直角三角形的边角关系知识点

合集下载

第三讲 直角三角形的边角关系讲义

第三讲 直角三角形的边角关系讲义

第三讲 直角三角形的边角关系知识点一 正切,正弦及余弦的定义1、正切的定义的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作例1 如图,△ABC 是等腰直角三角形,求tanC.例2 如图, 已知在Rt △ABC 中,∠C=90°,CD ⊥AB ,AD=8,BD=4,求tanA 的值。

C B A有什么发现?请加以证明。

3、三角函数的定义(重点)能判断谁的木棒更陡吗?说明理由。

同步练习:1、∠C=90°,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,求CD 的长。

2、P 是a 的边OA 上一点,且P 点的坐标为(3,4),求sina 、tana 的值。

3、在△ABC 中,D 是AB 的中点,DC ⊥AC ,且tan ∠BCD=31,求tanA 的值。

4、在Rt △ABC 中,∠C=90°,tanA=125,周长为30,求△ABC 的面积。

5、(2008·浙江中考)在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则sinB 的值是多少?知识点二 30°,45°,60°角的三角函数值例 求下列各式的值。

(1)︒︒-︒60tan 30sin 60sin ;(2)︒-+︒-︒45sin 22460tan 460tan 2。

同步练习:1、 求下列各式的值。

(1)︒+︒+︒45tan 30tan 330sin 2; (2)︒⋅︒+︒30cos 60tan 45cos 2。

(3) 6tan 2 30°-3sin 60°+2tan45°(4)022)30tan 45(sin )60cos (160sin 260sin 60tan 245tan o o o o o oo-+-++----2、 已知a 为锐角,且tana=5,求aa aa sin cos 2cos 3sin +-的值。

直角三角形边角关系知识点

直角三角形边角关系知识点

直角三角形边角关系知识点《直角三角形边角关系那点事儿》嘿,朋友们!今天咱来聊聊直角三角形边角关系这个有趣的知识点。

那可是相当有料啊!咱先说说直角三角形,它就像是几何世界里的一位厉害角色,有个直角在那摆着呢,威风凛凛。

说到这直角三角形的边角关系,那就是各种神奇的比值在里面捣腾。

什么正弦、余弦、正切,一开始听到这些名字的时候,我心想:“哎呀妈呀,这都是啥呀!”但嘿,你别说,慢慢学进去还挺有意思。

先讲正弦吧,它就好比是三角形里的一个小精灵,总是和角度紧紧相连。

知道一个角的正弦值,咱就能知道这个角对应的边和斜边的关系啦。

余弦呢,也不甘示弱,它和正弦一起,就像一对好兄弟,一个管这边,一个管那边,把直角三角形安排得明明白白。

正切就更有意思啦,它是两条直角边的比值,简单粗暴,让我们一眼就能看出这两条边之间的关系。

有时候我就想,这些比值就像是直角三角形的秘密密码,掌握了它们,我们就能轻松揭开直角三角形的神秘面纱。

学这个知识点的时候,我可是没少费劲。

记得有一次做习题,我对着一道题冥思苦想半天,就是算不出来。

那时候我就感觉自己像是在迷宫里转圈,怎么都找不到出口。

后来经过老师指点,我才恍然大悟,原来我把一个比值给弄错了。

哎呀,当时那个懊恼啊,不过好在我从错误中吸取了教训,从此以后对这些比值更加小心对待啦。

还有一次,我和同学们一起讨论直角三角形的边角关系,大家你一言我一语,讨论得热火朝天。

有的说正弦最重要,有的说余弦才是关键,争得面红耳赤。

最后还是老师出来总结,说它们都很重要,缺一不可,这才平息了我们的争论。

总之呢,直角三角形边角关系这个知识点虽然有时候会让我们头疼,但它也充满了乐趣和挑战。

就像攀登一座高峰,过程虽然艰苦,但当你登顶的那一刻,看着美丽的风景,就会觉得一切都值得啦。

所以啊,朋友们,不要害怕直角三角形边角关系这个知识点,大胆去探索,去发现它的美吧!相信我,你会在这个过程中收获很多乐趣和知识的!加油哦!。

直角三角形的边角关系知识点

直角三角形的边角关系知识点

直角三角形的边角关系知识点一、勾股定理勾股定理是指在直角三角形中,直角边的平方等于两个其他两边平方的和。

即a^2+b^2=c^2,其中c表示直角边,a和b分别表示斜边。

二、正弦定理正弦定理是指在任意三角形中,任意两边的比例等于它们所对的角的正弦值的比例。

在直角三角形中,不包含直角的两个角分别为A和B,直角所对的边为c,则正弦定理可以表示为sinA=a/c,sinB=b/c。

三、余弦定理余弦定理是指在任意三角形中,任意一边的平方等于另外两边的平方和减去它们的两倍乘以它们夹角的余弦。

在直角三角形中,不包含直角的两个角分别为A和B,直角边所对的边为c,则余弦定理可以表示为cosA=b/c,cosB=a/c。

四、正切定理正切定理是指在任意三角形中,两条边的比例等于它们所对的角的正切值的比例。

在直角三角形中,不包含直角的两个角分别为A和B,直角所对的边为c,则正切定理可以表示为tanA=a/b,tanB=b/a。

五、边角关系1.直角三角形中,一个角是90度,另外两个角的和是90度。

2.直角三角形中,直角边所对的角是90度,而另外两边所对的角是锐角。

3.直角三角形中,两个锐角的正弦、余弦、正切值彼此互为倒数。

4.直角三角形中,两个锐角的余弦值等于彼此的正弦值。

5.直角三角形中,一个锐角的正弦值等于另一个锐角的余弦值。

六、特殊三角形1.在直角三角形中,当两个直角边的长度相等时,该直角三角形为等腰直角三角形。

2.在等腰直角三角形中,两个锐角相等,且为45度。

3.在等腰直角三角形中,斜边的长度等于直角边的平方根的两倍。

以上是直角三角形的边角关系的主要知识点。

通过对直角三角形的边长和角度关系的了解,我们可以应用这些关系来解决与直角三角形相关的问题。

同时,直角三角形也是三角学中一个重要的基础概念,为后续学习提供了坚实的基础。

边角关系知识点总结

边角关系知识点总结

边角关系知识点总结1. 任意三角形的边角关系:(1)在任意三角形中,三个内角的和等于180°,即A + B + C = 180°。

(2)三角形的外角等于其不相邻的两个内角的和。

也就是说,三角形的一个内角加上其对边的外角等于180°。

(3)在任意三角形中,任意两边之和大于第三边。

即AB + BC > AC、AC + BC > AB、AB + AC > BC。

2. 直角三角形的边角关系:(1)直角三角形的三个内角中,一个为90°,一个为锐角,一个为钝角。

(2)直角三角形的斜边是其它两条边的平方和的平方根。

即c² = a² + b²。

(3)直角三角形的两个锐角互余,即一个角的余角是另一个角。

3. 等腰三角形的边角关系:(1)等腰三角形的底边相等,顶角相等。

(2)等腰三角形的底角相等,顶角相等。

(3)等腰三角形的底边上的高相等。

4. 等边三角形的边角关系:(1)等边三角形三个内角相等,每个角都是60°。

(2)等边三角形的三条边相等。

(3)等边三角形的高、中线、角平分线、垂径都是同一条线段。

5. 直角三角形、等腰三角形和等边三角形的区别:(1)直角三角形有一个角是90°,等腰三角形和等边三角形没有。

(2)等腰三角形有两条边相等,直角三角形和等边三角形没有。

(3)等边三角形的三条边都相等,直角三角形和等腰三角形没有。

6. 三角形的角平分线:(1)三角形的角平分线是指从三角形的一个角的顶点出发,把这个角平分成两个相等的角的线段。

(2)三角形的三个角都各有一条角平分线。

(3)角平分线和对边的比例关系:AB/BD = AC/CD。

7. 外接角和内切角:(1)外接角:指与三角形的外角相对应的一个角,外接角等于两个不相邻内角的和。

(2)内切角:指与三角形的内角相对应的一个角,内切角等于两个不相邻外角的和。

8. 三角形的全等条件:(1)两个三角形的三边全相等,则这两个三角形全等。

直角三角形边角关系知识点

直角三角形边角关系知识点

直角三角形边角关系专题复习一. 知识体系:1. 三种三角函数与直角三角形中边与角的关系,在Rt△中在此应注意的问题是无论是求哪一个角的三角函数,一定要先把这个角放在直角三角形中 2. 特殊角的三角函数值3. 三角函数的有关计算(对于一般角的三角函数值可利用计算器)41 2 3 4.三角函数的应用()测山的高度()测楼的高度()测塔的高度()其它⎧⎨⎪⎪⎩⎪⎪题型一:三角形内的计算问题(计算三角函数值、面积等) 例1.在ABC Rt ∆中,∠C=90° ,且21sin =A ,AB=3,求BC ,AC 及B ∠.例2.已知,四边形ABCD 中,∠ABC = ∠ADB =090,AB = 5,AD = 3,BC = 32,求四边形ABCD 的面积。

例3.如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是中线,5,4BC CD ==,求AC 的长。

B变式训练:1、ABC Rt ∆中,∠C=90°,AC=4,BC=3,B cos 的值为…………………【 】 A 、51 B 、53 C 、 34 D 、 432、在菱形ABCD 中,∠ABC=60° , AC=4,则BD 的长是…………………【 】 A 、 38 B 、34 C 、32 D 、83、在ABC Rt ∆中,∠C=90° ,A tan =3,AC=10,则S △ABC 等于………【 】 A 、 3 B 、300 C 、350D 、150 4、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化5、在ABC Rt ∆中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c 三边,则下列式子一定成立的是………………………………………………………………【 】 A 、B c a sin ⋅= B 、B c a cos ⋅= C 、Bac tan =D 、A a c sin ⋅= 6、等腰三角形的腰长为10cm ,顶角为120,此三角形面积为 。

直角三角形的边角关系(精简版)

直角三角形的边角关系(精简版)

