2020届河北省高三毕业班上学期第一次大联考数学(理)试卷及答案解析
2020年河北省石家庄市高考数学一模试卷(理科)
2020年河北省石家庄市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数3213iz i-+=++,则复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.(5分)设集合{|||3}P x x =>,2{|4}Q x x =>,则下列结论正确的是( ) A .QP B .P Q C .P Q = D .P Q R =3.(5分)若2242(),log 3,log 63a b c ===,则a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .c b a <<D .b c a <<4.(5分)若x ,y 满足约束条件02636,x y x y +⎧⎨-⎩则2z x y =+的最大值为( )A .10B .8C .5D .35.(5分)“斗拱”是中国古代建筑中特有的构件,从最初的承重作用,到明清时期集承重与装饰作用于一体.在立柱顶、额枋和檐檩间或构架间,从枋上加的一层层探出成弓形的承重结构叫拱拱与拱之间垫的方形木块叫斗.如图所示,是“散斗”(又名“三才升” )的三视图(三视图中的单位:分米),现计划用一块长方体的海南黄花梨木料加工成该散斗,则长方体木料的最小体积为( )立方分米.A .40B .853C .30D .7336.(5分)不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为( )A .314B .37C .67D .13287.(5分)已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,MF 的延长线交y 轴于点N .若2MF FN =,则||MF 的值为( )A .8B .6C .4D .28.(5分)某函数的部分图象如图,则下列函数中可以作为该函数的解析式的是( )A .sin 2sin 2x xy e = B .cos2cos2x xy e = C .cos2|cos2|xx y e =D .cos |cos |xx y e =9.(5分)如图,某中学数学兴趣小组要测量底部不能到达的某铁塔AB 的高度(如图),铁塔AB 垂直于水平面,在塔的同一侧且与塔底部B 在同一水平面上选择C ,D 两观测点,且在C ,D 两点测得塔顶的仰角分别为45︒,30︒并测得120BCD ∠=︒,C ,D 两地相距600m ,则铁塔AB 的高度是( )A .300 mB .600 mC .3003mD .6003m10.(5分)已知函数()2|cos |sin sin 2f x x x x =+,给出下列三个命题: ①函数()f x 的图象关于直线4x π=对称;②函数()f x 在区间[,]44ππ-上单调递增;③函数()f x 的最小正周期为π. 其中真命题的个数是( ) A .0B .1C .2D .311.(5分)已知ABC ∆是由具有公共直角边的两块直角三角板(Rt ACD ∆与Rt BCD)∆组成的三角形,如左图所示.其中,45CAD ∠=︒,60BCD ∠=︒现将Rt ACD ∆绕斜边AC 旋转至△1D AC 处1(D 不在平面ABC 上).若M 为BC 的中点,则在ACD ∆旋转过程中,直线1AD 与DM 所成角(θ )A .(0,45)θ∈︒︒B .(0θ∈︒,45]︒C .(0θ∈︒,60]︒D .(0,60)θ∈︒︒12.(5分)设符号{min x ,y ,}z 表示x ,y ,z 中的最小者,已知函数(){|2|f x min x =-,2x ,|2|}x +则下列结论正确的是( )A .[0x ∀∈,)+∞,(2)()f x f x ->B .[1x ∀∈,)+∞,(2)()f x f x ->C .x R ∀∈,(())()f f x f xD .x R ∀∈,(())()f f x f x >二、填空题:本大题共4小题,每小题5分,把答案填在答题卡中对应题号后的横线上. 13.(5分)函数y x lnx =+在点(1,1)处的切线方程为 .14.(5分)已知向量a ,b 满足||2a =,||1b =,若()()a a b b a b ++-的最大值为1,则向量a ,b 的夹角θ的最小值为 ,|2|a b +的取值范围为 .15.(5分)飞镖锦标赛的赛制为投掷飞镖3次为一轮,一轮中投掷3次飞镖至少两次投中9环以上,则评定该轮投掷飞镖的成绩为优秀.某选手投掷飞镖每轮成绩为优秀的概率为45,则该选手投掷飞镖共三轮,至少有一轮可以拿到优秀成绩的概率是16.(5分)已知双曲线C 的方程为2218y x -=,右焦点为F ,若点(0,6)N ,M 是双曲线C的左支上一点,则FMN ∆周长的最小值为三、解答题:解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分. 17.(12分)已知数列{}n a 为等差数列,n S 是数列{}n a 的前n 项和,且22a =,36S a =,数列{}n b 满足:2124b b ==,当3n ,*n N ∈时,1122(22)2n n n a b a b a b n b ++⋯+=-+. (1)求数列{}n a ,{}n b 的通项公式; (2)令*,nn na c n Nb =∈,证明:122n c c c ++⋯+<. 18.(12分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2PA AD ==,1AB BC ==,点M ,E 分别是PA ,PD 的中点.(1)求证://CE 平面BMD ;(2)点Q 为线段BP 中点,求直线PA 与平面CEQ 所成角的余弦值.19.(12分)已知椭圆2222:1(0))x y C a b a b +=>>的左、右顶点分别为A 、B ,且||4AB =,椭圆C 3.(1)求椭圆C 的标准方程;(2)已知点(1M ,)(0)m m ≠在椭圆C 内,直线AM 与BM 分别与椭圆C 交于E 、F 两点,若AM F ∆面积是BM E ∆面积的5倍,求m 的值.20.(12分)BMI 指数是用体重公斤数除以身高米数的平方得出的数值,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI 数值大于或等于20.5时,我们说体重较重,当BMI 数值小于20.5时,我们说体重较轻,身高大于或等于170cm 时,我们说身高较高,身高小于170cm 时,我们说身高较矮.某中小学生成长与发展机构从某市的320名高中男体育特长生中随机选取8名,其身高和体重的数据如表所示: 编号 1 2 3 4 5 6 7 8 身高()i cm x166167160173178169158173体重()i kg y57 58 53 61 66 57 50 66(1)根据最小二乘法的思想与公式求得线性回归方程ˆ0.875.9yx =-.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献值2R (保留两位有效数字);(2)通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58()kg .请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.参考公式:2211()1(nii i n ii yy R y==-=-∑∑.1122211()()ˆ()nnix i yi ix yi i nnixixi i xy x yn bxxn----==--==---==--∑∑∑∑,ˆˆa y bx =-.ˆˆˆi i ie y bx a =--. 参考数据:8178880i i i x y ==∑,281226112i i x ==∑,168x =,58.5y =,821()226i i y y =-=∑.21.(12分)已知函数()2()f x ln ax b =+,其中a ,b R ∈.(1)当0a >时,若直线y x =是曲线()y f x =的切线,求ab 的最大值;(2)设1b =,函数2()(1)(1)()(g x ax a ax f x a R =+++-∈,0)a ≠有两个不同的零点,求a 的最大整数值.(参考数据5:0.223)4ln ≈请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4--4:坐标系与参数方程]22.(10分)极坐标系于直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 正半轴为极轴.已知曲线1C 的极坐标方程为4cos()3πρθ=-,曲线2C 的极坐标方程为cos()3a πρθ-=,射线6πθα=-,θα=,3πθα=+,2πθα=+与曲线1C 分别交异于极点O 的四点A ,B ,C ,D .(1)若曲线1C 关于曲线2C 对称,求a 的值,并把曲线1C 和2C 化成直角坐标方程; (2)设()||||||||f OA OB OC OD α=+,当63ππα时,求()f α的值域.[选修4-5:不等式选讲]23.已知函数()|21||1|f x x x =-+-. (Ⅰ)求不等式()4f x 的解集;(Ⅱ)设函数()f x 的最小值为m ,当a ,b ,c R +∈,且a b c m ++=时,求2020年河北省石家庄市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知复数3213iz i-+=++,则复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:复数3(13)2221313i i i z i i i-++=+=+=+++,则复数z 在复平面内对应的点(2,1)在第一象限. 故选:A .2.(5分)设集合{|||3}P x x =>,2{|4}Q x x =>,则下列结论正确的是( ) A .QP B .P Q C .P Q = D .P Q R =【解答】解:集合{|||3}{|3P x x x x =>=<-或3}x >,2{|4}{|2Q x x x x =>=<-或2}x >,P Q ∴,故选:B .3.