合情推理与演绎推理习题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )
A .121
B.123 C .231 D .211
解析:选B .法一:令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.
法二:由a +b =1,a 2+b 2=3,得ab =-1,代入后三个等式中符合,则a 10+b 10=(a 5+b 5)2-2a 5b 5=123.
2.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )
A .21
B.34 C .52 D .55
解析:选D .因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.
3.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,
1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )
A .(7,5)
B.(5,7) C .(2,10) D .(10,2)
解析:选B .依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整
数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2
个“整数对”,注意到10×(10+1)2<60<11×(11+1)2
,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).
4.如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD
与AB 的距离之比为m ∶n ,则可推算出:EF =ma +nb m +n
,用类比的方法,推想出下面问题的结果.在上面的梯形ABCD 中,分别延长梯形的两腰AD 和BC 交于O 点,设△OAB ,△ODC 的面积分别为S 1,S 2,则△OEF 的面积S 0与S 1,S 2的关系是( )
A .S 0=mS 1+nS 2m +n
B.S 0=nS 1+mS 2m +n C .S 0=m S 1+n S 2m +n D .S 0=n S 1+m S 2m +n
解析:选C .在平面几何中类比几何性质时,一般是由平面几何点的性质类比推理线的
性质;由平面几何中线段的性质类比推理面积的性质.故由EF =ma +nb m +n 类比到关于△OEF 的面积S 0与S 1,S 2的关系是
S 0=m S 1+n S 2m +n
,故选C . 5.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )
A .2人
B.3人 C .4人 D .5人
解析:选B .假设满足条件的学生有4位及4位以上,设其中4位同学分别为甲、乙、丙、丁,则4位同学中必有两个人语文成绩一样,且这两个人数学成绩不一样,那么这两个人中一个人的成绩比另一个人好,故满足条件的学生不能超过3人.当有3位学生时,用A ,B ,C 表示“优秀”“合格”“不合格”,则满足题意的有AC ,CA ,BB ,所以最多有3人.
6.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,
甲说:我去过的城市比乙多,但没去过B 城市;
乙说:我没去过C 城市;
丙说:我们三人去过同一城市.
由此可判断乙去过的城市为________.
解析:由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过城市A ,由此可知,乙去过的城市为A .
答案:A
7.(2018·沧州联考)在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说: