八年级数学上册三角形命题与证明

合集下载

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明 三角形内角和定理及推论

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明  三角形内角和定理及推论
内角和为________;
540°
3 4
720°
(2)如图,从n边形的一个顶点可以引出________条对角(线n-,3把) n边形分成 ________个三角形. n边形的内角和为______________(用含n的代数式表示); (n-2) (n-2)·180°
(3)请根据上面你所找到的规律计算十二边形的内角和. 解:十二边形的内角和为(12-2)×180°=1800°.
沪科版八年级上
第13章 三角形中的边角关系、命题与证明
13.2 三命题与证明 第3课时三角形内角和定理及推论
核心必知 1 180° 2 互余 3 互余
提示:点击 进入习题
1B 2C 3B 4 见习题 5C
答案显示
6 见习题 7 见习题 8B 9 50°或80° 10 见习题
11 见习题 12 见习题 13 见习题
证明:∵CD⊥AB,∴∠CDB=90°, ∴∠BCD=90°-∠B=28°, ∴∠FCD=∠ECB-∠BCD=16°. ∵∠CDF=74°, ∴∠CFD=180°-∠FCD-∠CDF=90°, ∴△CFD是直角三角形.
12.如图,有一艘渔船上午9时在A处沿正东方向航行,在A处测得灯塔C在北 偏东60°方向上,渔船行驶2h到达B处,在B处测得灯塔C在北偏东15° 方向上,试求△ABC各内角的度数.
10.如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使 ∠CAD=∠D,求∠BAD的度数.
解:∵∠ACB=80°, ∴∠ACD=180°-∠ACB=180°-80°=100°. 又∵∠CAD=∠D,∠ACD+∠CAD+∠D=180°, ∴∠CAD=∠D=40°. 在△ABD中,∠BAD=180°-∠ABD-∠D= 180°-46°-40°=94°.

沪科8年级数学上册第13章2 命题与证明

沪科8年级数学上册第13章2 命题与证明

作为进一步判断其他命题真假的依据,只不过基本事实
(公理) 是最原始的依据;而命题不一定是真命题,因而不
能直接用来作为判断其他命题真假的依据.
例 4 填写下列证明过程中推理的依据.
知4-练
如图13.2-1,已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分
∠ABO与AC相交于点E,∠A=∠C.
知识点 5 三角形内角和定理及推论1, 2
知5-讲
1. 定理 三角形的内角和等于180°. 几何语言:在△ABC中,∠A+∠B+∠C=180°.
2. 三角形内角和定理的证明
知5-讲
证明方法 方法一
图示
证明过程
如图,过点A作l∥BC,则 ∠2=∠B,∠3=∠C. 因为 ∠1+∠2+∠3=180°,所 以∠1+∠B+∠C=180°.
知1-练
解:(1)(2)(3)(4)(5)(7)是命题,其中(2)(3)是真命题, (1)(4)(5)(7)是假命题.(6)不是命题.
知1-练
1-1. [期末·宿州桥区]下列命题是真命题的是( C ) A. 如果AB=BC,那么点C是AB的中点 B. 三条线段的长分别为a,b,c,如果a+b > c,那 么这三条线段一定能组成三角形 C. 三角形的内角和等于180° D. 如果| a |=| b |,那么a=b
续表: 证明方法
方法二
图示
知5-讲
证明过程 如图, 过点C作CD∥AB, 则∠1=∠A,∠2=∠B. 因 为∠1+∠2+∠ACB= 180°,所以∠A+∠B+ ∠ACB=180°.
续表: 证明方法
方法三
图示
知5-讲
证明过程 如图,过点D作DE∥AB, DF∥AC,则∠1=∠C, ∠2=∠4,∠3=∠B,∠A =∠4. 所以∠2=∠A. 因为 ∠1+∠2+∠3=180°,所 以∠A+∠B+∠C=180°.

八年级上册数学三角形三边关系-命题与证明

八年级上册数学三角形三边关系-命题与证明

⼋年级上册数学三⾓形三边关系-命题与证明三⾓形中的边⾓关系、命题与证明【学习⽬的】①理解与三⾓形有关的基本概念②命题与证明考点⼀:三⾓形中的边⾓关系知识点拨:1.三⾓形中的有关概念(1)三⾓形的概念:由不在同⼀直线上的三条线段⾸尾依次相接所组成的封闭图形叫做三⾓形.⽤符号“△”表⽰.(2)三⾓形的顶点、边和⾓:①边的表⽰;②⾓的表⽰;③对边、对⾓的概念.2.三⾓形按边的关系分类(1)不等边三⾓形:三条边互不相等;②等腰三⾓形:有两条边相等的三⾓形;(2)等边三⾓形:三条边都相等的三⾓形(等腰三⾓形的特例)3.三⾓形的三边关系:三⾓形中任何两条边的和⼤于第三边,两边的差(绝对值)⼩于第三边.4.三⾓形中⾓的关系(1)按⾓分类:①直⾓三⾓形;②斜三⾓形:锐⾓三⾓形和钝⾓三⾓形.(2)三⾓形的内⾓和等于180 .注意:①⽤Rt△ABC表⽰直⾓三⾓形;②任意⼀个三⾓形最多有三个锐⾓;最少有两个锐⾓;最多有⼀个钝⾓;最多有⼀个直⾓;③任何三⾓的最⼤内⾓不能⼩于60 ,最⼩内⾓不能⼤于60 .5.三⾓形中的⼏条重要线段(1)⾓平分线:⾓平分线把⾓分成两个相等的⾓.(三条⾓平分线的交点就是三⾓形的外⼼)(2)中线:三⾓形⼀顶点与它对边中点的线段叫中线.(三条中线的交点就是三⾓形的重⼼)(3)⾼线:三⾓形⼀顶点与它对边所在直线的垂线段叫三⾓形的⾼线.注意:三⾓形的中线所分得的两个三⾓形的⾯积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所⽰,以点A为顶点的三⾓形共有()A.6个B.7个C.8个D.9个A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三⾓形的个数有()A.1 B.2 C.3 D.4A.锐⾓三⾓形B.钝⾓三⾓形C.直⾓三⾓形D.⽆法确定例5:如图,CD、CE、CF分别是△ABC的⾼、⾓平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定⼀条直线B.两直线平⾏,同位⾓相等C.三⾓形的⾼、⾓平分线和中线都是线段D.有⼀个⾓是直⾓的三⾓形叫做直⾓三⾓形基础训练1、如图所⽰,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三⾓形,有个等边三⾓形.第1题图第3题图第4题图2、⼀个等腰三⾓形中,⼀边长为9cm,另⼀边长为5cm,则等腰三⾓形的周长是.3、如图,AD、BE、CF分别是△ABC的⾼、中线、⾓平分线.则△ADC的⾼、中线、⾓平分线分别是.4、如图,图中以AB为边的三⾓形的个数是()A.3B.4C.5D.6A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.不能确定6、三⾓形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三⾓形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三⾓形的三边长分别为2,9,1-2a,则a的取值范围是()A.3B.-5C.-5D.不能确定9、三⾓形的内⾓和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54 ,∠B=36 ,则△ABC是()A.锐⾓三⾓形B.钝⾓三⾓形C.直⾓三⾓形D.等腰三⾓形11、当三⾓形中⼀个内⾓α是另⼀个内⾓β的2倍时,我们称此三⾓形为“特征三⾓形”,其中α称为“特征⾓”.如果⼀个“特征三⾓形”的“特征⾓”为100°,那么这个“特征三⾓形”的最⼩内⾓的度数为()A.30°B.50°C.80°D.100°12、三⾓形的⾓平分线、中线和⾼()A.都是射线B.都是直线C.都是线段D.都在三⾓形内13、如图所⽰,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下⾯四个命题中属于定义的是()A.两点之间线段最短B.对顶⾓相等C.有两条边相等的三⾓形叫等腰三⾓形D.内错⾓相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC⼀定是()A.锐⾓三⾓形B.直⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.如图,AE是△ABC的中线,D是BE上⼀点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的⾼,以下作法正确的是()4.下列每组数分别是三根⼩⽊棒的长度,⽤它们能摆成三⾓形的是()A.3cm,4cm,8cmB.8cm ,7cm,15cmC.5cm ,5cm,11cmD.13cm ,12cm,20cm5.如图,在△ABC中,点D是边AB上的⼀点,点E是边AC上⼀点,且DE∥BC,∠B=40 ,∠AED=60 ,则∠A的度数是()A.100 B.90 C.80 D.70第5题图第7题图第8题图6.⼀个三⾓形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的⾼,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(α<β),则∠DAE=度.(⽤α、β含的代数式表⽰)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的⼤⼩是.9.已知⼀个等腰三⾓形的两边长分别为2和4,则该等腰三⾓形的周长是_____.10.如图,在△ABC中,∠A=40 ,D点是∠ABC和∠ACB⾓平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15 ,∠BAD=40 ,求∠BED的度数;(2)在△BED 中,作BD 边上的⾼;(3)若△ABC 的⾯积为40,BD=5,求△BDE 中BD 边上的⾼为多少?12.如图,在△ABC 中,AD 是BC 边上的⾼,AE 、BF 是⾓平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠DAC ,∠BOA.能⼒提升1.各边长度都是正整数且最⼤边长为8的三⾓形共有个.2.三⾓形的三边长分别为a 、b 、c ,且(a -b-c)?(b-c)=0,则此三⾓形为________三⾓形.3.如图所⽰,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12=?ABC S ,则图中阴影部分⾯积是_____.4.如图所⽰,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且24cm S ABC =?,则阴影S 等于()5.如图,⽤钢筋做⽀架,要求BA 、DC 相交所成的锐⾓为32 ,现测得∠BAC=∠DCA=115 ,则这个⽀架符合设计要求吗?为什么?6.设三⾓形的三条边为整数a 、b 、c 且c b a ≤≤,当b=4时,符合条件的a 、b 、c 的取值若下表:(1)将表格补充完整;(2)满⾜条件的三⾓形共有多少个?其中等腰三⾓形有多少个?等边三⾓形⼜有多少个? 考点⼆:命题与证明例1:下列语句不是命题的是()A.直⾓都等于90 B.对顶⾓相等 C.互补的两个⾓不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数⼀定是有理数;(2)同⾓的补⾓相等;(3)两个锐⾓互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平⾏,同位⾓相等;(2)若a=0,则a b=0;(3)对顶⾓相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出⼀个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC 中,∠ABC=66 ,∠ACB=54 ,BE 、CF 是两边AC 、AB 上的⾼,它们交于点H.求∠ABE 和∠BHC 的度数.基础训练1、下列语句中,不是命题的是() A.两点之间线段最短B.对顶⾓相等C.不是对顶⾓的两个⾓不相等D.过直线AB 外⼀点P 作直线AB 的垂线2、下列命题中,是真命题的是() A.三⾓形的⼀个外⾓⼤于任何⼀个内⾓ B.三⾓形的⼀个外⾓等于两个内⾓之和 C.三⾓形的两边之和⼀定不⼩于第三边D.三⾓形的三条中线交于⼀点,这个交点就是三⾓形的重⼼3、“两条直线相交只有⼀个交点”的题设是()A.两条直线B.相交C.只有⼀个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外⾓B.∠B<∠1+∠2C.∠ACD是△ABC的外⾓D.∠ACD>∠A+∠B第5题图第6题图第7题图6、⼀副三⾓板有两个直⾓三⾓形,如图叠放在⼀起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三⾓形是等腰三⾓形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所⽰∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()⼜因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直⾓都相等;(2)末位数字是5的整数能被5整除;(3)同⾓的余⾓相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐⾓的和⼀定是钝⾓;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的⼀点,过E作ED⊥AB,垂⾜为D,若∠1=∠2,,则△ABC 是直⾓三⾓形吗?为什么?强化训练1.如图,在锐⾓三⾓形ABC中,CD、BE分别是AB、AC边上的⾼,且CD、BE相交于点P.若∠A =50°,则∠BPC的度数是()A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另⼀个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3第2题图第6题图3.⼀个三⾓形的三个外⾓之⽐为3:4:5,则这个三⾓形三个内⾓之⽐是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的⼀个反例可以是() A.a =-2 B.31=a C. a =1 D.2=a 5.下列命题:①对顶⾓相等;②同位⾓相等,两直线平⾏;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题⼀定成⽴的有() A.①②③④ B.①④ C.②④ D.②6.如图,CE 是△ABC 的外⾓∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= () A.35 B.95 C.85 D.757.如图,在△ABC 中,∠B=40 ,三⾓形的外⾓∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直⾓三⾓形中两个锐⾓的平分线相交所成的锐⾓的度数是. 9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的⾼,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外⾓平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°,求∠DAE 的度数.12.如图,D是△ABC内的任意⼀点.求证:∠BDC=∠1+∠A+∠2.13.⽤两种⽅法证明“三⾓形的外⾓和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外⾓.求证:∠BAE+∠CBF+∠ACD=360 .证法1:,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180? 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并⽤不同的⽅法完成证法2.能⼒提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想⼀想:什么样的两个数之积等于这两个数的和?设n 表⽰正整数,⽤关于n 的代数式表⽰这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC .2224,24;1139393,3;22224164164,4;33335255255,5.4444?=+=?=+=?=+=?=+=(1)求证:∠BAC=90°;(2)直接运⽤这个结论解答题⽬:⼀个三⾓形⼀边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC中AB=AC,∠BAC=900,直⾓∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F.(1)求证:AE=CF(2)是否还有其他结论,不要求证明(⾄少2个)。