直角三角形的边角关系知识点1:锐角三角函数一、知识点讲解: 1.锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图1-1-1,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c . ∠A 的正弦=A asin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注:三角函数值是一个比值.2.特殊角是指0°,30°,45°,60°,90°的角. 3.特殊角的三角函数值.4.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (90○-A )= cotA cot (90○-A )=tanA 5.同角的三角函数关系. ①平方关系:sin 2 A+cos 2A=l ②倒数关系:tanA ×cotA=1③商数关系:sin cos tan ,cot cos sin A AA A A A==④sin cos 12sin cos a a a a +=+ ⑤222tan cot (tan cot )2a a a a +=+- 二、经典例题讲解: 类型一、关于特殊的函数值 例题1、计算:()()013222sin 60-︒-+-+⋅(结果保留根号......)中考典练1: 024cos 458(3)(1)π-+++-分值6分中考典练2:2(tan 301)____-= 中考典练3:13tan 60|2|22-+-+例题2、 2sin60°-cos30°·tan45°的结果为( ) A 、 3 33. .22B C -D .0 例题3、等腰直角三角形一个锐角的余弦为( ) A 、12 32. .22B C D .l 例4、点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( ) 1111.(3,); .(3,); .(3,) .(3,)2222A B C D ----例5、在锐角△ABC 中,如果2sinC=sin90°,则∠C=__。

直角三角形边角关系:

直角三角形边角关系:

练习
如图:甲乙两楼相距30m.甲楼高40m,从 甲楼顶看乙楼顶仰角为30度。问乙楼有多 高。
D
E
300 C
40m
A 30m B


四、小结:
(1)三角函数的有关概念。 (2)用三角函数解直角三角形的
边角问题。
tanA A A的 的邻 对边 边 ba tanB B B的 的邻 对边 边 ba
2、特殊角的三角函数值
300
450

sin
1 2
2
3
2
2
cos
3
2
tan 3 3
2
1
2
2
1
3
3、性质
• •
Sin
、 tan角值度越越大大,,角函度数越值大越;大。
• cos 值越大,角度越小,

角度越大,值越小。
• 例1、用大于或小于号或等于号把下式连接起来
• (1)tan10 0 • • (2) sin60 0
tan350 tan700 tan600 cos600
▪ 仰角、俯角:
: ▪ 例3 古塔究竟有多高
▪ 如图,小明想测量古塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进 50m至B处,测得仰角为60°,求:(1)∠ADC, ∠BDC的度数(2)分别用∠ADC, ∠BDC的正切值表示出AC,BC的长度(3)该塔有多高?(小明的身高忽略不计,结果精 确到1m).
B
C
三、三角函数的实际应用
► 例6、一货轮以每小时36海里的速度航行,当行驶到A处时
发现它的东北方向有一灯塔B,货轮继续向北航行40分钟
后到达C处女现灯塔B在它北偏东60度方向,求此时货轮

直角三角形边角关系(精)经典难题复习巩固

直角三角形边角关系(精)经典难题复习巩固

DSE 金牌数学专题系列 经典专题系列直角三角形边角关系一、 导入二、 知识点回顾 (一)、基础知识1.锐角三角函数定义在直角三角形ABC 中,∠C=900,设BC=a ,CA=b ,AB=c ,锐角A 的四个三角函数是: (1) 正弦定义:∠A 的正弦=A a sin A=c∠的对边,即斜边; (2)余弦的定义:∠A 的余弦=A b cos A=c∠的邻边,即斜边 ,(3)正切的定义:∠A的正切=A a tan=A b∠的对边,即∠的邻边这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角∠A 必须在直角三角形中,且∠C=900;(2)在直角三角形 ABC 中,每条边均用所对角的相应的小写字母表示。

否则,不存在上述关系 2、坡角与坡度:①坡面的铅直高度h 与水平宽度l 的比为坡度(或坡比),用字母i 表示,即i=hl,坡面与水平夹角α叫 坡角 ,即坡度等于坡角的正切(tan α= i )。

②工程上斜坡的倾斜程度通常用坡度来表示,坡面的铅直高度h 与水平宽度l 的比为坡度(或坡比),坡度是坡角的正切,坡度越大,坡面越陡 3、锐角三角函数关系:(1) 互为余角的三角函数关系.若∠A+∠B=∠90,则sinA=cosB,cosA=sinB.即:sin (90○-A )=cosA , cos (90○-A )=sin Atan (90○-A )= cotA cot (90○-A )=tanA (2) 同角的三角函数关系.①平方关系:sin 2 A+cos 2A=l ②倒数关系:tanA ×cotA=1③商数关系:sin cos tan ,cot cos sin A AA A A A==00 300 450 600sin A 0 2122 22 cos A 1 22 2221tan A331 3(1) 同名三角函数的大小比较①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小. ②余弦、余切是减函数.三角函数值随角的增大而减小,随角的减小而增大。

直角三角形的边角关系知识点总结

直角三角形的边角关系知识点总结

直角三角形的边角关系知识点总结
嘿,宝子们!今天咱就来好好唠唠直角三角形的边角关系知识点,这可真是超级重要的呢!
咱先说说正弦吧。

正弦就是一个角的对边与斜边的比值哟!比如说,在
一个直角三角形里,那个角就像是我们努力的方向,对边就是我们朝着这个方向前进的距离,斜边呢就是总的路程。

就像你考试想拿高分,那高分就是你的“角”,你努力学习的成果就是对边,而整个学习的过程就是斜边呀!
还有余弦呢!余弦是邻边与斜边的比值。

可以把它想象成在一个团队里,邻边就是你身边一起努力的小伙伴,斜边依然是整个团队的力量。

是不是一下子就好理解啦?
正切就更有意思啦!正切是对边与邻边的比值。

就像是一场比赛中你的
速度和竞争对手速度的比较。

好比你和朋友一起跑步,你跑过的距离和你旁边朋友跑过的距离之比,这就是正切呀!
在直角三角形中,这些边角关系可太有用啦!知道这些,咱就能解决好
多实际问题呢!比如说,工程师盖房子的时候,就需要用这些知识来确保房子的结构稳定呀!
学习直角三角形的边角关系就像是打开了一扇通往数学奇妙世界的大门!能让我们更清楚地看到世界的规律和美好。

大家一定要好好掌握哟!我的观点就是,直角三角形的边角关系是数学中非常重要且有趣的一部分,我们一定要深入理解和运用它!。

第七讲:Rt△的边角关系

第七讲:Rt△的边角关系

第七讲 直角三角形的边角关系一、知识点快速归纳理解:考点一、直角三角形的性质 1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、射影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得:AB •CD=AC •BC考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即casin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA , 即cbcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即b atan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值 三角函数 0° 30°45°60° 90° sinα21 22 23 1cos α 123 22 21 0tan α 0 33 13不存在cot α 不存在 3133 04、各锐角三角函数之间的关系(1)互余关系: sinA=cos(90°—A),cosA=sin(90°—A)tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系: 1cos sin 22=+A A (3)倒数关系: tanA •tan(90°—A)=1 (4)弦切关系: tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时, (1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大) 考点四、解直角三角形 1、解直角三角形的概念2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c(1)三边之间的关系:222c b a =+(勾股定理) (2)锐角之间的关系:∠A+∠B=90° (3)边角之间的关系:ba B ab Bc a B c b B a b A b a A c b A c a A ========cot ,tan ,cos ,sin ;cot ,tan ,cos ,sin二、知识点练习题方式方法及技巧渗透1.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( ) A .(53332+)m B .(3532+)m C . 533m D .4m 2.如图,在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点,若tan ∠DBA =51,则AD 的长为( ) (A ) 2 (B )3 (C )2 (D )13.已知在ABC △中,90C ∠=o,设sinB n =,当B ∠是最小的内角时,n 的取值范围是( )A .202n <<B .102n << C .303n << D .302n << 4.如图,小正方形的边长都为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°5.如图,已知一商场自动扶梯的长z 为10米,该自动扶梯到达的高度h 为6米,自动扶梯与地面所成的角为θ,则tan θ的值等于( )6.如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)( )A .aB .a 54C .a 22D . a 23 7.在△ABC 中,∠C =90°,sinA =45,则tanB = ( ) A .43 B .34 C .35 D .458.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .32D .33aNM CDAB(第6题)BA ED C30°第1题第2题CA第4题图第5题图9.计算2sin 45°的结果等于( )A .2B .1C .22 D .21 10.在Rt △ABC 中,∠C=90°,若AC=2BC,则sin A 的值是( )A .12B .2C .5D .5 11.在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ) A .53 B. 54 C. 43D. 5512.在△ABC 中,∠C =90°,sinA =45,则tanB =( ) A .43 B .34 C .35 D .4513.在7,35,90,==∠=∠∆AB B C ABC Rt οο中,则BC 的长为 ( )(A )ο35sin 7(B )ο35cos 7(C )ο35cos 7 (D ).ο35tan 714.如上右第9题图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD=CD 54cos =∠DCA ,BC=10,则AB 的值是( ) A .9 B .8 C .6 D .315.如图,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了m 米,到达点C ,测得∠ACB =α,那么AB 等于( )(A) m ·sin α米 (B) m ·tan α米 (C) m ·cos α米 (D) αtan m米16.如图,△ABC 的三个顶点分别在正方形网格的格点上,则A ∠tan 的值是 ( )A .56 B .65 C .3102 D .1010317.sin30︒的值等于 ( ) (A )12(B )2 (C )3 (D )118.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .3419.如图,为测量一幢大楼的高度,在地面上距离楼底O 点20 m 的点A 处,测得楼顶B 点的仰角∠OAB A BC m α(第15题图)D BC E =65°,则这幢大楼的高度为 ( ) (结果保留3个有效数字). (A )42.8 m(B )42.80 m (C )42.9 m (D )42.90 m20.如图,在正方形ABCD 中,O 是CD 边上一点,以O 为圆心,OD 为半径的半圆恰好与以B 为圆心,BC 为半径的扇形的弧外切,则∠OBC 的正弦值为 .21.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .22.已知:如图,梯形ABCD 中,AB//CD ,∠A=600 ,AD=5cm ,DC=6cm ,AB=10cm 。

