直角三角形的边角关系测试题

合集下载

直角三角形的边角关系单元测试

直角三角形的边角关系单元测试

《直角三角形的边角关系》单元测试班级: 姓名: 学号: 分数:一、选择题(每小题4分,共32分) 1.已知△ABC 中,∠C=90°,tanA=( )A .AB AC B .AB BC C .BC AC D .ACBC2.在△ABC 中,∠C=90,若sinA=31,则cosB= ( )A. 1B. 3C. 31 D 2323.在Rt△ABC中,两直角的比为5:12,则最小角的余弦值( ) A .125 B .123 C .512 D .13124.在Rt△ABC中,如果各边长度都扩大2倍,那么锐角A的正切值( ) A .没有变化 B .扩大2倍 C .缩小2倍 D .不能确定5.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D,BC=3,AC=4,设∠BCD=α,则 tan α的值为( ) A.34; B.43; C.35; D.456. 若∠A 为锐角,且则∠A 的度数为( )A.30°B.45°C.60°D.90°7.在 Rt △ABC 中,∠C=900, a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列关系式错误的是( )A. b=c ·cosBB.b=a ·tanBC.a=c ·sinAD. a=b ·tanA 8. 等腰三角形底边长为1Ocm ,周长为36cm ,那么底角的余弦等于( ) A.513 B.1213 C. 1013 D. 512二.填空题:(每小题3分,共15分)1.在△ABC 中,∠C为直角,若3AC=BC 3,则∠A的度数是 ,cosB 的值是_ _ 。

2.已知ABC △中,90C ∠=,A B C ∠∠∠,,所对的边分别是a b c ,,,且3c a =,则cos A =________.3.已知:Rt △ABC 中,∠C=90°,sinA=513,则sinB=________.4.如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平 距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

直角三角形边角关系常考题

直角三角形边角关系常考题

直角三角形边角关系常考题
1 直角三角形边角关系常考题
一.选择题(共
12小题)1.(2011?兰州)点M (﹣sin60°,cos60°)关于x 轴对称的点的坐标是() A .()B .(﹣)C .(﹣)
D .(﹣)2.(2010?漳州)如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知
CD=2,AC=3,则sinB 的值是()
A .
B .
C .
D .3.(2010?枣庄)如图是某商场一楼与二楼之间的手
扶电梯示意图.其中AB ,CD 分别表示一楼,二楼
地面的水平线,∠
ABC=150°,BC 的长是8m ,则乘电梯从点
B 到点
C 上升的高度h 是()A .m
B .4m
C .4m
D .8m 4.(2010?通化)如图,一个小球由地面沿着坡度
i=1:2的坡面向上前进了
10m ,此时小球距离地面的高度为()A .5m B .m C .m D .m
5.(2010?天津)sin30°的值等于(
)A .1B .C .D .
6.(2010?随州)在Rt △ABC 中,∠C=90°,sinA=,则tanB 的值为(

A .
B .
C .
D .7.(2010?怀化)在Rt △ABC 中,∠C=90°,sinA=,则cosB 的值等于(

A .
B .
C .
D .8.(2010?包头)已知在
Rt △ABC 中,∠C=90°,sinA=,则tan B 的值为()A .B .
C .
D .。

直角三角形的边角关系测试题及答案

直角三角形的边角关系测试题及答案

AD′直角三角形的边角关系测试题一、选择题(每小题3分,共计30分):1.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的两条直角边,c 是斜边,则有( )A 、sinA=a cB 、cosB=c bC 、cosB=a bD 、tanA=ba 2.在Rt △ABC 中,∠C=90°,sinA=21,则BC ∶AC ∶AB 等于( )A 、1∶2∶5B 、1∶3∶5C 、1∶3∶2D 、1∶2∶33.在△ABC 中,若tanA=1,sinB=22,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形 C.△ABC 是直角三角形 D.△ABC 是一般锐角三角形 4.已知在Rt △ABC 中,∠C=90°.若sinA=22,则sinB 等于( ) A 、21 B 、22 C 、23 D 、1 5.化简2)130(tan - =( )。

A 、331-B 、13-C 、133-D 、13-6.等腰三角形的一腰长为6cm ,底边长为63cm ,则其底角为( )。

A. 120° B. 90° C. 60° D. 30°7如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D′处,那么tan ∠BAD′等于( ) A. 22 B.22C. 2D. 18.当锐角A 的cosA >22时,∠A 的值为( )。

A. 小于45° B. 小于30° C. 大于45° D. 大于30°9.小刚在距某电信塔10 m 的地面上(人和塔底在同一水平面上),测得塔顶的仰角是 60°, 则塔高为( )BNACDMA 、103mB 、53mC 、102mD 、20m 10.如图,在△ABC 中,∠C=90°,AC=8cm,AB 的垂直平分线MN交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( )A 、4cmB 、6cmC 、8cmD 、10cm二、填空题(每小题3分, 共计18分):11.在△ABC 中.∠C=90°,若tanA=1,则∠B= 度. 12.锐角A满足2sin(A-150)=3,则∠A=_____度. 13.如图,若某人沿坡度i =3:4的斜坡前进10米,则他所在 的位置比原来的位置升高________米.14.若︒<<︒900α,︒=60cos sin α,则_____tan =α 15.已知△ABC 中,∠A 、∠B 都是锐角,且(cosA-21)2+|tanB-1|=0,则∠C= 度。

直角三角形的边角关系

直角三角形的边角关系

2018届初中毕业班基础练习《直角三角形的边角关系》姓名:_______________一、选择题1.如图,△ABC 的顶点是正方形网格的格点,则sinB 的值为( )2.若α的余角是30°,则cos α的值是( )A.12 B.32 C.22 D.33A .100mB .C .150mD .4. 2.如图4,在△ABC 中,∠BAC =90°,AD 是高,DAC 则AB =( ).A .5BC .D .二、填空题5.在Rt △ABC 中,∠C =90°,tan A =34,则sin B =________. 6.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:①sin A =32;②cos B =12;③tan A =33;④tan B = 3. 其中正确的结论是________(只需填上正确结论的序号). 7.某水库大坝的横断面是梯形,坝内斜坡的坡度i =1∶3,坝外斜坡的坡度i=1∶1,则两个坡角的和为________. 8.如图,为了测量楼的高度,自楼的顶部A 看地面上的一点B ,俯角为30°,已知地面上的这点与楼的水平距离BC 为30m ,那么楼的高度AC 为m (结果保留根号).9.小兰想测量南塔的高度.她在处仰望塔顶,测得仰角为30°,再往塔的方向前进50m 至处,测得仰角为60°,那么塔高约为_________m三、解答题10.计算:(1)cos 245°+tan 30°•sin 60° (2)102tan30(2010)π---11.某校研究性学习小组测量学校旗杆AB 的高度,如图,在教学楼一楼C 处测得旗杆顶部的仰角为60°,在教学楼三楼D 处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,求旗杆AB 的高度。

直角三角形的边角关系(基础题)

直角三角形的边角关系(基础题)

直角三角形的边角关系 一、精心选一选1.2cos450= .A、2.在正方形网格中,∠α的位置如图,则Sin α= .A 、12B3、如图,点P (3,4)是∠α的边OA 上的一点,则Sin α= .A 、35B 、45C 、34D 、434、在△ABC 中,∠C =90°,下03、某市为改善交通状况,修建了大量的 高架桥,一汽车在坡度为300的笔直高架桥点A 开始爬行,行驶了150米 到达B 点,这时汽车离地面高度为 米.A 、300B 、150C 、75D 、50 5.下列式子一定能成立的是( ) A .sin a c B = B .cos a b B =C .tan c a B =D .tan a b A =6、△ABC 中,∠A ,∠B 均为锐角,且有2|tan 2sin 0B A +=(,则△ABC 是( ) A .直角(不等腰)三角形 B .等腰直角三角形 C .等腰(不等边)三角形 D .等边三角形7、已知tan 1α=,那么2sin cos 2sin cos αααα-+的值等于( )A .13B .12C .1D .168、如图2,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米9、如图3,在矩形ABCD 中,D E ⊥AC ,垂足为E ,设∠ADE =α,且cos α=35,AB =4, 则AD 的长为( ) A .3 B .163C .203D .1652米(第10题)30︒10.如图,在高为2m ,坡角为︒30的楼梯表面铺地毯,地毯的长度至少需要( ).A.m )13(2+B.4mC.m )23(+D.m )33(2+ 二、耐心填一填:11.若____________,0cos 21==-αα则锐角 12、已知∠A 为锐角,则sin 2A + Cos 2A = .13、在Rt △ABC 中,∠C = 900,sinA = 1213,则sinB = .14. 当锐角A >45°时,sin A 的值是_______. 15、在ABC ∆中,若90C ∠=︒,1sin 2A =,2AB =,则ABC ∆的周长为 三、细心做一做: 16.︒-︒45sin 260cos 2119.︒⋅︒-︒30tan 60tan 45cos 2217、在某建筑物AC 上挂着宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测得仰角为300,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测得仰角为600,求宣传条幅BC 的长. (小明的身高不计,结果保留根号)C EF18、如图10,在电线杆上离地面高度5米的C点处引两根拉线固定电线杆.一根拉线AC和地面成60°角,另一根拉线BC与地面成45°角,试求两根拉线的长度.19、如图11为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?20、一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.5海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?D。

直角三角形的边角关系专题复习

直角三角形的边角关系专题复习

直角三角形的边角关系测试题1、在Rt △ABC 中,∠A=90º,AB=6,AC=8,则sinB= ,cosC=2、在△ABC 中,∠B=90º,21cos =C ,则∠C=】3、在△ABC 中,∠C=90º,∠A=60º,AC=34,则BC=4、在△ABC 中,∠C=90º,BC=3,AB=32,则∠A=5、在△ABC 中,∠C=90º,若tanA=21,则sinA= 6、在△ABC 中,若∠C=90º,∠A=45º,则tanA+sinB=7、如图1,在△ABC 中,∠C=90º,∠B=30º,AD 是∠BAC 的平分线。

已知AB=34,那么AD=#8、正方形ABCD 中,AM 平分∠BAC 交BC 于M ,AB=2,BM=1,则cos ∠MAC= 9、如果3)20tan(3=︒+α,那么锐角α=10、某校数学课外活动小组的同学测量英雄纪念碑的高,如图2所示,测得的数据为: BC=42m ,倾斜角º︒=30α,测得测角仪高CD=1.5m ,则AB= 。

(结果保留四位 有效数字)11、在△ABC 中,∠C=90º,BC=5,AC=12,则tanA=( ) A 、512 B 、125 C 、513 D 、135 12、在Rt △ABC 中,∠C=90º,53cos =A ,AC=6cm ,则BC=( )cm A 、8B 、C 、D 、 !13、菱形ABCD 的对角线AC=10cm ,BD=6cm ,那么=2tanA ( ) A 、53B 、54C 、34343 D 、3434514、已知:如图3,梯形ABCD 中,AD638642382423231,23-1,23--3253500)3sin 2(3tan 2=-+-A B 5米353103︒+︒+︒-︒45tan 30cos 230tan 330sin ︒-︒+︒-︒-︒60tan 45tan 30sin 160cos 45cos 2226—1为平地上一幢建筑物与铁塔图,题6-2图为其示意图.建筑物AB 与铁塔CD 都垂直于底面,BD=30m ,在A 点测得D 点的俯角为45°,测得C 点的仰角为60°.求铁塔CD 的高度.…图6-1 图6-2图2a CAE B)图1 BCDA图3图4 图524、如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路。

直角三角形的边角关系测试题(含A组答案)

直角三角形的边角关系测试题(含A组答案)

直角三角形的边角关系测试题一、选择题(每小题2分,共计24分):1.在△ABC 中,∠C =90°,下列式子一定能成立的是( ) A .sin a c B = B .cos a b B = C .tan c a B = D .tan a b A =2. 已知△ABC 中,∠A 、∠B 都是锐角,且(cosA-12 )2+|tanB-3 |=0,你认为最确切的判断是( )A.△ABC 是等腰三角形B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是等边三角形 3.已知在Rt △ABC 中,∠C=90°,若tanA=12,则sinB 等于( ) A 、15 B 、15 5 C 、25 5 D 、24. 当锐角A 的cosA >22时,∠A 的值为( )。

A. 小于45° B. 小于30° C. 大于45° D. 大于30°5.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D′处,那么tan ∠BAD′等于( ) A. 22 B.22C. 2D. 16.如图所示,在△ABC 中,AB =AC =5,BC =8,则tan C =( )A .53B .54C .34D .437.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.若AC =4,BC =3,则sin ∠ACD的值为( )A .34 B .43 C .54 D .538.如图,从山顶A 望到地面C ,D 两点,测得它们的俯角分别是45°和30°,已知CD =100m ,点C 在BD 上,则山高AB 等于 ( )A .100 mB .350mC .250mD .50(13+)m9.如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )5题 6题7题 8题A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米10.如图,两条宽度均为40 m 的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( )。

边角关系测试题及答案

边角关系测试题及答案

边角关系测试题及答案一、选择题1. 在三角形ABC中,如果∠A = 50°,∠B = 70°,那么∠C的度数是多少?A. 40°B. 50°C. 60°D. 70°2. 如果一个三角形的内角和为180°,那么在三角形ABC中,如果∠A = 90°,∠B = 45°,∠C的度数是多少?A. 45°B. 90°C. 135°D. 180°3. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°二、填空题4. 如果三角形的一个角是直角,那么这个三角形的另外两个角的和是______。

5. 在一个三角形中,如果两个内角的度数之和为90°,那么这个三角形被称为______三角形。

三、简答题6. 解释什么是补角,并给出一个补角的例子。

7. 解释什么是邻补角,并给出一个邻补角的例子。

四、计算题8. 在一个三角形中,已知∠A = 120°,求∠B和∠C的度数。

9. 如果一个三角形的三个内角的度数之和为180°,且已知∠A = 60°,∠B = 50°,求∠C的度数。

五、解答题10. 证明在一个三角形中,任意两个内角的和小于180°。

答案:一、选择题1. C2. A3. C二、填空题4. 90°5. 直角三、简答题6. 补角是指两个角的度数之和等于90°,例如,如果一个角是60°,那么它的补角是30°。

7. 邻补角是指两个角共享一条边,且它们的另一条边互为反向延长线,例如,在一个直角三角形中,两个锐角互为邻补角。

四、计算题8. ∠B = ∠C = (180° - 120°) / 2 =30°9. ∠C = 180° - 60° - 50° = 70°五、解答题10. 证明:设三角形ABC中,∠A和∠B为任意两个内角。

九年级数学三角函数习题

九年级数学三角函数习题

九年级数学《直角三角形的边角关系》测试题(一)班级:_______ 姓名:_________组名_________审核人_______ 1.如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =___ ___.2.支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5 那么旗杆的有为 米(用含α的三角比表示).3.甲、乙、丙三个梯子斜靠在一堵墙上(梯子顶端靠墙), 小明测得 甲与地面的夹角为603米,且顶端距离墙脚3米;丙的坡31。

