根据张宇高数视频总结的考研数学知识点PPT课件

合集下载

张宇高数笔记

张宇高数笔记

张宇高数笔记第一章节极限与连续数列收敛(有极限),则:①任何子列都收敛,反之就不是收敛数列。

②它的极限存在且唯一。

③它是有界的。

(收敛一定有界,但有界不一定收敛,可能振荡)④它有保号性。

数列极限存在的解题手段:①夹逼法。

②定积分定义法。

③对于给定递推式的数列求极限:(1)用单调有界证明极限存在,然后让等式两边极限相等解出A 。

(2)先斩后奏解出A ,然后用压缩映象原理列出|x n ?A |<=""> 根据题设条件得出x n+1和x n 的递推关系,然后用③的方法。

⑤充分运用题目中给出的函数关系式:(1)x n+1=f(x n ),f (ξ)=ξ;则x n+1?x n =f (x n )?f(x n?1),|x n+1?ξ|=|f (x n )?f (ξ)| (2)任何|f ′(x )|≤k 的函数,都可由拉氏定理得|f (x 1)?f (x 2)|≤k|x 1?x 2| (3)若知f(x)的单调性,可把x n+1和x n 的大小判断转化为对f (x n+1)和f(x n )的判断。

(4)若给出x n+1=f(x n ),f ′(x )和x 0的初值,则用拉氏定理:|x n+1?x 0|=|f (x n )?f (x 0)|=|f′(ξ)(x n ?x 0)|≤A|(x n ?x 0)|压缩映象⑥对于累加型数列x n =∑f(n,k)n k=1求极限,常用无穷项相加放缩的方式夹逼出来。

函数极限存在(设为A ),则:①左右极限都为A 。

(证明题证极限存在的思路)②唯一性、有界性、保号性。

③?ε>0,?δ>0,当0<|x ?x 0|<δ时,有|f (x )?A |<ε此定义在广义上,ε可以为任何形式,但必须满足“可以任意小”。

重要结论与具体解题技巧:①闭区间上连续的函数必有界;开区间上连续的函数,两端点极限都存在才有界。

②无穷项相加的放缩:n ×u min ≤∑u i ≤n i=1 n ×u max 有限项相加(且u i ≥0)的放缩:1×u max ≤∑u i ≤n i=1 n ×u max ③诸如1x 2之类的形式难以处理,想到用倒代换。

