基因组学(结构基因组学和功能基因组学).

合集下载

2023年毒理学之毒理基因组学解读

2023年毒理学之毒理基因组学解读

▪ 单链环状DNA病毒
5386nt 2500氨基酸 噬菌体phiX174 1977,Sanger
▪部分开环双链DNA病毒
HBsAg
HBcAg
聚合酶
乙型肝炎病毒(HBV)
HBsAg
HBcAg
聚合酶
乙型肝炎病毒基因组 --部分开环双链DNA
▪ 单链RNA病毒
血凝素(HA)
8节段-ssRNA
.
神经氨酸酶(N)
2002年4月,水稻基因组 图谱公布。
2002年 小鼠、疟原虫和按蚊基因组测序完成
• 鼠基因组共有约27亿个碱 基对,比人类少15%,但其 包含的基因数目约在3万个 左右,与对人类基因数的最 新估计非常接近。
疟原虫破坏 两个红细胞
疟原虫的 裂殖孢子
* 人被蚊子咬之后5-10分钟,疟原虫孢子到达肝 脏,入侵肝细胞内就可逃逸人体免疫系统的攻击。 * 孢子侵吞肝细胞的营养,大量地分裂繁殖,一 周后,肝细胞胀破,数以百万计的新孢子释放进 入血液。 * 新的孢子立刻重新入侵红细胞,再次逃过免疫 系统的攻击。且以血红蛋白为食,继续繁殖; * 两天后又可再次破坏红细胞,产生更多的孢子 入侵其它红细胞……不久,2/3的红细胞都会被 疟原虫侵袭。 * 疟原虫在血液里这种周期性的繁殖过程,而导 致病人三天两头地发高烧、打寒战。
2003年11月,世界上首个复杂生物体的蛋白图 谱——果蝇蛋白图谱公布,实现了由仅显示遗传 密码信息的基因图谱到揭示遗传密码功能的蛋白 图谱的飞跃。
果蝇(Drosophila melanogaster)蛋白图谱 发表在《科学》杂志的网络版上;
研究发布的这个含有7,000多个果蝇蛋白的图谱 含盖了这些蛋白之间超过20,000种不同的互相作 用。

各种组学的基本概念

各种组学的基本概念

各种组学的基本概念组学是一门交叉学科,它综合了生物学、统计学和计算机科学等多个领域的知识,旨在揭示基因组、转录组、蛋白质组以及其他组学层面上的生物学特征和机制。

在过去的几十年中,随着高通量测序和其他技术的不断发展,组学研究在生命科学领域中发挥着越来越重要的作用。

在组学领域中,有许多基本概念是我们需要了解和掌握的。

下面,我将介绍一些最基础的组学概念,帮助你对这个领域有更全面、深刻和灵活的理解。

1. 基因组学 (Genomics)基因组学是组学研究中最基础的一个领域。

它研究的是整个生物体的基因组,即一套完整的遗传物质。

基因组学的目标是揭示基因组的结构、功能和演化。

2. 转录组学 (Transcriptomics)转录组学研究的是生物体在特定时期或特定环境下所产生的所有RNA 分子的总和,即转录组。

转录组学可以帮助我们了解基因的表达模式和调控机制。

3. 蛋白质组学 (Proteomics)蛋白质组学研究的是生物体在特定时期或特定环境下所产生的所有蛋白质的总和,即蛋白质组。

蛋白质组学的研究可以帮助我们理解蛋白质的功能、互作网络以及与疾病相关的异常表达。

4. 代谢组学 (Metabolomics)代谢组学研究的是生物体在特定时期或特定环境下所产生的所有代谢产物的总和,即代谢组。

代谢组学可以帮助我们了解生物体的代谢状态、代谢网络以及与疾病相关的代谢异常。

5. 聚宽组学 (Phenomics)聚宽组学是对生物体在特定时期或特定环境下所表现出的所有性状和表型的研究。

它可以帮助我们理解基因与表型之间的关系,以及基因对表型的调控机制。

以上是组学领域中一些基本的概念。

值得一提的是,随着技术的不断进步,组学领域也在不断发展和创新,新的概念和技术层出不穷。

对这些概念和技术的理解与掌握,对于我们深入探索生命本质、揭示生物学特征和机制具有重要意义。

在我看来,组学作为一门纵横交错的学科,不仅仅局限于生物研究领域,而且在医学、农业、环境科学等多个领域都有着广泛的应用价值。

基因组学分类

基因组学分类

基因组学分类
基因组学可以分为多个分支学科,根据研究重点的不同,可以分为结构基因组学和功能基因组学。

结构基因组学主要关注基因组的组成和结构,而功能基因组学则更注重基因的功能和表达。

此外,根据研究对象的不同,基因组学还可以分为疾病基因组学、比较基因组学、药物基因组学和环境基因组学等。

这些分支学科分别关注不同方面的基因组研究,如疾病与健康、物种间的比较、药物作用机制以及环境因素对基因表达的影响等。

总之,基因组学作为一门新兴学科,其分支学科众多,研究领域广泛。

随着科技的不断进步和研究的深入,基因组学将继续发挥重要作用,为人类健康和生活质量的提高做出贡献。

基因组学——精选推荐

基因组学——精选推荐

基因组学1.基因组学包括那些研究内容?(1)结构基因组学:通过基因组作图、核苷酸序列分析,研究基因组结构,确定基因组成、基因定位的科学基因组测序:⾸先将整个基因组的DNA分解为⼀些⼩⽚段,然后将这些分散的⼩⽚段逐个测序,最后将测序的⼩⽚段按序列组装基因组作图:在长链DNA分⼦的不同位置寻找特征性的分⼦标记,绘制基因组图。

根据分⼦标记可以准确⽆误地将已测序的DNA⼩⽚段锚定到染⾊体的位置上。

(2)功能基因组学:利⽤结构基因组学提供的信息和产物,在基因组系统⽔平上全⾯分析基因功能的科学。

功能基因组学的研究内容:(1)进⼀步识别基因以及基因转录调控信息。

(2)弄清所有基因产物的功能,这是⽬前基因组功能分析的主要层次。

(3)研究基因的表达调控机制,分析基因产物之间的相互作⽤关系,绘制基因调控⽹络图。

(3)⽐较基因组学:研究不同物种之间在基因组结构和功能⽅⾯的亲源关系及其内在联系的学科。

⽐较基因组学的研究内容::(1)绘制系统进化树,显⽰进化过程中最主要的变化所发⽣的时间及特点。

据此可以追踪物种的起源和分⽀路径。

(2)了解同源基因的功能。

(3)对序列差异性的研究有助于认识产⽣⼤⾃然⽣物多样性的基础。

2.基因组学的历史变⾰与发展趋势?(⼀)1900年代以前:前遗传学时代(1)物种进化的⾃然选择学说——达尔⽂进化论。

(2)1865年G.Mendel发表豌⾖杂交实验结果,提出了遗传学的两⼤遗传规律—分离规律和独⽴分配规律,并认为是⽣物体内的遗传因⼦或遗传颗粒控制⽣物性状(⼆)1900—1950年代:经典遗传学时代标志:1900年,孟德尔遗传规律再发现标志着遗传学的诞⽣)⼈们开始把控制⽣物遗传性状的遗传单称为基因。

⽣命科学的研究基本都是围绕着基因来进⾏。

(三)1950—1990年代:分⼦⽣物学时代(前基因组学时代)标志:Watson & Crick 的DNA 双螺旋结构的发现[《Nature》1953.4.25],标志着分⼦⽣物学时代的开始 F.Crick根据DNA 的X射线衍射图谱,提出了DNA双螺旋结构模型,解释基因复制的机制,从⽽真正开始从分⼦⽔平上研究⽣命活动。