直角三角形的边角关系知识点

直角三角形的边角关系知识点

直角三角形的边角关系知识考点知识讲解:1.锐角三角函数的概念如图,在ABC 中,∠C 为直角,则锐角A 的各三角函数的定义如下:(1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =bc (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =ab (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作c ot A , 即c ot A =ba 2.直角三角形中的边角关系(1)三边之间的关系:a 2+b 2=c 2(2)锐角之间的关系:A +B =90°(3)边角之间的关系:sinA =cosB =a c , cosA =sinB =bc t an A =c ot B =a b , cot A =t an B =ba3.三角函数的关系(1)同角的三角函数的关系1)平方关系:sinA 2+cosA 2=12)倒数关系:t an A·c ot A =13)商的关系:t an A =sinA cosA ,c ot A =cosA sinA(2)互为余角的函数之间的关系sin(90°-A)=cosA , cos(90°-A)=sinAt an (90°-A)=c ot A , cot (90°-A)=t an A4.一些特殊角的三角函数值0°30° 45° 60° 90° sin α0 1 cos α1 0 tan α0 1 ----- cot α----- 15.锐角α的三角函数值的符号及变化规律.(1)锐角α的三角函数值都是正值(2)若0<α<90°则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小.6.解直角三角形(1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角.(2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形.7.解直角三角形的应用,解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念:(1)仰角、俯角视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角(2)坡度=坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示,即i=hl(3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=hl (4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.。

直角三角形的边角关系

直角三角形的边角关系

)cosAcosB tanA ; tanB ;sin sin <>>A B 直角三角形的边角关系一、知识点回顾1、锐角A 的三角函数(1)、∠A 的正弦:在Rt △ABC 中,sinA= (2)、∠A 的余弦:在Rt △ABC 中,cosA=(3)、∠A 的正切:在Rt △ABC 中,tanA=【注】①当0°<α<90°时,0<sin α<1 ;0<cos α<1②当0°<α<45°时,0<tan α<1;当45°<α<90°时,tan α>12、锐角三角函数的性质(1)1、1A cos A sin 22=+ (2)、AAA cos sin tan = (3)、在Rt △ABC 中,sinA=cosB ,cosA=sinB(4)、对于锐角A 的每一个确定的值,其三个三角函数值也是唯一确定的。

(5)、锐角∠A 的正弦、正切值随∠A 的增大而增大;∠A 的余弦值随∠A 的增大而减小。

(如果B ∠>A ∠,那么 (6)、45°是αsin 和αcos 的值的分界点,①当0°<α<45°,αsin <αcos ;②当 45°<α<90°,αsin >αcos ;③当α=45°时,αsin =αcos ) (7)、在Rt △ABC 中,tanA>sinA (tanA=b a ,sinA=ca,而b<c ) 3、直角三角形的边角关系(1)角的关系:两锐角互余(︒=∠+∠90B A )(2)边的关系:两直角边的平方和等于斜边的平方(勾股定理,222c b a =+)(3)边与角的关系:sinA=c a ,cosA=c b ,tanA=ba, (4)直角三角形的相关性质①直角三角形斜边上的中线等于斜边的一半(如图:AB 21CD =)②30°角所对的直角边等于斜边的一半(如图,∠A=30°,AB 21BC =)4、特殊角的三角函数值三角函数0° 30° 45° 60° 90° αsinαcostan α5、解直角三角形的应用(1)、仰角、俯角从下向上看,视线与水平线的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.(2)、坡度、坡角坡面的铅垂高度(h )和水平长度(l )的比叫做坡面的坡度(或坡比),记作i ,即lhi =. (坡度通常写成1∶m 的形式,如i =1∶6.)坡面与水平面的夹角叫做坡角,记作α,有lhi ==tan α.(显然,坡度越大,坡角α就越大,坡面就越陡.) (3)、方位角“上北下南,左西右东”.叙述方位角时,以南北为主,东西为辅.6、直角三角形可解的条件和解法(1)已知c 和∠A ,求a 和b. a= ,b=(2)已知a 和∠A ,求c 和b. b= , c= (3)已知b 和∠A ,求a 和c. a= ,c= (4)已知a 和b ,求c 和∠A. c= ,∠A=(5)在如图所示的“大套小”的图形中,Rt △ADC 和Rt △BDC 有一条公共边CD ,求CD 的长. 设CD=x ,则DABC┌ αmβαββαtan tan tan mtan -⋅在Rt △ACD 中, AC=αtan x;在Rt △BCD 中,BC=βtan x ;因为AB=AC-BC ,所以,可建立关于x 的方程:αtan x-βtan x =m (方程思想) 解得x= 即求出了CD 的长.二、专题训练。

(完整版)直角三角形知识点总结,推荐文档

(完整版)直角三角形知识点总结,推荐文档

a A
∠的对边
(1)角A的正弦:锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,
即sinA=
(2)角A的余弦:锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,
即cosA=
(3)角A的正切:锐角A的对边与邻边的比叫做∠A的正切,记作t an A,
即t an A=
(4)角A的余切:锐角A的邻边与对边的比叫做∠A的余切,记作c ot A,
即c ot A=
2.直角三角形中的边角关系
(1)三边之间的关系:a2+b2=c2
(2)锐角之间的关系:A+B=90°
(3)边角之间的关系:
sinA=cosB=,cosA=sinB=
t an A=c ot B=, cot A=t an B=
3.三角函数的关系
(1)同角的三角函数的关系
1)平方关系:sinA2+cosA2=1
2)倒数关系:t an A·c ot A=1
3)商的关系:t an A=,c ot A=
(2)互为余角的函数之间的关系
sin(90°-A)=cosA,cos(90°-A)=sinA
t an(90°-A)=c ot A, cot(90°-A)=t an A
4.一些特殊角的三角函数值
角函数值都是正值

(3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=
(4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.。

直角三角形的边角关系全章总结复习

直角三角形的边角关系全章总结复习

2017—2018学年寒假辅导第1讲直角萨娇新的边角关系知识清单梳理知识点一:锐角三角函数的定义关键点拨与对应举例正弦:sinA—•1.锐角三余弦:cosA —角函数正切:tanA—Z A的对边a斜边—cZ A的邻边=b 斜边cZ A的对边=aZ A的邻边=b.一定根据严格按照三角函数构.2.特殊角的三角函数值度数三角函数30°45°60°si nA1羽43222cosA眉122"2 ta nA昼3143知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.4.解直角三角形的常用关系(1)三边之间的关系:a2+ b2= c2;⑵锐角之间的关系:/ A + Z B = 90°a b a⑶边角之间的关系:sinA = =cosB=-, cosA = sinB=-, tanA = £.⑷相等的角①商的关系:tanA=;②平方关系:sin2A+cos 2A=1.(5)互余的两角:若/ A+Z B=90° ,则sinA=cosB , cosA=sinB.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1) 仰、俯角:视线在水平线上方的角叫做仰角•视线在水平线下方的角叫做俯角.(如图①)(2) 坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示. 坡角:坡面与水平面的夹角叫做坡角,用a表示,则有i = tan a (如图②)(3) 方向角:平面上,通过观察点O作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角. (如图③)6.解直角三角形实际应用的(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;⑵将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3) 选择合适的边角关系式,使运算简便、准确;(4) 得出数学问题的答案并检验答案是否符合实际意义,从而得到科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ ABC中,已知a=5, /A=30°,贝U c= ,b= .解直角三角形中基本模型:(1) 叠合式“双直角三角形”的(2)背靠式■:解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.一般步骤问题的解.专题讲座专题一:锐角三角函数的概念例2.锐角三角函数求值:类型二.利用角度转化求值:例6.已知:如图,Rt△ ABC中,/ C= 90°. D是AC边上一点,DE丄AB于E点.DE : AE = 1 : 2. 求: sinB、cosB、tanB. 注意:1.sinA、/ cosA、tanA表示的是一个整体,是两条线段的比,与直角三角形的 _________ 无关2.取值范围___ <sinA< _____ ; ______ < cosA< _________例1.如图所示,在Rt△ ABC中,/ C= 90°.没有tanA>,这些比值只与有关,)斜边sin ( )斜边② cos A( )斜边cos③ tan A()A的邻边tan( )斜边B的对边( T在Rt△ ABC 中,/ C= 90 LI * c,右a= 9,b= 12, 则c=sinA=cosA =tanA=si nB= _________ ,例3.已知:如图,Rt△ TNM 中,/ TMN = 90°,求:sin / TMR、cos/ TMR、tan/ TMR.cosB =tanB = _ _ .MR丄TN 于R 点,TN=4,MN = 3.类型一:直角三角形求值例4.已知Rt△ ABC中,C390 , ta nA , BC412,求AC、AB 和cosB.例5.已知A是锐角,si nA8,求cosA, tan A 的值17① sin A3例8•如图,菱形 ABCD的边长为10cm , DE 丄AB , si nA,则这个菱形的面积 = cm 2.5例9•如图,沿AE 折叠矩形纸片 ABCD ,使点D 落在BC 边的点F 处•已知AB 8 , BC 10 ,AB=8,则tan / EFC343 4的值为()A. -B. -C. 3D .-4355类型三•化斜三角形为直角三角形例 10.如图,在△ ABC 中,/ A=30° , / B=45 , AC=23,求 AB 的长.1 例 11.已知:如图,△ ABC 中,AC = 12cm , AB = 16cm , si nA - 3(1)求AB 边上的高 CD ; (2)求厶ABC 的面积S ; (3)求tanB .例 12.已知:如图,在△ ABC 中,/ BAC = 120° , AB = 10, AC = 5. 求: sin /ABC 的值.的顶点为0,它的一边在x 轴的正半轴上,另一边例7•如图,角 例7图 例8图 0A 上有一点 P ( 3, 4),贝U sin例9图 例13图1 24 / 111 A . - B .c .迈 D .迹 25105对应训练:类型四:利用网格构造直角三角形例13如图所示,△ ABC 的顶点是正方形网格的格点,贝U sinA 的值为()1.在 Rt △ ABC 中,/ C = 90°,若 BC = 1, AB= J5,贝tanA 的值为() 2.在△ABC 中,/ C=90°, sinA= — 5 ABC 中, 3.如图,在等腰直角三角形 4.如图,在Rt △ ABC 中,/ 那么tanA 的值等于(C=90°, AC=8, 90 , ACA .兰5A. ?5 6 , D 为AC 上一点,若.2.2B. tanAD= 16 3 求/ B 的度数及边3 ;2.5~5~ 45DBABC 、c. ■C. 34D.-3AB ,贝U AD 的长的长.A5.如图,在Rt △ ABC 中,/ BAC=90°,点D 在BC 边上,且厶ABD 是等边三角形. 若AB=2,求△ ABC 的周长.(结 果保留根号)6.已知:如图,△ ABC 中,AB = 9,BC = 6,^ ABC 的面积等于 9,求sinB . ( )7.在厶 ABC 中,/ A=60 °,AB=6 cm ,AC=4 cm ,则△ ABC 的面积是 A.2 3 cm 2 B.4 3 cm 2 C.6 3 cm 2D.12 cm 2sin A =z<7zkI-—9 .如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC 绕着点A 逆时针旋转得到 AC'B',则tanB'的值专题二:特殊角的三角函数值锐角30°45°60°sincostan_______ 时,正弦和正切值随着角度的增大 ______ 余弦值随着角度的增大而 _______(1) 2cos30 2 sin 45 tan 60(2) tan 60 sin 2 45 2cos30例2 .求适合下列条件的锐角,八1 ⑵tan 拶V2(1) cos2⑶ sin22为() fl 11 1A. 一B.-c.-D. 1432/ AOB 如图放置,则 tan / AOB 的值是()10•正方形网格中, 1C-2D. 22 cos60 sin 45仝 tan30tan 45 sin 30⑸ 1 cos60(3) 3 =+(2 f tan30 °tan45⑷ 6cos( 16 )3.3(5)已知 为锐角,且tan(300) 3,求 tan 的值1 ()在 ABC 中,若 cos A —2 (sin BA ,B 都是锐角,求C 的度数例3.三角函数的增减性11. 已知/ A为锐角,且sin A < ,那么/ A的取值范围是( )2A. 0 < Z A < 30 °B. 30 < Z A v 60 °C. 60 < Z A < 90 °D. 30 < Z A < 902. 已知Z A为锐角,且cosA sin 30°,贝U ( )A. 0 <Z A < 60 °B. 30 <Z A < 60 °C. 60 < Z A < 90 °D. 30 <Z A < 90菱形的周长.£C274对应练习:111.计算:1 2 运tan45o(72 1.41)02.计算:(:1)20132 1sin30 ( 3.14)0例4.(三角函数在几何中的应用)已知:如图,在菱形ABCD 中,DE 丄AB 于E, BE= 16cm, si nA 1213求此5.计算:(2014 -「5)°—(cos60 ° )-2+ 38 - :3tan30JS + (丄尸■ 2cos45fl2016)°6.计算:3.计算: -|-2-2cos60 °. 4 计算:(1S1- 4cos30°+ ( n- 3.14)(1) / BAD ; (2)sin / BAD 、cos / BAD 和 tan / BAD .9.已知:如图△ ABC 中,D 为BC 中点,且/ BAD = 90°, tan B310.如图,在 Rt △ABC 中,/ C=90°, si nB —,点 D 在 BC 边上,DC= AC = 6,求 tan / BAD 的值. 5 7.已知a 是锐角,且 sin( a +1518 4cos ( 3.14)0 tan3 的值.&已知:如图,Rt △ ABC 中,/ C = 90°, AC BC . 3,作/ DAC = 30°, AD 交 CB 于 D 点,求:计算BD专题二:解直角二角形的应用例1.( 2012?福州)如图,从热气球 C 处测得地面A 、B 两点的俯角分别是 30° 45°,如果此时热气球 C 处的高度 CD 为100米,点A 、D 、B 在同一直线上,则 AB 两点的距离是()例1图A . 200 米B . 200 .-米例2•如图,某水库堤坝横断面迎水坡 A . 100m B . 100 3m C .例3. “兰州中山桥”位于兰州滨河路中段白搭山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄 河第一桥”之美誉。