2024-2025学年初中数学八年级上册(冀教版)教案第13章全等三角形

2024-2025学年初中数学八年级上册(冀教版)教案第13章全等三角形

第十三章全等三角形13.1 命题与证明(1(2题教学反思例1 判断下列命题的真假,写出逆命题,并判断逆命题的真假:(1)如果两条直线相交,那么它们只有一个交点;(2)如果a >b ,那么a 2>b 2;(3)如果两个数互为相反数,那么它们的和为零; (4)如果ab <0,那么a >0,b <0. 教师引导,学生分析:可以先把原命题的条件和结论写出来,然后调换条件和结论即可得逆命题,最后判断真假性.教师提示:写逆命题并不是简简单单地把条件和结论互换即可,还要使命题的语句具有逻辑性. 解:(1)命题是真命题.逆命题为:如果两条直线只有一个交点,那么它们相交.是真命题.(2)是假命题.逆命题为:如果a 2>b 2,那么a >b ,是假命题.(3)是真命题.逆命题为:如果两个数的和为零,那么它们互为相反数,是真命题.(4)是假命题.逆命题为:如果a >0,b <0,那么ab <0.是真命题. 练习:请写出下列命题的逆命题,并指出原命题和逆命题的真假性:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. (2)如果两个角是对顶角,那么这两个角相等.(3)如果一个数能被3整除,那么这个数也能被6整除. (4)已知两数a ,b .如果a +b >0,那么a -b <0. 学生独立完成,教师点评:(1)原命题是真命题,逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么内错角相等.逆命题也为真命题.(2)原命题是真命题,逆命题为:如果两个角相等,那么这两个角是对顶角. 逆命题为假命题.(3)原命题是假命题,逆命题为:如果一个数能被6整除,那么这个数也能被3整除.逆命题为真命题.(4)原命题是假命题,逆命题为:如果a -b <0,那么a +b >0.逆命题为假命题. 2.证明教师提问:刚才你们是怎么判断一个命题是假命题的? 学生:举反例推翻这个命题.教师:那怎么判断一个命题是真命题呢?也用举例吗?仅仅举几个例子足以说明它是真命题吗?命题有真命题,也有假命题,要说明一个命题是假命题,只要举出反例即可;要说明一个命题是真命题,则需要进行推理论证,即证明.定义:要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明. 例2 证明:平行于同一条直线的两条直线平行.已知:如图 ,直线a ,b ,c ,a ∥c , b ∥c . 求证: a ∥b .证明:如图,作直线d ,分别与直线 a ,b ,c 相交∵ a ∥c (已知),∴ ∠1=∠2(两直线平行,同位角相等). ∵ b ∥c (已知), 教学反思A BDCE∴ ∠2=∠3(两直线平行,同位角相等). ∴ ∠1=∠3(等量代换). ∴ a ∥b (同位角相等,两直线平行). 即平行于同一条直线的两条直线平行.教师:通过这个题,如何做证明题?(学生讨论) 证明的步骤:第一步:根据题意画图,将文字语言转换为符号(图形)语言; 第二步:根据条件、结论、 图形写出已知、求证; 第三步:根据基本事实、已有定理等进行证明.定义:如果一个定理的逆命题是真命题,那么这个逆命题也可以称为原定理的逆定理.我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是定理,因此它们就是互逆定理..练习:已知:如图,点O 在直线AB 上,OD ,OE 分别是BOC AOC ∠∠,的平分线. 求证:OD ⊥OE .学生独立完成,教师点评:证明:∵ 点O 在直线AB 上,∴ ∠AOC +∠BOC =180°(平角的定义). ∵ OD ,OE 分别是∠AOC ,∠BOC 的平分线,∴ ∠DOC =21∠AOC ,∠EOC = 21∠BOC (角平分线的定义), ∴ ∠DOC +∠EOC =21(∠AOC +∠BOC )=21×180°=90°.∴ OD ⊥OE .课堂练习1.命题“如果a =b ,那么3a =3b ”的逆命题是______________________.2.写出下列命题的逆命题:(1)如果两直线都和第三条直线垂直,那么这两直线平行; (2)若a +b >0,则a >0,b >0; (3)等腰三角形的两个底角相等.3.已知:如图,直线a ,b 被直线c 所截,∠1与∠2互补. 求证:a ∥b.参考答案1.如果3a =3b ,那么a =b.2.解: (1)如果两直线平行,那么这两直线都和第三条直线垂直.(2)若a >0,b >0,则a +b >0.(3)有两个角相等的三角形是等腰三角形.3.证明:∵ ∠1和∠3是对顶角,教学反思O∴ ∠1=∠3.又∵ ∠1与∠2互补,∴ ∠1+∠2=180°.∴ ∠2+∠3=180°,∴ ∠1=∠3(等角的补角相等). ∴ a ∥b (同旁内角互补,两直线平行).课堂小结(学生总结,教师点评) 1.互逆命题 2.证明证明的一般步骤:第一步,依据题意画图,将文字语言转换为符号(图形)语言.第二步,根据图形写出已知、求证. 第三步,根据基本事实、已有定理等进行证明.布置作业完成教材第34页习题第1,2,3题.板书设计 13.1 命题与证明教学反思一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题.命题与证明互逆命题命题与证明要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明.第十三章全等三角形13.2 全等图形教学目标1.理解全等图形,了解全等图形的对应点、对应边和对应角.2.理解全等三角形的概念,能识别全等三角形的对应边、对应角.3.知道全等三角形的性质.教学重难点重点:了解全等图形的对应点、对应边和对应角;知道全等三角形的性质.难点:理解全等三角形的概念,能识别全等三角形的对应边、对应角.教学过程导入新课观察思考:(学生观察,教师引导)问题:如图,观察给出的五组图形.(1)每组图形中,两个图形的形状和大小各有怎样的关系?(2)先在半透明纸上画出同样大小的图形,再将每组中的一个图形叠放到另一个图形上,观察它们是否能够完全重合.(4)探究新知1.全等图形同桌两人合作完成,学生回答,教师评价.实验发现:(1)(2)(3)组中的两个图形能够完全重合,(4)(5)组中的两个图形不能完全重合.定义:能够完全重合的两个图形叫做全等图形.考考你对全等图形的理解:观察下面三组图形,它们是不是全等图形?(1)(2)(3)教师归纳:全等图形的性质:全等图形的形状和大小都相同.有关的概念:对应点当两个全等的图形重合时,互相重合的点叫对应点.如图,△ABC与△A′B′C′是两个全等三角形,点A和点A′,点B和点B′,点C和点C′分别是对应点.教学反思对应边当两个全等的图形重合时,互相重合的边叫对应边.如AB和A′B′,CB和C′B′,AC和A′C′.对应角当两个全等的图形重合时,互相重合的角叫对应角.如∠A和∠A′,∠B和∠B′, ∠C和∠C′.2.全等三角形全等的表示方法“全等”用符号“≌”表示,读作“全等于”.如△ABC与△A′B′C′全等,记作△ABC≌△A′B′C′,读作三角形ABC全等于三角形A′B′C′.(教师提示:书写时应把对应顶点写在对应的位置上)3.全等三角形的性质根据以下几个问题归纳全等三角形有哪些性质?(教师引导,学生讨论)1.两个能够完全重合的线段有什么关系?2.两个能够完全重合的角有什么关系?3.两个全等三角形的对应边之间有什么关系?对应角之间有什么关系?师生共同归纳:全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的性质的几何语言:(学生完成填空)如图,∵△ABC≌△A′B′C′,∴AB=____,AC=____,BC=_____(全等三角形对应边_____),∠A=_____,∠B=_____,∠C=_____(全等三角形对应角_____).练习:如图1,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个全等三角形的对应角.教师引导,学生分析:找对对应点是解决此题的关键(△BOD与△COE中,B-C,D-E,O-O;△ADO与△AEO中A-A,D-E,O-O)解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.图1图2例已知:如图2,△ABC≌△DEF,∠A=78°,∠B=35°,BC=18.(1)写出△ABC和△DEF的对应边和对应角.(2)求∠F的度数和边EF的长.(学生独立完成,教师评价)解:(1)边AB和边DE,边BC和边EF,边AC和边DF分别是对应边;教学反思AB CE DF∠A 和∠D , ∠B 和∠DEF , ∠ACB 和∠F 分别是对应角. (2)在△ABC 中,∵ ∠A +∠B +∠ACB =180°(三角形内角和定理), ∴ ∠ACB =180°-∠A -∠B =180°-78°-35°=67°. ∵ △ABC ≌△DEF ,∴ ∠F =∠ACB = 67°,EF =BC =18. 拓展:(1)全等三角形的对应元素相等.其中,对应元素包括对应边、对应角、对应中线、对应高、对应角平分线、对应周长、对应面积等;(2)全等三角形的性质是证明线段相等、角相等的常用依据.课堂练习1.如图1,△ABC ≌△BAD ,如果AB =6 cm , BD =4 cm ,AD =5 cm ,那么BC 的长是( )A .7 cmB .5 cmC .4 cmD .无法确定2.如图2,△ABC ≌△ADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( )A .40°B .35°C .30°D .25°3.如图3,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列选项不正确的是( ) A.AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =CD4.如图4,△ABC ≌ △ADE ,若∠D =∠B , ∠C = ∠AED ,则∠DAE =__________.5.如图5,△ABC ≌△DEF ,且B ,C ,F ,E 在同一直线上,判断AC 与DF 的位置关系,并证明.参考答案1.B2. B3.D4.∠BAC5.解:AC ∥DF . 理由如下:∵ △ABC ≌△DEF ,∴ ∠ACB =∠DFE , ∴ 180°-∠ACB =180°-∠DFE , 即∠ACF =∠DFC ,∴ AC ∥DF .教学反思A DB C A BC DE F图1 图2 图3 图4 AB C DE 图5课堂小结13.2全等图形布置作业完成教材第37页习题A组、B组.板书设计1.全等图形及相关的概念;2.全等三角形的表示方法及性质.教学反思全等图形:能够完全重合的两个图形叫做全等图形全等图形全等三角形:能够完全重合的两个三角形叫做全等三角形全等三角形的性质全等三角形的对应边相等全等三角形的对应角相等第十三章 全等三角形13.3 全等三角形的判定第1课时 边边边教学目标1.