(5分)若2242(),log 3,log 63a b c ===,则a ,b ,c 的大小关系是( )A .a b c <<B .a c b <<C .c b a <<D .b c a <<【解答】解:由 可得49a =,42log 6log c == 则 可知,1bc a >>>, 故选:B .4.(5分)若x ,y 满足约束条件02636,x y x y +⎧⎨-⎩则2z x y =+的最大值为( )A .10B .8C .5D .3【解答】解:由约束条件02636,x y x y +⎧⎨-⎩作出可行域如图,化目标函数2z x y=+为直线方程的斜截式,122zy x=-+,由图可知,当直线122zy x=-+过(3,0)A时,直线在y轴上的截距最大,z有最大值为3.故选:D.5.(5分)“斗拱”是中国古代建筑中特有的构件,从最初的承重作用,到明清时期集承重与装饰作用于一体.在立柱顶、额枋和檐檩间或构架间,从枋上加的一层层探出成弓形的承重结构叫拱拱与拱之间垫的方形木块叫斗.如图所示,是“散斗”(又名“三才升”)的三视图(三视图中的单位:分米),现计划用一块长方体的海南黄花梨木料加工成该散斗,则长方体木料的最小体积为()立方分米.A.40B.853C.30D.733【解答】解:由三视图还原原几何体如图,要加工成如图所示散斗,则长方体木料长的最小值为4,宽的最小值为4,高的最小值为52, 则则长方体木料的最小体积为544402⨯⨯=立方分米. 故选:A .6.(5分)不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为( ) A .314B .37C .67D .1328【解答】解:不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,基本事件总数2828n C ==,取出的2个小球中有1个是白色小球另1个是红色小球包含的基本事件个数:116212m C C ==,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为123287m p n ===. 故选:B .7.(5分)已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,MF 的延长线交y 轴于点N .若2MF FN =,则||MF 的值为( )A .8B .6C .4D .2【解答】解:由抛物线的方程可得焦点(2,0)F ,准线方程为:2x =-,作MA 垂直于y 轴交于A ,因为2MF FN =,所以可得F 为线段MN 的三等分点,即13NF MN =,由NFO NMA ∆∆∽,所以13OF MA =,即3326MA OF ==⨯=,所以||628MF =+=, 故选:A .8.(5分)某函数的部分图象如图,则下列函数中可以作为该函数的解析式的是( )A .sin 2sin 2x xy e = B .cos2cos2x xy e = C .cos2|cos2|xx y e =D .cos |cos |xx y e =【解答】解:由图象可知,当0x =时,0y ≠,故排除选项A ; 又对任意的x ,函数值0y ,故排除选项B ; 对选项D ,当12x π=>时,0y =,这与图象矛盾,综上,选项C 满足题意. 故选:C .9.(5分)如图,某中学数学兴趣小组要测量底部不能到达的某铁塔AB 的高度(如图),铁塔AB 垂直于水平面,在塔的同一侧且与塔底部B 在同一水平面上选择C ,D 两观测点,且在C ,D 两点测得塔顶的仰角分别为45︒,30︒并测得120BCD ∠=︒,C ,D 两地相距600m ,则铁塔AB 的高度是( )A .300 mB .600 mC .3003mD .6003m【解答】解:设AB x =,由图利用直角三角形的性质可得:BC AB x ==,3BD x =, 在BCD ∆中,由余弦定理可得:22236002600cos120x x x =+-⨯︒,化为:23001800000x x --=,解得600x =. 故选:B .10.(5分)已知函数()2|cos |sin sin 2f x x x x =+,给出下列三个命题: ①函数()f x 的图象关于直线4x π=对称;②函数()f x 在区间[,]44ππ-上单调递增;③函数()f x 的最小正周期为π. 其中真命题的个数是( ) A .0 B .1C .2D .3 【解答】解:332cos sin sin 2,[2,2]0,[2,2]2222()2|cos |sin sin 2,2cos sin sin 2,[2,2)2sin 2,[2,2)2222x x x x k k x k k f x x x x k Zx x x x k k x x k k ππππππππππππππππ⎧⎧-+∈++∈++⎪⎪⎪⎪=+==∈⎨⎨⎪⎪+∈-++∈-++⎪⎪⎩⎩,其大致图象如图所示,①()f x 的图象不关于直线4x π=对称,即①错误;②()f x 在区间[,]44ππ-上单调递增,即②正确; ③()f x 的最小正周期为2π,即③错误. 所以真命题只有②, 故选:B .11.(5分)已知ABC ∆是由具有公共直角边的两块直角三角板(Rt ACD ∆与Rt BCD)∆组成的三角形,如左图所示.其中,45CAD ∠=︒,60BCD ∠=︒现将Rt ACD ∆绕斜边AC 旋转至△1D AC 处1(D 不在平面ABC 上).若M 为BC 的中点,则在ACD ∆旋转过程中,直线1AD 与DM 所成角(θ )A .(0,45)θ∈︒︒B .(0θ∈︒,45]︒C .(0θ∈︒,60]︒D .(0,60)θ∈︒︒【解答】解:作//AP DM ,1AD 可以看成以AC 为轴线,以45︒为平面角的圆锥的母线, 由题意知1AD 与AP 落在同一个轴截面上时, 1PAD ∠取得最大值,则1PAD ∠的最大值为60︒,此时,1D ∈平面ABC ,1D 不在平面ABC 上,1(0,60)PAD ∴∠∈︒︒,∴在ACD ∆旋转过程中,直线1AD 与DM 所成角(0,60)θ∈︒︒.故选:D .12.(5分)设符号{min x ,y ,}z 表示x ,y ,z 中的最小者,已知函数(){|2|f x min x =-,2x ,|2|}x +则下列结论正确的是( )A .[0x ∀∈,)+∞,(2)()f x f x ->B .[1x ∀∈,)+∞,(2)()f x f x ->C .x R ∀∈,(())()f f x f xD .x R ∀∈,(())()f f x f x >【解答】解:如图所示:由题意可得A 中,2,[0,1]()|2|,(1,)x x f x x x ⎧∈=⎨-∈+∞⎩B 中,当12x 时,120x --,(2)(2)2()f x f x x f x -=--=,当23x <时,021x <-,(2)2()f x x f x --=,当34x <时,122x <-,(2)2(2)42()f x x x x f x -=--=--=,当4x ,22x -,恒有(2)()f x f x -<,所以B 不正确,A 也不正确;C 中,从图象上看,[0x ∈,)+∞,()f x x ,令()t f x =,则0t ,所以()f t t ,即(())()f f x f x ,故C 正确,D 不正确. 故选:C .二、填空题:本大题共4小题,每小题5分,把答案填在答题卡中对应题号后的横线上. 13.(5分)函数y x lnx =+在点(1,1)处的切线方程为 210x y --= . 【解答】解:1y x nx =+,∴11y x'=+, 1|112x k y =∴='=+=,∴函数1y x nx =+在点(1,1)处的切线方程为12(1)y x -=-,整理,得210x y --=. 故答案为:210x y --=.14.(5分)已知向量a ,b 满足||2a =,||1b =,若()()a a b b a b ++-的最大值为1,则向量a ,b 的夹角θ的最小值为23π,|2|a b +的取值范围为 . 【解答】解:设向量a ,b 的夹角为θ,则[0θ∈,]π; 又||2a =,||1b =,所以22()()421cos 12cos 134cos a a b b a b a a b b a b θθθ++-=++-=+⨯⨯+⨯⨯-=+, 即34cos 1θ+, 解得1cos 2θ-; 则向量a ,b 的夹角θ的最小值为23π; 即2[3πθ∈,]π; 所以222(2)444421cos 488cos a b a a b b θθ+=++=+⨯⨯⨯+=+, 又cos [1θ∈-,1]2-,所以88cos [0θ+∈,4],所以|2|a b +的取值范围是[0,2]. 故答案为:23π,[0,2]. 15.(5分)飞镖锦标赛的赛制为投掷飞镖3次为一轮,一轮中投掷3次飞镖至少两次投中9环以上,则评定该轮投掷飞镖的成绩为优秀.某选手投掷飞镖每轮成绩为优秀的概率为45,则该选手投掷飞镖共三轮,至少有一轮可以拿到优秀成绩的概率是 124125【解答】解:飞镖锦标赛的赛制为投掷飞镖3次为一轮,一轮中投掷3次飞镖至少两次投中9环以上,则评定该轮投掷飞镖的成绩为优秀. 某选手投掷飞镖每轮成绩为优秀的概率为45, 则该选手投掷飞镖共三轮,至少有一轮可以拿到优秀成绩的概率是: 0033411241()()55125P C =-=. 故答案为:124125.16.(5分)已知双曲线C 的方程为21x =,右焦点为F ,若点(0,6)N ,M 是双曲线C的左支上一点,则FMN ∆周长的最小值为 2【解答】解:双曲线的标准方程为2218y x -=,设双曲线的左焦点为F ',由双曲线C 可得(3,0)F ,(3,0)F '-,||NF =MNF ∆周长为||||||||||MN MF NF MN MF ++=++,由双曲线的定义可得||||22MF MF a '-==, 即有||||||||2MN MF MN MF '+=++, 当P 在左支上运动到M ,N ,F '共线时,||||MN MF '+取得最小值||NF '=则有MNF ∆周长的最小值为22=.故答案为:2.三、解答题:解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分. 17.(12分)已知数列{}n a 为等差数列,n S 是数列{}n a 的前n 项和,且22a =,36S a =,数列{}n b 满足:2124b b ==,当3n ,*n N ∈时,1122(22)2n n n a b a b a b n b ++⋯+=-+. (1)求数列{}n a ,{}n b 的通项公式; (2)令*,nn na c n Nb =∈,证明:122n c c c ++⋯+<. 【解答】解:(1)数列{}n a 为等差数列,n S 是数列{}n a 的前n 项和,且22a =,36S a =, 设数列的首项为1a ,公差为d , 则:1112335a d a d a d+=⎧⎨+=+⎩,解得:111a d =⎧⎨=⎩,所以1(1)n a n n =+-=.数列{}n b 满足:2124b b ==,1122(22)2n n n a b a b a b n b ++⋯+=-+.① 所以1122111(24)2n n n a b a b a b n b ---++⋯+=-+.② ①-②得:1(22)(24)n n n n a b n b n b -=---, 由于n a n =, 整理得12nn b b -=(常数), 所以数列{}n b 是以12b =为首项,2为公比的等比数列. 所以1222n n n b -=⨯=. 由于首项符合通项公式, 所以2n n b =.证明:(2)由(1)得2n n n n a nc b ==, 所以212222n n nT =++⋯+①, 故2311122222n n nT +=++⋯+② ①-②得:211111(1)1111122()112222222212n n n n n n n n n n T +++-=++⋯+-=-=---, 所以112222n n n nT -=--<. 即122n c c c ++⋯+<.18.(12分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2PA AD ==,1AB BC ==,点M ,E 分别是PA ,PD 的中点.(1)求证://CE 平面BMD ;(2)点Q 为线段BP 中点,求直线PA 与平面CEQ 所成角的余弦值.【解答】(1)证明:连接ME ,因为点M ,E 分别是PA ,PD 的中点,所以12ME AD =,//ME AD ,所以//BC ME ,BC ME =,所以四边形BCEM 为平行四边形, 所以//CE BM .又因为BM ⊂平面BMD ,CE ⊂/平面BMD , 所以//CE 平面BMD .⋯⋯⋯⋯⋯⋯⋯⋯(6分)(2)如图,以A 为坐标原点建立空间坐标系O xyz -,则又1(2CQ =-,1-,1),(1CE =-,0,1),设平面CEQ 的法向量为(n x =,y ,)z ,列方程组00n CQ n CE ⎧=⎪⎨=⎪⎩,可得:120x y z x z ⎧--+=⎪⎨⎪-+=⎩其中一个法向量为(2n =,1,2),设直线PA 与平面CEQ 所成角大小为θ,于是22sin 3414001θ==++++, 进而求得5cos θ=(15分) 19.(12分)已知椭圆2222:1(0))x y C a b a b +=>>的左、右顶点分别为A 、B ,且||4AB =,椭圆C 3.(1)求椭圆C 的标准方程;(2)已知点(1M ,)(0)m m ≠在椭圆C 内,直线AM 与BM 分别与椭圆C 交于E 、F 两点,若AM F ∆面积是BM E ∆面积的5倍,求m 的值.【解答】解:(1)由题意可得:222243a ca ab c=⎧⎪⎪=⎨⎪=+⎪⎩,解得213a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为:2214x y +=;(2)(1,)M m ,(2,0)A -,(2,0)B ,∴直线AM 的斜率3AM m k =, ∴直线AM 的方程为:(2)3my x =+, 联立方程22(2)314m y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩,解得21294E m y m =+, 同理可得2414F my m =+,5AMF BME S S ∆∆=,即()5()ABF ABM ABE ABM S S S S ∆∆∆∆-=-, 54ABF ABE ABM S S S ∆∆∆∴=-,∴22412||5||4||1494m mm m m=-++,又0m ≠, 42161630m m ∴-+=,解得214m =或34, 点M 在椭圆内,∴234m <, ∴214m =, 12m ∴=±.20.(12分)BMI 指数是用体重公斤数除以身高米数的平方得出的数值,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI 数值大于或等于20.5时,我们说体重较重,当BMI 数值小于20.5时,我们说体重较轻,身高大于或等于170cm 时,我们说身高较高,身高小于170cm 时,我们说身高较矮.某中小学生成长与发展机构从某市的320名高中男体育特长生中随机选取8名,其身高和体重的数据如表所示:(1)根据最小二乘法的思想与公式求得线性回归方程ˆ0.875.9yx =-.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献值2R (保留两位有效数字);(2)通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58()kg .请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.参考公式:22121()1()nii i n ii yy R yy ==-=--∑∑.1122211()()ˆ()nnix i yi ix yi i nnixixi i xy x yn bxxn----==--==---==--∑∑∑∑,ˆˆa y bx =-.ˆˆˆi i ie y bx a =--. 参考数据:8178880i i i x y ==∑,281226112i i x ==∑,168x =,58.5y =,821()226i i y y =-=∑.【解答】解:(1)由题意知线性回归方程为ˆ0.875.9y x =-, 计算6ˆ570.816975.9 2.3e=-⨯+=-, 7ˆ500.815875.90.5e=-⨯+=-, 8ˆ660.817375.9 3.5e=-⨯+=; 完善下列残差表如下,计算22121()111(0.010.090.81 2.250.25 5.290.2512.25)10.090.90226()nii i n ii yy R yy ==-=-=-⨯+++++++≈-=-∑∑;所以解释变量(身高)对于预报变量(体重)变化的贡献值20.90R ≈. (2)通过残差分析知,残差的最大(绝对值)的那组数据为第8组,且858y =,由8178880i i i x y ==∑,计算修订后8178880173661735877496i i i x y ='=-⨯+⨯=∑,又281226112i ix ==∑,168x =,修订后1(858.56658)57.58y '=⨯⨯-+=,所以1222177496816857.5ˆ0.6752261128168ni ix yi nixi x yn bxn --=-=--⨯⨯===-⨯-∑∑,ˆˆ57.50.67516855.9ay bx ='-=-⨯=-; 所以x 关于y 的线性回归方程是ˆ0.67555.9yx =-. 21.(12分)已知函数()2()f x ln ax b =+,其中a ,b R ∈.(1)当0a >时,若直线y x =是曲线()y f x =的切线,求ab 的最大值;(2)设1b =,函数2()(1)(1)()(g x ax a ax f x a R =+++-∈,0)a ≠有两个不同的零点,求a 的最大整数值.(参考数据5:0.223)4ln ≈【解答】解:(1)设直线y x =与()y f x =相切于点0(P x ,02())ln ax b +, 2()af x ax b '=+, 002()1af x ax b '∴==+,02ax b a ∴+= (0)a >,又点P 在切线y x =上,002()ln ax b x ∴+=, 022ln a x ∴=,02222b a ax a aln a ∴=-=-,因此22222ab a a ln a =-(0)a >,设g (a )22222a a ln a =-,0a >,g '∴(a )2422(122)a aln a a ln a =-=-,令g '(a )0>得,0a <<g '(a )o <得,a > g ∴(a)在上单调递增,在,)+∞上单调递减, g ∴(a)的最大值为4e g =, ab ∴的最大值为4e ; (2)函数2()(1)(1)()(g x ax a axf x a R =+++-∈,0)a ≠有两个不同的零点,等价于方程22(1)(1)(1)ln ax ax a ax +=+++有两个不相等的实根,设1t ax =+,则等价于方程220lnt t at --= (0)t >有两个不同的解,即关于t 的方程22lnt t a t-= (0)t >有两个不同的解, 设22()lnt t h t t -=,则2222()t lnt h t t --'=, 设2()22m t t lnt =--,由0t >可知()m t '=-, ()m t ∴在(0,)+∞上单调递减,又m (1)10=>,575()204164m ln =-<, ∴存在05(1,)4t ∈使得0()0m t =,即200220t lnt --=,∴20022lnt t +=, ∴当0(0,)t t ∈时,()0m t >,()0h t '>,函数()h t 单调递增;当0(t t ∈,)+∞时,()0m t <,()0h t '<,函数()h t 单调递减,∴函数()h t 的极大值为220000000022229()2(,0)10lnt t t h t t t t t --===-∈-, 要使得关于t 的方程22lnt t a t-= (0)t >有两个不同的解,则0()a h t <, 当1a =-时,设2()2p t lnt t t =-+, 则2()21p t t t'=-+,可知()p t在上单调递增,在,)+∞上单调递减, 又p (1)0=,0p >,p (e )220e e =-+<, ()p t ∴有两个不同的零点,符合题意,a ∴的最大整数值为1-.