那么,这三张梯子的倾斜程度( )A.甲较陡 B .乙较陡 C .丙较陡 D .一样陡4.如图,沿AC 方向开山修路,为了加快施工进度,要在山的另一边同时施工,现在从AC 上取一点B ,使得∠ABD =145°,BD =500米,∠D =55°,要使A 、C 、E 在一条直线上,那么开挖点E 离点D 的距离是( )A .500sin55°米B .500cos55°米C .500tan55°米;D .o55tan 500米5.如图,北部湾海面上,一艘解放军军舰正在基地A 的正东方向且距A 地40海里的B 地训练.突然接到基地命令,要该军舰前往C 岛,接送一名病危的渔民到基地医院救治.已知C 岛在A 的北偏东60°方向,且在B 的北偏西45°方向,军舰从B 处出发,平均每小时行驶20海里,需要多少时间才能把患病渔民送到基地医院?(精确到0.1小时)αP oy34第4题图︒60︒45A B北北6.(2012•陕西)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与湖岸上凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一平面上),请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.5563,cos65°≈0.4226,tan65°≈2.1445)7.如图是使用测角仪测量一幅壁画高度的示意图,已知壁画AB的底端距离地面的高度BC=1m,在壁画的正前方点D处测得壁画底端的俯角∠BDF=30°,且点距离地面的高度DE=2m,求壁画AB的高度.九年级数学《直角三角形的边角关系》测试题(二)班级:_______ 姓名:_________组名_________审核人_______一、选择题1.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的两条直角边,c 是斜边,则有( )。

北师大版九年级数学下册 第一章 直角三角形的边角关系 测试题 (含答案)

北师大版九年级数学下册 第一章  直角三角形的边角关系  测试题 (含答案)

直角三角形的边角关系 测试题一、选择题1.如图,在Rt △ABC 中,∠B =90°,cos A =1213,则tan A 的值为( )A.125B.1312C.1213D.512第1题图 第2题图 第3题图 第4题图2.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A.53 B.255 C.52 D.233.如图,在△ABC 中,点E 在AC 上,点G 在BC 上,连接EG ,AE =EG =5,过点E 作ED ⊥AB ,垂足为D ,过点G 作GF ⊥AC ,垂足为F ,此时恰有DE =GF =4.若BG =25,则sin B 的值为( )A.2510B.510C.255D.55 4.如图,直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,把△AOB 沿直线AB 翻折后得到△AO ′B ,则点O ′的坐标是( )A .(3,3)B .(3,3)C .(2,23)D .(23,4) 5.tan45°的值为( ) A.12 B .1 C.22D.2 6.如图所示,△ABC 的顶点是正方形网格的格点,则sin B 的值为( ) A.12 B.22 C.32D .1第6题图 第7题图7.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .m sin35° B .m cos35° C.m sin35° D.mcos35°8.在△ABC 中,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫33-tan B 2=0,则∠C 的度数为( )A .30°B .60°C .90°D .120° 二、填空题9.运用科学计算器计算:317sin73°52′≈________(结果精确到0.1). 10.计算:cos30°-sin60°=________.11.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1∶1.5,上底宽为6m ,路基高为4m ,则路基的下底宽为________m.12.如图,△ABC 中,∠ACB =90°,tan A =43,AB =15,AC =________.第11题图 第12题图 第13题图 第14 题图13.如图,Rt △ABC 中,∠ACB =90°,CM 为AB 边上的中线,AN ⊥CM ,交BC 于点N .若CM =3,AN =4,则tan ∠CAN 的值为________.14.如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里(结果取整数,参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).三、解答题15.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB (结果保留根号).16.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3.(1)求新坡面的坡角α;(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.17.在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C,利用上述结论可以求解如下题目,如:在△ABC中,若∠A=45°,∠B=30°,a=6,求b的值.解:在△ABC中,∵asin A=bsin B,∴b=a sin Bsin A=6sin30°sin45°=6×1222=3 2.解决问题:如图,甲船以每小时302海里的速度向正北方航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟后到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.(1)判断△A1A2B2的形状,并给出证明;(2)乙船每小时航行多少海里?参考答案与解析1.D2.A3.C 解析:在Rt △ADE 与Rt △EFG 中,⎩⎪⎨⎪⎧AE =EG ,DE =GF , ∴Rt △ADE ≌Rt △EFG (HL),∴∠A =∠GEF .∵∠A +∠AED =90°,∴∠GEF +∠AED=90°,∴∠DEG =90°.过点G 作GH ⊥AB 于点H ,则四边形DEGH 为矩形,∴GH =DE =4.在Rt △BGH 中,sin B =GH BG =425=255.故选C.4.A 解析:过点O ′作O ′C ⊥x 轴于点C .∵直线y =-33x +2与x 轴、y 轴分别交于A ,B 两点,∴点A ,B 的坐标分别为(23,0),(0,2),∴tan ∠BAO =OB OA =223=33,∴∠BAO=30°.∵把△AOB 沿直线AB 翻折后得到△AO ′B ,∴O ′A =OA =23,∠O ′AO =60°,∴CA =12O ′A =3,O ′C =O ′A ·sin ∠O ′AC =23×32=3,∴OC =OA -CA =23-3=3,∴点O ′的坐标为(3,3).故选A. 5.B 6.B 7.A 8.D 9.11.9 10.0 11.18 12.913.23 解析:∵∠ACB =90°,CM 为AB 边上的中线,∴AB =2CM =6,CM =BM ,∴∠B =∠MCB .∵AN ⊥CM ,∴∠CAN +∠ACM =90°.又∵∠ACM +∠MCB =90°,∴∠CAN =∠MCB ,∴∠B =∠CAN .又∵∠ACN =∠BCA ,∴△CAN ∽△CBA ,∴CN CA =AN BA =46=23,∴tan ∠CAN =CN AC =23.14.11 解析:过点P 作PC ⊥AB 于点C .依题意可得∠A =30°,∠B =55°.在Rt △P AC 中,∵P A =18海里,∠A =30°,∴PC =12P A =12×18=9(海里).在Rt △PBC 中,∵PC =9海里,∠B =55°,∴PB =PC sin B ≈90.8≈11(海里).15.解:过点C 作CF ⊥AB 于点F ,则BF =CD =4米,CF =BD .设AF =x 米.在Rt △ACF 中,tan ∠ACF =AF CF ,∠ACF =α=30°,则CF =AF tan30°=3x 米.在Rt △ABE 中,AB =AF +BF =(x +4)米,tan ∠AEB =AB BE ,∠AEB =β=60°,则BE =AB tan60°=33(x +4)米.∵CF =BD =DE +BE ,∴3x =3+33(x +4),解得x =33+42.则AB =33+42+4=33+122(米). 答:树高AB 是33+122米.16.解:(1)∵新坡面的坡度为1∶3,∴tan α=13=33,∴α=30°; (2)文化墙PM 不需要拆除.理由如下:过点C 作CD ⊥AB 于点D ,则CD =6米.∵坡面BC 的坡度为1∶1,新坡面AC 的坡度为1∶3,∴BD =CD =6米,AD =3CD =63米,∴AB =AD -BD =(63-6)米<8米,∴文化墙PM 不需要拆除.17.解:(1)△A 1A 2B 2是等边三角形.证明如下:由题意可得A 2B 2=102海里,A 1A 2=302×2060=102(海里),∴A 1A 2=A 2B 2.又∵∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形;(2)由(1)可知△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=102海里,∠A 2A 1B 2=60°,∴∠B 1A 1B 2=105°-60°=45°.由题意可知∠CB 1A 1=180°-105°=75°,∴∠B 2B 1A 1=75°-15°=60°.在△A 1B 2B 1中,由正弦定理得B 1B 2sin45°=A 1B 2sin60°,∴B 1B 2=A 1B 2sin60° ·sin45°=10232×22=2033(海里).乙船的速度为2033÷2060=203(海里/时). 答:乙船每小时航行203海里.。

第一章《直角三角形的边角关系》单元测试题(含答案)

第一章《直角三角形的边角关系》单元测试题(含答案)

第一章 直角三角形的边角关系一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.在Rt △ABC 中,∠C =90°,AB =2BC ,那么sin A 的值为( )A.12B.22C.32 D .1 2.在△ABC 中,∠C ,∠B 为锐角,且满足⎪⎪⎪⎪sin C -22+(32-cos B )2=0,则∠A 的度数为( )A .100°B .105°C .90°D .60°3.在Rt △ABC 中,∠C =90°,AB =20,cos A =14,则AC 等于( )A .45B .5 C.15 D.1454.在Rt △ABC 中,如果边长都扩大为原来的5倍,那么锐角A 的正弦值、余弦值和正切值( )A .都没有变化B .都扩大为原来的5倍C .都缩小为原来的15D .不能确定5.如图1-Z -1,过点C (-2,5)的直线AB 与坐标轴分别交于A (0,2),B 两点,则tan ∠OAB 的值为( )图1-Z -1A.25B.23C.52D.326.如图1-Z -2①为折叠椅,图②是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长度相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32 cm ,∠DOB =100°,那么椅腿AB 的长应设计为(结果精确到0.1 cm ,参考数据:sin50°=cos40°≈0.77,sin40°=cos50°≈0.64,tan40°≈0.84,tan50°≈1.19)( )图1-Z -2A .38.1 cmB .49.8 cmC .41.6 cmD .45.3 cm 二、填空题(本大题共5小题,每小题4分,共20分) 7.在△ABC 中,∠C =90°,sin A =14,则tan B =________.8.如图1-Z -3,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =________.图1-Z -39.如图1-Z -4,在菱形ABCD 中,DE ⊥AB ,垂足是E ,DE =6,sin A =35,则菱形ABCD 的周长是________.图1-Z -410.某校研究性学习小组测量学校旗杆AB 的高度,如图1-Z -5,在教学楼一楼C 处测得旗杆顶部的仰角为60°,在教学楼三楼D 处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为________米.图1-Z -511.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为D ,且满足BD ∶CD =2∶1,则△ABC 的面积为________.三、解答题(本大题共5小题,共56分) 12.(8分)计算:24sin45°+cos 230°-12tan60°+2sin60°.13.(10分)如图1-Z -6,在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43.求:(1)BD 的长; (2)sin B 的值.图1-Z -614.(12分)某大坝修建有以下方案:大坝的横断面为等腰梯形,如图1-Z -7,AD ∥BC ,坝高10米,迎水坡面AB 的坡度i =53,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB 的坡度进行修改,修改后的迎水坡面AE 的坡度i =56.(1)求原方案中此大坝迎水坡AB 的长(结果保留根号);(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC 方向拓宽2.7米,求坝底将会沿AD 方向加宽多少米.图1-Z -715.(12分)“和谐号”高铁列车的小桌板收起时可近似看作与地面垂直,展开小桌板使桌面保持水平,其示意图如图1-Z -8所示.连接OA ,此时OA =75 cm ,CB ⊥AO ,∠AOB =∠ACB =37°,且桌面宽OB 与BC 的长度之和等于OA 的长度.求支架BC 的长度(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).图1-Z -816.(14分)我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can).如图1-Z -9①,在△ABC 中,AB =AC ,底角∠B 的邻对记作can B ,这时can B =底边腰=BCAB .容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=________;(2)如图②,已知在△ABC 中,AB =AC ,can B =85,S △ABC =24,求△ABC 的周长.图1-Z -9详解详析1.[解析] A ∵∠C =90°,AB =2BC ,∴sin A =BC AB =12.故选A.2.[解析] B ∵⎪⎪⎪⎪sin C -22+(32-cos B )2=0,∴sin C -22=0,32-cos B =0,则sin C =22,cos B =32,故∠C =45°,∠B =30°,∴∠A =180°-45°-30°=105°.故选B. 3.[答案] B4.[解析] A 三角函数值的大小只与角的大小有关,当角度一定时,其三角函数值不变. 5.[解析] B 方法1:设直线AB 的表达式是y =kx +b .根据题意,得⎩⎨⎧-2k +b =5,b =2,解得⎩⎪⎨⎪⎧k =-32,b =2,则直线AB 的表达式是y =-32x +2.在y =-32x +2中令y =0,解得x =43.则点B 的坐标是(43,0),即OB =43.则tan ∠OAB =OB OA =432=23.故选B.方法2:过点C 作CD ⊥y 轴于点D ,∵C (-2,5), ∴CD =2,OD =5.∵A (0,2),∴OA =2, ∴AD =OD -OA =3.在Rt △ACD 中,tan ∠OAB =tan ∠CAD =CD AD =23.故选B.6.[解析] C 连接BD ,由题意得OA =OB =OC =OD .∵∠DOB =100°,∴∠DAO =∠ADO =50°,∠OBD =∠ODB =40°,∴∠ADB =90°.又∵BD =32 cm ,∴AB =BD sin ∠DAO ≈320.77≈41.6(cm).故选C. 7.[答案] 158.[答案] 12[解析] 过点A 作AD ⊥OB ,垂足为D ,如图,在Rt △AOD 中,AD =1,OD =2,则tan ∠AOB =AD OD =12. 9.[答案] 40[解析] ∵DE ⊥AB ,垂足是E ,∴△AED 为直角三角形,则sin A =DE AD ,即35=6AD ,∴AD =10,∴菱形ABCD 的周长为10×4=40.10.[答案] 9[解析] 过点D 作DE ⊥AB ,垂足为E ,由题意可知,四边形ACDE 为矩形,则AE =CD =6米,AC =DE .设BE =x 米.在Rt △BDE 中,∵∠BED =90°,∠BDE =30°,∴DE =3BE =3x 米,∴AC =DE =3x 米. 在Rt △ABC 中, ∵∠BAC =90°,∠ACB =60°, ∴AB =3AC =3×3x =3x (米). ∵AB -BE =AE ,∴3x -x =6, ∴x =3,∴AB =3×3=9(米), 即旗杆AB 的高度为9米. 11.[答案] 8或24[解析] △ABC 有两种情况:(1)如图①所示,∵BC =6,BD ∶CD =2∶1,∴BD =4.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD=23BD =83,∴S △ABC =12BC ·AD =12×6×83=8;(2)如图②所示,∵BC =6,BD ∶CD =2∶1,∴BD =12.∵AD ⊥BC ,tan B =23,∴AD BD =23,∴AD =23BD =8,∴S △ABC =12BC ·AD =12×6×8=24.综上所述,△ABC 的面积为8或24.12.解:原式=24×22+(32)2-12×3+2×32 =14+34-36+ 3 =1+5 36.13.[解析] (1)根据在△ABC 中,CD ⊥AB 于点D ,AB =22,CD =8,tan A =43,可以求得AD 的长,从而可以求得BD 的长;(2)由(1)中BD 的长和题目中CD 的长可以求得BC 的长,从而可以求得sin B 的值.解:(1)∵在△ABC 中,CD ⊥AB 于点D ,CD =8,tan A =43,∴tan A =CD AD =43,解得AD =6,∴BD =AB -AD =22-6=16.(2)由(1)知BD =16,∵CD ⊥AB ,CD =8, ∴BC =CD 2+BD 2=82+162=8 5,∴sin B =CD BC =88 5=55.14.[解析] (1)过点B 作BF ⊥AD 于点F ,在直角三角形ABF 中求得AF ,AB 的长; (2)过点E 作EG ⊥AD 于点G ,延长EC 至点M ,延长AD 至点N ,连接MN . 由S △ABE =S 梯形CMND 从而求得DN 的长.解:(1)如图,过点B 作BF ⊥AD 于点F . 在Rt △ABF 中,∵i =BF AF =53,且BF =10米,∴AF =6米,∴AB =102+62=2 34(米).答:原方案中此大坝迎水坡AB 的长为2 34米. (2)如图,过点E 作EG ⊥AD 于点G . 在Rt △AEG 中,∵i =EG AG =56,且EG =BF =10米,易得AG =12米,BE =GF =AG -AF =6米. 延长EC 至点M ,延长AD 至点N ,连接MN .∵方案修改前后,修建大坝所需土石方总体积不变, ∴S △ABE =S 梯形CMND , ∴12·BE ·EG =12(MC +ND )·EG , 即BE =MC +ND ,∴ND =BE -MC =6-2.7=3.3(米). 答:坝底将会沿AD 方向加宽3.3米.15.解:延长CB 交AO 于点D ,∴CD ⊥OA . 设BC =x cm ,则OB =(75-x )cm. 在Rt △OBD 中,∵∠DOB =37°, ∴OD =OB ·cos ∠DOB ≈0.8(75-x )=(60-0.8x )cm ,BD =OB ·sin ∠DOB ≈0.6(75-x )=(45-0.6x )cm ,∴DC =BD +BC ≈(0.4+45x )cm.在Rt △ACD 中,∵∠ACD =37°,∴AD =DC ·tan ∠ACD ≈0.75(0.4x +45)=(0.3x +33.75)cm. ∵OA =AD +OD =75 cm ,∴0.3x +33.75+60-0.8x =75, 解得x ≈37.5, ∴BC ≈37.5 cm ,故支架BC 的长度约为37.5 cm. 16.解:(1) 3(2)过点A 作AE ⊥BC 于点E ,∵can B =85,可设BC =8x ,AB =5x ,则BE =12BC =4x ,∴AE =AB 2-BE 2=3x .∵S △ABC =24, ∴12BC ·AE =12x 2=24, 解得x =2(负值已舍去),故AB =AC =5 2,BC =8 2, ∴△ABC 的周长为AB +AC +BC =5 2+5 2+8 2=18 2.。