进行三角形全等条件的探索,积累数学活动经验;2.掌握基本事实一,利用基本事实一证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握基本事实一,利用基本事实一证明两个三角形全等;难点:会利用三角形全等证明线段相等、角相等.教学过程 导入新课1.什么叫全等三角形?能够完全重合的两个三角形叫全等三角形.2.如图,已知△ABC ≌△DEF①AB =DE,② BC =EF ,③CA =FD ;④∠A =∠D , ⑤∠B =∠E ,⑥∠C =∠F .探究新知 一、探究互动一 思考1:满足上述六个条件可以保证△ABC ≌△DEF 吗?思考2:可以用较少的条件判定△ABC ≌△DEF 吗?在以上六个条件中,能否选择其中部分条件,简捷地判定两个三角形全等呢?教师引导,学生探究(小组合作)探究1 只给一个条件,可以分哪几种情况?能够判断两个三角形全等吗?两个三角形不全等;两个三角形不全等; 结论:一个条件不能够判断两个三角形全等.探究2 只给两个条件.①两条边对应相等:若AB =DE ,AC =DF ,但两个三角形不全等;教学反思②一条边和一个角对应相等:若AB =DE ,∠A = ∠D ,但两个三角形不全等;③两个角对应相等:若∠A = ∠D ,∠C = ∠AFE ,但两个三角形不全等.结论:两个条件也不能够判断两个三角形全等.探究3 给出三个条件.⎧⎪⎪⎨⎪⎪⎩①三角对应相等;②三边对应相等;三个条件③两边一角对应相等;④两角一边对应相等.问题 有三个角对应相等的两个三角形全等吗?结论:不一定全等.小亮认为,剩下的三种情况才有可能判断两个三角形全等,你赞同他的说法吗?二、探究互动二——基本事实一问题1:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,折成一个边长分别是3 cm ,4 cm ,6 cm 的三角形. 把你做出的三角形和同学做出的三角形进行比较,它们能重合吗?问题2:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,余下 1 cm ,用其余部分折成边长分别是3 cm ,4 cm ,5 cm 的三角形. 再和同学做出的三角形进行比较,它们能重合吗? 小组互动,教师指导. 归纳:基本事实一:如果两个三角形的三边对应相等,那么这两个三角形全等(可简记为“_______”或“_____”).几何语言:如图,在△ABC 和△ DEF 中,,,,AB CA BC ⎧⎪⎨⎪⎩= = = ∴ △ABC ≌△ DEF ( ).例1 如图1,已知点A ,D ,B ,F 在一条直线上,AC =FE ,BC =DE ,AD =FB .求证:△ABC ≌△FDE . 教师指导,学生分析:在两个三角形中分别找到对应的三条边,然后证明它们分别相等. 证明:∵ AD =FB ,∴ AD +DB =FB +DB ,即AB =FD .教学反思在△ABC 和△FDE 中,∵ ,,AC FE AB FD BC DE ⎧⎪⎨⎪⎩===,∴ △ABC ≌△FDE (SSS ).图1 图2例2 如图2,已知:AB =AC ,AD =AE ,BD =CE . 求证:∠BAC =∠DAE .证明:在△ABD 和△ACE 中,∵ AB AC AD AE BD CE =,=,=,⎧⎪⎨⎪⎩∴ △ABD ≌△ACE (SSS),∴ ∠BAD =∠CAE . ∴ ∠BAD +∠DAC =∠CAE +∠DAC , 即∠BAC =∠DAE .练习:1.如图,下列三角形中,与△ABC 全等的是_______.2.已知:如图,AB =DE ,AC =DF ,BF =CE . 求证:(1)∠A =∠D ;(2)AB ∥DE . 学生独立完成,教师评价 1.③ 2.证明:(1) ∵ BF =CE ,∴ BF +FC =FC +CE ,即BC =EF .在△ABC 和△DEF 中, ∵,,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴ △ABC ≌△DEF (SSS), ∴ ∠A =∠D .(2)由(1)△ABC ≌△DEF ,可得∠B =∠E ,∴ AB ∥DE .三、三角形的稳定性问题1 问题2:观察右面两组木架,如果分别扭动它们,会得到怎样的结果?教学反思教师归纳:教学反思三角形的特性:三角形木架的形状_________,也就是说三角形是具有_____的图形.四边形的特性:四边形木架的形状_______,也就是说四边形是_________的图形.理解“稳定性”只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.想一想:在我们日常生活中,还有哪些地方运用到了三角形的稳定性?你能举出例子来吗?课堂练习1.如图1,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对2.下列关于三角形稳定性和四边形不稳定性的说法中正确的是( )A.稳定性总是有益的,而不稳定性总是有害的B.稳定性有利用价值,而不稳定性没有利用价值C.稳定性和不稳定性均有利用价值D.以上说法都不对3.在生活中我们常常会看见如图2所示的情况加固电线杆,这是利用了三角形的________.4.如图3,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A. 1个B. 2个C. 3个D. 4个5.如图4,D,F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件________ (填一个条件即可).6.如图5,AD=BC,AC=BD.求证:∠C=∠D .图1 图2 图3图4图5参考答案1.C2.C3.稳定性4.C5.BD=CF(答案不唯一)如果两个三角形的三边对应相等,那么这两个三角形全等(简写成“边边边”或“SSS”)内容解题思路应用边边边注意事项三角形的稳定性结合图形找隐含条件和现有条件,找出三边对应相等1.证明两三角形全等所需的条件应按对应边的顺序书写.2.结论中所出现的边必须在所证明的两个三角形中6.证明:连接AB(图略),在△ABD和△BAC中,,,, AD BC BD AC AB BA ⎧⎪⎨⎪⎩===∴△ABD≌△BAC(SSS),∴∠D=∠C.课堂小结1.基本事实一;2.基本事实一的应用;3.三角形的稳定性.布置作业完成教材第40页习题.板书设计13.3全等三角形的判定第1课时边边边教学反思第十三章全等三角形13.3 全等三角形的判定第2课时边角边教学目标教学反思1.探索并正确理解三角形全等的判定方法“SAS”;2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用;3.了解“SSA”不能作为两个三角形全等的条件.教学重难点重点:会用“SAS”判定方法证明两个三角形全等及进行简单的应用;难点:了解“SSA”不能作为两个三角形全等的条件.教学过程旧知回顾回顾基本事实一的内容.导入新课问题情境小明不小心将一块大脸猫的玻璃摔成了三块(如图所示),为了配一块和原来完全一样的玻璃,他带哪一块玻璃就可以了? 你能替他解决这个难题吗? 带着问题我们还是一块儿来学习一下这节课的内容吧!探究新知观察思考:问题1:画一个三角形,使它的两条边长分别是1.5cm,2.5cm,并且使长为1. 5cm的这条边所对的角是30°.小明的画图过程如图所示.小明根据所给的条件,画出了两个形状不同的三角形,这说明两个三角形的两条边和其中一边的对角对应相等时,这两个三角形不一定全等.那么两边和它们的夹角对应相等,这两个三角形又将是怎样的呢?问题2:已知:如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,BC=B′C′.(1)将△ABC叠放在△A′B′C′上,使顶点B与顶点B′重合,边BC落在边B′C′上,点A与点A′在边B′C′的同侧.点C与点C′是否重合,边BC与边B′C′是否重合? 边BA 是否落在边B ′A ′上,点A 与点A ′是否重合? (2)由“两点确定一条直线”,能不能得到边AC 与边A ′C ′重合,△ABC 和△A ′B ′C ′全等?教师引导,学生自主探索. 归纳:基本事实二如果两个三角形的________和它们的______对应相等,那么这两个三角形全等.(可简写成“________”或“_____”)几何语言:在△ABC 和△ DEF 中, ____________AB A AC ⎧⎪⎨⎪⎩=,∠=,=, ∴ △ABC ≌△ DEF (______).例 已知:如图,AD ∥BC ,AD =CB . 求证:△ADC ≌△CBA . 教师引导,学生分析: 由两条直线平行可得内错角相等,还有隐含条件AC是公共边,可由SAS 证得结论.证明:∵AD ∥BC (已知),∴∠1=∠2(两直线平行,内错角相等).在△ADC 和△CBA 中,∵(),12(),(),AD CB AC CA ⎧⎪⎨⎪⎩=已知∠=∠已推出=公共边 ∴△ADC ≌△CBA (SAS ).三角形全等在实际生活中也有很广泛的应用.下图是一种测量工具的示意图.其中AB =CD ,并且AB ,CD 的中点O 被固定在一起, AB ,CD 可以绕点O 张合.在图中,只要量出AC 的长,就可以知道玻璃瓶的内径是多少.这是为什么?请把你的想法和同学进行交流.原理:SAS. 练习:在下列推理中填写需要补充的条件,使结论成立: 如图,在△AOB 和△DOC 中, AO =DO (已知),______=________( ),BO =CO (已知),∴ △AOB ≌△DOC ( ).学生独立完成,教师评价.答案:∠ AOB ∠ DOC 对顶角相等 SAS 课堂练习 1.如图,△ABC 中,已知AD 垂直于BC ,D 为BC 的中点,则下列结论不正确的是( ) A . △ABD ≌△ACD B . ∠B =∠CC . AD 是∠BAC 的平分线 D . △ABC 是等边三角形2.如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )A .一定全等B .一定不全等C .不一定全等D .面积相等 3.如图1,AB ,CD ,EF 交于点O ,且它们都被点O 平分,则图中共有______对全等教学反思内容 应用 边角边 如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.(简写成 “边角边”或“SAS ”)1.“SSA ”不能作为判断三角形全等的依据;2. 根据已知条件,找到图形中的隐含条件,如公共边,公共角,对顶角,邻补角,外角,平角等,证明三角形全等.三角形.图1 图2 4.如图2,△ABC 和△EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC =DE ,AB ∥EF ,AB =EF .求证:△ABC ≌△EFD .5.某大学计划为新生配备如图3所示的折叠凳,图4是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB 和CD 的长相等,O 是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD 设计为30 cm ,则由以上信息可推得CB 的长度是多少? 