专题1.6直角三角形的边角关系十大考点(老师版)

专题1.6直角三角形的边角关系十大考点(老师版)

专题1.6直角三角形的边角关系十大考点【目标导航】【知识梳理】1.锐角三角函数的定义在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边除以斜边=a c(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.即cosA=∠A的邻边除以斜边=b c.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.即tanA=∠A的对边除以∠A的邻边=a b.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.2.特殊角的三角函数值(1)30°、45°、60°角的各种三角函数值(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.3.解直角三角形:(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:222a b c +=③边、角之间的关系:sinA==a c ,cosA =b c ,tanA =ab,(a ,b ,c 分别是∠A 、∠B 、∠C 的对边).4.解直角三角形的应用:(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.5.坡度、坡角问题(1)坡度是坡面的铅直高度h 和水平宽度l 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i=1:m 的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i 与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.6.俯角、仰角问题:(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.【典例剖析】【考点1】锐角三角函数的定义【例1】(2020•河池)在Rt △ABC 中,∠C =90°,BC =5,AC =12,则sinB 的值是()A .512B .125C .513D .1213【分析】直接利用勾股定理得出AB 的长,再利用锐角三角函数得出答案.【解析】如图所示:∵∠C=90°,BC=5,AC=12,∴AB=52+122=13,∴sinB=AC AB=1213.故选:D.【变式1.1】(2022秋•钢城区期中)已知在Rt△ABC中,∠C=90°,tanA=2,BC=8,则AC等于()A.6B.16C.12D.4【分析】直接利用正切的定义求解.【解答】解:∵∠C=90°,∴tanA=BC AC=2,∴AC=12BC=12×8=4.故选:D.【变式1.2】(2022秋•奉贤区期中)已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是()A.tanA=23B.cotA=23C.sinA=23D.cosA=23【分析】先利用勾股定理计算出AB=213,然后根据正弦、余弦、正切和余切的定义求出∠A的四个三角函数值,从而可对各选项进行判断.【解答】解:∵∠C=90°,AC=4,BC=6,∴AB=42+62=213,∴tanA=BC AC=64=32,cotA=AC BC=46=23,sinA=BC AB=6213=31313,cosA=AC AB=4213=21313.故选:B.【变式1.3】(2022•沈阳模拟)如图,已知AB为⊙O的直径,∠ADC=30°,则tan∠CAB的值为()A.3B.1C.32D.33【分析】根据圆周角定理可得∠ACB=90°,∠B=∠D=30°,进而求出∠CAB,再根据特殊锐角的三角函数值进行计算即可.【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=∠ADC=30°,∴∠CAB=90°﹣30°=60°,∴tan∠CAB=tan60°=3,故选:A.【考点2】特殊角的三角函数值【例2】(2018•西湖区校级二模)在△ABC中,若|sinA−22|32−cosB|2=0,∠A,∠B都是锐角,则∠C的度数是()A.105°B.90°C.75°D.120°【分析】直接利用绝对值性质以及特殊角的三角函数值分别得出∠A=45°,∠B=30°,进而得出答案.【解析】∵|sinA−22|+|32−cosB|2=0,∴sinA=22,32=cosB,∴∠A=45°,∠B=30°,∴∠C的度数是:180°﹣45°﹣30°=105°.故选:A.【变式2.1】(2022秋•巨野县期中)∠β为锐角,且2cosβ﹣1=0,则∠β=()A.30°B.60°C.45°D.37.5°【分析】直接利用特殊角的三角函数值,进而得出答案.【解答】解:∵∠β为锐角,且2cosβ﹣1=0,∴cosβ=12,∴∠β=60°.故选:B.【变式2.2】(2022秋•浦东新区校级期中)已知α为锐角,且sinα=513,那么α的正切值为()A.512B.125C.513D.1213【分析】在Rt△ABC中,∠C=90°,∠A=α,则利用正弦的定义得到sinA=sinα=BC AB=513,于是可设BC =5x,AB=13x,利用勾股定理计算出AC=12x,然后根据正切的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,∠A=α,∵sinA=sinα=BC AB=513,∴设BC=5x,AB=13x,∴AC=AB2−BC2=(13x)2−(5x)2=12x,∴tanA=BC AC=5x12x=512,即α的正切值为512.故选:A.【变式2.3】(2021秋•梁平区期末)式子2cos30°﹣tan45°−(1−tan60°)2的值是()A.0B.23C.2D.﹣2【分析】直接利用特殊角的三角函数值代入,进而结合二次根式的性质化简得出答案.【解答】解:原式=2321﹣(3−1)=3−1−3+1=0.故选:A.【考点3】锐角三角函数的增减性【例3】锐角α满足sinα22,且tanα<3,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°【分析】直接利用特殊角的三角函数值结合锐角三角函数关系的增减性,得出答案.【解析】∵sinα22,且tanα<3,∴45°<α<60°.故选:B.【变式3.1】(2022秋•惠山区校级期中)已知∠A为锐角,且tanA=3,则∠A的取值范围是()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【分析】判断出所给的正切值在最接近的哪两个锐角的正切值之间,再得出选项即可.【解答】解:tan30°=33,tan45°=1,tan60°=3,∵tanA=3,∴3<3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.【变式3.2】(2022秋•莱芜区期中)已知sina32,那么锐角a的取值范围是()A.60°<a<90°B.0°<a<60°C.45°<a<90°D.0°<a<30°【分析】根据特殊锐角三角函数值以及锐角三角函数的增减性进行判断即可.【解答】解:∵sin60°=32,sinα32,一个锐角的正弦值随着锐角的增大而增大,∴α>60°,∵α为锐角,∴60°<α<90°,故选:A.【变式3.3】(2021秋•新邵县期末)下列说法中正确的是()A.sin45°+cos45°=1B.若α为锐角,则sinα=cos(90°﹣α)C.对于锐角β,必有tanβ2=tanβ2D.若α为锐角,则sinα>cosα【分析】根据特殊角的三角函数值判断即可.【解答】解:A.sin45°+cos45°=22+22=2,故A不符合题意;B.若α为锐角,则sinα=cos(90°﹣α),故B符合题意;C.对于锐角β,当β=60°时,tanβ2=tan30°=33,tanβ2=tan60°2=32,此时tanβ2≠tanβ2,故C不符合题意;D.若α为锐角,当α=45°时,sinα=cosα=22,故D不符合题意;故选:B.【考点4】同角三角函数【例4】(2018秋•市中区校级期中)已知α为锐角,且tanα=13,则sinα=()A.23B.105C.31010D.1010【分析】根据tanα=13,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式,即可推出sinα的值.【解析】设在Rt△ABC中,∠C=90°,∠A=α,则sinα=a c,tanα=a b,a2+b2=c2,∵tanα=13知,∴可设a=x,则b=3x,∴c=a2+b2=10x.∴sinα=a c=x10x=1010,故选:D.【变式4.1】(2022春•巴东县期中)x为锐角,sinx=23,则cosx的值为()A.79B.73C.7D.23【分析】根据同角三角函数的平方关系:sin2x+cos2x=1解答即可.【解答】解:∵sin2x+cos2x=1,sinx=23,∴cosx=1−sin2x=1−29=73.故选:B.【变式4.2】(2022•内黄县模拟)在Rt△ABC中,∠C=90°,sinA=45,则tanA=()A.53B.43C.45D.34【分析】根据题意设BC=4a,AB=5a,然后利用勾股定理求出AC,最后根据锐角三角函数的定义进行计算即可解答.【解答】解:在Rt△ABC中,∠C=90°,sinA=45,∴sinA=BC AB=45,∴设BC=4a,AB=5a,∴AC=AB2−BC2=(5a)2−(4a)2=3a,∴tanA=BC AC=4a3a=43,故选:B.【变式4.3】(2020秋•黄浦区期末)对于锐角α,下列等式中成立的是()A.sinα=cosα•tanαB.cosα=tanα•cotαC.tanα=cotα•sinαD.cotα=sinα•cosα【分析】根据锐角三角函数的定义,分别验证每个选项的正误即可.【解答】解:如图,在Rt△ABC中,设∠C=90°,∠A=α,∠A、∠B、∠C的对边分别为a、b、c,有sinα=a c,cosα=b c,tanα=a b,cotα=b a,于是:A.cosα•tanα=b c•a b=a c=sinα,因此选项A符合题意;B.tanα•cotα=a b•b a=1≠cosα,因此选项B不符合题意;C.cotα•sinα=b a•a c=b c=cosα,因此选项C不符合题意;D.sinα•cosα=a c•b c=ab c2≠cotα,因此选项D不符合题意;故选:A.【考点5】锐角三角函数的新定义问题【例5】(2020秋•闵行区期中)我们把有三个内角相等的凸四边形叫做三等角四边形,例如:在四边形PQMN 中,如果∠P=∠Q=100°,∠M=60°,那么四边形PQMN是三等角四边形.请阅读以上定义,完成下列探究:如图,在△ABC中,AB=AC=9,cosB=13,如果点D在边AB上,AD=6,点E在边AC上,四边形DBCE是三等角四边形,那么线段CE的长是.【分析】如图,过点A作AJ⊥BC于J,连接CD,解直角三角形求出BK,CKAK,再利用相似三角形的性质求出DH,AH,想办法求出EH,即可解决问题.【解析】如图,过点A作AJ⊥BC于J,连接CD,过点C作CK⊥AB于K,过点D作DH⊥AC于H.∵AB=AC=9,AJ⊥BC,∴BJ=JC,∵cosB=BJ AB=13,∴BJ=JC=3,∵CK⊥AB,∴cosB=BK BC=13,∴BK=2,CK=BC2−BK2=62−22=42,∵∠DAH=∠CAK,∠AHD=∠AKC=90°,∴△AHD∽△AKC,∴AD AC=AH AK DH CK,∴69=AH7=DH42,∴AH=143,DH=823,∵四边形DBCE是三等角四边形,∴∠DEH=∠B,∴cos∠DEH=cos∠B=1EH,设EH=m,DE=3m,在Rt△DEH中,∵DE2=EH2+DH2,∴(3m)2=m2+(823)2,∴m=43或−43(舍弃),∴EH=43,∴AE=AH﹣EH=143−43=103,∴CE=AC﹣AE=9−103=173.故答案为:173.【变式5.1】(2021秋•冷水滩区月考)关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=tanα+tanβ1−tanαtanβ(其中:1﹣tanαtanβ≠0)例如:sin90°=sin(30°+60°)=sin30℃os60°+cos30°sim60°=12×12+32×32=1.利用上述公式计算下列三角函数:①sin105°=6+24②sin15°=6−24③cos90°=0,④sin15°+tan105°=2﹣2364.