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4--4:坐标系与参数方程]22.(10分)极坐标系于直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 正半轴为极轴.已知曲线1C 的极坐标方程为4cos()3πρθ=-,曲线2C 的极坐标方程为cos()3a πρθ-=,射线6πθα=-,θα=,3πθα=+,2πθα=+与曲线1C 分别交异于极点O 的四点A ,B ,C ,D .(1)若曲线1C 关于曲线2C 对称,求a 的值,并把曲线1C 和2C 化成直角坐标方程;(2)设()||||||||f OA OB OC OD α=+,当63ππα时,求()f α的值域.【解答】解:(1)1:4cos()3C πρθ=-,即22cos sin ρρθθ=+,化为直角坐标方程为22(1)(4x y -+=把2C 的方程化为直角坐标方程为20x a -=,因为曲线1C 关于曲线2C 对称,故直线20a =经过圆心(1,解得2a =,故2C 的直角坐标方程为0x =.(2)由题意可得,当63ππα时,||4sin OA α=;||4cos()3OB πα=-;||4cos OC α=;||4sin()3OD πα=-, ∴设2()||||||||16sin cos 16cos()sin()8sin 28sin(2)12sin 2)3336f OA OB OC OD ππππαααααααααα=+=+--=--=+=+,当63ππα时,52266πππα+, 383sin(2)836πα+,故()f α的值域为[选修4-5:不等式选讲]23.已知函数()|21||1|f x x x =-+-.(Ⅰ)求不等式()4f x 的解集;(Ⅱ)设函数()f x 的最小值为m ,当a ,b ,c R +∈,且a b c m ++=时,求【解答】解:(Ⅰ)1()42324x f x x ⎧<⎪⇔⎨⎪-+⎩或1124x x ⎧<⎪⎨⎪⎩或1324x x ⎧⎨-⎩, 解得223x -, 故不等式()4f x 的解集为2{|2}3x x -(Ⅱ)132,21(),1232,1x x f x x x x x ⎧-+<⎪⎪⎪=<⎨⎪-⎪⎪⎩,1()2min f x ∴=,即12m =, 又a ,b ,c R +∈且12a b c ++=,z 则2221a b c ++=,设x =yz =, 222x y xy +,2222121222xy x y a b a b +=+++=++,同理:2222yz a c ++,2222xz c a ++,2222222222228xy yz xz a b b c c a ∴++++++++++=,2222()222212121812x y z x y z xy yz xz a b c ∴++=+++++++++++=, 23x y z ∴++,即123,当且仅当16a b c ===时,取得最大值.。
河北省2020届高三上学期第一次大联考理综试卷及参考答案
理科综合试卷相对原子质量:H-l C-12 N-14 0-16 S-32 Cl-35.5 Na-23 Al-27 Ba-137 本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分:300分;考试时间:150分钟第I卷(选择题部分,共126分)一、选择题(本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.细胞衰老是细胞正常的生命现象,下列有关叙述不正确的是( )A.人体细胞会随着分裂次数的增多而衰老B.衰老细胞中的自由基可攻击细胞中的多种物质分子C.细胞衰老导致各种酶的活性降低,物质运输功能下降D.细胞衰老最终表现在细胞的形态、结构和功能发生变化2.动植物细胞中都含有酯酶,去除细胞壁的植物细胞称为原生质体.测定原生质体活力的常用方法之一是荧光素双醋酸酯(FDA)染色法,其基本原理是FDA本身无荧光,可自由通过细胞膜,经细胞内的酯酶分解可产生荧光素,荧光素积累在细胞内并能产生绿色荧光.下列相关叙述不正确的是( )A.可用酶解法处理植物细胞获得原生质体B.FDA通过细胞膜不需要载体蛋白的协助C.将植物细胞置于FDA溶液中,不发生质壁分离D.FDA进入动物细胞内,可引起细胞产生绿色荧光3.某种植物幼苗经过单侧光照射后,甲、乙两侧的生长情况如图所示,对照组未经单侧光处理.下列叙述正确的是( )A.去除尖端后照光,尖端两侧的生长速率加快B.乙为向光侧,其IAA含量低于甲侧和对照组C.生长素能促进向光侧和背光侧细胞的分裂和生长D.向光生长是由于IAA极性运输导致分布不均匀所致4.叶绿体中存在具有编码功能的cpDNA,这些cpDNA借助细胞核DNA编码的酶系统合成多肽,用于光合作用的各个环节.下列叙述不正确的是( )A.细胞核DNA可调控叶绿体的部分功能B.cpDNA彻底水解可得到六种不同的产物C.叶绿体中的DNA能控制合成相应的蛋白质D.cpDNA编码的多肽可参与叶绿体中的各项活动5.浮游植物A比浮游植物B对N、P的吸收能力强,沉水植物C比浮游植物A对N、P的吸收能力强.某环保部门欲选用其中两种植物投放到当地N、P较高的水体,以净化水体.应选用投放的的两种植物及对水体生态系统的影响是( )A. 浮游植物A和沉水植物C 群落的种间关系类型不变B. 浮游植物A和沉水植物C 食物链的营养级数将增加C. 浮游植物A和浮游植物B 群落的垂直结构保持不变D. 浮游植物A和浮游植物B 群落的能量流动方向改变6.果蝇的长翅与无翅是一对相对性状,由常染色体上的一对等位基因控制.假设果蝇的长翅(A)对无翅(a)为显性性状.在一个随机交配多代的无变异的果蝇群体中,长翅和无翅的基因频率各占一半,现需对果蝇种群进行人工选择,逐代迁出幼年无翅个体.下列说法不正确的是( )A.迁出前,该种群长翅的个体数量比无翅的个体数量多B. 迁出前,随着交配代数增加,种群中纯合子的比例不变C. 迁出后,种群中A和Aa的频率均随迁出代数增加逐渐增加D. 迁出后, 种群中A和AA的频率均随迁出代数增加逐渐增加7.化学知识无处不在,下列与古诗文记载对应的化学知识不正确的是( )8.N A为阿伏加德罗常数的值.下列说法正确的是( )A.18 g D2O和18 g H2O中含有的质子数均为10N AB.1 L 0.1 mol·L-1磷酸(H3PO4)溶液中含有的H+离子数为0.3N AC.40g 34%的过氧化氢催化分解,生成0.1 mol氧气时转移的电子数为0.2N AD.密闭容器中1mol NO与0.5 mol O2充分反应,产物的分子数为N A9.短周期主族元素A、B、C、D的原子序数依次增大,A、D同主族且D原子核电荷数等于A 原子核电荷数的2倍,B、C原子的核外电子数之和与A、D原子的核外电子数之和相等.下列说法中一定正确的是 ( )A. B的原子半径比A的原子半径小B. A形成的氢化物分子中不可能含非极性键C. B单质与水反应,水可能作氧化剂也可能作还原剂D. C、D的最高价氧化物对应的水化物是酸10.有Fe2+、Fe3+、H+、NH4+、NO3-和H2O六种粒子,属于同一氧化还原反应中的反应物和生成物,下列叙述不正确的是( )A.被氧化和被还原的离子数目比为8∶1B.该反应说明Fe2+、NO3-、、H+在溶液不能大量共存C.每1 mol NO3-发生氧化反应,转移8 mol e-D.若利用该反应设计原电池,则负极反应为:Fe2+-e-=Fe3+A.糖类和蛋白质都属于天然高分子化合物B.CH 3CH(CH 3)CH 2COOH 系统命名法命名:2-甲基丁酸C.重结晶提纯苯甲酸:将粗品水溶、过滤、蒸发、结晶D.有机物()可与乙醇、乙酸反应,且反应类型相同13.某温度下,向10 mL 0.1 mol/L CuCl 2溶液中滴加0.1mol/L 的Na 2S 溶液,滴加过程中-lg c(Cu 2+)与Na 2S 溶液体积的关系如图所示.下列有关说法正确的是( )A.0.1mol/LNa 2S 溶液中:c(OH -)=c(H +)+c(HS -)+c(H 2S)B.a 、b 、c 三点对应的溶液中,水的电离程度最大的为b 点C.该温度下,Ksp(CuS)的数量级为10-36 D.向10 mL Ag +、Cu 2+物质的量浓度均为0.1mol/L 的混合溶液中逐滴加入0.01mol/L 的Na 2S 溶液,Cu 2+先沉淀[已知:Ksp(Ag 2S)=6.4×10-50]二、选择题(本题共8小题,每小题6分,在每小题给出的四个选项中,其中14-18小题只有一项符合题目要求,第19-21小题有多项符合题目要求。
2020届河北省高三上学期第一次大联考数学(理)试题(解析版)
B.“ ”是“ ”的必要不充分条件
C.命题“若 ,则 ”的逆否命题为真命题
D.命题“ , ”的否定是“ , ”
【答案】C
【解析】由 且 的真值表可判断A;由充分必要条件的定义和二次方程的解法,可判断B;由命题和其逆否命题等价即可判断C;由特称命题的否定为全称命题,可判断D.
在 中,由余弦定理得 ,
即 ,
,取 的中点为 ,分别连接 , ,显然 ,所以线段 为球 的直径,故 ,
延长 ,过点 作 垂直于 的延长线于点 ,
, ,
,
连接 , 即为球心 到平面 的距离,显然 ,
所以球心 到平面 的距离为1.
故答案为: .
【点睛】
本题主要考查三棱锥外接球球心位置的确定以及二面角平面角的确定,考查逻辑思维能力,属于高考常考题型.
【详解】
设 为边 的中点,并设角 所对应的边分别为 ,则 ,
故 ,所以 ,从而角 为钝角.
所以 为钝角三角形.
故选:C.
【点睛】
本题考查判断三角形的形状,考查逻辑思维能力,属于中档题.
12.过双曲线 ( )右焦点 的直线交两渐近线于 、 两点,若 , 为坐标原点,且 内切圆半径为 ,则该双曲线的离心率为()
【详解】
因为函数 是奇函数,所以 ,解得 ,
又 ,即 ,所以 ,解得 ,
所以 ,故 .
故答案为: .
【点睛】
本题考查分段函数求值以及奇偶性的问题,当 时, 是奇函数,可以得到 ,属于常考题.
14.已知函数 在 处的切线与直线 平行,则 的展开式中常数项为__________;
【答案】
【解析】函数 在 处的切线的斜率为 ,直线 的斜率为 ,依题得 ,故 ,再利用二项式定理计算结果即可.