参考答案 1.D 2.C 3.34.证明:∵ AB ∥EF ,∴ ∠A =∠E .在△ABC 和△EFD 中,,,,AC ED A E AB EF ⎧⎪⎨⎪⎩=∠=∠=∴ △ABC ≌△EFD (SAS ).5.解:∵ O 是AB ,CD 的中点,∴ OA =OB ,OD =OC .∴ CB =AD .在△AOD 和△BOC 中,OA OB AOD BOC OD OC ⎧⎪⎨⎪⎩=,∠=∠,=, ∴ △AOD ≌△BOC (SAS ). ∵ AD =30 cm ,∴ CB =AD =30 cm.课堂小结1.基本事实二;2.SAS 的应用. 布置作业完成教材第43页习题.板书设计 13.3 全等三角形的判定第2课时 边角边 教学反思第十三章 全等三角形13.3 全等三角形的判定 第3课时 角边角、角角边教学目标1.分不同情况探索“两角一边”条件下两个三角形是否全等;2.掌握AAS 或ASA ,并会利用其证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握AAS 或ASA ,并会利用其证明两个三角形全等;难点:分不同情况探索“两角一边”条件下两个三角形是否全等.教学过程 导入新课探究新知1.角边角、角角边 问题1:如图,在△ABC和△A ′B ′C ′中,∠B =∠B ′,BC =B ′C ′.∠C =∠C ′.把△ABC 和△A ′B ′C ′叠放在一起,它们能够完全重合吗? 问题2:提出你的猜想,并试着说明理由.学生讨论会发现:将△ABC 叠放在△A ′B ′C ′上,使边BC 落在边B ′C ′上,顶点A 与顶点A ′在边B ′C ′的同侧.由BC =B ′C ′可得边BC 与边B ′C ′完全重合.因为∠B =∠B ′,∠C =∠C ′ ,∠B 的另一边BA 落在边B ′A ′上, ∠C 的另一边落在边C ′A ′上,所以∠B 与∠B ′完全重合, ∠C 与∠C ′完全重合.由于“两条直线相交只有一个交点”,所以点A 与点A ′重合.所以, △ABC 和△A ′B ′C ′全等. 归纳:基本事实三如果两个三角形的 两个角和它们的夹边对应相等,那么这两个三角形全等.(可简写成“角边角”或“ASA ”)几何语言: 如图,在△ABC 和△ DEF 中,∠A =∠D ,AB =DE ,∠B =∠E ,教学反思∴ △ABC ≌△ DEF (ASA ).问题3:已知:如问题1中的图,在△ABC 和△A ′B ′C ′中, ∠A =∠A ′, ∠B = ∠B ′,BC =B ′C ′. 求证: △ABC ≌△A ′B ′C ′.教师引导,学生观察:可将∠A =∠A ′这个条件转化为∠C =∠C ′. 证明:∵∠A +∠B +∠C =180°,∠ A ′ +∠ B ′ +∠ C ′ =180°(三角形内角和定理), 又∵ ∠A =∠A ′, ∠B = ∠B ′(已知), ∴ ∠C =∠C ′(等量代换).在△ABC 和△A ′B ′C ′中,,,,B B BC B C C C ∠=∠⎧⎪=⎨⎪∠=∠⎩′′′′ ∴ △ABC ≌△A ′B ′C ′(ASA ). 想一想:从中我们可以得到什么规律? 归纳:全等三角形的判定定理 如果两个三角形的 两角及其中一个角的对边对应相等,那么这两个三角形全等.(可简写成“角角边”或“AAS ”)几何语言:在△ABC 和△ DEF 中,∠B =∠E ,∠A =∠D ,BC =EF , ∴ △ABC ≌△ DEF (AAS ). 例 已知:如图,AD =BE ,∠A =∠FDE ,BC ∥EF . 求证:△ABC ≌△DEF .教师引导,学生分析.通过BC ∥EF ,可得∠ABC =∠E ,再根据等量代换可得AB =DE .证明:∵ AD =BE (已知),∴ AB =DE (等式的性质). ∵ BC ∥EF (已知), ∴∠ABC =∠E (两直线平行,同位角相等).在△ABC 和△DEF 中,,A FDE AB DE ABC E ⎧⎪⎨⎪⎩∠=∠,=,∠=∠∴ △ABC ≌△DEF (ASA ). 练习:1.如图1,已知△ABC 的三条边和三个角,则甲、乙两个三角形中和△ABC 全等的图形是( )A.甲B.乙C.甲、乙D.甲、乙都不是图1 图22.如图2,点D ,E 分别在线段AB ,AC 上,BE ,CD 相交于点O ,AE =AD ,要使△ABE ≌△ACD ,根据“AAS ”需添加的一个条件是___________. 学生独立完成,教师评价.答案:1.B 2.∠B =∠C (答案不唯一)课堂练习1.在△ABC 与△A ′B ′C ′中,已知∠A =44°,∠B =67°,∠C ′=69°,∠A ′教学反思=44°,且AC=A′C′,那么这两个三角形________________.2.如图1,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.图1 图23.如图2,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=2cm,CF=4cm,则AB的长为( )A.2cmB.4cmC.6cmD.8cm4.如图3,∠1=∠2,∠3=∠4.求证:△ABC≌△ABD.5.已知:如图4,AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.图3 图4参考答案1.全等2.33.C4.证明:∵∠3=∠4,∴∠ABC=∠ABD.在△ABC和△ABD中,12,,, AB ABABC ABD ⎧⎪⎨⎪⎩∠=∠=∠=∠∴△ABC≌△ABD(ASA). 5.证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90 °.在△ABC和△ADC中,12B DAC AC⎧⎪⎨⎪⎩∠=∠,∠=∠,=(公共边),∴△ABC≌△ADC(AAS),∴AB=AD.课堂小结1.角边角、角角边的内容;2.利用角边角、角角边解决问题.布置作业完成教材第47页习题.教学反思板书设计13.3全等三角形的判定第3课时角边角、角角边教学反思角边角角角边内容应用如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等(简写成“ASA”)如果两个三角形的两角及其中一个角的对边对应相等,那么这两个三角形全等(简写成“AAS”)注意“AAS”“ASA”中两角与边的区别第十三章 全等三角形13.3 全等三角形的判定第4课时 具有特殊位置关系的三角形全等教学目标1.会从图形变换的角度,认识两个可能全等的三角形的位置关系;2.会综合运用本节学过的基本事实及相关定理证明两个三角形全等.教学重难点重点:会从图形变换的角度,认识两个可能全等的三角形的位置关系;难点:会综合运用本节学过的基本事实及相关定理证明两个三角形全等. 教学过程 导入新课1.图形的变换---平移、旋转;2.三角形全等的几个基本事实. 探究新知 问题:如图,每组图形中的两个三角形都是全等三角形.观察每组中的两个三角形,请你说出其中一个三角形经过怎样的变换(平移或旋转)后,能够与另一个三角形重合.学生讨论会发现: (1)、(2)图通过平移重合;(3)、(4)、(5)、(6)通过旋转重合. 归纳:实际上,在我们遇到的两个全等三角形中,有些图形具有特殊的位置关系,即其中一个三角形是由另一个三角形经过平移或旋转(有时是两种变换) 得到的.发现两个三角形间的这种特殊关系,能够帮助我们找到命题证明的途径,较快地解决问题.例1 已知:如图,在△ABC 中, D 是BC 的中点,DE ∥AB,交AC 于点 E ,DF ∥AC ,交AB 于点F .求证:△BDF≌△DCE .教师引导,学生分析:将△BDF 沿BC 方向向右平移可使△BDF △DCE 重合. 证明:∵ D 是BC 的中点(已知),∴ BD =DC (线段中点定义∵ DE ∥AB ,DF ∥AC ,(已知)∴ ∠B =∠EDC ,∠BDF =∠C ,(两直线平行,同位角相等)在△BDF 和△DCE 中,B EDC BD DC BDF C ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BDF ≌△DCE (ASA ).例2 已知:如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,CF ∥AB ,交DE 的延长线于点F . 求证:DE =FE .教师引导,学生分析:将△ADE 绕点E 旋转,可与△CFE 重合.证明:∵CF ∥AB (已知),∴∠A =∠ECF (两直线平行,内错角相等). 在△EAD 和△ECF 中, 教学反思,A ECF AE CE AED CEF ⎧⎪⎨⎪⎩∠=∠,=,∠=∠ ∴△EAD ≌△ECF (ASA ).∴DE =FE (全等三角形的对应边相等). 练习: 1.如图1,由∠1=∠2,BC =DC ,AC =EC ,得△ABC ≌△EDC 的根据是( ) A .SAS B .ASA C .AAS D .SSS图1 图2 2.已知:如图2,AB ∥CD ,AD ∥BC . 求证:AB =CD ,AD =BC .学生独立完成,教师评价.答案:1.A2.证明:连接AC (图略),∵ AD ∥BC ,∴ ∠DAC =∠ACB.∵ AB ∥CD ,∴ ∠BAC =∠DCA. 在△BAC 和△DCA 中,BAC DCA AC CA BCA DAC ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BAC ≌△DCA , ∴ AB =CD ,AD =BC . 课堂练习 1. 如图1,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为________.2.如图2,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则这两个滑梯与地面夹角∠ABC 与∠DFE 的度数和是( )A.60°B.90°C.120°D.150° 图1 图2 图3 图4 3.如图3,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC .将仪器上的点A与∠PR Q 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C画一条射线AE ,AE 就是∠PR Q 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠Q A E =∠P AE .则说明这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS4.如图4,AE =AC ,AB =AD ,∠EAB =∠CAD ,试说明:∠B =∠D.参考答案 1.120° 2.B 3.D 4.证明:∵ ∠ EAB =∠ CAD ,∴ ∠ EAB +∠ BAD =∠ CAD +∠ BAD , 即∠ EAD =∠ CAB .教学反思。