其中正确的个数为()A.1B.2C.3D.4【分析】根据上述公式把一般角转化为特殊角的和或者差,然后进行计算即可.【解答】解:①sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=22122232=6+24,故①正确;②sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=322212×22=6−24,故②正确;③cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=22×2222×22=0,故③正确;④tan105°=tan(60°+45°)=tan45°+tan60°1−tan45°tan60°=1+31−3=−2−3,sin15°+tan105°=6−24(﹣2−3)=﹣2−36424,故④错误;所以正确的个数为:3个,故选:C.【变式5.2】(2020•广元)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,cos(x+y)=cosxcosy﹣sinxsiny,给出以下四个结论:(1)sin(﹣30°)=−12;(2)cos2x=cos2x﹣sin2x;(3)cos(x﹣y)=cosxcosy+sinxsiny;(4)cos15°=.其中正确的结论的个数为()A.1个B.2个C.3个D.4个【分析】根据题目中所规定公式,化简三角函数,即可判断结论.【解答】解:(1)sin(−30°)=−sin30°=−12,故此结论正确;(2)cos2x=cos(x+x)=cosxcosx﹣sinxsinx=cos2x﹣sin2x,故此结论正确;(3)cos(x﹣y)=cos[x+(﹣y)]=cosxcos(﹣y)﹣sinxsin(﹣y)=cosxcosy+sinxsiny,故此结论正确;(4)cos15°=cos(45°﹣30°)=cos45°cos30°+sin45°sin30°=2232+22×12=6424=6+24,故此结论错误.所以正确的结论有3个,故选:C.【变式5.3】(2019•巴州区校级自主招生)规定:对任意角x,y,都有sin2x+cos2x=1,sin(﹣x)=﹣sinx,cos (﹣x)=cosx,cos(x+y)=cosxcosy﹣sinxsiny,现给出下列等式:①sin(−60°)=−32;②cos15°=6−24;③cos2x=1﹣2sin2x;④cos(x﹣y)=cosxcosy+sinxsiny;⑤cosxcosy=12[cos(x+y)+cos(x−y)],其中,等式成立的个数为()A.2个B.3个C.4个D.5个【分析】根据所提供的材料解题即可.【解答】解:①﹣sin60°=sin(−60°)=−32,故正确;②cos15°=cos(60°﹣45°)=cos60°cos(﹣45°)﹣sin60°sin(﹣45°)=cos60°cos45°+sin60°sin45°=122232×22=2+64,即cos15°=6−24是错误的;③cos2x=cos(x+x)=cosxcosx﹣sinxsinx=cos2x﹣sin2x=1﹣sin2x﹣sin2x=1﹣2sin2x,故正确;④cos(x﹣y)=cosxcosy+sinxsiny,故正确;⑤cosxcosy=12[cos(x+y)+cos(x−y)],故正确.综上所述,其中,等式成立的个数为4个.故选:C.【考点6】三角函数与网格问题【例6】(2018秋•乐山期末)如图,网格中的每个小正方形的边长都是1,△ABC每个顶点都在格点上,则cosA =45.【分析】根据勾股定理,可得AC的长,根据余弦为邻边比斜边,可得答案.【解析】如图,由勾股定理,得AC=AD2+CD2=42+32=5.cosA=AD AC=45,故答案为:45.【变式6.1】(2021•商河县校级模拟)如图,△ABC的顶点都是正方形网格中的格点,则tan∠ABC=12.【分析】根据正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA,利用网格计算即可.【解答】解:tan∠ABC=24=12,故答案为:12.【变式6.2】(2021•甘谷县一模)如图,在5×5的正方形网格中,△ABC的三个顶点A,B,C均在格点上,则tanA的值为13.【分析】根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案.【解答】解:如图:作BD⊥AC于D,BD=2,AD=32,tanA=BD AD=232=13,故答案为:13.【变式6.3】(2020•铁东区四模)如图,将∠BAC放置在5×5的正方形网格中,如果顶点A、B、C均在格点上,那么∠BAC的正切值为1.【分析】连接BC,先利用勾股定理逆定理证△ABC是等腰直角三角形,再根据正切函数的定义可得.【解答】解:如图所示,连接BC,则AB=BC=12+32=10,AC=22+42=25,∴AB2+BC2=10+10=20=AC2,∴△ABC是等腰直角三角形,且∠ABC=90°,∴∠BAC=45°,则tan∠BAC=1,故答案为:1.【考点7】解直角三角形【例7】(2020秋•浦东新区期中)如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,BC=18,AD=6.(1)求sinB的值;(2)点E在AB上,且BE=2AE,过E作EF⊥BC,垂足为点F,求DE的长.【分析】(1)先利用等腰三角形三线合一的性质求出BD,然后在Rt△ABD中,利用勾股定理求出AB,再根据sinB=AD AB计算即可;(2)由EF∥AD,BE=2AE,可得BE AB=EF AD=BF BD=23,求出EF、DF,再利用勾股定理解决问题.【解析】(1)∵AB=AC,AD⊥BC,BC=18,∴BD=DC=12BC=9,∴AB=AD2+BD262+92=313,∴sinB=AD AB=6313=21313;(2)∵AD⊥BC,EF⊥BC,∴EF∥AD,∴BE=EF=BF=2,∴EF=23AD=23×6=4,BF=23BD=23×9=6,∴DF=BD﹣BF=9﹣6=3,在Rt△DEF中,DE=EF2+DF2=42+32=5.【变式7.1】(2022秋•奉贤区期中)已知:如图,在△ABC中,AB=AC=15,tanA=43.;求:(1)S△ABC(2)∠B的余弦值.【分析】(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,利用锐角三角函数的定义设CD=4k,则AD =3k,从而利用勾股定理求出AC=5k,进而可得k=3,然后可得AD=9,CD=12,最后利用三角形的面积公式,进行计算即可解答;(2)在Rt△BCD中,利用勾股定理求出BC的长,然后再利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点C作CD⊥AB,垂足为D,在Rt△ABC中,tanA=CD AD=43,∴设CD=4k,则AD=3k,∴AC=AD2+CD2=(3k)2+(4k)2=5k,∵AC=15,∴5k=15,∴k=3,∴AD=9,CD=12,=12AB•CD∴S△ABC=12×15×12=90,=90;∴S△ABC(2)在Rt△BCD中,BD=AB﹣AD=15﹣9=6,CD=12,∴BC=CD2+BD2=122+62=65,∴cosB=BD CB=665=55,∴∠B的余弦值为55.【变式7.2】(2022秋•浦东新区期中)如图,已知在△ABC中,CD⊥AB,垂足为点D,AD=2,BD=6,tan ∠B=23,点E是边BC的中点.(1)求边AC的长;(2)求∠EAB的正切值.【分析】(1)解直角三角形求出CD=4,再利用勾股定理求出AC即可;(2)过点E作EH⊥AB于点H.求出AH,EH,可得结论.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠CDB=90°,∴tanB=CD DB=23,∵BD=6,∴CD=4,∴AC=CD2+AD2=42+22=25;(2)过点E作EH⊥AB于点H.∵CD⊥AB,EH⊥AB,∴EH∥CD,∵EC=EB,∴DH=BH=3,∴EH=12CD=2,∴AH=AD+DH=2+3=5,∴tan∠EAB=EH AH=25.【变式7.3】(2022秋•虎丘区校级期中)(1)在△ABC中,∠C=90°.已知c=83,∠A=60°,求∠B,a,b;(2)如图,在△ABC中,∠C=90°,sinA=35,D为AC上一点,∠BDC=45°,CD=6.求AD的长.【分析】(1)由∠A与∠B互余即可求出∠B,由直角三角形中30°的直角边等于斜边的一半可求b,由锐角的正切定义可求a;(2)由锐角的正弦定义,勾股定理可求AD长.【解答】解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=12c=43,∵tanA=a b,∴a=btanA,∴a=43×3=12;(2)∵∠C=90,∠BDC=45°,∴△BDC是等腰直角三角形,∴BC=CD=6,∵sinA=BC AB,∴AB=BC sinA=10,∵AC2=AB2﹣BC2,∴AC2=102﹣62,∴AC=8,∴AD=AC﹣DC=2.【考点8】锐角三角函数的应用:方向角问题【例8】(2020•启东市三模)如图,一艘船由A港沿北偏东65°方向航行302km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求(1)∠C的度数.(2)A,C两港之间的距离为多少km.【分析】(1)由由题意即可得出答案;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=302,过B作BE⊥AC于E,解直角三角形即可得到答案.【解析】(1)由题意得:∠ACB=20°+40°=60°;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=302,过B作BE⊥AC于E,如图所示:∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=302,∴AE=BE=22AB=30,在Rt△CBE中,∵∠ACB=60°,tan∠ACB=BE CE,∴CE=BE tan60°=303=103,∴AC=AE+CE=30+103,∴A,C两港之间的距离为(30+103)km.【变式8.1】(2022•锦州二模)某海港南北方向上有两个海岸观测站A,B,距离为10海里.从港口出发的一艘轮船正沿北偏东30°方向匀速航行,某一时刻在观测站A,B两处分别测得此轮船正好航行到南偏东30°和北偏东75°方向上的C处.经过0.5时轮船航行到D处,此时在观测站A处测得轮船在北偏东75°方向上,求轮船航行的速度(结果精确到0.1海里/时,参考数据:2≈1.414,3=1.732)【分析】根据三角形内角和得到∠ACB=180°﹣75°﹣30°=75°,求得∠ABC=∠ACB,根据等腰三角形的性质得到AC=AB=10海里,根据平行线的性质得到∠ACF=30°,求得∠ACD=60.平角的性质得到∠DAC=180°﹣70°﹣40°=70°,即可求得∠DAE=45°,解直角三角形求得CE=5海里,AE=DE=53海里,即可求得CD=5+53≈13.66(海里),进一步求得轮船航行的速度.【解答】解:作AE⊥CD于E,∵∠ACB=180°﹣75°﹣30°=75°,∴∠ABC=∠ACB,∴AC=AB=10海里,∵向北的方向线是平行的,∴∠ACF=∠CAB=30°,∴∠ACD=60°,∴∠CAE=30°,∴CE=12AC=5海里,AE=32AC=53海里,∵∠DAC=180°﹣75°﹣30°=75°,∴∠DAE=75°﹣30°=45°,∴DE=AE=53海里,∴CD=5+53≈13.66(海里),轮船航行的速度为:13.66÷12=27.3(海里/时),答:轮船航行的速度是27.3海里/时,【变式8.2】(2022秋•垦利区期中)如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的北偏东15°方向,距离80千米的地方有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.【分析】过点B作BG⊥OC于点G,可求得BG的长,由离台风中心50千米的区域内会受到台风的影响,即可知会受到影响,然后由勾股定理求得受影响的范围长,即可求得影响的时间.