2020秋高三上学期第一次联考数学(理)试题(可编辑)+答案详解+评分标准 (2)
2020届高三上学期第一次联考数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷第1至第2页,第Ⅱ卷第2至第4页。
全卷满分150分,考试时间12咋啦60分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A 3x 2},B {lnx 0}x x =-≤≤=≥{,则A B =IA.3,2,1,0,1}---{B.1,2}{C.3x 1}x -≤≤{D.1x 2}x ≤≤{ 2.已知复数134z i=+,则下列说法正确的是 A.复数z 的实部为3 B.复数z 的虚部为425i C.复数z 的共轭复数为342525i + D.复数z 的模为1 3.椭圆221916x y +=的一个焦点坐标为A.(5,0)B.(0,,0) D.(0) 4.已知m =1og 40.4,n =40.4,p =0.40.5,则A.m<n<pB.m<p<nC.p<m<nD.n<p<m 5.曲线32()xy x x e =+在x =1处的切线方程为A.y =7ex -5eB.y =7ex +9eC.y =3ex +5eD.y =3ex -5e 6.设等差数列{a n }的前n 项和为S n ,若a 4=11,S 15=15,则a 2= A.18 B.16 C.14 D.127.要得到函数y sin3x 的图象,只需将函数y =sin3x +cos3x 的图象A.向右平移34π个单位长度 B.向右平移2π个单位长度 C.向左平移4π个单位长度 D.向左平移2π个单位长度8.若5个人按原来站的位置重新站成一排,恰有两人站在自己原来的位置上的概率为A.12 B.14 C.16 D.189.定义在R 上的奇函数f(x)满足,当0x ≤时,()xxf x e e -=-,则不等式f(x 2-2x)-f(3)<0的解集为A.(-1,3)B.(-3,1)C.(,1)(3,)-∞-+∞UD. (,3)(1,)-∞-+∞U 10.过原点O 作直线l :(2m +n)x +(m -n)y -2m +2n =0的垂线,垂足为P ,则P 到直线x -y +3=0的距离的最大值为12 C.1 D.2 11.已知圆锥的母线长l 为4,侧面积为S ,体积为V ,则VS取得最大值时圆锥的侧面积为A. B. C. D.12.已知点A 是双曲线22221x y a b+=(a>0,b>0)的右顶点,若存在过点N(3a ,0)的直线与双曲线的渐近线交于一点M ,使得△AMN 是以点M 为直角顶点的直角三角形,则双曲线的离心率A.存在最大值4 B.存在最大值3 C.存在最小值4 D.存在最小值3第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答。
2020年河北邯郸高三一模数学试卷(理科)
2020年河北邯郸高三一模数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.设复数,则在复平面内对应的点位于( ).A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合,,则( ).A. B. C. D.3.的展开式第三项为( ).A. B. C. D.4.函数的部分图象大致为( ).A.B.C.D.5.设变量,满足约束条件,则的最小值为( ).A.B.C.D.6.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算数和几何的纽带.图为五角形数的前个,则第个五角形数为( ).A.B.C.D.7.若双曲线(,)的一条渐近线与函数的图象相切,则该双曲线离心率为( ).A.B.C.D.8.已知是定义在上的奇函数,其图象关于点对称,当时,则当时,的最小值为( ).A.B.C.D.9.设,为正数,且,则的最小值为( ).A.B.C.D.10.已知为抛物线的焦点,过点的直线交抛物线于,两点,交准线于点.若,,则为( ).A.B.C.D.11.已知点,,在函数 (,)的图象上,且,给出关于的如下命题::的最小正周期为∶的对称轴为()︰:方程有个实数根其中真命题的个数是( ).A.B.C.D.12.已知三棱柱各棱长均为,平面,有一个过点且平行于平面的平面,则该三棱柱在平面内的正投影面积是( ).A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知是首项为的等比数列,若,,成等差数列,则.开始输入输出结束否否是14.执行如图所示的程序框图,若输出的值为,则可输入的所有值组成的集合为 .15.若,,三点满足,且对任意都有,则的最小值为 .16.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单.某外卖小哥每天来往于个外卖店(外卖店的编号分别为 , ,,,其中),约定:每天他首先从号外卖店取单,叫做第次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单叫做第次取单,依此类推.假设从第次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件{第次取单恰好是从号店取单},是事件发生的概率,显然,,则,与的关系式为 .()三、解答题(本大题共5小题,每小题12分,共60分)17.的内角,,的对边分别是,,,,.(1)(2)求.若,,成等差数列,求的面积.(1)(2)18.如图,在四棱锥中,底面,,,,点为的中点.平面交侧棱于点,四边形为平行四边形.求证:平面平面.若二面角的余弦值为,求与平面所成角的正弦值.(1)19.中华猕猴桃果树喜湿怕旱,喜水怕涝,在我国种植范围较广.某地一生态农业公司建立了一个大型猕猴桃种植基地,该地区雨量充沛,阳光与温度条件也对果树的成长十分有利,但干旱或雨量过大也会造成损失.公司管理人员依据往年猕猴桃生长期个周降雨量(单位:)的数据,得到如下茎叶图(表中的周降雨量为一周内降雨量的总和).0123456910504036413002700428005550500050另外,猕猴桃果树发生灾害与周降雨量的关系如下表所示.周降雨量(单位:)猕猴桃灾害等级轻灾正常轻灾重灾根据上述信息,解答如下问题.根据茎叶图中所给的数据,写出周降雨量的中位数和众数.12(2)以收集数据的频率作为概率.估计该地区在今年发生重灾、轻灾以及无灾害的概率.若无灾害影响,每亩果树获利元;若受轻灾害影响,则每亩损失元;若受重灾害影响则每亩损失元.为保护猕猴桃产业的发展,该地区农业部门有如下三种防控方案;方案1:防控到轻灾害,每亩防控费用元.方案2:防控到重灾害,每亩防控费用元.方案3:不采取防控措施.问:如从获利角度考虑,哪种方案比较好?说明理由.(1)(2)20.已知椭圆过点且离心率为.求椭圆的标准方程.若椭圆上存在三个不同的点,,,满足,求弦长的取值范围.(1)(2)21.已知函数.当时,判断的单调性.求证:.四、选做题(本大题共2小题,选做1题,共10分)(1)(2)22.在平面直角坐标系中,点是曲线(为参数)上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将线段顺时针旋转得到,设点的轨迹为曲线.求曲线,的极坐标方程.在极坐标系中,点的坐标为,射线与曲线,分别交于,两点,求的面积.(1)(2)23.已知函数.当时,求的解集.若在上恒成立,求的取值范围.【答案】解析:,所以在复平面内对应的点位于第二象限.解析:或,,∴.故选.解析:.解析:因为,所以为奇函数,排除,当时,,排除、.故选.解析:画出变量,满足约束条件的可行域,B 1.B 2.C 3.A 4.D 5.可发现的最小值是到距离的平方.取得最小值:.解析:记第个五角形数为,由题意知:,,,,易知,由累加法得,所以.故选.解析:因为双曲线的渐近线过原点,且方程为.函数图象也过原点,结合图形可知切点就是,,∴.解析:∵关于对称,∴,∴,∴的周期为,∴时的最小值为时的最小值,∵,,∵,∴,∴,,选.解析:B 6.A 7.A 8.D 9.当时,,因为,当且仅当,即,时取等号,则.故选.解析:过,作准线的垂线,垂足为,,轴与准线交点为,,设,则,,,因为,得,.xyOA BF F 1B 1A 1M解析:x–2–11234567891011121314y–2–1123456O∵,C 10.C 11.∴ ,∴ ,∵,∴,∴ ,∴ ,∴,所以为假命题,对称轴为(),所以为真命题,,,所以为假命题,方程有个根,所以为真命题,故选:.解析:如图,投影面平移不影响正投影的形状和大小,所以我们就以平面为投影面,然后构造四棱柱,得到投影为五边形,通过计算可得正投影的面积为.故选.解析:,,∴,∴.A 12..13.14.(1)解析:当时,得,.当时,得,所以答案为:.解析:因为对任意都有,故点到所在直线的距离为,设中点为,则.当且仅当时等号成立.解析:{第次取单恰好是从号店取单},由于每天第次取单都是从号店开始,根据题意,第次不可能从号店取单,所以,{第次取单恰好是从号店取单},因此,解析:∵,∴.又∵,15. ;16.(1)或.(2).17.(2)(1)∴,∴,∴.又∵,∴或.∵,,成等差数列,∴,由()知,∴,∴.解析:∵四边形为平行四边形,∴,又∵,∴,又∵点为的中点,∴,∴在直角梯形中,,可得,连接,易得,,∴,又∵底面,平面,平面,平面,∴平面平面.(1)证明见解析.(2).18.(2)由()知,∴在直角梯形中可得,又底面,∴以为原点,为轴,过且与垂直的位于底面的直线为轴,为轴建立空间直角坐标系,如图所示,则,,,设,∴,,,,∵平面,∴平面的法向量可取,设平面法向量为,由,得,∴可取,∴,∴,∴,,,∴与平面所成角的正弦值为.(1)中位数,众数.19.1(2)发生重、轻害的概率分别 和,无灾害概率为 .(1)12(2)(1)解析:根据茎叶图,可得中位数为,众数为.根据图中的数据,可得该地区周降雨量(单位:)的概率:,,,, (轻灾),(重灾),因此估计该地在今年发生重、轻害的概率分别 和,无灾害概率为.方案:设每亩的获利为(元),则的可能取值为,,则的分布列如下:则(元),则每亩净利润为(元).方案:设每亩的获利为(元),则的可能取值为元,于是,,净利润为(元);方案:设每亩的获利为(元),则的可能取值为,,,则的分布列如下:则 (元),于是每亩亏损为(元).由此得出,方案一的获利最多,所以选择方案一比较好.解析:由题意知,,2方案一的获利最多,所以选择方案一比较好.证明见解析.(1).(2).20.(2)又因为,解得,.则椭圆标准方程为.因为,则由向量加法的意义知四边形为平行四边形.设直线过、两点,①若直线垂直于轴,易得:,,或者,,,此时.②若直线不垂直于轴,设,,,,将直线代入的方程得:,故,,因为,所以,,则,,即,因为在椭圆上,有,化简得.验证,.所以,,所以,因为,则,即,得.综上可得,弦长的取值范围为.(1)(2)(1)(2)解析:当时,,,令,则在上为减函数,且,∴当时,,,单调递增;当时,,,单调递减,故递增区间为;递减区间为.,,只需证,即,易证成立.记,则令,得,并且,当时,,单调递增;当时,,单调递减,∴,即,命题得证.解析:由题意可得的直角坐标方程为,其极坐标方程为,设点的极坐标为,则对应的点的极坐标为.又点在上,所以.即的极坐标方程为.由题意知点到射线的距离为,(1)当时,单调递增;当时,单调递减.(2)证明见解析.21.(1)的极坐标方程为,的极坐标方程为.(2).22.(1)(2)由()知的极坐标方程为,,所以.解析:当时,,当时,,此时的解集为;当时,,此时的解集为;当时,,此时的解集为.综上所述的解集为.由()可知当时,在内恒立,当时,在内恒成立;当时,在内,不满足在上恒成立的条件,综上所述.(1).(2).23.。
河北省2020届高三上学期第一次大联考数学(理)试
【题文】已知抛物线22y x =,过点(1,1)P 分别作斜率为1k ,2k 的抛物线的动弦AB 、CD ,设M 、N 分别为线段AB 、CD 的中点.(Ⅰ)若P 为线段AB 的中点,求直线AB 的方程;(Ⅱ)若121k k +=,求证直线MN 恒过定点,并求出定点坐标.【答案】(Ⅰ)见解析(Ⅱ)见解析.【解析】(Ⅰ)设11(,)A x y ,22(,)B x y ,则2112y x =①,2222y x =②. ①-②,得 121212()()2()y y y y x x -+=- .又因为(1,1)P 是线段AB 的中点,所以122y y += 所以,21121212=1y y k x x y y -==-+. 又直线AB 过(1,1)P ,所以直线AB 的方程为y x =;…………………………………5分 (Ⅱ)依题设(,)M M M x y ,直线AB 的方程为11(1)y k x -=-,即111y k x k =+-,亦即12y k x k =+,代入抛物线方程并化简得 2221122(22)0k x k k x k +-+=. 所以,12121222112222k k k k x x k k --+=-=…………………………………7分 于是,12211M k k x k -=,12121221111M M k k y k x k k k k k -=⋅+=⋅+=. 同理,12221N k k x k -=,21N y k =.…………………………………9分 易知120k k ≠,所以直线MN 的斜率21211M N M N y y k k k x x k k -==--.故直线MN 的方程为21122121111()1k k k k y x k k k k --=--, 即212111k k y x k k =+-.此时直线过定点(0,1). 故直线MN 恒过定点(0,1).…………………………………12分【标题】河北省2020届高三上学期第一次大联考数学(理)试题【结束】。
2020届河北省高三毕业班上学期第一次大联考理科综合试卷及答案详解
绝密★启用前河北省2020届高三毕业班上学期第一次大联考理科综合试题相对原子质量:H-l C-12 N-14 0-16 S-32 Cl-35.5 Na-23 Al-27 Ba-137本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分:300分;考试时间:150分钟第I卷(选择题部分,共126分)一、选择题(本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.细胞衰老是细胞正常的生命现象,下列有关叙述不正确的是()A.人体细胞会随着分裂次数的增多而衰老B.衰老细胞中的自由基可攻击细胞中的多种物质分子C.细胞衰老导致各种酶的活性降低,物质运输功能下降D.细胞衰老最终表现在细胞的形态、结构和功能发生变化2.动植物细胞中都含有酯酶,去除细胞壁的植物细胞称为原生质体.测定原生质体活力的常用方法之一是荧光素双醋酸酯(FDA)染色法,其基本原理是FDA本身无荧光,可自由通过细胞膜,经细胞内的酯酶分解可产生荧光素,荧光素积累在细胞内并能产生绿色荧光.下列相关叙述不正确的是()A.可用酶解法处理植物细胞获得原生质体B.FDA通过细胞膜不需要载体蛋白的协助C.将植物细胞置于FDA溶液中,不发生质壁分离D.FDA进入动物细胞内,可引起细胞产生绿色荧光3.某种植物幼苗经过单侧光照射后,甲、乙两侧的生长情况如图所示,对照组未经单侧光处理.下列叙述正确的是()A.去除尖端后照光,尖端两侧的生长速率加快B.乙为向光侧,其IAA含量低于甲侧和对照组C.生长素能促进向光侧和背光侧细胞的分裂和生长D.向光生长是由于IAA极性运输导致分布不均匀所致4.叶绿体中存在具有编码功能的cpDNA,这些cpDNA借助细胞核DNA编码的酶系统合成多肽,用于光合作用的各个环节.下列叙述不正确的是()A.细胞核DNA可调控叶绿体的部分功能B.cpDNA彻底水解可得到六种不同的产物C.叶绿体中的DNA能控制合成相应的蛋白质D.cpDNA编码的多肽可参与叶绿体中的各项活动5.浮游植物A比浮游植物B对N、P的吸收能力强,沉水植物C比浮游植物A对N、P的吸收能力强.某环保部门欲选用其中两种植物投放到当地N、P较高的水体,以净化水体.应选用投放的的两种植物及对水体生态系统的影响是()A. 浮游植物A和沉水植物C 群落的种间关系类型不变B. 浮游植物A和沉水植物C 食物链的营养级数将增加C. 浮游植物A和浮游植物B 群落的垂直结构保持不变D. 浮游植物A和浮游植物B 群落的能量流动方向改变6.果蝇的长翅与无翅是一对相对性状,由常染色体上的一对等位基因控制.假设果蝇的长翅(A)对无翅(a)为显性性状.在一个随机交配多代的无变异的果蝇群体中,长翅和无翅的基因频率各占一半,现需对果蝇种群进行人工选择,逐代迁出幼年无翅个体.下列说法不正确的是()A.迁出前,该种群长翅的个体数量比无翅的个体数量多B. 迁出前,随着交配代数增加,种群中纯合子的比例不变C. 迁出后,种群中A和Aa的频率均随迁出代数增加逐渐增加D. 迁出后,种群中A和AA的频率均随迁出代数增加逐渐增加7.化学知识无处不在,下列与古诗文记载对应的化学知识不正确的是()8.N A为阿伏加德罗常数的值.下列说法正确的是()。
2020年河北邯郸高三一模数学试卷(理科)
2020年河北邯郸高三一模数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.设复数,则在复平面内对应的点位于( ).A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合,,则( ).A. B. C. D.3.的展开式第三项为( ).A. B. C. D.4.函数的部分图象大致为( ).A.B.C.D.5.设变量,满足约束条件,则的最小值为( ).A.B.C.D.6.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算数和几何的纽带.图为五角形数的前个,则第个五角形数为( ).A.B.C.D.7.若双曲线(,)的一条渐近线与函数的图象相切,则该双曲线离心率为( ).A.B.C.D.8.已知是定义在上的奇函数,其图象关于点对称,当时,则当时,的最小值为( ).A.B.C.D.9.设,为正数,且,则的最小值为( ).A.B.C.D.10.已知为抛物线的焦点,过点的直线交抛物线于,两点,交准线于点.若,,则为( ).A.B.C.D.11.已知点,,在函数 (,)的图象上,且,给出关于的如下命题::的最小正周期为∶的对称轴为()︰:方程有个实数根其中真命题的个数是( ).A.B.C.D.12.已知三棱柱各棱长均为,平面,有一个过点且平行于平面的平面,则该三棱柱在平面内的正投影面积是( ).A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知是首项为的等比数列,若,,成等差数列,则.开始输入输出结束否否是14.执行如图所示的程序框图,若输出的值为,则可输入的所有值组成的集合为 .15.若,,三点满足,且对任意都有,则的最小值为 .16.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单.某外卖小哥每天来往于个外卖店(外卖店的编号分别为 , ,,,其中),约定:每天他首先从号外卖店取单,叫做第次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单叫做第次取单,依此类推.假设从第次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件{第次取单恰好是从号店取单},是事件发生的概率,显然,,则,与的关系式为 .()三、解答题(本大题共5小题,每小题12分,共60分)17.的内角,,的对边分别是,,,,.(1)(2)求.若,,成等差数列,求的面积.(1)(2)18.如图,在四棱锥中,底面,,,,点为的中点.平面交侧棱于点,四边形为平行四边形.求证:平面平面.若二面角的余弦值为,求与平面所成角的正弦值.(1)19.中华猕猴桃果树喜湿怕旱,喜水怕涝,在我国种植范围较广.某地一生态农业公司建立了一个大型猕猴桃种植基地,该地区雨量充沛,阳光与温度条件也对果树的成长十分有利,但干旱或雨量过大也会造成损失.公司管理人员依据往年猕猴桃生长期个周降雨量(单位:)的数据,得到如下茎叶图(表中的周降雨量为一周内降雨量的总和).0123456910504036413002700428005550500050另外,猕猴桃果树发生灾害与周降雨量的关系如下表所示.周降雨量(单位:)猕猴桃灾害等级轻灾正常轻灾重灾根据上述信息,解答如下问题.根据茎叶图中所给的数据,写出周降雨量的中位数和众数.12(2)以收集数据的频率作为概率.估计该地区在今年发生重灾、轻灾以及无灾害的概率.若无灾害影响,每亩果树获利元;若受轻灾害影响,则每亩损失元;若受重灾害影响则每亩损失元.为保护猕猴桃产业的发展,该地区农业部门有如下三种防控方案;方案1:防控到轻灾害,每亩防控费用元.方案2:防控到重灾害,每亩防控费用元.方案3:不采取防控措施.问:如从获利角度考虑,哪种方案比较好?说明理由.(1)(2)20.已知椭圆过点且离心率为.求椭圆的标准方程.若椭圆上存在三个不同的点,,,满足,求弦长的取值范围.(1)(2)21.已知函数.当时,判断的单调性.求证:.四、选做题(本大题共2小题,选做1题,共10分)(1)(2)22.在平面直角坐标系中,点是曲线(为参数)上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将线段顺时针旋转得到,设点的轨迹为曲线.求曲线,的极坐标方程.在极坐标系中,点的坐标为,射线与曲线,分别交于,两点,求的面积.(1)(2)23.已知函数.当时,求的解集.