人教版八年级上册 13.1 命题、定理与证明(共33张PPT)

人教版八年级上册  13.1  命题、定理与证明(共33张PPT)

动手试一试:
证明:直角三角形的两个锐角互余.
已知:如图,在△ABC中,∠C=90°.
求证:∠A+∠B=90°.
A
B
C
证明:∵∠A+∠B+∠C=180°,
又∵∠C=90°,
∴ ∠A+∠B=180°-∠C=90°.
随堂练习
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
(1)条件:如果两个三角形是全等三 角形,结论:那么它们的对应边相等;
练习
把下列命题改成“如果……,那么……”的 形式,并分别指出条件和结论.
(1)全等三角形的对应边相等; (2)在同一平面内,垂直于同一条直线的 两条直线相互平行.
( 2)条件:如果在同一平面内两条直 线都垂直于同一条直线,结论:那么这两 条直线平行.
练习
指出下列命题中的真命题和假命题:
(1)同位角相等,两直线平行; (2)多边形的内角和等于180°; (3)三角形的外角和等于360°; (4)平行于同一条直线的两条直线相互 平行.
(2)是假命题; (1)(3)(4)是真命题.
练习
把下列定理改成“如果……,那么……” 的形式 ,指出它们的条件和结论,并用演绎 推理证明(1)所示的定理.
CD分别相交于E、F,PQ与 A
E
B
AB、CD分别相交于E、G,
C
∠PEM=27°,∠DGQ=63°.
求证:MN⊥CD.
F GD
Q N
作业
PM
A
E
B
CF
证明: AB//CD( ),

沪科版八年级数学上第13章三角形中的边角关系、命题与证明13

沪科版八年级数学上第13章三角形中的边角关系、命题与证明13

自主学习
基础夯实
整合运用
思维拓展
第2页
八年级 数学 上册 沪科版
典例导学 如图,在△ABC 中,∠ACB=90°,∠ACD=∠B.求证:△CDB 是直角
三角形.
【思路分析】要证△CDB 是直角三角形,可证∠B+∠DCB=90°,在△ABC
中,已知∠ACB=90°,易证△CDB 是直角三角形.
自主学习
A.85° B.90° C.95° D.100°
自主学习
基础夯实
整合运用
思维拓展
第 14 页
八年级 数学 上册 沪科版
9.如图,在△ABC 中,∠C=90°,则∠B 为 A.15° B.30° C.50° D.60°
(D)
自主学习
基础夯实
整合运用
思维拓展
第 15 页
八年级 数学 上册 沪科版
10.已知三角形 ABC 的三个内角满足关系∠B+∠C=3∠A,则此三角形 (D)
八年级 数学 上册 沪科版
第 3 课时 三角形内角和定理的证明及 推论
自主学习
基础夯实
整合运用
思维拓展
第1页
八年级 数学 上册 沪科版
要点感知 1.三角形内角和定理:三角形的内角和等于 18180°0°. 2.为了证明的需要,在原来图形上添画的线叫做辅辅助线助线. 3.直角三角形的两锐角互互余 余. 4.有两个角互余的三角形是直直角角三三角形角形.
1 ∴∠EGD=3×(180°-60°)=40°, ∴∠1=40°.
自主学习
基础夯实
整合运用
思维拓展
第 23 页
八年级 数学 上册 沪科版
(2)∠AEF+∠FGC=90°. 理由:∵AB∥CD, ∴∠AEG+∠CGE=180°, 即∠AEF+∠FEG+∠EGF+∠FGC=180°, 又∵∠FEG+∠EGF=90°, ∴∠AEF+∠FGC=90°.