(最新)张宇高数18讲数学二知识点总结笔记

(最新)张宇高数18讲数学二知识点总结笔记

张宇高数18讲数学二知识点总结笔记●1.函数极限与连续1)函数极限的定义及使用●定义●使用●是常数、唯一性、局部有界性、局部保号性●等式脱帽法2)函数极限的计算●化简先行●等价无穷小替换●恒等变形●及时提出极限存在且不为0的因式●洛必达法则●泰勒公式●熟记常用公式●展开原则●无穷小比阶●函数极限的存在性●具体性●若洛必达失效,用夹逼准则●抽象性●单调有界准则●连续与间断●研究位置●无定义点、分段函数的分段点●连续●内点处、端点处●间断●2.数列极限1)数列极限的定义及使用●定义●使用●是常数、唯一性、有界性、保号性●收敛的充要条件2)数列极限的存在性与计算●海涅定理的使用●直接计算法●定义法(先斩后奏法)●单调有界准则●用已知不等式●题设给出条件来推证●夹逼准则●用基本放缩法●题设给出条件来推证●综合题总结●用导数、积分、中值定理综合●用方程列、区间列综合●用极限综合●3.一元微分的概念1)导数定义(导数在一点的问题)●分段函数(或含绝对值函数)在分段点●抽象函数在一点●特指点x_0●泛指点x●四则运算中的特殊点●太复杂的函数●f=f_1+f_2●f=f_1* f_2* f_3* ...*●求导公式无定义的点2)微分定义●4.一元微分的计算1)复合函数求导2)隐函数求导3)反函数求导4)分段函数求导(含绝对值)●在分段点用导数定义●在非分段点用导数公式●对数求导法●幂指函数求导法●参数方程确定的函数求导●高阶导数●归纳法(记公式)●莱布尼茨公式●展开式(记公式)5)难点●计算量大●含参数的讨论●高阶导数●5.一元微分的几何应用1)研究对象●“祖孙三代”●f(x)●具体●抽象●f_n(x) 函数族●f_1·f_2·...·f_n● f'(x) ; \frac{\mathrm{d}[f(x)]}{\mathrm{d}{(x^2)}} ; {f}^{(n)}(x)●\int_{a}^{x}f(x)dx●分段函数(含绝对值)●参数方程●x=x(t), y=y(t)●x=r(\theta)cos\theta,y=r(\theta)sin\theta●隐函数F(x,y)=02)研究内容●切线、法线、截距●极值、单调性●单调性的判别●一阶可导点是极值点的必要条件●判别极值的第1,2,3充分条件●拐点、凹凸性●凹凸性的定义●拐点定义●凹凸性与拐点的判别●判别凹凸性的充分必要条件●二阶可导点是拐点的必要条件●判别拐点的第1,2,3充分条件●6.中值定理、微分等式与微分不等式1)中值定理●确定区间●确定辅助函数●确定使用的定理●零点定理●介值定理●费马定理●罗尔定理●拉格朗日中值定理●泰勒公式●柯西中值定理2)微分等式问题●理论依据●考法3)微分不等式问题●用单调性●用最值●用凹凸性●用拉格朗日中值定理●用柯西中值定理●用带有拉格朗日余项的泰勒公式●7.一元微分物理应用1)物理应用●以“A对B的变化率”为核心写\frac{\mathrm{d}A}{\mathrm{d}B}●8.一元积分的概念与性质1)祖孙三代●\int_{a}^{x}f(x)dx ,f(x),{ f^{'}(x) } 的奇偶性,周期性2)积分比大小●用几何意义●看面积大小●用保号性●做差●看正负3)定积分定义●基本形(能凑成\frac{i}{n})●\lim_{n \to \infty}\sum_{i=1}^n f(0+\frac{1-0}{n}i)\frac{1-0}{n} =\int_{0}^{1}f(x)dx●\lim_{n \to \infty}\sum_{i=0}^{n-1} f(0+\frac{1-0}{n}i)\frac{1-0}{n} =\int_{0}^{1}f(x)dx●放缩形(凑不成\frac{i}{n})●夹逼准则●放缩后再凑\frac{i}{n}●变量形●\lim_{n \to \infty}\sum_{i=1}^n f(0+\frac{x-0}{n}i)\frac{x-0}{n} =\int_{0}^{x}f(x)dx4)反常积分的判敛●概念●判别●9.一元积分的计算1)基本积分公式2)不定积分的计算●凑微分法●思想●方法●常用的凑微分公式●程序●换元法●思想●方法●三角函数代换●恒等变形后作三角代换●跟式代换●倒代换●复杂函数的直接带换●思想●方法●u,v的选取原则●推广公式(表格法)●有理函数的积分●定义●思想●方法3)定积分的计算●区间再现公式●华里士公式●其他常用含三角函数的积分等式●区间简化公式●对称性下的积分问题●定积分分部积分法中的“升阶”降阶“”公式●分段函数的定积分●10.一元积分几何应用1)研究对象●f(x)●f_n(x)●参数方程●x=x(t)●y=y(t)●\frac{\partial f}{\partial x}●\int_{a}^{x}f(x)dx●微分方程的解函数f(x)2)研究内容●面积、旋转体体积、平均值●平面曲线的弧长、旋转曲面的面积(侧面积)●“平面上的曲边梯形”的形心坐标公式●平行截面面积为已知的立体体积●11.积分等式与积分不等式1)积分等式●通过证明某特殊积分等式求某特殊积分●积分形式的中值定理2)积分不等式●用函数的单调性●处理被积函数●已知f(x) \leq g(x),用积分保号性证得\int_{a}^{b}f(x)dx \leq\int_{a}^{b}g(x)dx,a<b●用拉格朗日中值定理●用泰勒公式●用放缩法●用分部积分法●用换元法●用夹逼准则求解一类积分的极限问题●曲边梯形面积的连续化与离散化问题●12.一元积分的物理应用1)位移大小与总路程●位移大小●\int_{t_1}^{t_2}v(t)dt●总路程●\int_{t_1}^{t_2}|v(t)|dt2)变力沿直线做功●W=\int_{a}^{b}F(x)dx3)提取物体做功●W=\rho g\int_{a}^{b}xA(x)dx4)静水压力●P=\rho g\int_{a}^{b}x[f(x)-h(x)]dx5)细杆质心●\bar x=\frac{\int_{a}^{b}x\rho (x)dx}{\int_{a}^{b}\rho (x)dx}6)其他重要应用(微元法总结)●13.多元函数微分学1)概念●极限、连续、偏导数、可微2)复合函数求导法●链式求导规则●全导数●全微分形式不变3)隐函数求导●隐函数存在定理●一个方程的情形●方程组的情形4)多元函数的极值、最值●无条件极值●取极值的必要条件●取极值的充分条件●条件极值与拉氏乘数法5)偏微分方程●已知偏导数(或偏增量)的表达式,求z=f(x,y)●给出变换,化已知偏微分方程为常微分方程,求f(u)●给出变换,化已知偏微分方程为指定偏微分方程及其反问题●14.二重积分1)概念●和式极限●普通对称性●轮换对称性●二重积分比大小●用对称性●用保号性●二重积分中值定理●周期性2)计算●直角坐标系与换序●极坐标系与换序●直极互化3)应用●面积●\iint_{D}dxdy●15.微分方程1)一阶微分方程的求解●能写成 y'=f(x)·g(x)●能写成 y'=f(ax+by+c)●能写成 y'=f(\frac{y}{x})●能写成 \frac{1}{y'}=f(\frac{x}{y})●能写成 y'+p(x)y=q(x)2)二阶可降阶微分方程的求解●能写成 y''=f(x,y')●能写成 y''=f(y,y')3)高阶常系数线性微分方程的求解●能写成 y''+py'+qy=f(x)●能写成 y''+py'+qy=f_1(x)+f_2(x)4)用换元法求解微分方程●用求导公式逆用来换元●用自变量来换元●用因变量来换元●用x,y地位互换来换元5)应用题●用极限、导数定义或积分等式建方程●用几何应用建方程●用曲线切线斜率●用两曲线f(x)与g(x)的公切线斜率●用截距●用面积●用体积●用平均值●用弧长●用侧面积●用曲率●用形心。

3、张宇考研数学概率论与数理统计讲义强化班(无水印文字版)-41页

3、张宇考研数学概率论与数理统计讲义强化班(无水印文字版)-41页

张宇考研数学概率论与数理统计强化讲义
【注】
犉(狓)=△ 犘{犡 ≤狓}= 犘{- ∞ ≤ 犡 ≤狓}

∫ = 犳(狋)d狋(连) -∞
4犡~犉(狓)<狆犳犻(狓→)分→布概律率密度
= ∑狆犻.(离) 狓犻≤狓
烄① 单调不减;
(1)犉(狓)是某个狓 的分布函数 烅②犉(- ∞)=0,犉(+ ∞)=1;