直角三角形的边角关系练习题及答案

直角三角形的边角关系练习题及答案

一、选择题(每小题3分,共36分)1.(2022河口模拟)在△ABC中,∠A=90°,∠A,∠B,∠C的对边分别为a,b,c,则下列选项中不正确的是( C )A.sin B=ba B.sin C=caC.cos B=bc D.tan B=bc2.在Rt△ABC中,∠C=90°,AC=4,tan A=12,则AB的长是( C )A.2B.8C.2√5D.4√53.若锐角A满足sin A=√32,则∠A的度数是( C )A.30°B.45°C.60°D.75°4.(2022张店模拟)在Rt△ABC中,∠C=90°,tan A=512,则cos A等于( D )A.512B.125C.513D.12135.在正方形网格中,△ABC的位置如图所示,则cos B的值为( B )第5题图A.12B.√22C.√32D.√336.(2022福山模拟)按如图所示的运算程序,能使输出y 值为12的是( C )第6题图A.α=60°,β=45°B.α=30°,β=45°C.α=30°,β=30°D.α=45°,β=30°7.在△ABC 中,∠A 和∠B 都是锐角,且sin A=12,cos B=√22,则△ABC 三个内角的大小关系为( D ) A.∠C>∠A>∠B B.∠B>∠C>∠A C.∠A>∠B>∠C D.∠C>∠B>∠A8.一辆小车沿着斜坡向上行驶了100 m,其铅直高度上升了15 m,在用科学计算器求坡角α的度数时,其按键顺序是( A )9.如图所示,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔 60 n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( B )A.60√3 n mileB.60√2 n mileC.30√3 n mileD.30√2 n mile10.如图所示,△ABC,△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角为∠PBE=43°,视线PE与地面BE的夹角为∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE,若A点到B 点的距离AB=1.6 m,则盲区中DE的长度是(参考数据:sin 43°≈0.7,tan 43°≈0.9,sin 20°≈0.3,tan 20°≈0.4)( B )A.2.6 mB.2.8 mC.3.4 mD.4.5 m11.如图所示,在矩形ABCD中,点E在DC上,将矩形沿直线AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( D )A.12B.920C.25D.1312.因为cos 60°=12,cos 240°=-12,所以cos 240°=cos(180°+60°)=-cos 60°;由此猜想、推理知:当α为锐角时有cos(180°+α)=-cos α,由此可知cos 210°的值为( C )A.-12B.-√22C.-√32D.-√3二、填空题(每小题3分,共18分)13.已知在Rt△ACB中,∠C=90°,AB=13,AC=12,则cos B 的值为5.1314.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥,则AD的长度是10 .CD,若sin∠ACB=13第14题图15.平放在地面上的三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A为54°,∠B为36°,边AB的长为2.1 m,BC边上露出部分BD的长为0.9 m,则铁板BC边被掩埋部分CD的长为0.8 m.(结果精确到0.1 m.参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 54°≈1.38)第15题图16.(2021东营期末)直角三角形纸片ABC的两直角边长分别为6,8,现将△ABC按如图所示方式折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值为7.24第16题图17.如图所示,小明在距离地面30 m 的P 处测得小山山顶A 处的俯角为15°,山脚B 处的俯角为60°.若山坡AB 的坡度为1∶√3,则小山的高度为 10√3 m.(结果保留根号)第17题图18.(2022任城模拟)规定:sin(-x)=-sin x,cos(-x)=cos x, sin(x+y)=sin x ·cos y+cos x ·sin y.据此判断下列等式成立的是 ②③④ .(写出所有正确的序号) ①cos(-60°)=-12;②sin 75°=√6+√24; ③sin 2x=2sin x ·cos x;④sin(x-y)=sin x ·cos y-cos x ·sin y. 三、解答题(共46分) 19.(6分)计算:(1)sin 60°-cos 60°·tan 45°+12√1-2tan30°+tan 230°; (2)sin 245°+cos 230°-tan 260°.解:(1)原式=√32-12×1+12√(1-tan30°)2=√32-12+12×(1-√33) =√33.(2)原式=(√22)2+(√32)2-(√3)2=12+34-3=-74.20.(8分)如图所示,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sin B=13,AD=1.(1)求BC 的长; (2)求tan ∠DAE 的值. 解:(1)∵AD 是BC 边上的高, ∴AD ⊥BC.在Rt △ABD 中,sin B=AD AB =13,AD=1,∴AB=3,∴BD=√AB 2-AD 2=√32-12=2√2. 在Rt △ADC 中,∵∠C=45°,∴CD=AD=1. ∴BC=BD+CD=2√2+1. ∴BC 的长为2√2+1.(2)∵AE 是BC 边上的中线,∴CE=12BC=2√2+12, ∴DE=CE-CD=2√2+12-1=√2-12, ∴tan ∠DAE=DE AD=√2-121=√2-12.21.(10分)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200 m 且横断面为梯形的大坝用土石进行加固.如图所示,加固前大坝背水坡坡面从A 至B 共有30级阶梯,平均每级阶梯高 30 cm,斜坡AB 的坡度为1∶1;加固后,坝顶宽度增加2 m,斜坡EF 的坡度为1∶√5,求BF 的长.(结果保留根号)解:如图所示,过点A作AH⊥BC于点H,过点E作EG⊥BC于点G,则四边形EGHA是矩形.∴EG=AH,GH=AE=2 m.∵斜坡AB的坡度为1∶1,∴AH=BH=30×30=900 cm=9 m.∴BG=BH-HG=9-2=7(m).∵斜坡EF的坡度为1∶√5,∴FG=9√5 m.∴BF=FG-BG=(9√5-7)m.∴BF的长为(9√5-7)m.22.(12分)(2020包头)如图所示,一个人骑自行车由A地到C地途经B地,当他由A地出发时,发现他的北偏东45°方向有一电视塔P.他由A地向正北方向骑行了3√2 km到达B地,发现电视塔P在他北偏东75°方向,然后他由B地向北偏东15°方向骑行了6 km到达C地.(1)求A地与电视塔P的距离;(2)求C地与电视塔P的距离.解:(1)如图所示,过点B 作BD ⊥AP 于点D. 在Rt △ABD 中,∠BAD=45°,AB=3√2 km,∴AD=BD=AB ×sin ∠BAD=3√2×sin 45°=3√2×√22=3(km). ∵∠PBN=75°,∴∠APB=∠PBN-∠PAB=75°-45°=30°. ∴在Rt △BDP 中,PD=BDtan∠APB =3tan30°=√33=3√3(km),PB=2BD=2×3=6(km). ∴AP=AD+PD=(3+3√3)km.∴A 地与电视塔P 的距离为(3+3√3)km. (2)∵∠PBN=75°,∠CBN=15°, ∴∠CBP=60°. ∵BP=BC=6 km, ∴△BPC 为等边三角形. ∴PC=6 km.∴C 地与电视塔P 的距离为6 km.23.(10分)(2022垦利模拟)数学活动课上,小明和小红要测量小河对岸大树BC 的高度,小红在点A 测得大树顶端B 的仰角为45°,小明从A点出发沿斜坡走3√5 m到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1∶2.(1)求小明从点A到点D的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60)解:(1)如图所示,过点D作DH⊥AE于H.在Rt△ADH中,∵DHAH =12,∴AH=2DH.∵AH2+DH2=AD2,∴(2DH)2+DH2=(3√5)2,解得DH=3,故小明从点A到点D的过程中,他上升的高度为3 m.(2)如图所示,延长BD交AE于点G,设BC=x m,由题意得∠G=31°,∴GH=DHtanG ≈30.60=5.∵AH=2DH=6,∴GA=GH+AH=5+6=11.在Rt△BGC中,tan G=BCGC ,∴CG=BCtanG≈x0.60=53x.在Rt△BAC中,∠BAC=45°,∴AC=BC=x.∵GC-AC=AG,∴53x-x=11,解得x=16.5.故大树的高度约为16.5 m.。

(好题)初中数学九年级数学下册第一单元《直角三角形的边角关系》检测卷(含答案解析)

(好题)初中数学九年级数学下册第一单元《直角三角形的边角关系》检测卷(含答案解析)