八年级数学上册 第13章 全等三角形13.1 命题、定理与证明 2定理与证明课件

八年级数学上册 第13章 全等三角形13.1 命题、定理与证明 2定理与证明课件
已知、求证;
3.经过分析,找出由已知推出求证的
途径,写出证明过程.
第十一页,共二十二页。
根据下列命题,画出图形,并结合
图形写出已知、求证(不写证明过程):
1)垂直于同一直线的两直线平行;
2)内错角相等,两直线平行;
3)一个角的平分线上的点到这个角的两边
的距离相等; 4)两条平行线的一对(yī duì)内错角的平分线互相
∴ OE⊥OF 2 第十七页,共二十二页。
如何(rúhé)判断一个命题是假命题?
只要举出一个例子(反例),
它符合(fúhé)命题的题设,但不满足 结论就可以了.
第十八页,共二十二页。
判断下列(xiàliè)命题是真命题还是假命题.
如果是假命题,举出一个反例:
1)相等的角是对顶角; 2)同位角相等;
4)两条平行线的一对(yī duì)内错角的平分线互相 平行.
已知:如图,AB、CD被直线EF所截,且
AB∥CD,EG、FH分别(fēnbié)是∠AEF和
∠EFD的平分线
求证:EG∥FH
A
E
B
G CF
第十六页,共二十二页。
H D
例2.证明(zhèngmíng):邻补角的平分线互相垂直.
已知:如图,∠AOB、∠BOC互为邻补角(bǔ , jiǎo)
c
3a
1
2
b
第九页,共二十二页。
c
证明 :∵a∥已b 知( (zhèngmíng)
∴∠3=∠2
3a
1
)2
b
(两直线平行(píngxíng),同位角相) 等
∵ ∠3=∠1 ( 对顶角相等)(xiāngděng)
∴∠1=∠2 ( 等量代换)

八年级数学上册三角形中的边角关系、命题与证明 . 命题与证明三角形的外角

八年级数学上册三角形中的边角关系、命题与证明 . 命题与证明三角形的外角
第十页,共十四页。
12.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸 见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求∠BDC等于 140°才算合格,小明通过测量得∠A=90°,∠B=19°,∠C=40°后就下结论说此零件不合格,于是爸爸 让小明解释(jiěshì)这是为什么,小明很轻松地说出了原因,并用如下的三种方法解出此题.请你分别说 出不合格的理由. ( 1 )如图1,连接AD并延长. ( 2 )如图2,延长CD交AB于点E. ( 3 )如图3,连接BC.
( 2 )∵∠BAC+∠B+∠C=180°,∠BAC=70°,∠B=40°,
∴∠C=70°.
第六页,共十四页。
6.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一 点(yī diǎn),FG∥CE,交AB于点G,下列说法正确的是 ( C )
A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1 D.无法(wúfǎ)判断
你的结论.
解:( 1 )延长(yáncháng)BD交AC于点E. ∵∠BDC是△CDE的外角,∴∠BDC=∠ACD+∠CED,
∵∠CED是△ABE的外角,∴∠CED=∠A+∠ABD.
∴∠BDC=∠A+∠ABD+∠ACD. ( 2 )∠D+∠A+∠ABD+∠ACD=360°. ( 3 )令BD,AC交于点E, ∵∠AED是△ABE的外角,∴∠AED=∠A+∠ABD, ∵∠AED是△CDE的外角,∴∠AED=∠D+∠ACD,
第四页,共十四页。
知识点2 三角形外角(wài jiǎo)的性质

沪科版数学八年级上册13.2命题与证明三角形内角和定理优秀教学案例

沪科版数学八年级上册13.2命题与证明三角形内角和定理优秀教学案例
2.设计一系列子问题,如“三角形内角和能否大于180度?”“三角形内角和是否等于180度?”等,引导学生逐步深入探究。
3.引导学生运用转化思想,将复杂的几何问题转化为简单的问题,提高学生解决问题的能力。
4.鼓励学生提出自己的疑问,组织讨论,促进学生思维的发展。
(三)小组合作
1.组织学生分组进行讨论,鼓励学生互相交流、分享思路。
3.通过示例,讲解如何运用三角形内角和定理解决实际问题,让学生体会数学的应用价值。
(三)学生小组讨论
1.设计探究活动,让学生分组讨论如何证明三角形内角和定理。
2.引导学生运用归纳推理、类比推理等方法,深入探究三角形内角和成果,互相交流、学习。
(四)总结归纳
1.教师引导学生总结三角形内角和定理的证明方法,巩固所学知识。
2.总结三角形内角和定理在实际生活中的应用,强调数学的实际价值。
3.引导学生反思自己在讨论过程中的表现,总结自己的优点和不足。
(五)作业小结
1.设计课后作业,让学生运用所学知识解决实际问题,巩固所学内容。
2.要求学生在作业中运用转化思想,提高解决问题的能力。
3.鼓励学生在课后进行自主学习,深入研究三角形内角和定理的相关知识。
二、教学目标
(一)知识与技能
1.让学生掌握三角形内角和定理,理解并能够运用该定理解决实际问题。
2.培养学生空间想象能力,通过观察、实践,让学生能够形象地理解三角形内角和定理。
3.培养学生逻辑思维能力,学会运用归纳推理、类比推理等方法,证明三角形内角和定理。
4.培养学生运用数学知识解决实际问题的能力,将所学知识运用到生活中,提高学生解决实际问题的能力。
4.运用多媒体技术辅助教学,为学生提供丰富的学习资源,提高课堂教学效果。

华东师大版八年级数学上册上课课件 第13章 全等三角形 命题、定理与证明 定理与证明

华东师大版八年级数学上册上课课件 第13章 全等三角形 命题、定理与证明 定理与证明

证明:∵AB∥CD (已知),
∴∠BEF=∠CFE (两直线平行,内错角相等).
∵EM 平分∠BEF,FN 平分∠EFC (已知),
∴∠2=
12∠BEF,∠1=
1 2
∠CFE(角平分线的定义).
∴∠1=∠2(等量代换).
∴EM ∥FN (内错角相等,两直线平行).
练习
1. 把下列定理改写成“如果……,那么……”的形式, 指出它们的条件和结论,并用演绎推理证明题(1) 所示的定理:
习题13.1
1. 判断下列命题是真命题还是假命题,若是假命题, 举一个反例加以说明: (1)两个锐角的和等于直角; (2)两条直线被第三条直线所截,同位角相等.
解: (1)假命题,例: 50°和20°是两锐角, 但50°+20°=70°≠ 90°. (2)假命题,例:如图,直线 AB、CD 被 EF 所截,但 AB 不平行于 CD ,此时,∠EMB≠∠END .
(2)如图所示,一位同学在画图时发现: 三角形三条 边的垂直平分线的交点都在三角形的内部.于是他得出 结论:任何一个三角形三条边的垂直平分线的交点都在 三角形的内部.他的结论正确吗?
(3)我们曾经通过计算四边形、五边形、六边形、 七边形等的内角和,得到一个结论: n 边形的内角和 等于 ( n -2) ×180°. 这个结论正确吗?是否有一个 多边形的内角和不满足这一规律?
课堂小结
基本事实
定义 常见的几条基本事实
定理与 证明
定理
定义 与基本事实的区别
证明
定义 证明的一般步骤
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.