医学遗传学(第3版)配套习题集:第3章 人类基因组学

医学遗传学(第3版)配套习题集:第3章 人类基因组学

第三章人类基因组学基因组指一个生命体的全套遗传物质。

从基因组整体层次上研究各生物种群基因组的结构和功能及相互关系的科学即基因组学。

基因组学的研究内容包括三个基本方面,即结构基因组学,功能基因组学和比较基因组学。

人类基因组计划(HGP)是20世纪90年代初开始,由世界多个国家参与合作的研究人类基因组的重大科研项目。

其基本目标是测定人类基因组的全部DNA序列,从而为阐明人类全部基因的结构和功能,解码生命奥秘奠定基础。

人类基因组计划的成果体现在人类基因组遗传图,物理图和序列图的完成,而基因图的完成还有待大量的工作。

后基因组计划(PGP)是在HGP的人类结构基因组学成果基础上的进一步探索计划,将主要探讨基因组的功能,即功能基因组学研究。

由此派生了蛋白质组学,疾病基因组学,药物基因组学,环境基因组学等分支研究领域,同时也促进了比较基因组学的展开。

后基因组计划研究的进展,促进了生命科学的变革,可以预见会对医学、药学和相关产业产生重大影响。

HGP的成就加速了基因定位研究的进展,也提高了基因克隆研究的效率。

基因的定位与克隆是完成人类的基因图,进而解码每一个基因的结构和功能的基本研究手段。

一、基本纲要1.掌握基因组,基因组学,结构基因组学,功能基因组学,比较基因组学,基因组医学,后基因组医学的概念。

2.熟悉人类基因组计划(HGP)的历史,HGP的基本目标;了解遗传图,物理图,序列图,基因图的概念和构建各种图的方法原理。

3.了解RF1P,STR和SNP三代DNA遗传标记的特点。

4.熟悉后基因组计划(PGP)的各个研究领域即功能基因组学、蛋白质组学、疾病基因组学、药物基因组学,比较基因组学、生物信息学等的概念和意义。

5.了解基因定位的各种方法的原理。

6.了解基因克隆的三种研究策略。

7.了解全基因组扫描的策略和方法。

8.熟悉基因组医学与遗传病研究的关系。

9.熟悉基因组医学与个体化治疗的关系。

二、习题(一)选择题(A型选择题)1.人类基因组计划仍未完成的基因组图为OA.遗传图B.物理图C.序列图D.连锁图E.基因图2.下列不属于基因组学分支学科的是oA.基因组文库B.环境基因组学C.疾病基因组学D.药物基因组学E.比较基因组学3.HGP的任务是oA.构建遗传图B.物理图C.确定DNA序列D.定位基因E.以上都是4.HGP是美国科学家在年率先提出的。

遗传学概念对比—名词解释

遗传学概念对比—名词解释

遗传学对比性名词解释群体遗传学:研究群体的遗传特征和变化规律的遗传学。

基因组学:是研究特定物种所有DNA的学科。

&研究基因的组成、结构和功能的学科。

分为结构基因组学和功能基因组学。

基因工程:采用类似工程的设计方法,认为的在体外将核苷酸分子插入质粒、病毒和其他载体中,构成遗传物质的重新组合,并将它转移到原先没有这类分子的细胞中扩增和表达。

结构基因组学:研究基因组结构并构建高分辨的遗传图、物理图、序列图和转录图以及研究PR组成和结构的学科。

功能基因组学:利用结构基因组学研究所得到的各种信息进而在基因组水平上研究编码序列和非编码序列。

蛋白质组学:研究细胞内全部蛋白质组成、结构与功能的学科。

比较基因组学:基基因图谱和测序基础上,对已知的基因和基因组结构进行的比较,来了解基因的功能、表达机理及物种进化的学科。

表观遗传学:是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。

发育遗传学:研究遗传性状在发育过程中表现机制的科学。

它是遗传学和胚胎学的边缘学科。

人类基因组计划:旨在阐明人类基因组的结构、功能、全部核苷酸的序列以及基因在染色体上的定位及其功能,从而破译人类全部的遗传信息。

主要任务是人类的DNA测序,包括下四张谱图,遗传图谱物理图谱序列图谱、基因图谱此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等目的。

各国所承担工作比例约为:美国54%、英国33%、日本7%、法国 2.8%、德国2.2%、中国1%。

染色体组:一个正常配子中所含染色体数目n。

基因组:正常配子中所带有的全部基因&一种生物所有染色体上的遗传物质。

基因库:一个群体中全部个体所共有的全部基因。

- 1 -基因重组:通过两个不同基因型的亲本产生的后代中基因产生重组的过程。

基因重排:是指DNA分子核苷酸序列的重新排列,这些序列的重排不仅可以形成新的基因还可以调节基因的表达。

基因组学重点分类修订版

基因组学重点分类修订版

基因组学(Genomics): 指以分子生物学技术、计算机技术与信息网络技术为研究手段, 以生物体内全部基因为研究对象, 在全基因背景下与整体水平上探索生命活动得内在规律及其内外环境影响机制得科学。

C 值悖理( 矛盾)(Cvalue paradox) : 在结构、功能很相似得同一类生物中, 甚至在亲缘关系十分接近得物种之间, 它们得C 值可以相差数10 倍乃至上百倍。

隔裂基因(split gene): 指基因内部被一个或更多不翻译得编码顺序即内含子所隔裂。

重叠基因: 编码序列彼此重叠得基因。

基因内基因: 在核基因组中较普遍,常在内含子包含其她基因。

反义基因:与已知基因编码序列互补得得负链编码基因, 参与基因得表达调控,可以干扰靶基因mRNA专录与翻译。

克隆重叠群法(clone contig method, 作图法测序): 以大片段定位得克隆为基础得定向测序战略主要采用克隆步移法或称重叠群法。

这种逐步测序得方法花时间多, 但精确。

全基因组鸟枪法(wholegenome shotgun method): 就是随机先将整个基因组打碎成小片段进行测序, 最终利用计算机根据序列之间得重叠关系进行排序与组装, 并确定它们在基因组中得正确位置。