烆犘(犃1犃2犃3)= 犘(犃1)犘(犃2)犘(犃3).④
【注】若只满足 ①②③,称犃1,犃2,犃3 两两独立.
【例】[取自《张宇概率论与数理统计9讲》P23,例1.33]
将一枚硬币独立地掷两次,引进事件:犃1 = {掷第一次出现正面},犃2 = {掷第二次出
现正面},犃3 = {正反面各出现一次},犃4 = {正面出现两次},则事件( ).
【例2】[取自《张宇考研数学闭关修炼一百题·习题分册》P42,81] 要验收一批乐器,共100件,从中随机地取3件来测试(设3件乐器的测试是相互独立 的),如果3件中任意一件经测试被认为音色不纯,这批乐器就被拒绝接收.设一件音色不 纯的乐器经测试被查出的概率为0.95,而 一 件 音 色 纯 的 乐 器 经 测 试 被 误 认 为 不 纯 的 概 率 为0.01.如 果 已 知 这100件 乐 器 中 有4件 是 音 色 不 纯 的 ,问 这 批 乐 器 被 接 收 的 概 率 是 多少? 【分析】
④(犡,犢)的犉(狓,狔),犳(狓,狔); ⑤犣 =犵(犡,犢)的犉犣(狕),犳犣(狕);
⑥犘{(犡,犢)∈犇}= 犳(狓,狔)dσ. 犇
(3)求数字特征. (4)狀→ ∞ 时的若干重要概率规律. (5)估计与评价.
—1—
张宇考研数学概率论与数理统计强化讲义

张宇高数讲义

张宇高数讲义

ex lim e x→+∞ x
− e−x + e−x
=
lim
x→+∞
ex ex
+ −
e−x e−x
= lim e x e x→+∞ x
− e−x + e−x

◇2011 张宇考研数学内部讲义◇
◇张宇 编讲◇
洛必达法则失效,处理的方法是恒等变形——分子分母同乘 e−x ,得到
lim e x e x→+∞ x
F+ ( x) =
lim
x→0+
⎛ ⎜⎝
sin
x
+
π 4
x−
4 3
⎞ ⎟⎠

⎛ ⎜⎝
1 3
x3
x
+x−
4⎞ 3 ⎟⎠ 不存在,即不可导 ⇒
F′(x) ≠
f
(x)
请注意,我们还有更好的方法解决这个问题吗?
【例
2】
f
(
x
)
=
⎧⎪2 ⎨
x
cos
1 x2
+ 2 sin x
1 x2
,
x≠0 ,
⎪⎩0,
x=0
F
x2
+
1,

⎪⎩cos x +
π 4
,
x≤0 ,
x>0
F ( x) = x f (t ) dt ,则: −1
( A) F ( x)为f ( x)的一个原函数 (C ) F ( x)在(-∞,+∞)上不连续
( B) F ( x)在(-∞,+∞)上可微,但不是f ( x)的原函数 ( D) F ( x)在(-∞,+∞)上连续,但不是f ( x)的原函数

根据张宇高数视频总结的考研数学知识点

根据张宇高数视频总结的考研数学知识点

2 ln(1 sin ) sin d (sin )
2 0 1 2

令t sin
= 2 ln(1 t )tdt
2 0

1
0 0
令x1t 2 ln(1 t )d (1 t )
2 2 0 1 1 0
ln xdx x ln x| xd (ln x)

1
0
r dr. 1 r
2
于是分别只需计算


2 0
ln(1 tan ) sin 2 d 和
2
1
0
r dr即可. 1 r
2


2 0
ln(1 tan ) sin 2 d
2
2

2 0
1 ln sin cos d 2 cos

2 0 2
2 ln cos sin cos d
r ln(1 tan ) 2 原式= J (r , )drd 0 0 1 r
1 2

r ln(1 tan ) 2 r sin 2 drd 0 0 1 r
1 2

ln(1 tan ) sin 2 d
2 0 2
智能手机推荐平板电脑推荐
6
1 对于不定积分 2 dx作一次变换, 2 ( x 1) x 1 2t 2 2 令t , 则x 1 , x 1 , dx dt 2 x 1 1 t 1 t (1 t ) 1 1 dx dx 2 2 2 2 ( x 1) ( x 1) ( x 1) 1 t 2 1 t 2 2 ( ) ( ) dt 2 2t 2 (1 t ) 1 1 t 2 ( ) dt 8 t

张宇老师带你学高数上册导学 全

张宇老师带你学高数上册导学 全

存在准则 两个重要极限(注意
两个重要极 极限成立的条件,熟 限 悉等价表达式)
掌握(两个重要极限 要会证明)【重点
】,“柯西极限存在 准则”考研不要求.
例1-4 4
利用函数极限求数列
极限
无穷小阶的概念(同
例1-5,例1
阶无穷小、等价无穷 小、高阶无穷小、低 §1.7无穷 阶无穷小、k阶无穷
掌握【重点】
掌握 掌握【重点】 掌握【重点】
§ 4.4 有 理 有理函数积分法,可 函数积分 化为有理函数的积分
§ 4.5 积 分 考研不作要求
表的使用
会求
总习题四
总结归纳本章的基本 概念、基本定理、基 本公式、基本方法
必做例题 精做练习
P192习4-1: 例1-3,5- 1(1),2(5)(8)(
15 13)(17)(19)( 21) (25),5,7
掌握
掌握 掌握 掌握
必做例题 精做练习 ——
例1-5 例6-10 例11-13
P286习6-2: 1(1)(4),2(1), 4,5(1),7,9,1 1,12,15(1)(3 ) ,16,19,21,22 (数二,数 三不用 做),28(数 二,数三不 用做)
例1-5
P293习6-3: 5,11(数三 全不用做)
方程
不要求)
例1-2
P314习7-3: 1(1)(5),2(2)
一阶线性微分方程的形式和解 掌握(熟记公式)
法 §7.4一阶
线性微分方

伯努利方程的形式和解法(记
1(5)(10)(12) 例1-10
(15)(16),2,3,
4
§3.3泰勒 泰勒中值定理 公式 麦克劳林展开式

(张宇)线性代数冲刺讲义(张宇)

(张宇)线性代数冲刺讲义(张宇)

式;(2) a11 0 .计算行列式 A . 解 由 aij Aij A A AA AA A E A A A 0 或 A 1 .又
T * T *
2 2 2 A a11 A11 a12 A12 a13 A13 a11 a12 a13 0 A 1.


)
你会继续证明下去吗?
【例 1】设 A 是 m n 矩阵, B 是 n m 矩阵,则线性方程组 ( AB) x 0 ( (A)当 n m 时仅有零解. (C)当 m n 时仅有零解. 解 (B)当 n m 时必有非零解. (D)当 m n 时必有非零解.
r ( AB) min{r ( A), r ( B)} n ,又 AB 为 m 阶方阵.选(D).
因此有
*
AG | A || B | En * * ,所以应有 G | B | A , H | A | B BH | A || B | E n | B | A* 0 ,选择(D). | A | B* 0 A1 C 1 O
* 1
于是 C
(A)
| A | A*
0
G 0 A 0 * | C | , G 、 H 是 n 阶方阵 | A || B | ,设 C 0 H 0 B 0 A 0 G 0 AG CC * 0 B 0 H 0 BH 0 | A || B | En | A || B | E2 n 0 | A | B | En
ab b a a 2 b 2 ab b 2 a2 a , c2 c1 a b ba 2 2 a b
n n
ab a 2 b 2 ab b a b ba 2 2 a b

张宇考研数学基础30讲线性代数分册

张宇考研数学基础30讲线性代数分册

内容摘要
本书介绍了二次型的定义、性质和标准型,以及二次型的配方法和正定性。同时,还讲解了二次 型与对称矩阵的关系,以及如何利用二次型解决实际问题。 内容全面:本书涵盖了考研数学线性代数所需的所有知识点,从基本概念到解题技巧都有详细的 讲解。 实用性强:本书不仅注重知识点的讲解,还提供了大量的例题和练习题,便于学生理解和掌握。 难度适中:本书的难度适中,既不过于简单也不过于复杂,适合大多数学生的需求。 语言简洁易懂:本书的语言简洁易懂,易于理解和学习。
阅读感受
《张宇考研数学基础30讲线性代数分册》读后感
作为一名数学爱好者,我一直对张宇老师的数学课程抱有极高的兴趣。最近, 我阅读了张宇老师的《张宇考研数学基础30讲线性代数分册》,这本书给我留下 了深刻的印象,让我对线性代数有了更深入的理解。
这本书的内容非常丰富,涵盖了线性代数的各个方面,包括矩阵、向量、行 列式、特征值、空间等。每个主题都从基础概念讲起,逐步引入复杂的理论和应 用。同时,书中还配有很多实例和练习题,这些题目非常有代表性,有助于读者 加深对知识的理解和应用。
张宇考研数学基础30讲线性 代数分册
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
本书关键字分析思维导图
讲解
向量
分册
数学
介绍
线性
包括
数学
基础
矩阵 方程组
定义
张宇
利用
二次型
考研
对角
性质
知识
内容摘要
内容摘要
《张宇考研数学基础30讲线性代数分册》是一本专门针对考研数学线性代数部分的辅导教材。本 书涵盖了考研数学线性代数所需的所有知识点,包括行列式、矩阵、向量、线性方程组、特征值 与特征向量、矩阵的对角化、二次型等。 本书首先介绍了行列式的定义、性质和计算方法,包括展开式和递推式等。同时,还讲解了克拉 默法则,以及如何利用行列式解线性方程组。 矩阵是线性代数的核心概念之一。本书详细介绍了矩阵的定义、性质和操作,包括矩阵的加法、 减法、乘法、转置等。还讲解了逆矩阵的概念和计算方法,以及如何利用矩阵解线性方程组。 向量是线性代数的基本对象之一。本书介绍了向量的定义、性质和操作,包括向量的加法、数乘、 内积和外积等。同时,还讲解了向量组的线性相关性和向量组的秩,以及如何利用向量解线性方 程组。

[考研数学]中值定理

[考研数学]中值定理

[考研数学]中值定理⽤书:张宇考研数学基础30讲下多为摘录。

条件/表述部分不完全准确(实际上条件归于表述,但为了观察相似的条件所以单独列出了。

)定理的推导(常考证明)和条件细节⾮!常!重!要!可补充内容:证明、⼏何意义、对⽐=总结/不保证对的个⼈理解。

=我先挖个坑在这⾥。

不要让⼏何直观,蒙蔽了我们的双眼。

—柯西有界与最值定理条件:设f(x)在[a,b]上连续,则:表述:m⩽f(x)⩽M。

其中,m,M为f(x)在[a,b]上的最⼩值和最⼤值。

证明:介值定理条件:设f(x)在[a,b]上连续,则:表述:当m⩽µ⩽M时,存在ξ∈[a,b],使得f(ξ)=µ。

证明:(离散)平均值定理条件:设f(x)在[a,b]上连续,则:表述:当a<x1<x2<⋯<x n<b时,在[x1,x n]内⾄少存在⼀个点ξ,使得f(ξ)=f(x1)+f(x2)+⋯+f(x n)n。

证明:借助介值定理证明。

m⩽f(x i)⩽M,(i=1,2,…,n)nm⩽Σf(x i)⩽nMm⩽f(x1)+f(x2)+⋯+f(x n)n⩽M令µ=f(x1)+f(x2)+⋯+f(x n)n,存在ξ∈[x1,x n],使得f(ξ)=µ=f(x1)+f(x2)+⋯+f(x n)n=1n∑ni=1f(x i)平均值定理的ξ常见闭区间。