八年级上册数学 三角形三边关系-命题与证明

八年级上册数学 三角形三边关系-命题与证明

三角形中的边角关系、命题与证明【学习目的】①理解与三角形有关的基本概念②命题与证明考点一:三角形中的边角关系►知识点拨:1.三角形中的有关概念(1)三角形的概念:由不在同一直线上的三条线段首尾依次相接所组成的封闭图形叫做三角形.用符号“△”表示.(2)三角形的顶点、边和角:①边的表示;②角的表示;③对边、对角的概念.2.三角形按边的关系分类(1)不等边三角形:三条边互不相等;②等腰三角形:有两条边相等的三角形;(2)等边三角形:三条边都相等的三角形(等腰三角形的特例)3.三角形的三边关系:三角形中任何两条边的和大于第三边,两边的差(绝对值)小于第三边.4.三角形中角的关系(1)按角分类:①直角三角形;②斜三角形:锐角三角形和钝角三角形.(2)三角形的内角和等于180 .注意:①用Rt△ABC表示直角三角形;②任意一个三角形最多有三个锐角;最少有两个锐角;最多有一个钝角;最多有一个直角;③任何三角的最大内角不能小于60 ,最小内角不能大于60 .5.三角形中的几条重要线段(1)角平分线:角平分线把角分成两个相等的角.(三条角平分线的交点就是三角形的外心)(2)中线:三角形一顶点与它对边中点的线段叫中线.(三条中线的交点就是三角形的重心)(3)高线:三角形一顶点与它对边所在直线的垂线段叫三角形的高线.注意:三角形的中线所分得的两个三角形的面积相等.6.定义:能明确界定某个对象含义的语句叫做定义.例1:如图所示,以点A为顶点的三角形共有()A.6个B.7个C.8个D.9个A.20或16B.20C.60D.以上都不对例3:若四条线段的长分别为2cm、3cm、4cm、5cm,以其中的三条线段为边长,则可以构成三角形的个数有()A.1 B.2 C.3 D.4A.锐角三角形B.钝角三角形C.直角三角形D.无法确定例5:如图,CD、CE、CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.BA=2BFB.2∠ACE=∠ACBC.AE=BED.CD⊥BE例6:下列属于定义的是()A.两点确定一条直线B.两直线平行,同位角相等C.三角形的高、角平分线和中线都是线段D.有一个角是直角的三角形叫做直角三角形基础训练1、如图所示,AB=AC,BE=CD,AD=BD=DE=AE=CE,则图中共有个等腰三角形,有个等边三角形.第1题图第3题图第4题图2、一个等腰三角形中,一边长为9cm,另一边长为5cm,则等腰三角形的周长是.3、如图,AD、BE、CF分别是△ABC的高、中线、角平分线.则△ADC的高、中线、角平分线分别是.4、如图,图中以AB为边的三角形的个数是()A.3B.4C.5D.6A.等腰三角形B.等边三角形C.直角三角形D.不能确定6、三角形的两边长分别为3,8,则第三边长为()A.5B.6C.3D.117、以下各组长度的线段为边,组成的三角形是()A.2、3、5B.3、3、6C.5、8、2D.4、5、68、设三角形的三边长分别为2,9,1-2a,则a的取值范围是()A.3<a<5B.-5<a<3C.-5<a<-3D.不能确定9、三角形的内角和等于()A.90B.180C.300D.36010、在△ABC中,若∠A=54 ,∠B=36 ,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11、当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()A.30°B.50°C.80°D.100°12、三角形的角平分线、中线和高()A.都是射线B.都是直线C.都是线段D.都在三角形内13、如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.②和③B.③和④C.①和④D.仅有③14、下面四个命题中属于定义的是()A.两点之间线段最短B.对顶角相等C.有两条边相等的三角形叫等腰三角形D.内错角相等强化训练1.在△ABC中,如果∠A:∠B:∠C=1:2:3,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.如图,AE是△ABC的中线,D是BE上一点,若BE=5,DE=2,则CD的长为()A.7B.6C.5D.43.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()4.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cmB.8cm ,7cm,15cmC.5cm ,5cm,11cmD.13cm ,12cm,20cm5.如图,在△ABC中,点D是边AB上的一点,点E是边AC上一点,且DE∥BC,∠B=40 ,∠AED=60 ,则∠A的度数是()A.100 B.90 C.80 D.70第5题图第7题图第8题图6.一个三角形的两边长为8和10,则它的最短边a的取值范围是.7.如图,AD是△ABC的BC边上的高,AE是∠BAC的平分线.(1)若∠B=47°,∠C=53°,则∠DAE=度;(2)若∠B=α,∠C=β(α<β),则∠DAE=度.(用α、β含的代数式表示)8.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是_____.10.如图,在△ABC中,∠A=40 ,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=_____.11.如图,AD为△ABC的中线,BE为△ABD的中线.(1)若∠ABE=15 ,∠BAD=40 ,求∠BED的度数;(2)在△BED 中,作BD 边上的高;(3)若△ABC 的面积为40,BD=5,求△BDE 中BD 边上的高为多少?12.如图,在△ABC 中,AD 是BC 边上的高,AE 、BF 是角平分线,它们相交于点O ,∠BAC =50°,∠C =70°,求∠DAC ,∠BOA.能力提升1.各边长度都是正整数且最大边长为8的三角形共有个.2.三角形的三边长分别为a 、b 、c ,且(a -b-c)∙(b-c)=0,则此三角形为________三角形.3.如图所示,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12=∆ABC S ,则图中阴影部分面积是_____.4.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且24cm S ABC =∆,则阴影S 等于 ( )5.如图,用钢筋做支架,要求BA 、DC 相交所成的锐角为32 ,现测得∠BAC=∠DCA=115 ,则这个支架符合设计要求吗?为什么?6.设三角形的三条边为整数a 、b 、c 且c b a ≤≤,当b=4时,符合条件的a 、b 、c 的取值若下表:(1)将表格补充完整;(2)满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形又有多少个? 考点二:命题与证明例1:下列语句不是命题的是()A.直角都等于90 B.对顶角相等 C.互补的两个角不相等 D.作线段AB例2:把下例命题改写成“如果......那么.....”的形式,并分别指出它们的题设和结论.(1)整数一定是有理数;(2)同角的补角相等;(3)两个锐角互余.例3:写出下列命题的逆命题,并判断真假(1)两直线平行,同位角相等;(2)若a=0,则a b=0;(3)对顶角相等.例4:请举反例说明命题“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是_____(写出一个的值即可).例5:在下列证明中,填上推理依据:如图,CD ∥EF ,∠1=∠2,求证:∠3=∠ACB.例6:如图,在△ABC 中,∠ABC=66 ,∠ACB=54 ,BE 、CF 是两边AC 、AB 上的高,它们交于点H.求∠ABE 和∠BHC 的度数.基础训练1、下列语句中,不是命题的是 ( ) A.两点之间线段最短B.对顶角相等C.不是对顶角的两个角不相等D.过直线AB 外一点P 作直线AB 的垂线2、下列命题中,是真命题的是 ( ) A.三角形的一个外角大于任何一个内角 B.三角形的一个外角等于两个内角之和 C.三角形的两边之和一定不小于第三边D.三角形的三条中线交于一点,这个交点就是三角形的重心3、“两条直线相交只有一个交点”的题设是 ( )A.两条直线B.相交C.只有一个交点D.两条直线相交4、已知命题A:“任何偶数都是8的整数倍”.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2kB.15C.24D.425、如图,下列说法中错误的是()A.∠1不是△ABC的外角B.∠B<∠1+∠2C.∠ACD是△ABC的外角D.∠ACD>∠A+∠B第5题图第6题图第7题图6、一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165B.120C.150D.1357、如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°8、命题“有两边相等的三角形是等腰三角形”的题设是,结论是,它的逆命题是.9、完成以下证明,并在括号内填写理由:已知:如图所示∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2,所以AB∥.()所以∠A=∠4.()又因为∠A=∠3,所以∠3=.()所以AC∥DE. ()10、将下列命题改写成“如果......那么......”的形式,并分别指出命题的题设与结论:(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)同角的余角相等.11、分析下列所举反例的正确性,若不正确,请写出正确的反例.(1)若|x|=|y|,则x=y;反例:取x=3,y=-3,则|x|=|y|,所以此命题是假命题;(2)两个锐角的和一定是钝角;反例:取∠1=30°,∠2=100°,则∠1+∠2=130°,不符合命题的结论,所以此命题是假命题;(3)若|a|=a,则a>0.12、如图,已知AC∥DE,∠1=∠2.求证:AB∥CD.13、如图,在△ABC中,∠A=62°,∠ABD=∠DCE=36°,求∠BEC的度数.14、如图,点E是△ABC中AC边上的一点,过E作ED⊥AB,垂足为D,若∠1=∠2,,则△ABC 是直角三角形吗?为什么?强化训练1.如图,在锐角三角形ABC中,CD、BE分别是AB、AC边上的高,且CD、BE相交于点P.若∠A =50°,则∠BPC的度数是()A.150B.130C.120D.1002.如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3第2题图第6题图3.一个三角形的三个外角之比为3:4:5,则这个三角形三个内角之比是()A.5:4:3B.4:3:2C.3:2:1D.5:3:14.能说明命题“对于任何实数a ,a a ->”是假命题的一个反例可以是 ( )A.a =-2B.31=a C. a =1 D.2=a 5.下列命题:①对顶角相等;②同位角相等,两直线平行;③若b a =,则b a =;④若0=x ,则022=-x x .它们的逆命题一定成立的有 ( )A.①②③④B.①④C.②④D.②6.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35 ,∠ACE=60 ,则∠A= ( )A.35B.95C.85D.757.如图,在△ABC 中,∠B=40 ,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=.8.直角三角形中两个锐角的平分线相交所成的锐角的度数是.9.写出命题“如果b a =,那么b a 33=”的逆命题:.10.如图,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E.若∠C =60°,∠BED =54°,求∠BAC 的度数.11.如图,AD 是△ABC 的外角平分线,交BC 的延长线于D 点,若∠B=30°,∠ACD=100°, 求∠DAE 的度数.12.如图,D是△ABC内的任意一点.求证:∠BDC=∠1+∠A+∠2.13.用两种方法证明“三角形的外角和等于360 ”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证:∠BAE+∠CBF+∠ACD=360 .证法1: ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180⨯ 3=540 .∴∠BAE+∠CBF+∠ACD=540 -(∠1+∠2+∠3).,∴∠BAE+∠CBF+∠ACD=540 -180 =360 .请把证法1补充完整,并用不同的方法完成证法2.能力提升1.如图,∠A+∠B+∠C+∠D=.2.观察下列各式:想一想:什么样的两个数之积等于这两个数的和?设n 表示正整数,用关于n 的代数式表示这个规律:_______×_______=_______+________.3.如图,在△ABC 中,AD 是BC 边上的中线,且AD=12BC .2224,24;1139393,3;22224164164,4;33335255255,5.4444⨯=+=⨯=+=⨯=+=⨯=+=(1)求证:∠BAC=90°;(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为4.如图在△ABC中AB=AC,∠BAC=900,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F.(1)求证:AE=CF(2)是否还有其他结论,不要求证明(至少2个)。

湘教版八年级上册数学第2章 三角形 命题的证明

湘教版八年级上册数学第2章 三角形 命题的证明

8.【教材改编题】在证明命题“一个三角形中至少有一个内角不 大于 60°”成立时,我们利用反证法,先假设三角形的三个内 角都大于 60°,则可推出三个内角之和大于 180°,这与 __三__角__形__内__角__和__为__1_8_0_°___相矛盾.
9.用反证法证明命题:“在△ABC 中,若∠B≠∠C,则 AB≠AC”, 应先假设___A__B_=__A_C___________.
第2章 三角形
2.2 命题与证明 第3课时 命题的证明
提示:点击 进入习题
新知笔记 1 条件;定理
答案显示
2 矛盾;不成立
1C
2D
3D
4 =;同角的余角相等 5 ∠A;∠B;平角的定义;180°
6 B 7 D 8 三角形内角和为180° 9 AB=AC 10 B
11 C
12 见习题 13 见习题 14 见习题 15 见习题

如图②,连接 BE.∵DE⊥AB,BC⊥EF,
∴∠BME=∠BNE=90°.
∴∠MBE+∠BEM=180°-90°=90°,
∠NBE+∠BEN=180°-90°=90°,
∴∠MBE+∠NBE+∠BEM+∠BEN=180°,

即∠ABC+∠DEF=180°.
6.用反证法证明某一命题的结论“a<b”时,应假设( B ) A.a>b B.a≥b C.a=b D.a≤b
7.用反证法证明“在△ABC 中,若∠A>∠B>∠C,则∠A>60°”, 第一步应假设( D ) A.∠A=60° B.∠A<60° C.∠A≠60° D.∠A≤60°
【点拨】∠A 与 60°的大小关系有∠A>60°,∠A=60°, ∠A<60°三种情况,而∠A>60°的反面是∠A≤60°, 因此用反证法证明∠A>60°时,应先假设∠A≤60°.