若在上恒成立,求的取值范围.【答案】解析:,所以在复平面内对应的点位于第二象限.解析:或,,∴.故选.解析:.解析:因为,所以为奇函数,排除,当时,,排除、.故选.解析:画出变量,满足约束条件的可行域,B 1.B 2.C 3.A 4.D 5.可发现的最小值是到距离的平方.取得最小值:.解析:记第个五角形数为,由题意知:,,,,易知,由累加法得,所以.故选.解析:因为双曲线的渐近线过原点,且方程为.函数图象也过原点,结合图形可知切点就是,,∴.解析:∵关于对称,∴,∴,∴的周期为,∴时的最小值为时的最小值,∵,,∵,∴,∴,,选.解析:B 6.A 7.A 8.D 9.当时,,因为,当且仅当,即,时取等号,则.故选.解析:过,作准线的垂线,垂足为,,轴与准线交点为,,设,则,,,因为,得,.xyOA BF F 1B 1A 1M解析:x–2–11234567891011121314y–2–1123456O∵,C 10.C 11.∴ ,∴ ,∵,∴,∴ ,∴ ,∴,所以为假命题,对称轴为(),所以为真命题,,,所以为假命题,方程有个根,所以为真命题,故选:.解析:如图,投影面平移不影响正投影的形状和大小,所以我们就以平面为投影面,然后构造四棱柱,得到投影为五边形,通过计算可得正投影的面积为.故选.解析:,,∴,∴.A 12..13.14.(1)解析:当时,得,.当时,得,所以答案为:.解析:因为对任意都有,故点到所在直线的距离为,设中点为,则.当且仅当时等号成立.解析:{第次取单恰好是从号店取单},由于每天第次取单都是从号店开始,根据题意,第次不可能从号店取单,所以,{第次取单恰好是从号店取单},因此,解析:∵,∴.又∵,15. ;16.(1)或.(2).17.(2)(1)∴,∴,∴.又∵,∴或.∵,,成等差数列,∴,由()知,∴,∴.解析:∵四边形为平行四边形,∴,又∵,∴,又∵点为的中点,∴,∴在直角梯形中,,可得,连接,易得,,∴,又∵底面,平面,平面,平面,∴平面平面.(1)证明见解析.(2).18.(2)由()知,∴在直角梯形中可得,又底面,∴以为原点,为轴,过且与垂直的位于底面的直线为轴,为轴建立空间直角坐标系,如图所示,则,,,设,∴,,,,∵平面,∴平面的法向量可取,设平面法向量为,由,得,∴可取,∴,∴,∴,,,∴与平面所成角的正弦值为.(1)中位数,众数.19.1(2)发生重、轻害的概率分别 和,无灾害概率为 .(1)12(2)(1)解析:根据茎叶图,可得中位数为,众数为.根据图中的数据,可得该地区周降雨量(单位:)的概率:,,,, (轻灾),(重灾),因此估计该地在今年发生重、轻害的概率分别 和,无灾害概率为.方案:设每亩的获利为(元),则的可能取值为,,则的分布列如下:则(元),则每亩净利润为(元).方案:设每亩的获利为(元),则的可能取值为元,于是,,净利润为(元);方案:设每亩的获利为(元),则的可能取值为,,,则的分布列如下:则 (元),于是每亩亏损为(元).由此得出,方案一的获利最多,所以选择方案一比较好.解析:由题意知,,2方案一的获利最多,所以选择方案一比较好.证明见解析.(1).(2).20.(2)又因为,解得,.则椭圆标准方程为.因为,则由向量加法的意义知四边形为平行四边形.设直线过、两点,①若直线垂直于轴,易得:,,或者,,,此时.②若直线不垂直于轴,设,,,,将直线代入的方程得:,故,,因为,所以,,则,,即,因为在椭圆上,有,化简得.验证,.所以,,所以,因为,则,即,得.综上可得,弦长的取值范围为.(1)(2)(1)(2)解析:当时,,,令,则在上为减函数,且,∴当时,,,单调递增;当时,,,单调递减,故递增区间为;递减区间为.,,只需证,即,易证成立.记,则令,得,并且,当时,,单调递增;当时,,单调递减,∴,即,命题得证.解析:由题意可得的直角坐标方程为,其极坐标方程为,设点的极坐标为,则对应的点的极坐标为.又点在上,所以.即的极坐标方程为.由题意知点到射线的距离为,(1)当时,单调递增;当时,单调递减.(2)证明见解析.21.(1)的极坐标方程为,的极坐标方程为.(2).22.(1)(2)由()知的极坐标方程为,,所以.解析:当时,,当时,,此时的解集为;当时,,此时的解集为;当时,,此时的解集为.综上所述的解集为.由()可知当时,在内恒立,当时,在内恒成立;当时,在内,不满足在上恒成立的条件,综上所述.(1).(2).23.。
(全国卷)高三数学第一次大联考试题理
(全国卷)2020届高三数学第一次大联考试题 理考生注意:1.本试卷共150分,考试时间120分钟。
2.请将试卷答案填在试卷后面的答题卷上。
3.本试卷主要考试内容:集合与常用逻辑用语、函数与导数。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
{}{}223,,1A x x x N B x x =-<<∈=> ,则集合A∩B=A.{2}B.{-1,0,1)C.{-2,2}D.{-1,0,1,2}2.命题“∀x>0,x(x +1)>(x -1)2”的否定为;A.20,(1)(1)x x x x ∀>+≤-B.20,(1)(1)x x x x ∀≤+≤-C.20,(1)(1)x x x x ∃>+≤-D.20,(1)(1)x x x x ∃≤+≤- 3.21232x dx x -+=+⎰ A.2+ln2 B.3-ln2 C.6-ln2 D.6-ln44.设集合A 、B 是全集U 的两个子集,则“A B ⊆”是“U AB φ= ”的2,0()0x x f x x -⎧≤⎪=> ,若f(x 0)<2,则x 0的取值范围是A.(-∞,-1)B.(-1,0]C.(-1,+∞)D.(-∞,0)01021:1,log ;:,2x p x x q x R e x ∃>>∀∈>,则下列说法中正确的是 A.p∨q 是假命题 B.p∧q 是真命题 C.p∨(⌝q)是真命题 D.p∧(⌝q)是假命题 {}{}12,15A x x B x x =-<≤=≤-≤, 定义集合{},,A B z z x y x A y B *==+∈∈,则()B A B **等于 A.{}61x x -<≤ B.{}112x x <≤ C.{}110x x -<≤ D.{}56x x -<≤8.已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x - a -x +2(a>0且a≠1),若g(2)=a ,则函数f(x 2+2x)的单调递增区间为A(-1.1) B.(-∞,1) C.(1,+∞) D.(-1,+∞)9.如图是二次函数f(x)=x 2-bx +a 的部分图象,则函数g(x)=alnx + f’(x)的零点所在的区间是 A.(14,12) B.(12,1) C.(1,2) D.(2,3) ∈R ,函数f(x)满足f(2-x)=-f(x),且当x≧1时,函数f(x)=1x -。
【高中教育】2020高三数学上学期第一次联考试题理(含解析)
【20xx精选】最新高三数学上学期第一次联考试题理(含解析)数学试题(理科)1。
已知集合,则()A。
B。
C。
D。
【答案】B【解析】因为,所以,故选B。
点睛:本题考查集合的交并补运算,涉及函数定义域值域问题,属于容易题。
解决集合问题,首先要化简集合,一般要进行不等式求解,函数定义域、值域等相关问题的处理,化简完成后,进行集合的交并补相关运算,注意利用数轴,数形结合,特别是端点处值的处理,一定要细心谨慎。
2。
双曲线的渐近线方程为()A。
B。
C。
D。
【答案】A【解析】根据双曲线的渐近线方程知,,故选A。
3。
已知,其中是实数,则咋复平面内,复数所对应的点位于()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限【答案】D【解析】因为,所以,对应的点为,故点在第四象限,选D。
点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数,共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化,转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4。
曲线在点处的切线方程为()A。
B。
C。
D。
【答案】C【解析】因为,所以切线斜率,切线方程为,即,故选C。
5。
已知公比不为1的等比数列的前项和为,且成等差数列,则()A。
B。
C。
D。
【答案】D【解析】设等比数列的公比为,则由得,,即,解得或(舍去),又由得,所以,,故选D。
6。
设是两条不同的直线,是两个不同的平面,则()A。
若,则B。
若,则C。
“直线与平面内的无数条直线垂直”上“直线与平面垂直”的充分不必要条件D。
若,则【答案】D【解析】对A,符合条件的直线可能∥,故不正确;对B,两个垂直平面内的两条直线不一定垂直,故不正确;对C, 直线与平面内的无数条直线垂直,并不能推出直线垂直平面内的任意一条直线,故不正确;对D,根据平面垂直的定义,可证明两个平面垂直,故正确。
河北省2020届高三上学期第一次大联考理综试卷及参考答案
理科综合试卷相对原子质量:H-l C-12 N-14 0-16 S-32 Cl-35.5 Na-23 Al-27 Ba-137 本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分:300分;考试时间:150分钟第I卷(选择题部分,共126分)一、选择题(本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.细胞衰老是细胞正常的生命现象,下列有关叙述不正确的是( )A.人体细胞会随着分裂次数的增多而衰老B.衰老细胞中的自由基可攻击细胞中的多种物质分子C.细胞衰老导致各种酶的活性降低,物质运输功能下降D.细胞衰老最终表现在细胞的形态、结构和功能发生变化2.动植物细胞中都含有酯酶,去除细胞壁的植物细胞称为原生质体.测定原生质体活力的常用方法之一是荧光素双醋酸酯(FDA)染色法,其基本原理是FDA本身无荧光,可自由通过细胞膜,经细胞内的酯酶分解可产生荧光素,荧光素积累在细胞内并能产生绿色荧光.下列相关叙述不正确的是( )A.可用酶解法处理植物细胞获得原生质体B.FDA通过细胞膜不需要载体蛋白的协助C.将植物细胞置于FDA溶液中,不发生质壁分离D.FDA进入动物细胞内,可引起细胞产生绿色荧光3.某种植物幼苗经过单侧光照射后,甲、乙两侧的生长情况如图所示,对照组未经单侧光处理.下列叙述正确的是( )A.去除尖端后照光,尖端两侧的生长速率加快B.乙为向光侧,其IAA含量低于甲侧和对照组C.生长素能促进向光侧和背光侧细胞的分裂和生长D.向光生长是由于IAA极性运输导致分布不均匀所致4.叶绿体中存在具有编码功能的cpDNA,这些cpDNA借助细胞核DNA编码的酶系统合成多肽,用于光合作用的各个环节.下列叙述不正确的是( )A.细胞核DNA可调控叶绿体的部分功能B.cpDNA彻底水解可得到六种不同的产物C.