【解答】解:由题意得:∠DOC=45°,∠BOD=15°,OB=80km,∴∠BOC=30°,OB=80km,如图,作BG⊥OC于G,∴BG=12OB=40km,∵40<50,∴会受到影响,如图:BE=BF=50km,由题意知,台风从E点开始影响B城市到F点影响结束,∵BG=40km,∴EG=BE∴EF=2EG=60km,∵风速为40km/h,∴60÷40=1.5(小时),∴影响时间约为1.5小时.【变式8.3】(2022秋•沙坪坝区校级期中)如图,海上有一座小岛C,一艘渔船在海中自西向东航行,速度为60海里/小时,船在A处测得小岛C在北偏东45°方向,1小时后渔船到达B处,测得小岛C在北偏东30°方向.(参考数据:2≈1.41,3≈1.73,6≈2.45)(1)求BC的距离;(结果保留整数)(2)渔船在B处改变航行线路,沿北偏东75°方向继续航行,此航行路线记为l,但此时发现剩余油量不足,于是当渔船航行到l上与小岛C最近的D处时,立即沿DC方向前往小岛C加油,加油时间为18分钟,在小岛C加油后,再沿南偏东75°方向航行至l上的点E处.若小船在D处时恰好是上午11点,问渔船能否在下午5点之前到达E处?请说明理由.【分析】(1)作CF⊥AB于点F,CD⊥BE于点D,设BF=x,则BC=2x,CF=3x,根据AF=CF,得60+x=3x,求出x的值即可求出答案;(2)根据特殊直角三角形求出CD,CE,即可求出从D到E用的时间,和6小时相比较即可.【解答】解:如图,作CF⊥AB于点F,CD⊥BE于点D,(1)由已知得AB=60海里,∠CAF=45°,∠BCF=30°,设BF=x,则BC=2x,CF=3x,∵AF=CF,∴60+x=3x,∴x=603−1=30(3+1),∴BC=60(3+1)≈142(海里),∴BC的距离为142海里;(2)由已知得∠CBD=∠BCD=45°,∴CD=22BC=30(6+2),∵∠ECF=75°,∴∠CED=180°﹣45°﹣30°﹣75°=30°,∴CE=2CD=60(6+2),∴从D到E用的时间为CD+CE60=90(6+2)60≈5.8<6,∴渔船能在下午5点之前到达E处.【考点9】锐角三角函数的应用:坡度坡角问题【例9】(2019秋•滨海县期末)速滑运动受到许多年轻人的喜爱.如图,四边形BCDG是某速滑场馆建造的滑台,已知CD∥EG,滑台的高DG为5米,且坡面BC的坡度为1:1.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为1:3.(1)求新坡面AC的坡角及AC的长;(2)原坡面底部BG的正前方10米处(EB=10)是护墙EF,为保证安全,体育管理部门规定,坡面底部至少距护墙7米.请问新的设计方案能否通过,试说明理由(参考数据:3≈1.73)【分析】(1)过点C作CH⊥BG,垂足为H,根据坡度的概念求出∠CAH,根据直角三角形的性质求出AC;(2)根据坡度的概念求出BH,根据正切的定义求出AH,得到AB,结合图形求出EB,计算得到答案.【解析】(1)如图,过点C作CH⊥BG,垂足为H,∵新坡面AC的坡度为1:3,∴tan∠CAH=13=33,∴∠CAH=30°,即新坡面AC的坡角为30°,∴AC=2CH=10米;(2)新的设计方案不能通过.理由如下:∵坡面BC的坡度为1:1,∴BH=CH=5,∵tan∠CAH=33,∴AH=3CH=53,∴AB=53−5,∴AE=EB﹣AB=10﹣(53−5)=15﹣53≈6.35<7,∴新的设计方案不能通过.【变式9.1】(2022秋•高新区校级期中)如图1,居家网课学习时,小华先将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角150°,侧面示意图如图2;如图3,使用时为了散热,他在底板下垫入散热架ACO'后,电脑转到AO'B'位置,侧面示意图如图4.已知OA=OB,O'C⊥OA于点C,AO':O'C=5:3,AC=40cm.(1)求OA的长;(2)垫入散热架后,显示屏顶部B'比原来升高了多少cm?【分析】(1)设AO′=5xcm,O′C=3xcm,利用勾股定理得到AO′=4x,则4x=40,解方程可得到AO′=50cm,O′C=30cm,所以AO为50cm;(2)过B点作BH⊥AO于H点,如图,先计算出∠BOH=30°,利用30的正弦得到BH=25cm,再计算CB′=80cm,然后计算B′C′﹣BH即可.【解答】解:(1)∵AO':O'C=5:3,∴设AO′=5xcm,O′C=3xcm,∵O'C⊥OA,∴∠ACO′=90°,∵AO′=(5x)2−(3x)2=4x,∴4x=40,解得x=10,∴AO′=50cm,O′C=30cm,∴AO=AO′=50cm;答:OA的长为50cm;(2)过B点作BH⊥AO于H点,如图,∴∠AOB=150°,∴∠BOH=30°,∵BH=12OB=25cm,∵CB′=O′B′+CO′=50+30=80(cm)∴B′C′﹣BH=80﹣25=55(cm),∴显示屏的顶部B′比原来升高了55cm.【变式9.2】(2022秋•高新区期中)如图,水坝的横截面是梯形ABCD(DC∥AB),迎水坡BC的坡角α为30°,背水坡AD的坡度i为1:1.2,坝顶宽DC=2.5米,坝高5米.求:(1)坝底宽AB的长(结果保留根号);(2)在上题中,为了提高堤坝的防洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽0.5米,背水坡AD的坡度改为1:1.4,求横截面增加的面积.(结果保留根号)【分析】(1)作DF⊥AB于点F,根据坡度的概念求出AF,根据正切的定义求出BE,得到坝底宽AB的长;(2)作D′G⊥A′B于点G,求出CD′、A′B,再根据梯形的面积公式计算,得到答案.【解答】解:(1)作DF⊥AB,垂足为F,∵DC∥EF,DF∥CE,DF⊥AB,∴四边形DFEC为矩形,∴FE=DC=2.5,DF=CE=5,在Rt△AFD中,坡AD的坡度i为1:1.2,∴AF=1.2DF=1.2×5=6,在Rt△CEB中,tanα=CE EB,∴BE=CE tan30°=53,∴AB=AF+FE+EB=(172+53)米;(2)如图,作D′G⊥A′B于G,在Rt△A'GD′中,A′G=1.4D′G=7,∴A′A=A′G+GF﹣AF=1.5,∴梯形D′A′AD的面积=12×(0.5+1.5)×5=5,答:横截面增加的面积为5平方米.【变式9.3】(2022秋•长春期中)如图是某地铁站自动扶梯的示意图,自动扶梯AB的倾斜角(∠BAC)为30.5°,自动扶梯AB的长为17米.(1)求乘客从扶梯底端升到顶端上升的高度BC.(结果精确到0.1米)(2)如果一层楼的高度为2.8米,问这个扶梯升高的高度BC相当于几层楼高?(结果保留整数)【参考数据:sin30.5°=0.51,cos30.5°=0.86,tan30.5°=0.59】【分析】(1)根据题意和锐角三角函数可以求得BC的长即可;(2)直接利用(1)中所求,即可得出答案.【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=17×0.51≈8.7(米),答:乘客从扶梯底端升到顶端上升的高度BC约为8.7米;(2)由题意可得:8.7÷2.8≈3(层),答:这个扶梯升高的高度BC相当于3层楼高.【考点10】锐角三角函数的应用:俯角仰角问题【例10】(2020•大庆)如图,AB,CD为两个建筑物,两建筑物底部之间的水平地面上有一点M,从建筑物AB 的顶点A测得M点的俯角为45°,从建筑物CD的顶点C测得M点的俯角为75°,测得建筑物AB的顶点A的俯角为30°.若已知建筑物AB的高度为20米,求两建筑物顶点A、C之间的距离(结果精确到1m,参考数据:2≈1.414,3≈1.732).【分析】在Rt△ABM中,根据等腰直角三角形的性质求得AM,在Rt△AME中,根据正弦函数求得AE,在Rt△AEC中,根据正弦函数求得AC.【解析】∵AB⊥BD,∠HAM=45°,∴∠BAM=∠AMB=45°,∴∠AMB=∠BAM,∴AB=BM=20(米),∴在Rt△ABM中,AM=202(米),作AE⊥MC于E,∵∠KCM=75°,∠ACK=30°,∴∠ACM=45°,∠ACK=∠CAH=30°,∵∠HAM=45°,∴∠CAM=75°,∴∠AMC=180°﹣45°﹣75°=60°,∴在Rt△AME中,AM=202(米),∵sin∠AME=AE AM,∴AE=sin60°•202=32202=106(米),在Rt△AEC中,∠AEC=90°,∠ACE=45°,AE=106(米),∴sin∠ACE=AE AC,∴AC=AE sin45°=10622=203≈35(米),答:两建筑物顶点A、C之间的距离约为35米.【变式10.1】(2021秋•临泉县期末)如图,为测量某建筑物BC的高度,采用了如下方法:先从与建筑物底端B 在同一水平线上的A点出发,沿斜坡AD(坡度i=1:2.4)行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,底端B的俯角为45°,点A、B、C、D、E在同一平面内.根据测量数据,计算出建筑物BC的高度.(参考数据:3≈1.732)【分析】过D作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,得BF=DH,在Rt△ADH中求出DH,再解直角三角形求出EF、CF的长,即可解决问题.【解答】解:如图,过D作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,∴BF=DH,在RtADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∴BF=DH=50米),在Rt△EFB中,∠BEF=45°,∴△EFB是等腰直角三角形,∴EF=BF=50(米),在Rt△EFC中,∠CEF=60°,tan∠CEF=tan60°=∴CF =3EF =503=86.6(米),∴BC =BF+CF =136.6(米).答:建筑物BC 的高度约为136.6米.【变式10.2】(2022秋•蓬莱区期中)如图中是抛物线形拱桥,P 处有一照明灯,水面OA 宽4m ,从O 、A 两处观测P 处,仰角分别为α、β,且tan α=12,tan β=32,以O 为原点,OA 所在直线为x 轴建立直角坐标系,若水面上升1m ,水面宽为多少?【分析】过点P 作PH ⊥x 轴于点H ,设PH =3xm ,则OH =6xm ,AH =2xm ,由OA =4m ,可求出x 值,进而可得出点P 的坐标;根据点O 、P 、A 的坐标利用待定系数法,可求出抛物线的解析式,再根据二次函数图象上点的坐标特征可求出y =1时x 的值,两值做差即可得出结论.【解答】解:过点P 作PH ⊥x 轴于点H ,如图所示.设PH =3xm ,则OH =6xm ,AH =2xm ,∴OA =OH+HA =6x+2x =4,解得:x =12,∴OH =6x =3,PH =3x =32,∴点P 的坐标为(3,32).设拱桥所在抛物线的解析式为y =ax 2+bx+c ,将点O (0,0)、B (4,0)、P (3,32)代入y =ax 2+bx+c ,c =016a +4b +c =09a +3b +c =32,解得:a =−12b =2c =0,∴拱桥所在抛物线的解析式为y =−12x 2+2x .当y =−12x 2+2x =1时,x =2±2,∴2+2−(2−2)=22(m ).答:水面上升1m ,水面宽22m .【变式10.3】(2022秋•莱阳市期中)如图,某物业楼上竖立一块广告牌,高CD=3m,小亮和小伟要测量广告牌底部D到水平地面AH的距离,小亮在水平地面A处安置测倾器,测得广告牌底部D的仰角为22°,小伟在水平地面B处安置测倾器,测得广告牌顶部C的仰角为45°,两人合作量得测倾器的高度AE=BF=1.2m,测点A和测点B之间的距离AB=9m,请根据以上信息,求广告牌底部D到水平地面AH的距离.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【分析】延长EF交CH于点G,则FG⊥CH,得矩形AEFB,矩形BFGH,矩形AEGH,EF=AB=9m,AE =BF=GH=1.2m,在Rt△FDG中,∠EGD=90°,∠DEG=22°,FG=EF+FG=(9+FG)m,利用锐角三角函数即可解决问题.【解答】解:延长EF交CH于点G,则FG⊥CH,得矩形AEFB,矩形BFGH,矩形AEGH,∴EF=AB=9m,AE=BF=GH=1.2m,∵∠CFG=45°,∴∠FCG=45°,∴FG=CG,∴GD=CG﹣CD=(CG﹣3)m,在Rt△FDG中,∠EGD=90°,∠DEG=22°,EG=EF+FG=(9+FG)m,∵DG=EG•tan22°,∴CG﹣3≈(9+CG)×0.40,∴CG=11m,∴DG=CG﹣3=8(m),∴DH=DG+GH=8+1.2=9.2(m).答:广告牌底部D到水平地面AH的距离为9.2m.。