八年级数学上册 第13章 全等三角形 13.1 命题、定理与证明 2 定理与证明导学课件

八年级数学上册 第13章 全等三角形 13.1 命题、定理与证明 2 定理与证明导学课件
第十一页,共十七页。
13.1 命题(mìng tí)、定理与证明
【归纳总结(zǒngjié)】证明文字叙述的真命题的一般步骤: (1)分清条件和结论;(2)画出图形;(3)根据条件写出已知,根据结论写出
求证;(4)证明.
第十二页,共十七页。
13.1 命题、定理与证明
总结(zǒngjié)反思
小结(xiǎojié)
图 13-1-1
第九页,共十七页。
13.1 命题、定理(dìnglǐ)与证明
解:可以判定(pàndìng)AB∥CD.理由: ∵ ∠1+∠2=80°+100°=180°, ∴AB∥CD(同旁内角互补,两直线平行).
【归纳总结】证明(zhèngmíng)几何命题的依据: 已知条件、定义、基本事实、定理等.
正确性需要进行证明;如果要说明它是假命题,只要举一个反例就可以 了.
第八页,共十七页。
13.1 命题(mìng tí)、定理与证明
目标三 会进行(jìnxíng)简单的推理证明
例 3 教材补充例题如图 13-1-1,直线 AB,CD 被直线 EF 所截, 若∠1=80°,∠2=100°. 由此你可以判定 AB 和 CD 平行吗?为什 么? [全品导学号:90702083]
第十六页,共十七页。
内容(nèiróng)总结
第13章 全等三角形。13.1 命题、定理与证明。2.经过观察(guānchá)、讨论、发现,理解由特殊事例得到的结论不一 定正确.。于是小华猜想:不论a,b为何值,总有a2+b2>2ab.。理由:∵a2+b2-2ab=(a-b)2≥0,。【归纳总结】由特 殊事例递推猜想所得到的命题不一定是真命题,其正确性需要进行证明。解:可以判定AB∥CD.理由:。已知条件、定义、 基本事实、定理等.。【归纳总结】证明文字叙述的真命题的一般步骤:

新版湘教版秋八年级数学上册第二章三角形课题命题与证明教学设计

新版湘教版秋八年级数学上册第二章三角形课题命题与证明教学设计

新版湘教版秋八年级数学上册第二章三角形课题命题与证明教学设计一. 教材分析湘教版秋八年级数学上册第二章三角形课题“命题与证明”是学生在掌握了三角形的基本概念和性质之后进一步学习的知识点。

这部分内容主要让学生了解命题的含义,学会用几何语言表达命题,并能对给出的命题进行证明。

教材通过具体的例子引导学生理解命题与证明的关系,培养学生的逻辑思维能力和证明能力。

二. 学情分析学生在学习本课题之前,已经掌握了三角形的基本概念和性质,具备了一定的几何知识基础。

但学生在证明方面的能力还有待提高,对证明的步骤和逻辑关系的理解不够深入。

因此,在教学过程中,需要关注学生的学习需求,引导学生逐步掌握命题与证明的方法和技巧。

三. 教学目标1.了解命题的含义,能用几何语言表达命题。

2.学会证明的基本方法,能对给出的命题进行证明。

3.培养学生的逻辑思维能力和证明能力。

4.提高学生运用几何知识解决实际问题的能力。

四. 教学重难点1.重点:命题的含义,几何语言的表达,证明的基本方法。

2.难点:证明过程中逻辑关系的理解和运用,证明方法的灵活运用。

五. 教学方法1.采用问题驱动法,引导学生主动探究命题与证明的关系。

2.运用案例分析法,让学生通过具体例子学习命题与证明的方法。

3.采用合作学习法,让学生在小组讨论中互相启发,共同解决问题。

4.运用引导发现法,教师引导学生发现证明过程中的规律和技巧。

六. 教学准备1.教材、教学参考书。

2.相关的几何模型和教具。

3.投影仪、电脑等教学设备。

七. 教学过程1.导入(5分钟)利用生活中的实例引入三角形的相关概念,激发学生的学习兴趣,引导学生思考三角形在日常生活中的应用。

2.呈现(15分钟)介绍命题的含义,通过具体的例子让学生理解命题的表达方式。

接着,讲解证明的基本方法,包括演绎法、归纳法和反证法,让学生初步了解证明的过程。

3.操练(10分钟)让学生分组讨论,每组选择一个给出的命题,运用所学的方法进行证明。

八年级数学上册第13章全等三角形13.1命题定理与证明1命题说课稿华东师大版.doc

八年级数学上册第13章全等三角形13.1命题定理与证明1命题说课稿华东师大版.doc

13.1 命题、定理与证明(第一课时)一、说教材1、教材的地位和作用命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一。

而正确找出命题的题设和结论,是基础,特别是题设和结论不明显的命题,和难以判断真假的命题,是学习的重点。

本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题。

二、说教学目标知识与技能目标:了解命题、真命题、假命题、定理的含义能识别真假命题。

会区分命题的题设和结论。

过程与方法目标:通过命题的真假,培养分类思想。

通过命题的构成,培养学生分析法。

通过命题的构成,培养语言推理技能。

情感态度与价值观目标:通过命题、定理的具体含义,让学生体会到数学的严谨性。

通过学习命题真假,培养学生尊重科学、实事求是的态度。

通过学习命题的构成,使学生获得成功的体验,锻炼克服困难的意志,建立自信心。

三、教学重点:定义、命题、公理、定理的概念;四、教学难点:判定什么定义、命题、定理、公理,及找出命题的题设和结论。

五、说教法学法通过“目标定向,自主合作”,以实现学习目标为目的,以问题为载体给学生提供探索的空间,引导学生积极探索。

教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。

本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真、假命题。

因此就内容看来,可能会较为枯燥、单调;因此在教学设计时,根据不同的学习任务进行了不同的教学设计。

在命题的概念教学中,与以往直接的告知学生概念不同,采用了让学生对两组语句进行比较、区别,然后再学生充分讨论的感性认识基础上,在提出命题的概念,能有效促进学生对命题概念的理解,然后再通过学生举例来加强巩固概念。

在命题的构成这一环节中,通过一个问题的思考与探讨,让学生了解到命题是由题设和结论两部分构成,同时感受到命题的常用表述形式,然后教师再加以总结分析,使学生对知识的认识更加透彻。

最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)

最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)
(1)同位角相等,两直线平行; 真命题 (2)多边形的内角和等于 180°; 假命题 (3)三角形的外角和等于 360°; 真命题
(4)平行于同一条直线的两条直线互相平行.
真命题
3. 如图,从① ∠1= ∠2;②∠C=∠D ;③∠A =∠F 三个条件
中选出两个作为已知条件,另一个作为结论所组成的命题中,
这些都是公认的真命题,我们把它视为基本事实.
基本事实:
公认的真命题视为基本事实. 它们是用来判断其他命题真假的原始依据,即出发点.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
试一试
1. 下列命题中属于基本事实的是( C ) A. 内错角相等,两直线平行 B. 三角形的外角和等于 360° C. 两点确定一条直线 D. 直角三角形两锐角互余
改写:直角都相等. 如果两个角都是直角,那么这两个角相等.
例1 把命题“三个角都相等的三角形是等边三角形” 改写成“如果……,那么……”的形式,并分别指出 该命题的条件与结论.
解:这个命题可以写成“如果一个三角形的三个角 都相等,那么这个三角形是等边三角形”.该命题的条件 是“一个三角形的三个角都相等”,结论是“这个三角 形是等边三角形”.
命题的分类 命题分为真命题和假命题. 有些命题,如果条件成立,那么结论一定成立, 像这样的命题称为真命题; 而有些命题,条件成立时,不能保证结论总是正确, 也就是说结论不成立,像这样的命题,称为假命题.
两直线平行,内错角相等. 真命题 同位角相等. 假命题
真假命题的判断:
(1)要判断一个命题是真命题,可以用演绎推理加以论证. (2)要判断一个命题是假命题,只要举出一个例子,说明 该命题不成立,即只要举出一个符合该命题条件而不符合 该命题结论的例子就可以了.

八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段授课

八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段授课

感悟新知
例4 如图,在△ABC 中,AD,BE 分别是△ABC, 知2-练 △ABD的中线. (1)若△ABD与△ADC的周长之差为 3,AB=8,求 AC 的长. (2)若S△AB间 的关系和面积之间的关系解题.
感悟新知
解:(1)因为AD为BC边上的中线,
B.CE是△BCD的角平分线 C. 3 1 ACB
2
D.CE是△ABC的角平分线
知1-练
感悟新知
知识点 2 三角形的中线
知2-讲
1.定义:连接三角形一个顶点和它对边的中点,所得的 线段叫做该三角形这条边上的中线.
2.位置图例:任何三角形的三条中线都交于一点,且该 点在三角形内部,如图,这 个点叫做三角形的重心.
感悟新知
总结
知2-讲
三角形的中线把边分成相等的两条线段,故BD=CD,
且△ ABD 的边BD上的高与△ACD 的边CD上的高相同,
根据等底同高的三角形的面积相等,可得所分得的两个
三角形的面积相等,即S△ ABD=S△ ADC=
1 2
S△ABC.
感悟新知
知2-练
例5 张大爷的两个儿子都长大成人了,也该分家了.
1 (中考·长沙)过△ABC的顶点A,作BC边上的高,以 下作法正确的是( )
感悟新知
知3-练
2 下列说法中正确的是( ) A.三角形的三条高都在三角形内 B.直角三角形只有一条高 C.锐角三角形的三条高都在三角形内 D.三角形每一边上的高都小于其他两边
感悟新知
知识点 4 定义
知4-讲
像这样能明确界定某个对象含义的语句叫做定义. 今后我们还会学习许多定义.
感悟新知
知3-练
解:以A,B,C,D,E中的三点为顶点的三角形有 △ABC,△ABD,△ABE,△ACD,△ACE,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档