(函数)零点定理条件:设f(x)在[a,b]上连续,则:表述:当f(a)⋅f(b)<0时,存在ξ∈(a,b),使得f(ξ)=0。

证明:借助介值定理和最值定理推导。

f(a)⋅f(b)<0说明f(a)与f(b)异号故m<0且M>0则m<0<M,存在ξ∈(a,b),使得f(ξ)=0。

前四条有共⽤条件:f(x)在[a,b]上连续。

连续即不间断。

所以端点不是间断点。

出现函数值为零的条件,可以考虑⽤介值定理与零点存在定理做。

延伸:推⼴的零点定理若f(x)在(a,b)上连续,lim,\alpha \cdot \beta< 0 时,则f(x)在(a,b)内⾄少有⼀个根。

张宇高数讲义

张宇高数讲义

14.设函数 f ( x) 在 (0, +∞) 内可导,则下列说法正确的是( )
(A)若存在δ > 0 ,使得 f ′(x) 在(δ,+ ∞)内有界,则 f ( x) 在(δ,+ ∞)内有界
(B)若存在δ > 0 ,使得 f ( x) 在(δ,+ ∞)内有界,则 f ′(x) 在(δ,+ ∞)内有界
Δx→0
Δx→0
lim F (x + Δx) = F (x) ,得证.
Δx→0
∫ 6.函数 f (x) 在[a,b] 上连续,则函数 F (x) = x f (t)dt 在[a,b] 上可导,且 F′(x) = f (x) a
◇2011 张宇考研数学内部讲义◇
◇张宇 编讲◇
∫ 【例
1】
f
(
x
)
=
⎧ ⎪
【例】函数
f
(x)
=
⎧ −1,
⎨ ⎩
1,
x < 0, x ≥ 0.
F (x) =| x | ,不是 (−∞,+∞) 上的可导函数.变上限定
∫x
积分函数 F (x) = f (x)dx 不是 f (x) 的一个原函数. 0
【例】函数
f
(x)
=
⎪⎨⎧2x sin
1 x

cos
1 x
,
x ≠ 0, 在 (−∞,+∞) 上不连续,它有一个振荡间断
【答案】
7. 函数 f (x) 是奇函数,则其导函数 f ′(x) 是偶函数
8. 函数 f (x) 是偶函数,则其导函数 f ′(x) 是奇函数
∫∫ 9.

函数
f

2012海天考研张宇强化班高等数学下(18讲的部分)

2012海天考研张宇强化班高等数学下(18讲的部分)

2012年张宇考研数学高等数学(下)强化班内部讲义先修课程(高等数学复习导学班)视频地址:新浪微博——宇哥考研:/zhangyumaths 【本讲义参考文献】《考研数学高等数学18讲》,张宇 编著. 中国书籍出版社 《考研数学题源探析经典1000题》,张宇 编著. 北京理工大学出版社第9讲 多元函数微分学从本讲开始进入多元函数的体系,本讲内容是考研绝对的重点,一般会在每年的考试中出至少一个小题(4分)和一个大题(10分左右),有时结合其他知识出综合题.本讲我们只讲多元函数微分学的公共考点,有三个,分别为:1)五个基本概念;2)多元函数微分法;3)多元函数的极值与最值问题。

第一节 多元微分学的五个基本概念1、极限存在性定义 设二元函数f (x , y )定义在区域D 上,点P 0(x 0, y 0)在D 内或者在D 的边界上,如果存在常数A , 对于任给的正数ε,总存在正数δ, 只要点(,)P x y D ∈满足00<PP δ=<,恒有| f (x ,y )−A |<ε 成立, 则称A 为函数f (x , y )当(x , y )→(x 0, y 0)时的极限, 记为0lim (,)x x y y f x y A →→=.这极限也称为二重极限.这里有两点说明.第一,二元函数的极限怎么计算?在考研中这个要求不高.举个例子.【例1】设222222,0(,)0 0xy x y x y f x y x y ⎧+≠00lim (,)x y ⎪+=⎨⎪+=⎩,求f x y →→.【解】因为220|(,)|0xyf x y x y ≤+,由夹逼准则,. 0lim (,)0x y f x y →→=第二,所谓二元函数的极限(二重极限)存在,是指以任何方式趋于时,相应的极限值都为同一个常数),(y x P ),(00y x P A (你是否还记得,在一元函数的极限计算中我们就反复强调:“极限若存在,必唯一”).故,如果以不同方式趋于时,函数趋于不同的值,则可以判定该函数在点的极限值不存在.在考研中这个要求也不高.再举个例子. ),(y x P ),(00y x P ),0y (0x 【例2】设22),(y x xyy x f +=,试证极限不存在. ),(lim 0y x f y x →→【证】这个证明过程比较经典,请记住.当沿着直线),(y x P kx y =趋于点时,有)0,0(=+→=→2200lim y x xy kx y x 2222201lim k kx k x kx x +=+→,结果随的变化而变化,故二重极限不存在. k )y x ,(lim 00y x f →→2. 连续性如果000lim (,)(,)x x y y f x y f x y →→=,则称f (x , y )在点(x 0, y 0)处连续.注意,验证二元函数f (x , y )在某一点(x 0, y 0)是否连续是考研的重点,但是如果不连续,对于多元函数是不讨论间断点的分类的.3. 偏导数存在性(重要!重要!)定义 设函数z = f (x , y )在点(x 0, y 0)的某邻域内有定义, 若极限xy x f y x x f x Δ−Δ+→Δ),(),(lim00000存在, 则称此极限为函数z = f (x , y )在点(x 0, y 0)处对x 的偏导数, 记作00y y x x x z==∂∂, 00y y x x x f ==∂∂, 00x x x y y z ==′, 或00(,)x f x y ′. 于是,00000000000(,)(,)(,)(,'(,)limlim x x x x 0)f x x y f x y f x y f x y f x y x x Δ→→+Δ−−==Δ−x 00000000000(,)(,)(,)(,)'(,)limlim y y y y f x y y f x y f x y f x y f x y y y Δ→→+Δ−−==Δ−y 高阶偏导数 如果函数z =f (x , y )在区域D 内的偏导数(,)x f x y ′、(,)y f x y ′仍具有偏导数, 则它们的偏导数称为函数z =f (x , y )的二阶偏导数. 按照对变量求导次序的不同有如下四个二阶偏导数:22((,)xx z zf x y x x x ∂∂∂′′==∂∂∂, 2((,xy z z )f x y y x x y ∂∂∂′′==∂∂∂∂, 2()(,)yx z z f x y x y y x ∂∂∂′′==∂∂∂∂, 22()(,)yyz zf x y y y y∂∂∂′′==∂∂∂. 其中(,)xyf x y ′′、(,)yx f x y ′′称为二阶混合偏导数.同样可得三阶、四阶、以及n 阶偏导数. 二阶及二阶以上的偏导数统称为高阶偏导数.4. 可微定义 如果函数z = f (x , y )在点(x , y )的全增量Δz = f (x +Δx , y +Δy )−f (x , y ) 可表示为() (z A x B y o ρρΔ=Δ+Δ+=,其中A 、B 不依赖于Δx 、Δy 而仅与x 、y 有关, 则称函数z =f (x , y )在点(x , y )可微, 而称A Δx +B Δy 为函数z =f (x , y )在点(x , y )的全微分, 记作dz , 即dz =A Δx +B Δy .在第三讲中,我们已经详细阐述了一元函数可微的深刻涵义,二元函数的可微概念也是如此(请注意对比,加深理解).(1)写出全增量;000(,)(,z f x x y y f x y =++− 0)(2)写出线性增量A x B y + ,其中0000'(,),'(,)x y A f x y B f x y ==; (3)作极限limx y Δ→Δ→若该极限等于0,则(,)z f x y =在00(,)x y 点可微,否则,就不可微.用形式简单的“线性增量A x B y + ”去代替形式复杂的“全增量z ”,且其误差“()z A x B y −+ ”是o,这就是说,用简单的代替了复杂的,且产生的误差可以忽略不计,这就是可微的真正涵义。

高昆轮老师《张宇考研数学18讲》专题(上篇)18讲精讲讲解

高昆轮老师《张宇考研数学18讲》专题(上篇)18讲精讲讲解

一、函数、极限、连续主要内容:极限的定义与性质,求极限(函数极限、数列极限),无穷小的比较,间断点及其类型.1.函数极限(洛必达法则、等价无穷小代换、泰勒公式)加减运算中等价原则:111111111111,,lim1,,,lim 1,αααββαβαββαααββαβαββ≠-≠-++ 则-则常用的等价代换:()(33332201111sin ,arcsin ,tan ,arctan ,sin arcsin (6633)1ln 1,ln ,1cos .22x x x x x x x x x x x x x x x x x x x x x x αα→--------+-时1,l n 1x x x →- 时 例1 求极限sin lim xx x x x I +→-= 1()6(改1000题数一1.32(17),数二1.65,数三1.43(22))例2 (类1000题数一1.58,数二1.108,数三1.75)()()()()()()2ln 1(),0(),01,0,0,0.1,02x xf x x x f x g x g f f f x +-⎧≠⎪⎪''''==⎨⎪=⎪⎩设具有二阶连续导若求数,()()()401,01,03f f f ⎛⎫'''==-=- ⎪⎝⎭例3设()22lim 1x x x bx e -→+∞⎤+=⎥⎦,试确定,a b 的值 ()2,1a b =-=例4 ()()()1tan sin 20,0lim ,0+x xx xx e x f x f t dtx x --∞→⎧≤=⎨>⎩⎰设,求极限 23e ⎛⎫⎪⎝⎭2.数列极限(夹逼准则、定积分定义、单调有界准则)例5 22212lim 111n n n n n →∞⎛⎫⎛⎫⎛⎫+++= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭12()e例6 求极限2sin sin sin lim 1112n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭ 2π⎛⎫ ⎪⎝⎭ (1000题数一1.55,数二1.105,数三1.72)例7 设()()()ln 2,,2f x x x x =+-∈-∞,()1求()f x 在(),2-∞上的最大值,()2若()11ln2,,1,2,n n x x f x n +=== ,求lim n n x →∞()()()111,2lim1n n f x →∞==最大值二、一元函数微分学主要内容:导数的定义,求各类函数的导数(复合函数、隐函数、参数方程、分段函数、高阶导数),性态(单调性、极值与最值、凹凸性与拐点),方程的根,不等式的证明,微分中值定理的证明题.例 设()()()limx af x f x x a x a x a→==-在处连续且存在,则在处()()()()()()()()()()()()()0,00.A f x f xB f x f xC f x f aD f x f x f a '='不可导,但可导不可导,且也不可导可导,且可导,但对不同的可以为也可以不为 1.方程的根例1 证明方程221x x =+有且仅有三个根例2 试求方程()20xe axa =>为常数的根的个数(1000题数二2.122,数三2.110)2.不等式的证明例3()()224201tan 2tanlim nn nn k x x x x x x →∞=≤-≤=∑证明:充分小时,不等式0设求例4 《18讲例题5.11》3.微分中值定理证明例5()[]()[]()()100,1010,12 2.=f x f f f x dx ξξ'∃∈=-⎰设在上有连续的导数,且,证明:使得例6 (1000题数一2.96,数二2.117,数三2.105)()[]()()()()()()222,2100 4.2,20.f x f x f f f f ξξξ'-≤+=⎡⎤⎣⎦''∃-+=设函数在上二阶可导,且,又试证:使得例7(18讲例题4.10的推广)()[]()()()()()()0,10,100,11,,00,1.f x f f m M m Mm M f f ξηξη==>∃∈+=+''设在上连续,在上可导,对任意的,证明:不同的,使得三、一元函数积分学主要内容:不定积分、定积分与反常积分(基本方法、特色方法、判敛),变限积分函数性质(连续性、可导性、奇偶性),定积分的应用,定积分等式与不等式的证明.1.不定积分、定积分、反常积分 例120xe dx ⎡⎤=⎣⎦⎰例2 22202cos sin xt x e dt xdx ππ--⎡⎤+=⎢⎥⎣⎦⎰⎰例3 3111arccos dx x x+∞⎰例4 ()()()20011dxx x αα+∞≥++⎰2.变限积分函数(略)3.定积分有关的等式、不等式的证明题例5()()[][]()()()()()()()()()20,,,0,1,sin 210.bba a f x g x ab a b g x a b f x g x dx f g x dx xdx xπξξ≥∈=>⎰⎰⎰设在上连续,又在区间上证明至少存在一点使利用的结论证明(18讲例8.2)例6.(1000题数一3.137,数二3.175,数三3.153)利用柯西积分不等式()()()()222b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⎢⎥⎣⎦⎰⎰⎰,证明:()()()2222bbaab a fx dx f x dx -'≤⎡⎤⎣⎦⎰⎰,其中()[](),0.f x a b f a =在上有一阶连续导数,例6’.()[]()()()()()()22,0,1,cos sin 1,.babbaaf x a b f x f x dx f x kxdx f x kxdxk ≥=+≤⎰⎰⎰若在上连续,且证明:这里是任意实数例7《18讲例题8.12》。