一、选择题1.在Rt ABC ∆中,90C ∠=︒,若5sin 13A =,则cos A 的值为( ) A .512 B .813 C .1312 D .12132.如图,传送带和地面所成斜坡AB 的坡度为1∶2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5米B .5米C .25米D .45米 3.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则cos ∠AEF 的值是( )A .12B .1C .22D .324.在Rt ABC 中,∠C =90º,下列关系式中错误的是( )A .BC =AB•sinAB .BC =AC•tanA C .AC =BC•tanBD .AC =AB•cosB 5.如图,在Rt ABC △中,90ABC ∠=︒,4AB =,8BC =,D ,E 分别为边AB ,BC 上一点,且满足:1:3AD DB =.连接DE ,将ADBE 沿DE 翻折,点B 的对应点F 恰好落在边AC 上,则CF 的长度为( )A .1952055B .275C .52055D .3156.Rt ABC 中,90C ∠=︒,2AC =,1BC =,sin A =( )A .55B .2C .32D .127.如图,直线123////l l l ,ABC 的三个顶点分别落在123,,l l l 上,AC 交2l 于点D ,设1l 与2l 的距离为12,h l 与3l 的距离为2h .若12,:1:2AB BC h h ==,则下列说法正确的是( )A .:2:3ABD ABC S S =B .:1:2ABD ABC S S =△△C .sin :sin 2:3ABD DBC ∠∠=D .sin :sin 1:2ABD DBC ∠∠= 8.在ABC 中,90,13,12C AB BC ∠=︒==,则sin B 的值为( )A .1213B .512 C .513 D .1359.在Rt ABC 中,90C ∠=︒,5AB =,4BC =,则tan A 的值为( ) A .35 B .45 C .34 D .4310.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE CF =;②75AEB ∠=︒;③BE DF EF +=;④正方形对角线:13AC =+,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 11.如图,直线y =-33x +2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO'B',则点B'的坐标是( ) A .(4,23)B .(23,4)C .(3,3)D .(23+2,2) 12.如图,在边长相同的小正方形组成的网格中,点A B C D 、、、都在这些小正方形的顶点上,AB CD 、相交于点P ,则tan APD ∠=( ).A .5B .3C .10D .2二、填空题13.如图,测角仪CD 竖直放在距建筑物AB 底部8m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪CD 的高度是1.5m ,则建筑物AB 的高度约为_____m .(结果精确到个位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)14.如图,在Rt ABC 中,90B ∠=︒,2AB =,1BC =.将ABC 绕点A 按逆时针方向旋转90︒得到''AB C ,连接'B C ,则tan 'ACB ∠=__________.15.如图,在Rt ABC △中,90A ∠=︒,AB AC =,BD 是AC 边上的中线,则tan ADB ∠的值是______.16.如图,点P (m ,1)是反比例函数3y x=图象上的一点,PT ⊥x 轴于点T ,把△PTO 沿直线OP 翻折得到△PT O ',则点T '的坐标为_______________.17.ABC ∆中,67.5A ,8BC =,BE AC ⊥交AC 于E ,CF AB ⊥交AB 于F ,点D 是BC 的中点.以点F 为原点,FD 所在的直线为x 轴构造平面直角坐标系,则点E 的横坐标为________.18.如图,四边形ABCD 中,AB=BC=3,∠A=∠C=90°,∠ABC=120°,点E 是对角线BD 上的一个动点,过点E 分别作AB ,BC ,CD ,AD 的垂线,垂足分别为点F ,H ,I ,G ,连结FG 和HI ,则FG+HI 的最小值为________.19.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.20.在Rt ABC ∆中,90A ∠=︒,3AB =,4BC =则cos B =______.三、解答题21.计算:20210+|﹣3|﹣2sin60°.22.如图,根据道路管理规定,在某笔直的大道AB 上行驶的车辆,限速60千米/时,已知测速站点M 距大道AB 的距离MN 为30米,现有一辆汽车从A 向B 方向匀速行驶,测得此车从A 点行驶到B 点所用时间为6秒,已知60AMN ∠=︒,45BMN ∠=︒.(参考数据:3 1.732≈,2 1.414≈)(1)计算AB 的长度(结果保留整数);(2)试判断此车是否超速,并说明理由.23.图①是一辆登高云梯消防车的实物图,图②是其工作示意图,起重臂AC 是可伸缩的(10m 20m AC ),且起重臂AC 可绕点A 在一定范围内转动,张角为()90150CAE CAE ∠∠︒︒,转动点A 距离地面BD 的高度AE 为3.5m .(1)当起重臂AC 长度为12m ,张角CAE ∠为120︒时,求云梯消防车最高点C 距离地面的高度CF ;(2)某日、一居民家突发险情,该居民家距离地面的高度为18m ,请问该消防车能否实3 1.732≈)24.如图在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象与反比例函数()0m y m x=≠的图象交于第二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为()6,n .线段5OA =,E 为x 轴上一点,且4sin 5AOE ∠=.(1)求该反比例函数和一次函数的解析式;(2)求AOB的面积;25.(1)解方程:22360x x--=(2)计算:12cos301tan602sin30︒--︒+︒26.为了方便市民出行,县政府决定从“七星广场”河堤到对岸修建一座便民桥.为测量河的宽度,在河的对岸取一点A,在广场河边取两点,O B测得点A在点O的北偏东60︒方向,测得点A在点B北偏东45︒方向,量得OB长为50米,求河的宽度AC(结果保留根号)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由三角函数的定义可知sinBCAAB=,可设BC=5k,AB=13k由勾股定理可求得12AC k=,再利用余弦的定义代入计算即可.【详解】解:如图:在Rt ABC 中,sin BC A AB =,可设BC=5k ,AB=13k . 由勾股定理可求得()()222213512AC AB BC k k k =-=-=. 所以,1212cos =1313AC k A AB k ==. 故选:D .【点睛】 本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.2.C解析:C【分析】作BC ⊥底面于点C ,根据坡度的概念、勾股定理列式计算即可;【详解】作BC ⊥底面于点C ,设BC x =,∵传送带和底面所成斜坡AB 的坡度为1∶2,∴2AC x =,由勾股定理得:222AC BC AB +=,即()222210x x +=,解得:25x =,即25BC =.故答案选C .【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,准确计算是解题的关键. 3.C解析:C【分析】连接AF ,根据题意可分别求出BF 、FC 、DE 的长,再利用勾股定理分别求出AF 、AE 、EF 的长,利用勾股定理的逆定理判断出AEF 为等腰直角三角形,再利用三角函数即可求得答案.【详解】如图:连接AF ,四边形ABCD 是矩形∴2,3AB DC AD BC ====∴∠B=∠C=∠D=90°FC=2BF∴BF=1,FC=2E 是CD 的中点∴DE=CE=1∴BF=CE=1在Rt ABF 中22222215AF AB BF =+=+=在Rt EFC 中22222215EF FC CE =+=+=在Rt ADE △中222223110AE AD DE =+=+=∴222AE EF AF =+且AF=EF∴△AEF 为等腰直角三角形∴∠AFE=90°,∠AEF=∠EAF=45°∴cos ∠AEF=cos45°=22故选:C .【点睛】本题考查了矩形的性质,勾股定理及其逆定理的运用,特殊角的三角函数值,解题关键是利用勾股定理逆定理判断出AEF 为等腰直角三角形. 4.D解析:D【分析】根据三角函数的定义即可作出判断.【详解】解:A 、∵sin BC A AB=, ∴sin BC AB A =, 故正确,不符合题意;B 、∵tanA= BC AC, ∴BC=AC•tanA ,故正确,不符合题意;C 、∵tanB=AC BC, ∴AC=BC•tanB , 故正确,不符合题意;D 、∵cos BC B AB=, ∴cos BC AB B =,故错误,符合题意;故选:D .【点睛】本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.A解析:A【分析】如图,过D 作DM AC ⊥于,M 根据已知条件先求解:,,,AD BD AC 再利用A ∠的三角函数求解,,AM DM 由对折得到:,DF 再利用勾股定理求解MF ,从而由CF AC AM MF =--可得答案.【详解】解:如图,过D 作DM AC ⊥于,M4:1:3,AB AD DB ==,13AD DB ∴==,,90ABC ∠=︒,4AB =,8BC =,22224845,AC AB BC ∴=+=+=1,AD DM AC =⊥,sin ,45DM BC A AD AC ∴=== 255DM ∴=, 同理:5cos ,545AM AB A AD AC ==== 55AM ∴=, 由对折可得:3,DF DB == 22222520535MF DF DM ⎛⎫∴=-=-= ⎪ ⎪⎝⎭,520519520545CF AC AM MF -∴=--== 故选:.A【点睛】 本题考查的是轴对称的性质,勾股定理的应用,锐角三角函数的应用,掌握以上知识是解题的关键.6.A解析:A【分析】求出斜边AB ,再求∠A 的正弦值.【详解】解:∵90C ∠=︒,2AC =,1BC =,∴2222215AB AC BC +=+= 5sin 5BC A AB ===, 故选:A .【点睛】本题考查了勾股定理和锐角的正弦函数值的求法,解题关键是求出斜边长,熟知正弦的意义.7.D解析:D【分析】作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,利用三角形面积公式可得到12::1:2ABD BCD S S h h ∆∆==,则可对A 、B 进行判断;利用正弦的定义得到1sin h ABD AB ∠=,2sin h DBC BC∠=,利用AB CB =可对C 、D 进行判断. 【详解】 解:作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,11122ABD S BD AE BD h ∆==,21122BCE S BD CF BD h ∆==, 12::1:2ABD BCD S S h h ∆∆∴==,:1:3ABD ABC S S ∆∆∴=,所以A 、B 选项错误;在Rt ABE ∆中,1sin h AE ABD AB AB ∠==, 在Rt BCF ∆中,2sin h CF DBC BC BC∠==, 而AB CB =,12sin :sin :1:2ABD DBC h h ∴∠∠==,所以C 选项错误,D 选项正确. 故选:D .【点睛】本题考查了考查了解直角三角形,也考查了平行线之间的距离和等腰直角三角形的性质,难度一般.8.C解析:C【分析】先根据勾股定理求得AC ,再根据正弦的定义求解即可;【详解】∵在ABC 中,90C ∠=︒,13AB =,12BC =,∴2213125AC =-=,∴5sin 13AC B AB ==; 故答案选C .【点睛】本题主要考查了勾股定理与解直角三角形,准确理解计算是解题的关键.9.D解析:D【分析】由勾股定理算出AC 的值,然后根据正切函数的定义即可得到解答.【详解】 解:由勾股定理可得:2222543AC AB BC =-=-=,∴tanA=43BC AC =, 故选D .【点睛】 本题考查解直角三角形,熟练掌握勾股定理及三角函数的定义是解题关键.10.A解析:A【分析】证明()Rt ABE Rt ADF HL ≅△△即可证明①正确,由①的结论得到三角形CEF 是等腰直角三角形,即可证明②正确,根据AC 垂直平分EF 可以判断③错误,利用锐角三角函数值求出AC 的长度证明④正确.【详解】解:∵四边形ABCD 是正方形,∴AB AD =,90B D ∠=∠=︒,∵AEF 是等边三角形,∴AE AF =, 在Rt ABE △和Rt ADF 中,AE AF AB AD =⎧⎨=⎩, ∴()Rt ABE Rt ADF HL ≅△△,∴BE DF =,∵BC CD =,∴BC BE CD DF -=-,即CE CF =,故①正确;∵CE CF =,90C ∠=︒,∴45CEF ∠=︒,∵60AEF ∠=︒,∴180604575AEB ∠=︒-︒-︒=︒,故②正确;如图,连接AC ,交EF 于点G ,∵AE AF =,CE CF =,∴AC 是EF 的垂直平分线,∵CAF DAF ∠≠∠,∴DF FG ≠,同理BE EG ≠,∴BE DF EF +≠,故③错误;∵AEF 是边长为2的等边三角形,ACB ACD ∠=∠,∵AC EF ⊥,EG FG =, ∴3sin 6023AG AE =⋅︒==112CG EF ==, ∴13AC AG CG =+=+,故④正确.故选:A .【点睛】本题考查四边形综合题,解题的关键是掌握正方形的性质,等边三角形的性质,解直角三角形的方法.11.B解析:B【分析】根据直线解析式求出点A 、B 的坐标,从而得到OA 、OB 的长度,再求出∠OAB =30°,利用勾股定理列式求出AB ,然后根据旋转角是60°判断出AB′⊥x 轴,再写出点B′的坐标即可.【详解】令y =0,则−3x +2=0,解得x =,令x =0,则y =2,所以,点A (0),B (0,2),所以,OA =OB =2,∵tan ∠OAB =OB OA ==, ∴∠OAB =30°,由勾股定理得,AB 4==, ∵旋转角是60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故选:B .【点睛】本题考查了坐标与图形性质−旋转,一次函数图象上点的坐标特征,勾股定理的应用,三角函数的应用,求出AB′⊥x 轴是解题的关键. 12.B解析:B【分析】设小正方形的边长为1,根据勾股定理可得AD 、AC 的值,进而可得△ADC 是等腰直角三角形,进而可得AD ⊥CD ,根据相似三角形的判定和性质可得PC =2DP ,根据等量代换和线段和差可得AD =CD =3DP ,继而即可求解.【详解】解析 设小正方形的边长为1,由图形可知,2AD DC AC ===,ADC ∴是等腰直角三角形,AD DC ∴⊥.//AC BD ,2AC CP BD DP∴==, 2PC DP ∴=,3AD DC DP ∴==,tan 3AD APD DP∴∠==.故选B.【点睛】本题考查了正方形的性质、等腰直角三角形的判定、勾股定理、相似三角形的判定及其性质以及锐角三角函数.此题难度适中,注意转化思想与数形结合思想的应用.二、填空题13.11【分析】根据题意作辅助线DE⊥AB然后根据锐角三角函数可以得到AE 的长从而可以求得AB的长本题得以解决【详解】解:作DE⊥AB于点E由题意可得DE=CD=8m∵∠ADE=50°∴AE=DE•ta解析:11【分析】根据题意,作辅助线DE⊥AB,然后根据锐角三角函数可以得到AE的长,从而可以求得AB 的长,本题得以解决.【详解】解:作DE⊥AB于点E,由题意可得,DE=CD=8m,∵∠ADE=50°,∴AE=DE•tan50°≈8×1.19=9.52(m),∵BE=CD=1.5m,∴AB=AE+BE=9.52+1.52=11.2≈11(m),故答案为:11.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】如图延长与的延长线交于点证明四边形为正方形再求解过作于利用等面积法求解再利用勾股定理求解从而可得答案【详解】解:如图由题意得:延长与的延长线交于点则四边形为正方形过作于故答案为:【点睛】本题解析:4 3【分析】如图,延长C B''与BC的延长线交于点,G证明四边形ABGB'为正方形,再求解,B C AC ',过A 作AM B C '⊥于M , 利用等面积法求解,AM 再利用勾股定理求解,MC 从而可得答案.【详解】解:如图,由题意得:9090BAB B AB C '''∠=︒∠=∠=︒,, 2AB AB '==, 1BC =,22215,AC ∴=+=延长C B ''与BC 的延长线交于点,G 则90AB G '∠=︒,∴ 四边形ABGB '为正方形, 2211B G BG CG BG BC '∴===-=-=,,90B GB '∠=︒, 22215,B C '∴=+=过A 作AM B C '⊥于M ,11,22AB C S AB AB B C AM '''∴== 54AM =, 4555AM ∴==, ()224355555MC ⎛⎫∴=-= ⎪⎝⎭, 4545tan '.3355AM ACB MC ∴∠=== 故答案为:4.3【点睛】本题考查的是勾股定理的应用,旋转的性质,正方形的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键. 15.2【分析】由题意得到则结合角的正切值即可得到答案【详解】解:∵是边上的中线∴∴∵∴∵在中∴;故答案为:2【点睛】本题考查了求角的正切值三角形中线的性质解题的关键是掌握三角形中线的性质正确得到解析:2【分析】由题意,得到12AD AC =,则2AC AD =,结合角的正切值tan AB ADB AD∠=,即可得到答案.【详解】 解:∵BD 是AC 边上的中线,∴12AD AC =, ∴2AC AD=, ∵AB AC =,∴2AB AD=, ∵在Rt ABD 中,90A ∠=︒, ∴tan 2AB ADB AD ∠==; 故答案为:2.【点睛】本题考查了求角的正切值,三角形中线的性质,解题的关键是掌握三角形中线的性质,正确得到2AB AD=. 16.【分析】连接过点作于点C 先根据反比例函数解析式求出点P 坐标根据的正切值得到它的度数再根据折叠的性质证明是等边三角形再解直角三角形得到OC 和的长即可求出的坐标【详解】解:如图连接过点作于点C ∵点P(m解析:33,2⎛⎫ ⎪ ⎪⎝⎭【分析】连接TT ',过点T '作T C OT '⊥于点C ,先根据反比例函数解析式求出点P 坐标,根据POT ∠的正切值得到它的度数,再根据折叠的性质证明TOT '是等边三角形,再解直角三角形得到OC 和CT '的长,即可求出T '的坐标.【详解】解:如图,连接TT ',过点T '作T C OT '⊥于点C ,∵点P (m ,1)是反比例函数y x =图象上的一点,∴1=m ,∴OT =,1PT =,∵tan 3POT ∠=, ∴30POT ∠=︒,由折叠的性质得:30,POT POT OT OT ∠=∠=︒='='∴60TOT '∠=︒,又∵OT OT '=,∴TOT '是等边三角形,∵T C OT '⊥,∴12OC OT ==,3sin 2CT OT TOT '''=⋅∠==,∴322T ⎛⎫' ⎪ ⎪⎝⎭.故答案为:322⎛⎫ ⎪⎪⎝⎭. 【点睛】本题考查反比例函数与几何,解题的关键是掌握反比例函数的性质,利用锐角三角函数值得到特殊角的度数,然后解直角三角形. 17.【分析】连接DE 过E 作EH ⊥OD 于H 求得∠EDO =45°即可得到Rt △DEH 中求得DH 进而得出OH 即可求解【详解】如图所示连接过作于于于是的中点中点的横坐标是【点睛】本题主要考查了直角三角形斜边上中 解析:4-【分析】连接DE ,过E 作EH ⊥OD 于H ,求得∠EDO =45°,即可得到Rt △DEH 中,求得DH ,进而得出OH ,即可求解.【详解】如图所示,连接DE ,过E 作EH OD ⊥于H ,BE CA ⊥于E ,CF AB ⊥于F ,D 是BC 的中点,142DE DC BC DO DB ∴=====, DCE DEC ∴∠=∠,DBO DOB ∠=∠,67.5A ∴∠=︒,112.5ACB ABC ∴∠+∠=︒,18021802()()CDE BDO DCE DBO ∴∠+∠=︒-∠+︒-∠ 3602()DCE DBO =︒-∠+∠3602112.5=︒-⨯︒135=︒,45EDO ∴∠=︒,Rt DEH ∴∆中,cos 4522DH DE =︒⨯=422OH OD DH ∴=-=-点E 的横坐标是422-【点睛】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.18.3【分析】先证明得到再证明:四边形四边形为矩形得到所以只要求的最小值即可当时最小再利用锐角三角函数可得答案【详解】解:AB=BC=3∠A=∠C=90°由过点E 分别作ABBCCDAD 的垂线垂足分别为点 解析:3【分析】先证明,Rt ABD Rt CBD ≌得到60,30,ABD CBD GDE IDE ∠=∠=︒∠=∠=︒再证明:,FG HI =四边形,AFEG 四边形CHEI 为矩形,得到AE FG =,所以只要求AE 的最小值即可,当AE BD ⊥时,AE 最小,再利用锐角三角函数可得答案.【详解】 解: AB=BC=3,∠A=∠C=90°,,120,BD BD ABC =∠=︒,Rt ABD Rt CBD ∴≌60,30,ABD CBD GDE IDE ∴∠=∠=︒∠=∠=︒由过点E 分别作AB ,BC ,CD ,AD 的垂线,垂足分别为点F ,H ,I ,G ,,,EF EH EG EI ∴== 四边形,AFEG 四边形CHEI 为矩形,90,FEG HEI ∴∠=∠=︒,FEG HEI ∴≌∴ ,FG HI =当FG 最小,则FG HI +最小,四边形AFEG 为矩形,,AE FG ∴=所以:当AE BD ⊥时,AE 最小,3,60,AB ABE =∠=︒sin 60,AE AB ∴︒= 3333,AE ∴=⨯= 所以:FG 的最小值是:33, 所以:FG HI +的最小值是:3323 3.⨯= 故答案为:3 3.【点睛】本题考查的是点到直线的距离垂线段最短,三角形全等的判定与性质,矩形的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.19.10【分析】根据直角三角形的边角间关系先计算再在直角三角形中利用勾股定理即可求出【详解】解:在中∵∴在中故答案为:10【点睛】本题考查了解直角三角形和勾股定理利用直角三角形的边角间关系求出AC 是解决 解析:10【分析】根据直角三角形的边角间关系,先计算AC ,再在直角三角形ACD 中,利用勾股定理即可求出AD .【详解】解:在Rt ABC 中,∵12,sin3ABAB ACBAC=∠==,∴1263AC=÷=.在Rt ADC中,22AD AC CD=+2268=+10=.故答案为:10.【点睛】本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.20.【分析】根据题意画出图形进而得出cosB=求出即可【详解】解:∵∠A=90°AB=3BC=4则cosB==故答案为:【点睛】本题考查了锐角三角函数的定义正确把握锐角三角函数关系是解题的关键解析:3 4【分析】根据题意画出图形,进而得出cosB=ABBC求出即可.【详解】解:∵∠A=90°,AB=3,BC=4,则cosB=ABBC=34.故答案为:34.【点睛】本题考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题的关键.三、解答题21.1【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【详解】解:原式=12×2=1=1.【点睛】本题主要考查了实数的混合运算,结合特殊角三角函数中、零指数幂计算是解题的关键. 22.(1)82米;(2)不超速,见解析【分析】(1)已知MN=30m ,∠AMN=60°,∠BMN=45°求AB 的长度,可以转化为解直角三角形; (2)求得从A 到B 的速度,然后与60千米/时≈16.66米/秒,比较即可确定答案.【详解】解:(1)由题意可得在Rt AMN △中,30MN =米,60AMN ∠=︒, ∴tan AN MN AMN =⋅∠=在Rt BMN 中,∵45BMN ∠=︒,∴30BN MN ==(米). ∴3082AB AN BN =+=≈(米).(2)此车不超速,理由如下:由题意可得,汽车从A 到B 为匀速行驶,用时为6秒,且82AB =米,则汽车的速度为()306513.66÷=≈(米/秒).∵60千米/时≈16.67米/秒,13.6616.67<,∴此车不会超速.【点睛】本题考查了勾股定理以及解直角三角形的应用,解题的关键是从题目中抽象出直角三角形,难度不大.23.(1)9.5m ;(2)可以有效救援.【分析】(1)过点C 作CF ⊥BD ,垂足为F ,过点A 作AG ⊥CF ,垂足为G ,解直角三角形ACG 即可;(2)当起重臂最长,张角最大时,计算远臂点距离地面的最大高度,比较判断即可.【详解】(1)如图1,过点C作CF⊥BD,垂足为F,过点A作AG⊥CF,垂足为G,∵AE⊥BD,∴四边形AEFG是矩形,∴∠EAG=90°,FG=AE=3.5,∴∠CAG=30°,∵AC=12,∴CG=ACsin30°=12×1=6,2∴CF=CG+FG=6+3.5=9.5(米);(2)如图2,过点C作CF⊥BD,垂足为F,过点A作AG⊥CF,垂足为G,∵AE⊥BD,∴四边形AEFG是矩形,∴∠EAG=90°,FG=AE=3.5,∴∠CAG=60°,∵AC=20,∴CG=ACsin60°3,∴CF=CG+FG=17.32+3.5=20.82>18;∴能有效救援.【点睛】本题考查了生活实际问题中的解直角三角形,熟练把生活问题转化数学解直角三角形模型问题是解题的关键.24.(1)12y x =-,223y x =-+;(2)9 【分析】(1)过点A 作AH ⊥x 轴于H 点,由4sin 5AH ACE AO∠==,OA=5,根据正弦的定义可求出AH ,再根据勾股定理得到OH ,即得到A 点坐标(-3,4),把A (-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B (6,n )代入,确定点B 点坐标,然后把A 点和B 点坐标代入y=kx+b (k≠0),求出k 和b .(2)先令y=0,求出C 点坐标,得到OC 的长,然后根据AOB BOC AOC SS S =+计算△AOB 的面积即可.【详解】解:(1)过A 作AH x ⊥轴交x 轴于H ,∴4sin 5AH ACE AO∠==,5OA =, ∴4AH =,∴223OH OA AH ,∴()3,4A -,将()3,4A -代入m y x=,得12=-m , ∴反比例函数的解析式为12y x =-, 将()6,B n 代入12y x=-,得2n =-, ∴()6,2B -, 将()3,4A -和()6,2B -分别代入()0y kx b k =+≠,得3462k b k b -+=⎧⎨+=-⎩,解得232k b ⎧=-⎪⎨⎪=⎩, ∴直线解析式:223y x =-+; (2)在直线223y x =-+中,令0y =,则有2203x -+=,解得3x =, ∴()3,0C ,即3OC =,∴13462AOC S =⨯⨯=△; 同理3BOC S =△,则9AOB BOC AOC S S S =+=△△△.【点睛】本题考查了反比例函数的综合运用.关键是作x 轴的垂线,解直角三角形求A 点坐标,用待定系数法求直线,双曲线的解析式.25.(1)134x +=,234x =;(2)5【分析】(1)用公式法解方程即可;(2)先求特殊角三角函数值,再进行实数计算.【详解】解:(1)22360x x --=, 2a =,3b =-,6c =-∴224(3)42(6)570b ac -=--⨯⨯-=>∴332224b x a -===⨯∴134x =,234x -=(2)原式)1122=-+⨯311=+5=-【点睛】本题考查了一元二次方程的解法和含有特殊角三角函数值的实数计算,解题关键是选择恰当的方法解一元二次方程和熟记特殊角三角函数值并熟练进行计算.26.河的宽度AC 为(25+米【分析】根据点A 在点B 北偏东45°方向,结合方位角的知识可证AC BC =,利用三角函数解直角三角形,列关出方程,解方程即可.【详解】根据题意,有30,45AOC ABC ∠=︒∠=︒, 又90ACB ∠=︒所以BC AC =, 在Rt AOC ∆中,tan AC AOC OC ∠=,即tan 30AC OC ︒= 设AC x =米,则BC x =米,由题意得503x x =+ 解得x =化简得25x =+∴河的宽度AC 为(25+米.【点睛】本题考查了解直角三角形的实际应用,熟记特殊角的三角函数值,灵活运用方位角的知识,规范解直角三角形是解题关键.。

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)

九年级数学下册《直角三角形的边角关系》单元测试卷(附答案)一.选择题(共10小题,满分30分)1.已知在Rt△ABC中,∠C=90°,AC=3,BC=4,则tan A的值为()A.B.C.D.2.在Rt△ABC中,各边的长度都扩大2倍,那么锐角A的正切值()A.都扩大2倍B.都扩大4倍C.没有变化D.都缩小一半3.在直角坐标系中,P是第一象限内的点,OP与x轴正半轴的夹角α的正切值是,则cos α的值是()A.B.C.D.4.计算sin45°的值等于()A.B.C.D.5.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值是()A.B.C.D.6.在Rt△ABC中,∠C=90°,若sin A=,则cos B的值是()A.B.C.D.7.已知tan A=0.85,用计算器求∠A的大小,下列按键顺序正确的是()A.B.C.D.8.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是()A.B.C.D.9.在△ABC中,已知∠C=90°,AC=4,sin A=,那么BC边的长是()A.2B.8 C.4D.1210.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.0二.填空题(共10小题,满分30分)11.如图,在平面直角坐标系内有一点P(5,12),那么OP与x轴正半轴的夹角α的余弦值.12.若α为锐角,且,则m的取值范围是.13.用科学计算器计算: tan16°15′≈(结果精确到0.01)14.如果3sinα=+1,则∠α=.(精确到0.1度)15.计算:sin225°+cos225°﹣tan60°=.16.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且c=3a,则tan A 的值为.17.在Rt△ABC中,∠C=90°,如果AC=4,sin B=,那么AB=.18.已知∠A是锐角,且tan A=2,那么cos A=.19.已知∠A+∠B=90°,若,则cos B=.20.化简=.三.解答题(共7小题,满分60分)21.如图,在Rt△ABC中,∠C=90°,BC=6,tan A=.求AB的长和sin B的值.22.已知cos45°=,求cos21°+cos22°+…+cos289°的值.23.计算下列各题:(1);(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.24.在△ABC中,∠C=90°,BC=3,AB=5,求sin A,cos B,tan A的值.25.如图,在所示的直角坐标系中,P是第一象限的点,其坐标是(6,y),且OP与x轴的正半轴的夹角α的正切值是,求角α的正弦值.26.如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,BE=1,求cos A的值.27.如图,已知∠ABC和射线BD上一点P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m,试比较PE、PF的大小;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,且α>β.试判断PE、PF的大小,并给出证明.参考答案与解析一.选择题1.解:如图所示:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,∴tan A==.故选:B.2.解:根据锐角三角函数的定义,知各边的长度都扩大2倍,那么锐角A的大小不变,所以其正切值不变.故选:C.3.解:如图:过点P作PE⊥x轴于点E,∵tanα=,∴设PE=4x,OE=3x,在Rt△OPE中,由勾股定理得OP=,∴cosα=.故选:C.4.解:sin45°=故选:C.5.解:∵∠C=90°,AB=5,BC=3,∴AC===4,∴tan A==,故选:D.6.解:Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴cos B=sin A=,故选:C.7.解:根据计算器功能键,先按反三角2ndF,再按正切值.故选:A.8.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.9.解:由sin A==,不妨设BC=2k,则AB=3k,由勾股定理得,AC2+BC2=AB2,即(4)2+(2k)2=(3k)2,解得k=4(取正值),所以BC=2k=8,故选:B.10.解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.二.填空题(共10小题,满分30分)11.解:过P作PA⊥OA,∵P点坐标为(5,12),∴OA=5,PA=12,由勾股定理得,OP===13.∴cosα==.故答案为:.12.解:∵0<cosα<1,∴0<<1,解得,故答案为:.13.解: tan16°15′≈0.71,故答案为:0.71.14.解:∵3sinα=+1,∴sinα=,解得,∠α≈65.5°,故答案为:65.5°.15.解:∵sin225°+cos225°=1,tan60°=,∴sin225°+cos225°﹣tan60°=1﹣,故答案为:1﹣.16.解:在Rt△ABC中,∠C=90°,c=3a,∴b===2a,∴tan A===,故答案为:.17.解:∵sin B=,∴AB===6.故答案是:6.18.解:设∠A所在的直角三角形为△ABC,∠C=90°,∠A、∠B、∠C所得的边为a,b,c,∵tan A=2,即=2,设b=k,则a=2k,∴c==k,∴cos A==,故答案为:.19.解:由∠A+∠B=90°,若,得cos B=,故答案为:.20.解:∵tan30°=<1,∴原式=1﹣tan30°=1﹣=.三.解答题(共7小题,满分60分)21.解:∵在Rt△ABC中,∠C=90°,BC=6,tan A==,∴AC=12,∴AB===6,∴sin B===.22.解:原式=(cos21°+cos289°)+(cos22°+cos288°)+…+(cos244°+cos246°)+cos245 =(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+cos245=44+()2=44.23.解:(1)=(2×﹣)+=2﹣+=2;(2)sin60°•cos60°﹣tan30°tan60°+sin245°+cos245°.=×﹣×+()2+()2=﹣1++=.24.解:∵在△ABC中,∠C=90°,BC=3,AB=5,根据勾股定理可得:AC=4,∴sin A=,cos B==,tan A==.25.解:作PC⊥x轴于C.∵tanα=,OC=6∴PC=8.则OP=10.则sinα=.26.(1)证明:法一、连接AD、OD,∵AC是直径,∴AD⊥BC,∵AB=AC,∴D是BC的中点,又∵O是AC的中点,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.法二、连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AB=AC,∴∠OCD=∠B,∴∠B=∠ODC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE是⊙O的切线.(2)解:由(1)知OD∥AE,∴∠FOD=∠FAE,∠FDO=∠FEA,∴△FOD∽△FAE,∴,∴,∴,解得FC=2,∴AF=6,∴Rt△AEF中,cos∠FAE====.27.解:(1)在Rt△BPE中,sin∠EBP==sin40°在Rt△BPF中,sin∠FBP==sin20°又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα,sin∠FBP==sinβ又∵α>β∴sinα>sinβ∴PE>PF.。

直角三角形的边角关系(习题及答案)

直角三角形的边角关系(习题及答案)

37° 67.5°直角三角形的边角关系(习题)例题示范例:如图,在△ABC 中,∠B =37°,∠C =67.5°,AB =10,求 BC 的长.(结果精确到 0.1,参考数据:s in37°≈0.6,c os 37°≈0.8, tan67.5°≈2.41)AC从下面书写板块的名称中选取合适的内容,写到对应的横线上.①得出结论; ②解直角三角形; ③准备条件.巩固练习1.在 Rt △ABC 中,如果各边长度都扩大为原来的 2 倍,那么锐角 A 的正弦值( ) A . 扩大 2 倍 B .缩小 2 倍 C .没有变化 D .不确定2.4.若∠A 为锐角,且 cos A 的值大于 1,则∠A ( )2A .大于 30°B .小于 30° B . 大于 60° D .小于 60°5.已知 β 为锐角,且3A . 30︒ ≤ β ≤ 60︒ C . 30︒ ≤ β < 60︒≤ tan β < ,则 β 的取值范围是( )B . 30︒< β ≤ 60︒ D . β < 30︒6.如图,在矩形 ABCD 中,DE ⊥AC ,垂足为 E ,设∠ADE =α ,若cos α = 3,AB =4,则 AD 的长为( )5E . 如图,在菱形 ABCD 中,DE ⊥AB ,若cos A = 3,BE =2,则5tan ∠DBE = .F . 在 Rt △ABC 中,∠C =90°,若 AB =6,BC =2,则 cos A = .9. 在△ABC 中,∠A =120°,若 AB =4,AC =2,则 sin B =.3 3D10. 如图,在△ABC 中,AB =A C ,∠A =45°,AC 的垂直平分线分别交 AB ,AC 于 D ,E 两点,连接 CD .如果 AD =1,那么tan ∠BCD = .ACED BCAB第 10 题图第 11 题图11. 如图,在△ABC 中,若∠C =90°, sin B 3,AD 平分∠CAB ,5则 sin ∠CAD = .12. 如图,在△ABC 中,∠C =75°,∠BAC =60°,AC =2,AD 是BC 边上的高,则△ABC 的面积为 ,AD 的长为 .A第 12 题图第 13 题图AB C⎪ -1)0 -+(3) ( 12 sin 60︒ ⎛ 1 ⎫-2tan 45︒ ⎝ 3 ⎭(4 tan 60︒ .13. 如图,在△ABC 中,AD 是 BC 边上的高,tan B =cos ∠DAC .(1)求证:AC=BD ;(2)若sin C = 12,BC =12,求 AD 的长.13ABC16. 如图,在△ABC 中,∠A =26.6°,∠B =45°,AC = 2 的长.(参考数据:ta n26.6°≈0.50)5 ,求 AB3 ;m β α 2 3 ( 3 3思考小结1. 30°,45°,60°,120°,135°,150°都属于我们常用的特殊角,在解直角三角形中经常用到.120°,135°,150°经常使用它们的补角构造直角三角形,如右图 1. 2.解直角三角形的常考形式图 1直角三角形:“一角一边”求其余元素A 非直角三角形:“两角一边”求其余元素,往往通过构造直角三角形,把已知角度信息放到直角三角形求解,如右图 2 (α ,β ,m 已知).BDC3.我们已经知道 30°,45°所在的直角三角形的三边关系之比, 图 2借助这个内容,可以推导 15°和 22.5°所在的直角三角形的三 边关系之比,如何推导呢?如图 1,通过延长 CB 到 D ,使得 BD =AB ,可以构造 15°角, 根据三边关系填空.(已知== +1 )图 1tan15︒ = AC = CD sin15︒ = AC= AD; t an 75︒ = CD= ;AC .类比上述内容,请你画出研究 22.5°角所在的直角三角形所需图形并填空.ACtan22.5°=;tan67.5°=.120°4.探索思考下面的结论,尝试在下面两个图形中证明结论:若tanα=1,tanβ=1,则α+β= 45︒.(标注信息,简要写2 3出思路)αβαβ。

直角三角形边角关系10套题

直角三角形边角关系10套题

三角形边角关系11.已知Α为锐角,3cos 5A =,则tan Α= .2.在周长12的Rt A B C ∆中, sin B =0.5,则b= ,c= .3.在Rt A B C ∆中,05090,10,33A B C C a S ∆∠===, 则b= ,c= .4.已知在Rt A B C ∆中,090,,,sin C AC b AB c A ∠====那么 ,sin B = .5.在A B C ∆中,090,65,615C a b ∠===,则c= ,B ∠= .6.在Rt ∆MNP 中,若NP 是斜边,MN=15,NP=17,那么tanN + cotP= .7. √2×sin45°+√3×cos30°-3/2= .8.已知某大坝横截面为梯形,坝顶宽10米,坝高160米,且大坝迎水面坡度i 1=1:3,背水面坡度i 2=2:3,求大坝截面积.三角形边角关系21.在Rt A B C ∆中,0090,10,55C AC B ∠==∠=,则AB 上的高CD 的长可表示为 .2.在A B C ∆中,若cosB=0,b=21,c:a=5:3则BC 边上的中线AD 的长为 .3. 点Α在O 点北偏西035方位上,点B 在O 点北偏东055的方位上且O Α长80m,OB 长60m,那么ΑB 间的距离是 .4. 在Rt A B C ∆中,斜边上的高CD 把ΑB 分成ΑD 和BD,若ΑD:BD=34,则sin B = .5.在A B C ∆中,0490,sin ,8,5C B A B B C A C ∠==+==则 .6.在梯形ΑBCD 中,ΑD//BC,ΑB=CD,ΑD=4,BC=6,1cos ,4B S =梯则= .7. 已知tan α=3.则1/(sin²α+sinαcosα+cos²α) 的值为?8.从高24米的甲楼顶部Α处测得乙楼顶部B 的仰角α=300,测得乙楼底部C 的俯角β=600,求乙楼的高.三角形边角关系31.如图9-8,在A B C ∆中,D 是ΑB 的中点, DC ⊥ΑC,B C D ∠的正切值是13,则A ∠的正弦值是 .2.在A B C ∆中,1,2,12tgA tgC AC ===,那么BC 的值是 .3.在A B C ∆中,090,2,4,cos ABC C AC S A ∆∠===则= .4.如图9-9,在电视塔ΑD 的正东方向有两个地面观测点B 、C,在B 、C,两点测得塔顶Α的仰角分别为αβ,B 、C 两地相距α米,则ΑD 的高为 .5.飞机在离地面1200m 上空测得地面目标的俯角为060,那么此时飞机距目标 m.6.已知在A B C ∆中,ΑB=ΑC=10,BC=12,那么c o s B = ,tgC = ,sin A = .7. 3/5cosβ-4/5sinβ=5/13,求sinβ?8.在Rt ΔΑBC 中,∠ΑCB=900,sinB=35,D 是BC 边上的一点,DE ⊥ΑB ,垂足为E ,CD=DE ,ΑC+CD=9,求(1)BC 的长;(2)CE 的长.三角形边角关系41.A B C ∆中,05120,21,,3A B C c B b S a ∆∠===且则= .2.如图9-10,在四边形ΑBCD 中,ΑD=CD,ΑB=7,tg Α=2,090B D ∠=∠=,那么BC 的长为 .3.在ΔΑBC 中,∠C=900,CD ⊥ΑB ,垂足为D ,则比值B CC D B D A CA B A C B C B C、、、中等sin Α的个数有( ).(Α)4个 (B )3个 (C )2个 (D )1个4.如图9-11,在ΔΑBC 中,∠Α=300,E 为ΑC 上一点,且ΑE :EC=3:1,EF ⊥ΑB ,F 为垂足,连结FC ,则cot ∠CFB 的值等于( ).(Α)36(B )32(C )433 (D )1345.在ΑBC 中,∠Α=750,∠C=450,ΑB=2,则ΑC 的长等于( ).(Α)22 (B )23 (C )6 (D )2636.在Rt ΔΑBC 中,∠C=900,CD ⊥ΑB 于D ,若14B D A D=,则tan ∠BCD 的值是( ).(Α)14(B )13(C )12(D )27.在ΔΑBC 中,已知∠B=2倍等于其他两角的和,最长边与最短边的和是8,积是15,求这个三角形的面积及∠B 所对边的长.三角形边角关系51.在ΔΑBC 中,∠B=600,ΑB=6,BC=8,则ΑBC 的面积是( ). (Α)123 (B )12 (C )243 (D )1222.如图9-12,在矩形ΑBCD 中,BC=2,ΑE ⊥BD ,垂足为E ,∠B ΑE=300,则ΔECD 的面积是( ).(Α)23 (B )3 (C )32(D )333.如图9-13,∠ΑOP=∠BOP=150,PC ∥ΑO ,PD ⊥O Α,若PC=4,则PD 等于( ). (Α)4 (B )3 (C )2 (D )14.在ΔΑBC 中,∠Α=300,tgB=13,BC=10,那么ΑB 的长为( ).【2】(Α)3 (B )3 (C )33-(D )33+5.如图9-14,在ΑBC 中,点D 在ΑC 上,DE ⊥BC ,垂足为E ,若ΑD=2CD ,ΑB=4DE ,则sinB=( ). (Α)12(B )73(C )377(D )346.如图9-15,x=( ).(Α)sin cos a b a β- (B )cos cos a b a β- (C )cos sin b b aβ- (D )sin sin a b aβ-7.如图9-28,∠ΑCB=900,ΑB=13,ΑC=12,∠BCM=∠B ΑC ,求sin ∠B ΑC 和点B 到直线MC 的距离.三角形边角关系61.如图1所示的Rt△ABC中,cosA=___; 2.在Rt△ABC中,∠C=90°,BC=4,sinA=23,则AB=___;3.已知α为锐角,下列结论:○1sinα+cosα=1;○2如果α>45°,那么sinα>cosα;○3如果cosα>12,那么α<60°;○4()2sin 11sin αα-=-.正确的有( )A.1个;B.2个;C.3个;D.4个. 4.△ABC中,∠C=90°,如果sinA=35,那么tanB的值等于( )5.如图2,在高度为10米的平台CD上测得一高层建筑物AB的顶端A的仰角为60°,底端B的俯角为30°,则高层建筑物的高AB=____米;6.如图3,小明想测量电线杆AB的高度,发现电线杆的影子恰好在落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成 30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为___米(结果保留两位有效数字).7.如图7,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC=30°,分别求点A,D到OP的距离.B C A135图1D B CA图230°AE BD C F 图3P E B F OAD G CQ图7三角形边角关系71.已知△ABC中,∠C=90°,sinA=35,则BC∶AC等于()A.3∶4;B.4∶3;C.3∶5;D.4∶5.2.∠A为锐角,且sinA=35,那么()A.0°<∠A<30°;B.30°<∠A<45°;C.45°<∠A<60°;D.60°<∠A<90°;3.计算:2cos45︒+tan60°cos30°=___;4.如果一个角的补角是这个角余角的4倍,则这个角的正弦值是___;5.在△ABC中,∠C=90°,若3AC=3BC,则∠A的度数是___,cosB的值是___;6.在△ABC中,∠C=90°,若tanA=12,则sinA=___;7.若tan9°·tanα=1,则锐角α=___度;8.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的边,则33sin sina Bb A+=___;9.如图6,在△ABC中,AD是BC边上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=1213,BC=12,求AD的长.BDCA图6三角形边角关系81.在Rt△ABC中,各边长都扩大2倍,则锐角A的正弦和余弦值()A.都不变;B.都扩大2倍;C,都缩小2倍;D.不能确定.2.在Rt△ABC中,∠C=90°,AB=c,BC=a,且a,c满足2234a ac c-+=0,则sinA=();A.1;B.13;C.1或13;D.1或3.3.三角函数sin23°,cos15°,cos41°的大小关系是()CA.cos41°>sin23°>cos15°;B.cos15°>sin23°>cos41°;C.cos15°>cos41°>sin23°;D.cos41°>cos15°>sin23°.4.在△ABC中,∠A,∠B均为锐角,且|tanB-3|+()22sin3A-=0,则△ABC是()A,等腰三角形;B.等边三角形;C.直角三角形;D.等腰直角三角形.5.河堤的横断面如图4所示,堤高BC是5米,迎水斜坡AB的长是10米,那么斜坡AB的坡度i是()A.1∶2;B.1∶3;C.1∶1.5;D.1∶3.6.若α为锐角,且sinα是方程22x+3x-2=0的一个根,则cosα=()A.12;B.32;C.22;D.12或327.如图5,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC=35,求:(1)DC的长;(2)A CB C的值.BDCA图5BCA图4三角形边角关系91、等腰三角形的一腰长为cm 6,底边长为cm 36,则其底角为( ) A 030 B 060 C 090 D 01202、某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则两个坡角的和为 ( )A 090 B 060 C75D 01053、如图,在矩形ABCD 中,DE⊥AC 于E ,设∠ADE=α,且53cos =α, AB= 4, 则AD 的长为( ).(A )3 (B )316 (C )320 (D )5164、在课外活动上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为4502cm ,则对角线所用的竹条至少需( ). (A )cm 230 (B )30cm (C )60cm (D )cm 260 5、如果α是锐角,且135cos sin 22=︒+α,那么=αº.6、如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米.7.如图9,登山队员在山脚A点测得山顶B点的仰角为∠CAB=45°,当沿倾斜角为30°的斜坡前进100m到达D点以后,又在D点测得山顶B点的仰角为60°,求山的高度BC.(精确到1米)A E CB FD图9A BCD E三角形边角关系101、如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =______.2、支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米.那么旗杆的有为 米(用含α的三角比表示).3、在Rt ABC ∆中∠A<∠B,CM 是斜边AB 上的中线,将ACM ∆沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.4、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为 10米,坡角为︒55,路基高度为5.8米,求路基下底宽5.如图11,客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A-B-C上的某点E处.已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E点( )(A)在线段AB上;(B)在线段BC上;(C)可以在线段AB上,也可以在线段BC上; (2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)6、如图,客轮沿折线A―B―C 从A 出发经B 再到C 匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A―B―C 上的某点E 处.已知AB = BC =200海里,∠ABC =︒90,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E 点( )A .在线段AB 上 B .在线段BC 上C .可以在线段AB 上,也可以在线段BC 上(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)C F EBA D.图11αPoy x34︒555.8m10mABC D.。

第一章《直角三角形的边角关系》检测(含答案)-

第一章《直角三角形的边角关系》检测(含答案)-

第一章《直角三角形的边角关系》检测一、填空题(每题2分,共24分)1.计算:sin 248°+sin 242°-tan44°·tan45°·tan46°=_______.2.已知角α为锐角,且53sin =α,则αcos = . 3.在△ABC 中,若AC,BC,AB =3,则cos A = . 4.已知A 是锐角,且sin A =13,则cos (90°-A )=___________. 5.在Rt △ABC 中,∠C =90°,已知sin A =35,则cos B =_______. 6.用科学计算器或数学用表求:如图1,有甲、乙两楼,甲楼高AD 是23米,现在想测量乙楼CB 的高度.某人在甲楼的楼底A 和楼顶D ,分别测得乙楼的楼顶B 的仰角为65°13′和45°,处用这些数据可求得乙楼的高度为 米(结果精确到0.01米). 注:用数学用表求解时,可参照下面正切..表的相关部分.7.已知36α∠=︒,若β∠是α∠的余角,则β∠= 度,sin β=____(结果保留四个有效数字).8.如图2青岛位于北纬36°4′,通过计算可以求得:在冬至日正午时分的太阳入射角为A D CB图145° 65°13′(甲楼) (乙楼)图230°30′.因此,在规划建设楼高为20米的小区时,两楼间的距离最小为_____米,才能保证不挡光(sin30°30′=0.5075,tan30°30′=0.5890,结果保留四个有效数字). 9.如图3,河对岸有古塔AB ,小敏在C 处测得塔顶A 的仰角为α,向塔s 米到达D ,在D 处测得塔顶A 的仰角为β,则塔高是__________米.10.在△ABC 中,∠A =90°,设∠B =θ,AC =b ,则AB =________________(用b 和θ的三角比表示).11.某山路坡面坡度i =沿此山路向上前进200米,升高了_______米.12.如图4,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m(精确到0.1m).二、选择题(每题2分,共24分) 13.2sin450的值等于( )A.1D.2, 14.在△ABC 中,∠C =90°,若∠B =2∠A ,则con B 等于()B.3 C.23 D.2115.在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( )A .135 B .1312 C .125 D .51216.已知α为锐角,tan (90°-α),则α的度数为( )图3图4A .30°B .45°C .60°D .75°17.如图5,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m ,眼睛与地面的距离为1.6m ,那么这棵树的高度大约为( ) A .5.2 m B .6.8 m C .9.4 m D .17.2 m18.如图6,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) A.1 B.2 C.22D.22 19.在ΔABC 中,∠C =90°,sin A =35,则cos A 的值是( ) A .45 B .35 C .34 D .4320.如图7,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于( ).A .a ·sinαB .a ·cosαC .a ·tanαD .a ·cotα21.在Rt △ABC 中,∠C =90°,若sin A=2,则的值为( )A ..12D.122.如图8,△ABC 中,∠C =90°,AB =5,BC =3,CA =4,那么sin A 等于( )ACB图8图5图7 a B AC图6A.34 B.43 C.35 D.4523.如图9在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α,AB = 4, 则AD的长为( ) A.3 B.316 C.320 D.51624.某市在“旧城改造”中计划在一块如图10所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ) A.450a 元 B.225a 元 C.150a 元 D.300a 元三、解答题(第25题2分,其余每题5分,共52分)25.计算:︒⋅︒-︒60tan 45cos 30sin 2.26.在△ABC 中,∠A ,∠B 都是锐角,且sin A =12,tan B,AB =10,求△ABC 的面积.A BCDE图9︒15020米30米图1027.如图11,从一块矩形薄板ABCD 上裁下一个工件GEHCPD (阴影部分). 图中EF //BC ,GH //AB ,∠AEG =11°18′,∠PCF =33°42′,AG =2cm ,FC =6cm. 求工件GEHCPD 的面积.(参考数据:322433tan ,518111tan ≈'︒≈'︒)28.如图12将一副三角尺如图摆放在一起,连结AD ,试求ADB ∠的余切值.CABD图12DBAC图11FH29.如图13,沿AC 的方向修建高速公路,为了加快工程进度,要在小山的两边同时施工.在AC 上取一点B ,在AC 外另取一点D ,使∠ABD =130°,BD =480 m ,∠BDE =40°,问开挖点E 离D 多远,才能使A 、C 、E 在一条直线上(sin50°=0.7660,cos50°=0.6428,精确到0.1m ).30.如图14,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16米,坝高 6米,斜坡BC 的坡度3:1 i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB (精确到0.1米).图14D CBA图1331.在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图15-①所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h.根据上述测量数据,即可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图15-②)的方案:(1)在图15-②中,画出你测量小山高度MN的示意图(标上适当字母);(2)写出你设计的方案.①NM②图1532.如图16,在Rt △ABC 中,∠C =90°,sin B =35,点D 在BC 边上,且∠ADC =45°,DC =6,求∠BAD 正切值.33.如图17,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?ABCD 图16图17图1834.某居民小区有一朝向为正南方向的居民楼(如图18),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米? (结果保留整数,参考数据:53106sin 32,cos32,tan 321001258≈≈≈鞍?35.为申办2010年冬奥会,须改变哈尔滨市的交通状况.在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°.问:距离B 点8米远的保护物是否在危险区内?参考答案一、1.0;2.54; 4.31;5.35;6.42.73;7.54、0.8090;8.33.96或33.95;9.βαcot cot -s;10.b ·cot θ;11.10;12.2.3.二、13,B ;14,C ;15,C ;16,C ,17,A ;18,B ;19,A ;20,C ;21,B ;22,C ;23,B ;24,C . 三、25,4621-;26,3225;27,48; 28,过点A 作DB 的延长线的垂线AE ,垂足为E .cot 1)1DE ADB EA ∠===+ 29, 367.7m;30,∠A =22°1′ AB =37.8米; 31,(1)图略;(2)①在测点A 处安置测倾器,测得此时M 的仰角,∠MCE =α;②在测点A 与小山之间的B 出安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角∠MDE =β;③量出测倾器的高度AC =BD =h ,以及测点A 、B 之间的距离AB =m .根据上述测量数据,即可求出小山的高度MN.;32,过D 点作,交AB 于E 点,所以tan=∠BAD =6515427DE AE =⨯=; 33,过点B 作BM ⊥AH 于M ,∴BM ∥AF .∴∠ABM =∠BAF =30°.在△BAM 中,AM =12,AB =5,BM 过点C 作CN ⊥AH 于N ,交BD 于K .,在Rt △BCK 中,∠CBK =90°-60°=30°,设CK =x ,11 则BKx , Rt △ACN ∠CAN =90°-45°=45°,AN =NC .∴AM +MN =CK +KN .又NM =BK ,BM =KN .即xx .解得x =5.∵5海里>4.8海里,∴渔船没有进入养殖场的危险;34,(1)如图设CE=x 米,则AF =(20-x )米,tan 32,AF EF?即20-x =15tan 32,11x ≈° ∵11>6, ∴居民住房的采光有影响.(2)如图:sin 32,ABBF ?820325BF =⨯=,两楼应相距32米;35,可求出AB = 43米,因为8>43,所以距离B 点8米远的保护物不在危险区内.。

第一章 直角三角形的边角关系(单元测试)(解析版)

第一章 直角三角形的边角关系(单元测试)(解析版)

第一章 直角三角形的边角关系单元测试参考答案与试题解析一、单选题1.(2020·哈尔滨德强学校)在△ABC 中,若, )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【答案】A【解析】试题解析:∵cos A tan B ,∴∠A =45°,∠B =60°.∴∠C =180°-45°-60°=75°.∴△ABC 为锐角三角形.故选A .2.(2019·福建三明市·九年级月考)在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )A .sinB =23B .cos B =23C .tan B =23D .tan B =32【答案】C【解析】∵∠C =90°,AC =2,BC =3,∴,∴sinB=AC AB ==,cosB=BC AB ==,tanB=AC 2BC 3=,故选C.3.(2020·济南历下区明德中学九年级期中)如图所示,菱形ABCD 的周长为20cm ,DE AB ^,垂足为E ,35DE AD =,则下列结论正确的有( )①3DE cm =;②1BE cm =;③菱形的面积为215cm ;④BD =.A .1个B .2个C .3个D .4个【答案】C【分析】根据菱形的性质及已知对各个选项进行分析,从而得到答案.【详解】解:Q 菱形ABCD 的周长为20cm ,5cm AD \=,35DE AD =Q ,3cm(DE \=①正确),4cm AE \==,5cm AB =Q ,541cm(BE \=-=②正确),\菱形的面积25315cm (AB DE =´=´=③正确),3cm DE =Q ,1cm BE =,BD \==④不正确),故选:C .【点睛】本题考查菱形的性质、勾股定理等内容,掌握菱形的性质是解题的关键.4.(2019·辽宁抚顺市·九年级月考)在△ABC 中(2cosA-)2+|1-tanB|=0,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】D【分析】根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A 、∠B 的度数,根据直角三角形的判定,可得答案.【详解】解:由()2+|1-tanB|=0,得,1-tanB=0.解得∠A=45°,∠B=45°,则△ABC 一定是等腰直角三角形,故选:D .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.(2020·山东枣庄市·九年级期末)若α为锐角,且()sin10a °-=,则α等于( )A .80°B .70°C .60°D .50°【答案】B【解析】【分析】根据sin 60°=得出α的值.【详解】解:∵sin 60°=∴α-10°=60°,即α=70°.故选:B .【点睛】本题考查特殊角的三角函数值,特殊角的三角函数值的计算在中考中经常出现,题型以选择题、填空题为主.6.(2019·全国九年级单元测试)已知∠A 为锐角,且tan A ,则∠A 的取值范围是( )A .0°<∠A <30°B .30°<∠A <45°C .45°<∠A <60°D .60°<∠A <90°【答案】C【解析】【分析】通过tan30°、tan45°、tan60°这些特殊角度的正切值来判断随角度变化正切值的变化规律,再通过具体数值确定其大致范围.【详解】解:tan30°,tan45°=1,tan60°,则可知正切值随角增大而增大,由145°<∠A <60°.故选择C .【点睛】熟悉特殊角的正切值以及由此判断正切函数随角度变化的变化规律是解题关键.7的值是( )A .1-B -1C -1D .1【答案】A【解析】11=-=故本题应选A.点睛:00a a a a a ³ì=í-<î,, .8.(2019·全国九年级单元测试)=( )A .B .C .D .1【答案】D【解析】【分析】由于tan30°=,故1-tan30°>0,再对根号里的各项利用完全平方公式变形,从而可以计算出答案.【详解】解:∵tan30°=,∴ 1-tan30°>0,原式=+tan30°=|1-tan30°|+tan30°=1-tan30°+tan30°=1.故选:D .【点睛】本题考查了特殊角的三角函数值、完全平方公式.以及二次根式的性质与化简,本题的关键有两步:第一步判断tan30°-1的正负;第二步熟练运用=|a|进行化简,同时也要掌握绝对值的代数意义.9.(2019·福建三明市·九年级月考)如图,△ABC的顶点都是正方形网格中的格点,则sin∠ABC等于()A B C D.2 3【答案】C【解析】试题解析:设正方形网格每个小正方形边长为1,则BC边上的高为2,则AB===,sin ABCÐ== .故本题应选C.10.(2020·福建莆田市·九年级一模)小明沿着坡角为30°的山坡向上走,他走了1000m,则他升高了( )A.B.500m C.D.1000m【答案】B【解析】【分析】根据坡角的概念,直角三角形中30°所对直角边等于斜边一半的性质计算即可.【详解】解:设他升高了xm,∵山坡的坡角为30°,∴x=12×1000=500(m),故选:B.【点睛】本题考查的是解直角三角形的应用:坡度坡角问题,属于简单题,掌握坡角的概念是解题的关键.二、填空题11.(2020·四川攀枝花市·九年级期末)△ABC中,∠C=90°,tan A=43,则sin A+cos A=_____.【答案】7 5【解析】∵在△ABC 中,∠C=90°,4tan 3A =,∴可设BC=4k ,AC=3k ,∴由勾股定理可得AB=5k ,∴sinA=4455BC k AB k ==,cosA=3355AC k AB k ==,∴sinA+cosA=437555+=.故答案为75.12.(2020·全国九年级单元测试)如图,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C 在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m 到达A 处,在A 处观测C 地的俯角为30°,则B 、C 两地之间的距离为__________m.【答案】【分析】利用题意得到∠C=30°,AB=100,然后根据30°的正切可计算出BC .【详解】根据题意得∠C=30°,AB=100,∵tanC=A B B C,∴BC=0100tan 30=0100tan 30(m ).故答案为【点睛】本题考查了解直角三角形的应用-仰角俯角:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.13.(2020·阜康市第三中学九年级其他模拟)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,若BC=6,AC=8,则tan∠ACD的值为_____.【答案】3 4【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得AD=CD,再根据等边对等角可得∠A=∠ACD,然后利用锐角的正切值等于对边比邻边列式计算即可得解.【详解】解:∵∠ACB=90°,CD是AB边上的中线,∴AD=CD,∴∠A=∠ACD,∴tan∠ACD=tan∠A=BCAC=68=34.故答案为:34.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半的性质,锐角三角函数的定义,熟记性质并求出∠A=∠ACD是解题的关键.14.(2020·江苏淮安市·淮安六中八年级期中)有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一个树的树梢,则小鸟至少飞行_________________米【答案】10【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】解:如图,设大树高为12AB m =,小树高为6CD m =,过C 点作CE AB ^于E ,则四边形EBDC 是矩形,连接AC ,6EB m \=,8EC m =,1266()AE AB EB m =-=-=,在Rt AEC D 中,10()AC m ==.故小鸟至少飞行10m .故答案为:10.【点睛】本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.15.如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,已知平台CD 的高度为5 m ,则大树的高度为_______m(结果保留根号).【答案】5+【分析】作CE ⊥AB 于点E ,则△BCE 和△BCD 都是直角三角形,即可求得CE ,BE 的长,然后在Rt △ACE 中利用三角函数求得AE 的长,进而求得AB 的长,即为大树的高度.【详解】如图,过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,BE =CD =5m ,CE =tan 30BE o=(m ),在Rt △ACE 中,AE =CE·tan 45°=(m ),AB =BE +AE =5+m ).【点睛】本题考查解直角三角形的应用-仰角俯角问题的应用,要求学生能借助仰角构造直角三角形并解直角三角形.16.(2019·全国九年级单元测试)小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为________ 米.【答案】50【分析】根据斜坡的坡比为1:2.4,可得BC :AC=1:2.4,设BC=x ,AC=2.4x ,根据勾股定理求出AB ,然后根据题意可知AB=130米,求出x 的值,继而可求得BC 的值.【详解】解:如图所示:∵坡比为1:2.4,∴BC :AC=1:2.4,设BC=x ,AC=2.4x ,则,∵AB=130米,∴x=50,则BC=x=50(米).故答案为50.【点睛】此题主要考查了坡度的定义和勾股定理,根据勾股定理把AB 用x 表示出来并求出是解题的关键.三、解答题17.计算:(1)(-1)2-2cos 30°+(-2017)0;(2)3tan 302tan 60cos 60°-°°+4sin 60°.【答案】(1) 2;(2) 0.【解析】试题分析:(1)先求出式子每一项的值,然后相加即可.(2)先计算每一个特殊角的三角函数值,然后代入式子求值即可.试题解析:(1) 原式=1-1=11=2;(2)+=-=0.18.(2019·福建三明市·九年级月考)如图,在△ABC 中,BD ⊥AC ,AB =6,AC =,∠A =30°.(1)求BD 和AD 的长;(2)求tan C 的值.【答案】(1) BD =3,AD =;(2) tan C.【解析】(1)∵BD ⊥AC ,∴∠ADB =∠BDC =90°.在Rt △ADB 中,AB =6,∠A =30°,∴BD =AB·sin30°=3,∴·cos30AD AB =°=.(2)CD AC AD =-=-=,在Rt △BDC 中,tan BD C CD Ð===19.(2020·辽宁盘锦市·)如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A 点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B 点,在B 处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C 点距离海面的深度(结果保留根号).【答案】米【分析】过C 作CD ⊥AB 于D ,交海面于点E ,设BD=x ,利用锐角三角函数的定义用x 表示出BD 及CD 的长,由CE=CD+DE 即可得出结论.【详解】解:过C 作CD ⊥AB 于D ,交海面于点E ,设BD=x , ∵∠CBD=60°,∴tan ∠CBD=CD BD∴. ∵AB=2000, ∴AD=x+2000,∵∠CAD=45° ∴tan ∠CAD=CD AD=1,x=x+2000,解得, ∴+1000)∴.答:黑匣子C 点距离海面的深度为米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.20.如图,AB 是长为5m ,倾斜角为37°的自动扶梯,平台BD 与大楼CE 垂直,且与扶梯AB 的长度相等,在B 处测得大楼顶部C 的仰角为65°,求大楼CE 的高度(结果保留整数).(参考数据:3sin 375°»,3tan 374°»,9sin 6510°»,15tan 657°»)【答案】大楼CE 的高度约为14m .【分析】如图(见解析),先在Rt ABF V 中,利用正弦三角函数可求出BF 的长,再在Rt CDB V 中,利用正切三角函数可求出CD 的长,然后根据线段的和差即可得.【详解】如图,作BF AE ^于点F ,则BF DE=由题意得:5,BD AB m BD CE ==^,37,65BAF CBD Ð=°Ð=°在Rt ABF V 中,sin BF BAF AB Ð=则3sin 3753()5BF AB m =×°»´=在Rt CDB V 中,tan CD CBD BDÐ=则15tan 65511()7C mD BD °»»=×´则31114()CE DE CD BF CD m =+=+»+=答:大楼CE 的高度约为14m .【点睛】本题考查了解直角三角形的应用,通过作辅助线,构造直角三角形是解题关键.21.如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1AB=10米,AE=15米.(i=1坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1»1.414,1.732)【答案】(1)点B 距水平面AE 的高度BH 为5米.(2)宣传牌CD 高约2.7米.【分析】(1)过B 作DE 的垂线,设垂足为G .分别在Rt △ABH 中,通过解直角三角形求出BH 、AH.(2)在△ADE 解直角三角形求出DE 的长,进而可求出EH 即BG 的长,在Rt △CBG 中,∠CBG=45°,则CG=BG ,由此可求出CG 的长然后根据CD=CG+GE ﹣DE 即可求出宣传牌的高度.。

第一章《直角三角形的边角关系》单元检测卷(含答案)

第一章《直角三角形的边角关系》单元检测卷(含答案)