全基因组鸟枪法就是一种快速获得真核基因组得方法。

遗传作图(Ge netic map pi ng):采用遗传学分析方法将基因或其它DNA序列标定在染色体上构建连锁图。

这一方法包括杂交实验, 家系分析。

遗传图距单位为厘摩(cM), 每单位厘摩定义为1%交换率。

(相对位置)物理作图(Physical mapping): 采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置。

物理图得距离依作图方法而异,如辐射杂种作图得计算单位为厘镭(cR),限制性片段作图与克隆作图得图距为DNA得分子长度,即碱基对(bp, kb) 。

( 绝对位置)微卫星序列(SSR):或称简单串联重复(STR),重复单位较短。

生命科学前沿进展基因组学、比较基因组学和宏基因组学

生命科学前沿进展基因组学、比较基因组学和宏基因组学

原核生物:一般只有一个环状DNA分子,其上所有的基因为一个基因组; 真核生物:指一个物种的单倍体染色体所含有的全部DNA分子; 真核生物通常含有2~3个基因组 -核基因组(Nuclear genome) -线粒体基因组(Mitochondrial genome) -质体基因组(Plastid genome) 真核细胞中的细胞器(如叶绿体、线粒体等)中的DNA也为环状,构成叶绿 体基因组、线粒体基因组 If not specified, “genome” usually refers to the nuclear genome.
生命科学前沿进展(一)
基因组学、元基因组学和功能 基因组学
§1 基因组学概述
基因组(genome),又称染色体组,是 某个特定物种细胞内全部DNA分子的总和 (细胞内细胞器的DNA属于该细胞器的基 因组)。物种全部遗传信息的总和。
物种遗传信息的“总词典” 控制发育的“总程序” 生物进化历史的“总档案”
E. coli:4000多个基因,人:~30000个
4、原核生物的基因绝大多数是连续基因,不 含间隔的内含子;基因组结构紧密,重复序列 远少于真核生物的基因组。
例子:E. coli K-12
双链环状DNA分子,全基因组长为4,600kb; 目前已经定位的基因有4,2因组(mitochondrion genome):长为16,569bp的环状DNA分子, 位于产生能量的细胞器——线粒体中
基因组学(genomics)
• 以分子生物学技术、计算机技术和信息网络技术为研 究手段,以生物体内全部基因为研究对象,在全基因 背景下和整体水平上分析生命体(包括人类)全部基 因组结构及功能,探索生命活动的内在规律及其内外 环境影响机制的科学。 对物种的所有基因进行定位、作图、测序和功能分析 由美国人T· H· Rodehck在1986年提出。基因组学完全改 变一次只能研究单个基因的状况,它着眼于研究并解 析生物体整个基因组的所有遗传信息。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点?
答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。

在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。

以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。

基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics和以基因功能鉴定为目标的功能基因组学(functional genomics。

结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。

功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。

功能基因组学(functional genomics又往往被称为后基因组学(postgenomics,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。

这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。

研究内容包括基因功能发现、基因表达分析及突变检测。

基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。

新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。

鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。

功能基因组学
中文名称:功能基因组学
英文名称: Functional Genomics
学科分类:遗传学
注释:运用遗传技术,通过识别其在一个或多个生物模型中的作用来认识新发现基因的功能。

功能基因组用功能不明的分离基因作为起始点,然后选择具有该同源基因的生物模型。

这一生物模型可以是简单的酵母细胞或复杂的线虫甚至老鼠。

基因被选择性的用多种遗传技术灭活,在此生物体上选择性去除的效果被确定。

通过这种方法去除基因,它对生物功能的贡献就能够被识别。

功能基因组在评估和检测新药时十分有用。

在另一种方法中,一整套基因被系统地灭活,人们就可以检测其对特定细胞功能的影响。

这里,一个新的基因和其功能就同时被识别了。

基因组(GENOME一词是1920年Winkles从GENes和chromosOEs铸成的,用于描述生物的全部基因和染色体组成的概念。

1986年美国科学家Thomas Roderick提出了基因组学(Genomics,指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录本图谱,核苷酸序列分析,基因定位和基因功能分析的一门科学。

因此,基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(structural geno mics和以基因功能鉴定为目标的功能基因组学(functional genomics,又被称为后基因组(postgenome研究。

功能基因组学(Functuional genomics又往往被称为后基因组学(Pos tgenomics,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质得研究转向多个基因或蛋白质同时进行系统的研究。

这是在基因组静态的碱基序列弄清楚之后转入对基因组动态的生物学功能学研究。

研究内容包括基因功能发现、基因表达分析及突变检测。

基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等。

采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及
mRNA差异显示等,但这些技术不能对基因进行全面系统的分析,新的技术应运而生,包括基因表达的系统分析(serial analysis of gene expression,SAGE,cDNA微阵列(cDNA microarray,DNA 芯片(DNA chip等。

相关文档
最新文档