根据张宇高数视频总结的考研数学知识点.ppt

根据张宇高数视频总结的考研数学知识点.ppt

2r cos sin
y y sin2 2r sin cos
r
2r sin cos r sin 2.
原式=
2
1 r ln(1 tan2 )J (r, )drd
00
1 r
2
1 r ln(1 tan2 )r sin 2 drd
00
1 r
2 ln(1 tan2 ) sin 2 d
求不定积分 x7 dx (x2 1)2
解:令t x2 1,则dt d (x2 1) 2xdx.
故原式= 1 2
x6 (x2 1)2
d(x2
1)
1 2
(t 1)3 t2 dt
1 t3 3t2 3t 1dt 1 (t 3 3 1 )dt
2
t2
2
t t2
1 t2 3 t 3 ln t 1 C
I
1
du
u u ln u dx
1
u
u
du ln xdx
0 0 1u
0 1u 0
1 u2 ln udu 1
u
u
du ln xdx
0 1u
0 1u 0
1 u2 ln u
1u
0
1 u du 0
(u ln u u)du 1u
1
u2
du 16 .
0 1 u 15
一道不定积分的解答: x6 dx
双曲余弦函数chx ex ex 2
双曲正切函数thx
shx chx
ex ex
ex ex
双曲余切函数 coth
x
chx shx
1 thx
ex ex
ex ex
.
双曲函数的导函数之间的关系为:

高等数学基础班讲义(张宇)

高等数学基础班讲义(张宇)

f
(x) x
dx, 其中f
(x)
=
x
∫1
ln(1 + t
t)
dt
【考点分析】本题核心考察了求解积分的四种基本方法:
凑积分:
把被积分式凑成某个函数的微分的积分方法。
换元积分法: 利用中间变量的代换,得到复合函数的积分法。
分部积分法: ∫ udv = uv − ∫ vdu
有理函数的积分: Pn (t) n < m
全国免费咨询电话:400-668-2190
4
课程铸就品质 服务感动学员
( ) 【例】求 lim sin x + 2014 − sin x x→+∞
【答案简析】
对f (t) = sin t在[ x, x + 2014]上用拉格朗日中值定理
⇒ sin x + 2014 − sin x = 1 cos ξ ⋅ 2014 ξ ∈( x, x + 2014)
cos x cos 2x (1− 3 cos 3x )
= lim x→0
x2
+ lim x→0
x2
+ lim x→0
x2
= 1 +1+ 3 = 3 22
【练习】求 lim1− cos x cos 2x cos 3x 求a,b
x→0
axb
2、加强计算 指标:①准 ②快
1.用思想 2.用知识 3.熟能生巧
a,
b]
∫ 上的一个原函数,则 b a
f
(x)dx
=
F (b)