直角三角形的边角关系知识点

直角三角形的边角关系知识点

直角三角形的边角关系知识点1. 直角三角形的一个重要知识点就是勾股定理呀!你看,就像一个稳固的架子,两直角边的平方和等于斜边的平方,这好神奇的呢!比如说,一个直角三角形的两条直角边分别是 3 和 4,那斜边不就可以通过 3 的平方加上 4 的平方等于 25,开个根号得到 5,对吧。

2. 还有呢,直角三角形中锐角的正弦值。

哎呀,这就像一把钥匙,可以打开很多解题的大门哟!比如在一个直角三角形中,一个锐角的对边是 5,斜边是 13,那这个锐角的正弦值不就是 5 除以 13 嘛。

3. 直角三角形里锐角的余弦值也很重要呀!就像是给你指引方向的指南针呢!像是一个直角三角形中,一个锐角相邻的直角边是 12,斜边是 13,那这个锐角的余弦值就是 12 除以 13 呀。

4. 那锐角的正切值呢,这可不能落下呀!它就像一个小火箭,能快速让你找到答案呢!比如一个直角三角形中,一个锐角的对边是6,相邻直角边是8,正切值不就是 6 除以 8 嘛。

5. 直角三角形中还有互为余角的三角函数关系呢!哇哦,这可太有意思了,就像好朋友互相帮助一样。

比如一个锐角的正弦值和它的余角的余弦值是相等的呢。

6. 斜边与直角边的比例关系也很关键呢!这就像找到了一个巧妙的规律!例如,一个斜边是 10,直角边是 5 的直角三角形,它们之间的比例不就很明显嘛。

7. 直角三角形特殊角的三角函数值,那可是必须要知道的呀!好比是特别的宝藏。

比如 30 度角的正弦值是二分之一,是不是很特别。

8. 你知道吗,直角三角形中角和边是相辅相成的呀!这就像一对好搭档。

边的长度变化,角也会跟着变呢。

9. 直角三角形的这些知识点真的非常有用呀,在生活中很多地方都能用得到,不管是建房子还是算距离,都离不开它们呢!所以一定要好好掌握啊!。

直角三角形的边角关系知识

直角三角形的边角关系知识

直角三角形的边角关系知识直角三角形的边角关系知识直角三角形“边角关系”的推广应用杨广才初中代数“解三角形”一章中给出了直角三角形中的边角关系,本文是店铺整理直角三角形的边角关系知识,仅供参考。

第一章直角三角形的边角关系知识点1、定义:在Rt ABC中,∠C=Rt∠,则sinA= cosA= ; tgA= 。

2.特殊角的三角函数值:取值范围Sinα cosα tgα3.三角函数间的关系:sin(90°-α)=cosα,cos(90°-α) = sinαSin2α+cos2α= Rt ABC中, Sin2A+ Sin2B= tgA= ,tgA×tg(90°- A)=4.三角函数值随角度变化的关系5.直角三角形中边的关系: 角的关系: 边角关系:注意:尽量避免使用中间数据和除法。

6.俯角仰角 : 方位角、象限角:坡角坡度:注意实际应用中必须构造直角三角形,如有特殊角一定构造特殊直角三角形。

7。

在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

第二章二次函数知识点1、二次函数:y=ax2+bx+c (a,b,c是常数,且a≠0)a>0开口,a<0开口 |a|越大,开口越小;|a|越小,开口越大.抛物线形状相同的值或。