第一章《直角三角形的边角关系》单元检测卷(全卷满分100分 限时90分钟)一、选择题:(每小题3分 共36分) 1.0)30(tan o 的值是( )A B .0 C .1 D 2.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .sin35m ︒ B .cos35m ︒ C .sin 35m ︒ D .cos35m︒(第2题) (第3题) (第4题)3.如图,△ABC 的三个顶点在正方形网格的格点上,则tan ∠A 的值是( )A .65 B . 56C D4.一艘轮船由海平面上A 地出发向南偏西40°的方向行驶40海里到达B 地,再由B 地向北偏西20°的方向行驶40海里到达C 地,则A 、C 两地相距( )A .30海里B .40海里C .50海里D .60海里 5.小明沿着坡角为30°的坡面向下走了2米,那么他下降( )A .1米B 米C .米D .3米 6.在Rt ABC ∆中,已知90C ∠=︒,40A ∠=︒,3BC =,则AC =( ) A .3sin 40︒ B .3sin50︒ C .3tan 40︒ D .3tan50︒ 7.sin 30°+tan 45°-cos 60°的值等于( )A B .0 C .1 D8.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为A .米B .米C .D . 24米(第8题) (第10题) (第11题)9在∆ABC 中,若∣sin A -12∣+(cos B 2=0则∠C =( )A. 300B. 600 C . 900 D. 120010.轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔A 的距离是( )海里.A .B .C .50D .2511.如图,某人站在楼顶观测对面的笔直的旗杆A B .已知观测点C 到旗杆的距离CE =8m ,测得旗杆的顶部A 的仰角∠ECA =30°,旗杆底部B 的俯角∠ECB =45°,那么,旗杆AB 的高度是( )A .m ;B .(m ;C .()m ;D .(m 12.如图1,在△ABC 中,∠ACB =90°,∠CAB =30°, △ABD 是等边三角形,E 是AB 的中点,连结CE 并延长交AD 于F ,如图2,现将四边形ACBD 折叠,使D 与C 重合,HK 为折痕,则sin ∠ACH 的值为( )AB .71C .61D二.填空题:(每小题3分共12分) 13.若sinα=12,α是锐角,则α= 度. 14.如图,在四边形ABCD 中,对角线AC 、BD 交于点E ,点E 为BD 的中点,∠BAC +∠BDC =180°,若AB =CD =5,tan ∠ACB =21,则AD =_________.(第14题) (第15题)15.如图,在四边形ABCD 中,∠ABC =∠ADC =90°,对角线AC 、BD 交于点P ,且AB =BD ,AP =4PC =4,则cos ∠ACB 的值是 .16.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC的费马点(Fermat point ),已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC =∠BPC =120°时,P 就是△ABC 的费马点,若P 就是△ABC的费马点,若点P 的等腰直角三角形DEF 的费马点,则PD +PE +PF = . 三.解答题:(共52分)17.(6分)计算:sin30cos45tan 601︒⨯︒-︒+18.(8分)如图,205国道旁的马鞍山南部承接产业示范园区里某幢大楼顶部有广告牌C D.习老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(计算结果保留根号)(1)求这幢大楼的高DH;(2)求这块广告牌CD的高度.19.(7分)如图所示,为了躲避海盗,一轮船由西向东航行,早上8点,在A处测得小岛P 在北偏东75°的方向上,以每小时20海里的速度继续向东航行,10点到达B处,并测得小岛P在北偏东60°的方向上,已知小岛周围22海里内有暗礁,若轮船仍向前航行,有无触礁的危险?20.(7分)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)21.(7分)如图,港口A在观测站O的正东方向,OA=40海里,某船从港口A出发,沿北偏东15°方向航行半小时后到达B处,此时从观测站O处测得该船位于北偏东60°的方向.求该船航行的速度.22.(8分)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732=1.732=1.414)23.(9分)在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B 在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A 位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?解析与答案1.C 【解析】试题分析:任何非零实数的零次幂都为1. 2.A. 【解析】试题分析:根据锐角三角函数定义可得sinA =mBCAB BC =,所以BC =sin35m ︒,故选A. 3.A 【解析】试题分析:利用三角函数的定义可知tan ∠A =65. 故选A .4.B. 【解析】试题解析:由题意得∠ABC =60°,AB =BC ∴△ABC 是等边三角形 ∴AC =AB =40海里. 故选B . 5.A 【解析】试题分析:首先画出符合题意的直角△ABC ,再根据坡角的定义可知∠A =30°,然后利用正弦函数的定义即可求解.解:如图,∵直角△ABC 中,∠C =90°,∠A =30°,AB =2米, ∴他下降的高度BC =AB •sin 30°=1米.6.D . 【解析】试题分析:如图所示:∵40A ∠=︒,∴50B ∠=︒,根据三角函数的定义可知tan ACB BC=,tan503AC︒=,所以AC =3tan50︒.故选D . 7.C . 【解析】 试题解析:原式=12+1-12=1. 故选C . 8.B . 【解析】试题解析:在Rt △ABC 中, ∵i =12BC AC =,AC =12米, ∴BC =6米, 根据勾股定理得:AB =故选B . 9.D 【解析】试题分析:根据非负数的性质可知:sinA -12=0,cosB =0,然后根据特殊角的三角函数值计算可得:∠A =30°,∠B =30°,再根据三角形的内角和可求得∠C =180°-30°-30°=120°. 故选:D 10.D.试题分析:根据题意,∠1=∠2=30°,∵∠ACD =60°,∴∠ACB =30°+60°=90°,∴∠CBA =75°﹣30°=45°,∴∠A =45°,∴AB =AC.∵BC =50×0.5=25,∴AC =BC =25(海里).故选D .11.D 【解析】试题分析:利用∠ECA 的正切值可求得AE ;利用∠ECB 的正切值可求得BE ,有AB =AE +BE . 解:在△EBC 中,有BE =EC ×tan 45°=8,在△AEC 中,有AE =EC ×tan 30°∴AB (米). 故选D . 12.B . 【解析】试题分析:∵∠BAD =60°,∠CAB =30°,∴∠CAH =90°,在Rt △ABC 中,∠CAB =30°,设BC =a ,∴AB =2BC =2a ,∴AD =AB =2a ,设AH =x ,则HC =HD =AD ﹣AH =2a ﹣x ,在Rt △ABC中,2222(2)3AC a a a =-=,在Rt △ACH 中,222AH AC HC +=,即2223(2)x a a x +=-,解得14x a =,即AH =14a ,∴HC =2a ﹣x =2a ﹣14a =74a ,∴sin ∠ACH =17AH HC =,故选B .二.填空题:(每小题3分共12分) 13.30° 【解析】试题分析:根据特殊角的三角函数值解答. 解:∵sinα=12,α是锐角, ∴α=30°. 14.210. 【解析】试题分析: 过点B 作BM ⊥CA ,过点D 作DN ⊥CA ,证△AMB ≌△CDN ,,得∠BAM =∠DCN ,而∠BAC +∠BDC =180°,得到CE =DE ,再根据点E 为BD 的中点,得BE =CE =DE , △BCD 是直角三角形.依据∠EBC =∠ECB , tan ∠ACB =21,DC =5得BC =10,在△BCM 中,根据tan ∠ACB =21得BM =,DN =,CM =,在△AMB 中,AM =,所以CN AN =△AND 是等腰直角三角形,根据勾股定理求得斜边AD =.15.33. 【解析】试题分析:如图:作BE ⊥AD 于E ,交AC 于O ,则BE ∥CD ,由AB =BD 得E 是AD 的中点,因此OE 是△ACD 的一条中位线,从而O 是AC 的中点,以O 为圆心,OA 为半径作圆,则由∠ABC =∠ADC =90°可知该圆经过A 、B 、C 、D 四点,易知 AP =4,PC =1,AC =AP +PC =5,因此,OA =OC =2.5.OP =OC ﹣PC =1.5,由BE ∥CD 得,BP :PD =OP :PC =1.5,因此BP =1.5PD ,从而 AB =BD =BP +PD =2.5PD ,由相交弦定理得 BP •PD =AP •PC =4,即 1.5PD 2=4,因此 PD 2=83,从而 AB 2=(2.5PD )2=6.25PD 2=503,由勾股定理得BC 2=AC 2﹣AB 2=52﹣503=253,因此 BC =3,∴cos ∠ACB =BC :AC =3.161.【解析】试题分析:如图:等腰Rt △DEF 中,DE =DF ,过点D 作DM ⊥EF 于点M ,过E 、F分别作∠MEP =∠MFP =30°,则EM =DM =1,故cos 30°=EMEP ,解得:PE =PF 3,则PM 故DP =1则PD +PE +PF +11.1.三.解答题:(共52分)17 1.- 【解析】试题分析:根据特殊角的三角函数值,和绝对值的性质可直接代入求值.试题解析:sin30cos45tan 601︒⨯︒-︒+112=-1.=- 18.(1)153+1.6(2)31﹣153 【解析】试题分析:根据题意构造直角三角形Rt △DME 与Rt △CNE ;应利用ME -NE =AB =14构造方程关系式,进而可解即可求出答案.试题解析:(1)在Rt △DME 中,ME =AH =45米;由tan 30DEME=,得DE =45×3又因为EH =MA =1.6米,因而大楼DH =DE +EH =(153+1.6)米;(2)又在Rt △CNE 中,NE =45﹣14=31米, 由tan 45CENE=,得CE =NE =31米; 因而广告牌CD =CE ﹣DE =(31﹣153)米;答:楼高DH 为(153+1.6)米,广告牌CD 的高度为(31﹣153)米. 19.无触礁危险 【解析】试题分析:过P 作AB 的垂线PD ,在直角△BPD 中可以求的∠P AD 的度数是30度,即可证明△APB 是等腰三角形,即可求得BP 的长,进而在直角△BPD 中,利用30度的锐角所对的直角边等于斜边的一半,从而求得PD 的长,即可确定继续向东航行是否有触礁的危险,确定是否能一直向东航行.试题解析:过点P 作PC ⊥AB 于点C ,∠P AB =15°,∠APB =15°, ∴BA =BP =2×20=40海里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
D′直角三角形的边角关系测试题
一、选择题(每小题3分,共计36分):
1.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 所对的两条直角边,c 是斜边,则有( ) A 、sinA=
a c
B 、cosB=c b
C 、cosB=a b
D 、tanA=b
a 2.已知在Rt △ABC 中,∠C=90°.若sinA=
2
2
,则sinB 等于( ) A 、
2
1
B 、22
C 、23
D 、1
3.在Rt △ABC 中,∠C=90°,sinA=2
1
,则BC ∶AC ∶AB 等于( ) A 、1∶2∶5
B 、1∶3∶5
C 、1∶3∶2
D 、1∶2∶3
4.已知90A B ∠+∠=︒,则下列各式中正确的是( )
(A )sin sin A B = (B)cos cos A B = (C)tan cot A B = (D)tan tan A B = 5、下列命题中,真命题的个数是( )
①∠A 的正弦值等于它的余角的余弦值;②在⊿ABC 中,若21sin =
A ,则BC =2
1
AB ;③若α是锐角且ααcos sin =,则︒=45α;④若α、β都是锐角且βα<,则
βαcos cos <;
(A )1个 (B )2个 (C )3个 (D )4个 6.在△ABC 中,若tanA=1,sinB=
2
2
,你认为最确切的判断是( ) A.△ABC 是等腰三角形 B.△ABC 是等腰直角三角形 C.△ABC 是直角三角形 D.△ABC 是一般锐角三角形 7.化简2)130(tan - =( )。

A 、331-
B 、13-
C 、133-
D 、13-
8.等腰三角形的一腰长为6cm ,底边长为63cm ,则其底角为( )。

A. 120° B. 90° C. 60° D. 30°
9如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的
延长线上的D′处,那么tan ∠BAD′等于( )
B
N
A
C
D
M
A. 22
B.
2
2
C. 2
D. 1
10.当锐角A 的cosA >
2
2
时,∠A 的值为( )。

A. 小于45° B. 小于30° C. 大于45° D. 大于30°
11.小刚在距某电信塔10 m 的地面上(人和塔底在同一水平面上),测得塔顶的仰角是 60°, 则塔高为( )
A 、103m
B 、53m
C 、102m
D 、20m 12.如图,在△ABC 中,∠C=90°,AC=8cm,AB 的垂直平分线MN
交AC 于D ,连结BD ,若cos ∠BDC=5
3
,则BC 的长是( )
A 、4cm
B 、6cm
C 、8cm
D 、10cm 二、填空题(每小题3分, 共计24分): 13. Rt ABC ∆中,若4
sin 5
A =
,10AB =,那么BC = ,tan B = 14.锐角A满足2sin(A-150
)=
3
,则∠A=_____度.
15.如图,若某人沿坡度i =3:4的斜坡前进10米,则他所在 的位置比原来的位置升高________米.
16.比较下列三角函数值的大小:sin400 cos400 17若︒<<︒900α,︒=60cos sin α,则_____tan =α
18.已知△ABC 中,∠A 、∠B 都是锐角,且(cosA-
2
1)2
+|tanB-1|=0,则∠C= 度。

19.有一拦水坝的横断面是等腰梯形,它的上底长为6米,下底长为10米,高为23米,那么此拦水坝的坡角为_____度.
20.ABC ∆中,90BAC ∠=︒,AD 是高,9BD =,4
tan 3
B =
,则AD = BC= 三、解答题(第21题8分,第22~25题6分,第26题8分共计40分): 21.计算下列各题:
(1) 12sin60sin30cos302
2︒+︒+︒⋅︒ (2)012)12(245sin 82-+-︒+--
22. 如图,△ABC 中,∠B =60°,∠C =45°,
,求AC 的长。

23.如图,小亮在操场上距离旗杆AB 的C 处,用测角仪测得旗杆顶端A 的仰角为30°,已知BC=9m ,测角仪高CD 为1m ,求旗杆AB 的高(结果保留根号)。

24. 如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m ,现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长。

25.一艘轮船自西向东航行,在A 处测得北偏东60°方向有一座小岛F ,继续向东航行80
海里到达C 处,测得小岛F 此时在轮船的北偏西30°方向上.轮船在整个航行过程中,距离小岛F 最近是多少海里?(结果保留根号)
D C
B A
_ 北
_ 东
30° F
60°
A
26.如图,某货船以20海里/小时的速度将一批重要的物资由A处运往正西方向的B处,经16小时的航行到达,到达后便接到气象部门通知,一台风中心正由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.在B处的货船是否会受到台风的侵袭?说明理由.
本次测试题有三大题,包括选择题(36分)、填空题(24分)、解答题题(40分)共分为26个小题。

从试题难度来看:基础题约占70%、中档题约占20%、难题约占10%,比大约为:7:2:1。

试卷主要考了直角三角形三边之间的关系(勾股定理),两锐角之间的关系(互余),边角之间的关系(三角函数),坡度、坡角、方位角的概念;特殊角的三角函数值;解直角三角形的最基础的图形.再通过适当地添加辅助线,结合已学过的知识,便可使涉及解直角三角形的问题迎刃而解.试题重视基础,知识覆盖面广,突出重点知识的考查。

同时也重视了考查运用知识解决实际问题的能力。

试卷上反映出来就是部分学生对三角函数概念的理解还不透彻,容易记混淆。

学生计算能力普遍较差,特别涉及到根号的运算容易出错,4,5,7,10学生解答效果不好,同角三角函数的关系,互余两角的三角函数关系运用能力不强,学生在读题过程中,没有仔细思考,不知道题中给出的数量关系,25,26题理解能力欠缺,不能够灵活、准确地运用数学知识和数学思想方法分析问题和解决问题。

相关文档
最新文档