《分式方程》第三课时参考教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4.3 分式方程(三)
●教学目标
(一)教学知识点
1.用分式方程的数学模型反映现实情境中的实际问题.
2.用分式方程来解决现实情境中的问题.
(二)能力训练要求
1.经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解
决问题的能力.
2.认识运用方程解决实际问题的关键是审清题意,寻找等量关系,建立数学模型.
(三)情感与价值观要求
1.经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣.
2.培养学生的创新精神,从中获得成功的体验.
●教学重点
1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.
2.根据实际意义检验解的合理性.
●教学难点
寻求实际问题中的等量关系,寻求不同的解决问题的方法.
●教具准备
实物投影仪
投影片三张
第一张:做一做,(记作§3.4.3 A)
第二张:例3,(记作§3.4.3 B)
第三张:随堂练习,(记作§3.4.3 C)
●教学过程
Ⅰ.提出问题,引入新课
[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.
接下来,我们就用分式方程解决生活中实际问题.
Ⅱ.讲授新课
出示投影片(§3.4.3 A )
[生]第二年每间房屋的租金=第一年每间房屋的租金+500元. (1) [生]还有一个等量关系:
第一年租出的房屋间数=第二年租出的房屋的间数.
[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.
同学们尽管提出符合情境的问题.
[生]问题可以是:每年各有多少间房屋出租?
[生]问题也可以是:这两年每年房屋的租金各是多少?
[师]下面我们就来先解决第一个问题:每年各有多少间房屋出租?
[师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x 96000元,第二年每间房屋的租金为x
102000元,根据题意,得 x 102000=x
96000+500 解这个方程,得x=12
经检验x=12是原方程的解,也符合题意.
所以每年各有12间房屋出租.
[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得:
第一年每间房屋的租金为
1296000=8000(元), 第二年每间房屋的租金为12
102000=8500(元).
[师]如果没有第一问,该如何解答第二问?
[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x+500)元.第一年租出的房间为
x 96000间,第二年租出的房间为500
102000+x 间,根据题意,得
x 96000= 500102000+x 解,得x=8000
x+500=8500(元)
经检验:x=8000是原分式方程的解,也符合题意.
所以这两年每间房屋的租金分别为8000元,8500元.
[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.
出示投影片(§3.4.3 B )
[生]审清题意,找出题中的等量关系.
[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表)
[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?
[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费.
[师]下面我们就来用等量关系列出方程.
[师生共析]设超出5 m 3部分的水,每立方米收费设为x 元,则1月份, 张家超出 5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.17⨯-m 3,总用水量为5+x
55.15.17⨯-; 李家超出 5 m 3部分的水费为(27.5-1.5×5)元,超出 5 m 3的用水量为x 55.15.27⨯-m 3,总用水量为(5+x
55.15.27⨯-) m 3 根据等量关系,得
x 55.15.17⨯-+5=(x 55.15.27⨯-+5)×3
2 解这个方程,得x=2.
经检验x=2是所列方程的根.
所以超出5 m 3部分的水,每立方米收费2元.
Ⅲ.随堂练习
出示投影片(§3.4.3 C )
[生]题中的等量关系有两个:
15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本.
硬皮本的价格=软皮本的价格×(1+2
1) [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本的价格为x 元,则硬皮本的价格为(1+
21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )2
1(15+本.根据题意,得, x 15= x )2
11(15++1
解,得x=5
经检验x=5是原方程的根,也符合题意,所以(1+
21)x=2
3×5=7.5(元) 故这种软皮本和硬皮本的价格各为5元、7.5元.
Ⅳ.课时小结
列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.
Ⅴ.课后作业
习题3.8
图3-4
Ⅵ.活动与探究
如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为 3 km ,王老师家到学校的路程为0.5 km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?(2003年吉林省中考题)
[过程]分析题目中的等量关系:
王老师骑车速度=王老师步行速度×3;
王老师从家出发骑车接小明所用的时间=平时步行上学所用时间+20分钟. [结果]设王老师步行速度为x km/h ,则骑自行车的速度为3x km/h. 依题意,得
x 35.032+⨯=x 5.0+60
20 解得x=5