抛物线y=ax2+bx+c关于x轴对称的抛物线是: 。

抛物线y=a(x-h)2+k关于y轴对称的抛物线是: 。

对称轴顶点坐标a,b同号,对称轴在y轴,反之,在y轴,|x1-x2|=与y轴交点坐标为2、b2 -4ac>0,ax2+bx+c=0有两个不相等的.实根,与x轴有交点。

b2-4ac<0,ax2+bx+c=0无实根,与x轴交点。

b2-4ac =0,ax2+bx+c=0有两个相等的实根,与x轴有交点。

3、函数的图像向上平移个单位,得到的图像。

函数的图像向下平移个单位,得到的图像。

函数的图像向左平移个单位,得到的图像。

直角三角形边角关系知识点

直角三角形边角关系知识点

直角三角形边角关系知识点
1.两个锐角的和为90度:
在直角三角形中,除了一个直角为90度外,另外两个锐角的和也是90度。

这是因为三角形的内角和为180度,所以剩余的两个角相加等于180度减去直角的度数,即90度。

2.勾股定理:
勾股定理是直角三角形边角关系中的一个重要定理,它表示直角三角形的两条直角边的平方和等于斜边的平方。

具体表达式为:a²+b²=c²
其中,a和b是直角三角形的两条直角边的长度,c是直角三角形的斜边长度。

勾股定理可以用来求解直角三角形中的边长,或者验证一个三边长组成的三角形是否为直角三角形。

3.边角关系的应用:
-求解未知边长:通过已知两边的长度,可以利用勾股定理求解第三条边的长度。

例如,已知直角三角形的一个锐角为30度,斜边的长度为10,求解另外两条边的长度。

-应用于测量:直角三角形的边角关系在测量中广泛应用,尤其是在实际工程测量中。

通过利用已知边长和角度,可以计算出其他未知边长和角度,以帮助进行准确的测量。

-平面几何证明定理:直角三角形的边角关系也可以用于证明平面几
何中的一些定理。

例如,利用勾股定理可以证明勾股数列的性质,或者证
明两条线段垂直等。

总结:
直角三角形的边角关系是直角三角形中两个锐角的和为90度,以及
勾股定理成立。

这些边角关系在数学中有广泛的应用,包括求解未知边长、测量、定理证明等。

熟练掌握直角三角形的边角关系,对于解决相关几何
问题非常重要。

直角三角形的边角关系全章总结复习

直角三角形的边角关系全章总结复习

2017— 2018学年寒假辅导第1讲 直角萨娇新的边角关系关键点拨与对应举例知识清单梳理知识点一:锐角三角函数的定义1.锐角三 角函数"亠 . /A 的对边 a正弦.si nA — 令[、士 =-斜边 c 方心、 /A 的邻边 b 余弦:cosA ——杓———-斜边 c工切 .AZ A 的对边 a C2.特殊角 的三角函 数值 f 度数 三角函数、 30° 45° 60° si nA 12 逅2 cosA晶至2 12 ta nA3 1根据定义求三角函数值时, 一定根据 题目图形来理解, 严格按照三角函数 的定义求解,有时需要通过辅助线来 构造直角三角形.知识点二:解直角三角形 3.解直角 三角形 的概念 在直角三角形中,除直角外,一共有五个兀素,即三条边和两个 锐角,由直角三角形中除直角外的已知元素求出所有未知元素的 过程叫做解直角三角形.4.解直角三角形的 常用关系 (1)三边之间的关系:a 2 + b 2= c 2; ⑵锐角之间的关系:/ A + / B — 90° a b a ⑶边角之间的关系:sinA — =cosB=c ,cosA — sinB=;, tanA — £. 2 2⑷相等的角 ①商的关系:tanA=;②平方关系:sinA+cosA=1. (5)互余的两角:若/ A+/ B=90° ,则 sinA=cosB , cosA=sinB. 科学选择解直角三角形的方法口诀: 已知斜边求直边,正弦、余弦很方便; 已知直边求直边,理所当然用正切; 已知两边求一边,勾股定理最方便; 已知两边求一角,函数关系要记牢; 已知锐角求锐角,互余关系不能少; 已知直边求斜边,用除还需正余弦• 例:在 Rt △ ABC 中,已知a=5, / A=30°,贝U c= ,b=.知识点三:解直角三角形的应用 5.仰角、俯 度、坡角 和方向 6.解直角三角形实 际应用的 般步骤(1) 仰、俯角:视线在水平线上方的角叫做仰角 •视线在水平线下方 的角叫做俯角.(如图①) (2) 坡度:坡面的铅直高度和水平宽度的比叫做坡度 (或者叫做坡 比),用字母i 表示. 坡角:坡面与水平面的夹角叫做坡角, 用a 表示,则有i = tan a (如图②) (3)方向角:平面上,通过观察点 O 作一条水平线(向右为东向)和 一条铅垂线(向上为北向),则从点0出发的视线与水平线或铅 垂线所夹的角,叫做观测的方向角. (如图③)(1)弄清题中名词、术语,根据题意画出图形,建立数学模型; ⑵将条件转化为几何图形中的边、角或它们之间的关系,把实际 问题转化为解直角三角形问题;(3) 选择合适的边角关系式,使运算简便、准确;(4) 得出数学问题的答案并检验答案是否符合实际意义,从而得到 问题的解.解直角三角形中“双直角三角形”的 基本模型:(1) 叠合式 (2)背靠式解题方法:这两种模型种都有一条公 共的直角边,解题时,往往通过这条 边为中介在两个三角形中依次求边, 或通过公共边相等,列方程求解 .专题讲座专题一:锐角三角函数的概念例2.锐角三角函数求值:类型一:直角三角形求值3例 4•已知 Rt △ ABC 中,.C =90 ,ta nA , BC =12,求 AC 、AB 和 cosB .48例5.已知• A 是锐角,sinA ,求cosA , tanA 的值17类型二.利用角度转化求值:例6.已知:如图, Rt △ ABC 中,/ C = 90°. D 是AC 边上一点,DE 丄AB 于E 点.DE : AE = 1 : 2. 求: sinB 、cosB 、tanB .注意:1.sinA 、/ cosA 、tanA 表示的是一个整体,是两条线段的比, 与直角三角形的 ___________ 无关2.取值范围 _____ <sinA< _____ ; ______ < cosA< _________例1.如图所示,在 Rt △ ABC 中,/ C = 90°.没有tanA>,这些比值只与有关,)斜边sin( )斜边② cos A =( )斜边cos tan( )斜边.B 的对边在 Rt △ ABC 中,/ C = 90,若 a = 9, b = 12,则c =sinA = cosA = tanA = si nB= _________ , 例 3.已知:如图, Rt △ TNM 中,/ TMN = 90°, MR 丄 TN 于 R 点,TN = 4, 求:sin / TMR 、cos / TMR 、tan / TMR .cosB =tanB =MN = 3.① sin A = I例7•如图,角:.的顶点为0,它的一边在 x 轴的正半轴上,另一边0A 上有一点P( 3, 4),贝U sin o ( =1 例 11.已知:如图,△ ABC 中,AC = 12cm , AB = 16cm , sinA = —3(1)求AB 边上的高 CD ; (2)求厶ABC 的面积S ; (3)求tanB .例 12.已知:如图,在△ ABC 中,/ BAC = 120° , AB = 10, AC = 5. 求: sin /ABC 的值.类型四:利用网格构造直角三角形例13如图所示,△ ABC 的顶点是正方形网格的格点,贝ysinA 的值为( )A . 1B .上C .五D . 口2 5 10 5例8图「i1…ib ■ « v v I ■ E ■ ■彳.•丿:c1 i •例13图 例9图 3 例8•如图,菱形 ABCD 的边长为10cm , DE 丄AB , si nA ,则这个菱形的面积 5例9•如图,沿AE 折叠矩形纸片 ABCD ,使点D 落在BC 边的点C. 3 5 cm 2.A. 3 4 类型三•化斜三角形为直角三角形 的值为()B. 4 3 F 处.已知 AB =8 , BC 二 10 ,AB=8,则 tan / EFC D.4 5 例 10.如图,在△ ABC 中,/ A=30°,/ B=45 ,AC=2、3,求 AB 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角二角形的边角关系知识考点
知识讲解: 1.锐角三角函数的概念
如图,在ABC 中,/ C 为直角,则锐角 A 的各三角函 数的定义如下:
(1)角A 的正弦:锐角A 的对边与斜边的比叫做/ A 的正弦,记作sinA ,
⑵ 角A 的余弦:锐角A 的邻边与斜边的比叫做/ A 的余弦,记作
cosA , 口口
b
即 cosA =
(3)角A 的正切:锐角A 的对边与邻边的比叫做/ A 的正切,记作tanA ,
即 tanA =7
b
(4) 角A 的余切:锐角A 的邻边与对边的比叫做/ A
的余切,记作cotA ,
即 si nA
b
即cotA =-
a
2.直角三角形中的边角关系
(1) 三边之间的关系:a 2
+ b 2
= c 2
(2) 锐角之间的关系:A + B = 90° (3) 边角之间的关系:
sinA = cosB = -, cosA = sinB =2
c
c
a b
tanA = cotB = , cotA = tanB =
3. 三角函数的关系 (1) 同角的三角函数的关系
2) 倒数关系:tan A -c otA = 1
sinA
cosA
tanA = , cotA =.
cosA
st nA
(2)
互为余角的函数之间的关系
sin(90 ° - A) = cosA ,
cos(90 ° - A) = sinA
tan (90 ° — A) = cotA ,
cot (90 ° — A) = tanA
4. 一些特殊角的三角函数值
1)
平方关系:sinA 2
+ cosA 2
= 1
3) 商的关系:
5. 锐角a的三角函数值的符号及变化规律.
(1) 锐角a的三角函数值都是正值
(2) 若O VaV 90° 则sin a, tan a随a的增大而增大,COS a, cot a 随a的增大而减小.
6. 解直角三角形
(1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角•
(2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形.
7. 解直角三角形的应用,
解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念:
(1) 仰角、俯角
视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角
(2) 坡度二坡面的铅直高度h与水平宽度I的比叫做坡度,常用字母i表示,即i
二]
⑶坡角:坡面与水平面的夹角叫做坡角,用字母a表示,则tan a = i '
(4) 方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.。

相关文档
最新文档