叶绿体中的DNA能控制合成相应的蛋白质D.cpDNA编码的多肽可参与叶绿体中的各项活动5.浮游植物A比浮游植物B对N、P的吸收能力强,沉水植物C比浮游植物A对N、P的吸收能力强.某环保部门欲选用其中两种植物投放到当地N、P较高的水体,以净化水体.应选用投放的的两种植物及对水体生态系统的影响是( )A. 浮游植物A和沉水植物C 群落的种间关系类型不变B. 浮游植物A和沉水植物C 食物链的营养级数将增加C. 浮游植物A和浮游植物B 群落的垂直结构保持不变D. 浮游植物A和浮游植物B 群落的能量流动方向改变6.果蝇的长翅与无翅是一对相对性状,由常染色体上的一对等位基因控制.假设果蝇的长翅(A)对无翅(a)为显性性状.在一个随机交配多代的无变异的果蝇群体中,长翅和无翅的基因频率各占一半,现需对果蝇种群进行人工选择,逐代迁出幼年无翅个体.下列说法不正确的是( )A.迁出前,该种群长翅的个体数量比无翅的个体数量多B. 迁出前,随着交配代数增加,种群中纯合子的比例不变C. 迁出后,种群中A和Aa的频率均随迁出代数增加逐渐增加D. 迁出后, 种群中A和AA的频率均随迁出代数增加逐渐增加7.化学知识无处不在,下列与古诗文记载对应的化学知识不正确的是( )8.N A为阿伏加德罗常数的值.下列说法正确的是( )A.18 g D2O和18 g H2O中含有的质子数均为10N AB.1 L 0.1 mol·L-1磷酸(H3PO4)溶液中含有的H+离子数为0.3N AC.40g 34%的过氧化氢催化分解,生成0.1 mol氧气时转移的电子数为0.2N AD.密闭容器中1mol NO与0.5 mol O2充分反应,产物的分子数为N A9.短周期主族元素A、B、C、D的原子序数依次增大,A、D同主族且D原子核电荷数等于A 原子核电荷数的2倍,B、C原子的核外电子数之和与A、D原子的核外电子数之和相等.下列说法中一定正确的是 ( )A. B的原子半径比A的原子半径小B. A形成的氢化物分子中不可能含非极性键C. B单质与水反应,水可能作氧化剂也可能作还原剂D. C、D的最高价氧化物对应的水化物是酸10.有Fe2+、Fe3+、H+、NH4+、NO3-和H2O六种粒子,属于同一氧化还原反应中的反应物和生成物,下列叙述不正确的是( )A.被氧化和被还原的离子数目比为8∶1B.该反应说明Fe2+、NO3-、、H+在溶液不能大量共存C.每1 mol NO3-发生氧化反应,转移8 mol e-D.若利用该反应设计原电池,则负极反应为:Fe2+-e-=Fe3+A.糖类和蛋白质都属于天然高分子化合物B.CH 3CH(CH 3)CH 2COOH 系统命名法命名:2-甲基丁酸C.重结晶提纯苯甲酸:将粗品水溶、过滤、蒸发、结晶D.有机物()可与乙醇、乙酸反应,且反应类型相同13.某温度下,向10 mL 0.1 mol/L CuCl 2溶液中滴加0.1mol/L 的Na 2S 溶液,滴加过程中-lg c(Cu 2+)与Na 2S 溶液体积的关系如图所示.下列有关说法正确的是( )A.0.1mol/LNa 2S 溶液中:c(OH -)=c(H +)+c(HS -)+c(H 2S)B.a 、b 、c 三点对应的溶液中,水的电离程度最大的为b 点C.该温度下,Ksp(CuS)的数量级为10-36 D.向10 mL Ag +、Cu 2+物质的量浓度均为0.1mol/L 的混合溶液中逐滴加入0.01mol/L 的Na 2S 溶液,Cu 2+先沉淀[已知:Ksp(Ag 2S)=6.4×10-50]二、选择题(本题共8小题,每小题6分,在每小题给出的四个选项中,其中14-18小题只有一项符合题目要求,第19-21小题有多项符合题目要求。
河北省2020届高三数学上学期第一次大联考试题理[含答案]
阶段
幼年期
成长期
成年期
重量(Kg)
[2,18)
[18, 82)
[82, 98]
根据以往经验,两个养猪场 内猪的体重 X 均近似服从正态分布
X~N (50,162 ) .
由于我国有关部门加强对大型养猪场 即将投放市场的成年期的猪监控力度,高度重视其质量 保证,为了养出健康的成年活猪,甲、乙两养猪场 引入两种不同的防控及养殖模式.
y
3
3 t
2
43
(Ⅰ)以坐标原点为极点, x 轴正半轴为极轴且具有相同单位长度建立极坐标系,求直线
l 和曲线 C 的极坐标方程;
(Ⅱ)直线 l 与曲线 C 交于 M 、 N 两点,求 1 1 值. | OM | | ON |
23.(本小题满分 10 分)选修 4-5:不等式选讲
设函数 f x 2x 1 x 3 . (Ⅰ)解不等式 f x 0 ; (Ⅱ)若 f x 3 x 3 a 对一切实数 x 均成立,求实数 a 的取值范围.
数学试卷参考答案
注意事项:
1、本试卷分第 Ⅰ卷(选择题)和第 Ⅱ卷(非选择题)两部分。答题前,考生务必
将自己的姓名、考生号填写在答题卡上。
2、回答第 Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号
涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。写在试卷上无效。
3、回答第 Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
B. “ x 1 ”是“ x2 5x 6 0 ”的充分不必要条件,因为由" x2 5x 6 0" 得到“
x 1 或 x 6 ”,所以该选项是错误的;
C.
命题“若 x
1 1, 则 x
2020届高三数学上学期第一次联考试题 理 (1)
2020届高三数学上学期第一次联考试题理本试卷分第I卷(选择题)和第II卷(非选择题)两部分注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码或二维码准确粘贴在条形码或二维码者粘贴处。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带或刮纸刀。
第I卷一.选择题(本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则()....2.设复数满足(是虚数单位),的共轭复数为,则()....3.已知,命题,,则().是假命题,,;.是假命题,,;.是真命题,,;.是真命题,,;4.公元年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值,这就是著名的徽率,右图是利用刘徽的割圆术设计的程序框图,则输出的值为( )(参考数据:)....5.一个几何体的三视图如图所示,则该几何体的各个表面中,最大面的面积为()....6.已知函数,(为自然对数的底数)的图象与直线,轴围成的区域为,直线与围成的区域为,在区域内任取一点,则该点落在区域内的概率为()....7.已知动点满足,且代数式的最小值为,则实数的取值为()....8.已知函数()的部分图象如图所示,点,是其上两点,若将的图象向右平移个单位长度,得到函数的图象,则函数图象的一条对称轴方程为()....9.已知腰长为的等腰直角中,为斜边的中点,点为该平面内一动点,若,则的最小值为()....10.已知、分别是具有公共焦点、的椭圆和双曲线的离心率,是两曲线的一个公共点,是的中点,且,则=()....11.若数列的前项和满足:对都有(为常数)成立,则称数列为“和敛数列”,则数列,,,中是“和敛数列”的有().个.个.个.个12.定义在上的偶函数满足,且当时,,若函数有三个零点,则正实数的取值范围为()... .第II卷二.填空题:(本题共4小题,每小题5分,共20分)13.已知函数,分别是定义在上的奇函数和偶函数,且,则_ _______________14.设,若,则负实数______________15.已知抛物线的焦点为,过点的直线与抛物线交于、两点,且直线与圆交于、两点,若,则直线的斜率为__________16.在四面体中,,,,二面角的大小为,则四面体外接球的半径为________________三.解答题:(本题共70分. 解答应写出文字说明,证明过程或演算步骤)17.(12分)已知在中,角,,的对边分别为,,,且⑴求角的大小;⑵若,求周长的最大值.18.(12分)如图所示四边形与均为菱形,且⑴求证:平面;⑵求直线与平面所成角的正弦值.19.(12分)2019年初,某市为了实现教育资源公平,办人民满意的教育,准备在今年8月份的小升初录取中在某重点中学实行分数和摇号相结合的录取办法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
河北省2020届高三毕业班上学期第一次大联考
数学(理)试题
注意事项:
1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合2{|1}A x y x ==-和集合2{|}B y y x ==,则A B I 等于( )
A .{}(0,1),(1,0)
B .[0,)+∞
C .[1,1]-
D .[0,1]
2.已知x R ∈,复数11i z x =+,22i z =-,若12z z ⋅为纯虚数,则实数x 的值为( )
A .2-
B .12-
C .2或12
- D .1 3.如图是调查某学校高一、高二年级学生参加社团活动的等高条形图,阴影部分的高表示参加社团的频率.已知该校高一、高二年级学生人数均为600人(所有学生都参加了调查),现从参加社团的同学中按分层抽样的方式抽取45人,则抽取的高二学生人数为( )
A.9
B.18
C.27
D.36
4.等比数列{}n a 的前n 项和为n S ,已知2533a a a =,且4a 与79a 的等差中项为2,则5S =( )
A .1123
B .112
C .12127
D .121 5.下列有关命题的说法正确的是( )
A .若“p q ∧”为假命题,则“p q ∨”为假命题
B .“1x =-”是“2560x x --=”的必要不充分条件
C .命题“若1x >,则11x
<”的逆否命题为真命题 D .命题“0x ∀>,201920190x +>”的否定是“00x ∃≤,020*******x +≤”
6.已知直线240x y +-=经过椭圆22
221x y a b
+=(0a b >>)的右焦点2F ,且与椭圆在第一象限的交点为A ,与y 轴的交点为B ,1F 是椭圆的左焦点,且1||||AB AF =,则椭圆的方程为( )
A .22
14036x y +=
B .22
12016
x y += C .22
1106
x y += D .2
215
x y +=
7.为了得到函数cos 2y x =的图象,可以将函数sin(2)4y x π=+
的图象( ) A .向左移4
π个单位 B .向左移8π个单位 C .向右移4π个单位 D . 向右移
8π个单位 8.如图所示是某多面体的三视图,图中小方格单位长度为1,则该多 面体的侧面最大面积为( )。