*")*)2
#$#)(&
%$#(&

!-!已知*$+则下列结论错误的是!
!

#$"
%$""


甲乙丙三地的海拔高度分别为 '$%"
)!
($%

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word含答案)

七年级上册数学 期末试卷综合测试卷(word 含答案)一、选择题1.我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为( )A .14×106B .1.4×107C .1.4×108D .0.14×1092.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1-3.下列说法错误的是( )A .2的相反数是2-B .3的倒数是13C .3-的绝对值是3D .11-,0,4这三个数中最小的数是0 4.如果向北走2 m ,记作+2 m ,那么-5 m 表示( )A .向东走5 mB .向南走5 mC .向西走5 mD .向北走5 m 5.下列各组中的两个单项式,属于同类项的一组是( )A .23x y 与23xyB .3x 与3xC .22与2aD .5与-36.A 、B 两地相距550千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2.5B .2或10C .2.5或3D .3 7.12-的倒数是( ) A . B . C .12- D .128.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有( )A .1个B .2个C .3个D .4个9.下列各数是无理数的是( )A .﹣2B .227C .0.010010001D .π10.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°11.下列图形中,能够折叠成一个正方体的是( )A .B .C .D .12.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x --=,整理得36x = 13.下列算式中,运算结果为负数的是( ) A .()3-- B .()33-- C .()23- D .3--14.我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A .316710⨯B .416.710⨯C .51.6710⨯D .60.16710⨯ 15.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点 二、填空题16.若60A ∠=︒,且A ∠与B 互补,则B ∠=_______________度.17.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.18.已知a +2b =3,则7+6b +3a =________.19.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.20.已知2x =是关于x 的不等式310x m -+≥的解,则m 的取值范围为_______.21.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .22.如图,已知∠AOB =150°,∠COD =40°,∠COD 在∠AOB 的内部绕点O 任意旋转,若OE 平分∠AOC ,则2∠BOE ﹣∠BOD 的值为___°.23.如果方程21(1)20m m x--+=是一个关于x 的一元一次方程,那么m 的值是__________. 24.已知长方形周长为12,长为x ,则宽用含x 的代数式表示为______;25.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)三、解答题26.先化简,再求值:()()2222222x xy y x xy y +--+-,其中1x =-,2y =.27.先化简,再求值:(3a 2b -ab 2)-2(ab 2+3a 2b ),其中a =-12,b =2. 28.如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且()232+4=0ab b +-.(1)a = ,b = ;(2)在数轴上是否存在一点P ,使2PA PB OP -=,若有,请求出点P 表示的数,若没有,请说明理由?(3)点M 从点A 出发,沿A O A →→的路径运动,在路径A O →的速度是每秒2个单位,在路径O A →上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN =1?29.、两地相距,甲、乙两车分别沿同一条路线从地出发驶往地,已知甲车的速度为,乙车的速度为,甲车先出发后乙车再出发,乙车到达地后再原地等甲车.(1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距?30.已知一个由正奇数排成的数阵.用如图所示的四边形框去框住四个数.(1)若设框住四个数中左上角的数为n ,则这四个数的和为 (用n 的代数式表示);(2)平行移动四边形框,若框住四个数的和为228,求出这4个数;(3)平行移动四边形框,能否使框住四个数的和为508?若能,求出这4个数;若不能,请说明理由.31.先化简,再求值:()()22225343a b ab ab a b ---+,其中a=-2,b=12; 32.如图,数轴上A ,B 两点表示的数分别为a ,b ,且a ,b 满足|a +5|+(b ﹣10)2=0.(1)则a = ,b = ;(2)点P ,Q 分别从A ,B 两点同时向右运动,点P 的运动速度为每秒5个单位长度,点Q 的运动速度为每秒4个单位长度,运动时间为t (秒).①当t =2时,求P ,Q 两点之间的距离.②在P ,Q 的运动过程中,共有多长时间P ,Q 两点间的距离不超过3个单位长度? ③当t ≤15时,在点P ,Q 的运动过程中,等式AP +mPQ =75(m 为常数)始终成立,求m 的值.33.定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数;(1)若3与a 是关于2的关联数,则a =_______.(2)若21x - 与35x -是关于2的关联数,求x 的值.(3)若M 与N 是关于m 的关联数, 33M mn n =++,N 的值与m 无关,求N 的值.四、压轴题34.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB .(1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.35.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.36.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.37.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.38.尺规作图是指用无刻度的直尺和圆规作图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档