F (a)
全国免费咨询电话:400-668-2190
3
课程铸就品质 服务感动学员

考研数学张宇强化36讲

考研数学张宇强化36讲
强化实战训练:本书不仅注重数学知识的讲解,更加强实战训练。通过大量的例题和练习题,让 考生熟悉和掌握各种题型的解题方法和技巧,提高考生的应试能力。
编写风格独特:本书的编写风格简洁明了,语言通俗易懂,让考生能够轻松理解和掌握数学知识。 同时,书中的插图和表格也使得内容更加生动形象,便于考生记忆和理解。
《考研数学张宇强化36讲》是一本非常优秀的考研数学辅导书籍。通过阅读 这本书,我不仅掌握了数学知识,还提高了自己的数学思维能力和解题能力。我 相信这本书对其他考生也一定会有很大的帮助和启示作用。
目录分析
《考研数学张宇强化36讲》是考研数学领域的重要参考书籍,其深入浅出的 讲解方式,深受广大考研学生的喜爱。以下是对这本书目录的详细分析。
全书共分为六大部分,分别是:极限与连续、微分中值定理与导数应用、积 分与微分、多元函数微分与积分、常微分方程和线性代数初步。这六大部分基本 涵盖了考研数学的主要知识点,按照难度的递增进行排列,符合学生的学习习惯。
每一部分又细分成六个模块,共三十六个讲。例如在积分与微分部分,包括 了原函数与不定积分、定积分及其性质、多重积分、微分方程初步、无穷级数和 特殊函数这六个模块。每个模块都以一个具体的例子或者问题为起点,引导学生 思考并掌握相关的数学理论和应用。
阅读感受
《考研数学张宇强化36讲》是一本备受推崇的考研数学辅导书籍,被广大考 生视为必备的数学复习资料之一。通过阅读这本书,我感受到了张宇老师的深厚 教学经验和扎实的数学知识。
这本书的内容非常丰富,涵盖了考研数学所涉及的所有知识点。每个知识点 都讲解得非常详细,而且每个章节都由浅入深地分为三个层次,让读者能够逐步 深入地理解和掌握数学知识。书中还提供了大量的例题和练习题,这些题目质量 很高,能够帮助读者巩固所学知识。

张宇2013考研数学辅导讲义高等数学第1,2章习题详解(理工类)

张宇2013考研数学辅导讲义高等数学第1,2章习题详解(理工类)

"
+
$ ) # $ 0 , 1 ) $ " # . / 0 ) & , " ! ) + , ! + $ & ) ( ) ( $ 6 7 ( ( 6 7 ) ) "& ) & $ " , - &! ! + % ) ($ 6 7 " & ( ) " " " "# % + 1 " # & "# " " "# % + 1 " # & "# " * 改为) * ! # " 题目中) + , -$ + , -$ % & & "( ( "( ( " " " " "# % + 1 " # & "# $" 分析 ! ! ! 3 % + , ! ( !设 & "( ( "
/" "# " "# $ 原式! + , ! $ /( % "( ( & &
令"! ! 得. # (代入原式得. /# ! " /" ( ! & % ' . " "# # " ' + , -. & ! " % "( ( " 分析 " ! % " " 8 9 . : 8 1 ' "# "# !原式!
+

张宇考研数学概率论与数理统计强化9讲

张宇考研数学概率论与数理统计强化9讲

阅读感受
《张宇考研数学概率论与数理统计强化9讲》是一本备受推崇的数学考研辅 导书籍,它的作者张宇教授以其独特的授课风格和深入浅出的讲解方式赢得了广 大考生的信赖和喜爱。这本书是张宇教授根据多年的教学经验与研究成果精心编 写的,对于备考研究生数学考试的学生来说,它无疑是一本极为宝贵的参考书籍。
在内容方面,《张宇考研数学概率论与数理统计强化9讲》包含了概率论与 数理统计两个部分,每个部分都包含了基础概念、解题方法、经典例题以及练习 题等多个方面的内容。作者通过生动的语言和详细的解释,使得复杂的概念和解 题方法变得易于理解。书中还提供了大量的例题和练习题,这些题目既有针对性 又有代表性,可以帮助学生在实践中加深对概念和解题方法的理解和应用。
张宇考研数学概率论与数理统计强 化9讲
读书笔记
01 思维导图
03 精彩摘录 05 目录分析
目录
02 内容摘要 04 阅读感受 06 作者简介
思维导图
关键字分析思维导图
知识
作者
张宇
数学
内容
部分
掌握
强化
考研
概率论 学生
提高
数学
帮助
强化
讲解
辅导
考研
分布
内容摘要
《张宇考研数学概率论与数理统计强化9讲》是一本专门针对考研数学中概率论与数理统计部分 的辅导书籍,由著名考研数学辅导专家张宇老师编写。本书以强化和提高概率论与数理统计部分 的知识水平为目标,通过9个主题的讲解,帮助学生更好地理解和掌握这一部分的知识点。
本书的内容分为两个部分,分别是概率论和数理统计。
在概率论部分,作者首先对随机事件和概率的概念进行了详细的解释,然后深入讲解了离散型随 机变量和连续型随机变量的概念及其分布,以及大数定律和中心极限定理等重要的概率论原理。 这些知识点都是概率论的基础,对于理解和掌握概率论的知识点至关重要。

考研高数及专业课复习经验PPT课件

考研高数及专业课复习经验PPT课件
考研高数及专业课复习经验ppt课 件
目 录

• 考研数学(高数部分)复习方法 • 专业课复习策略 • 高效学习法分享 • 备考过程中的常见问题及应对措施 • 成功考研案例分享 • 总结与展望
01 考研数学(高数部分)复 习方法
基础知识回顾
总结词:巩固基础 总结词:系统梳理 总结词:查漏补缺
详细描述:在开始复习考研数学之前,建议先回顾一遍 高数的基础知识,包括极限、导数、积分等,确保对这 些基本概念有清晰的理解。
短期突破方法
总结词
合理安排时间,注重各科目的平衡发展,不要偏科。
详细描述
在备考过程中,要合理安排时间,注重各科目的平衡发展。不要因为某一科目难度较大而放弃或减少 复习时间,要全面提高自己的综合素质和能力。同时,要根据自己的实际情况和目标要求,有所侧重 地进行复习,突出重点和优势科目。
短期突破方法
详细描述
参加考研辅导班、模拟考试等备考活动,可以了解考试动 态和趋势,提高自己的应试能力。同时,与其他考生交流 经验、互相鼓励支持,可以缓解备考过程中的压力和焦虑 情绪,增强信心和动力。
短期突破方法
总结词
短期突破需要集中精力,注重重点和难点知识的复习,同时保持良好的心态和状态。
详细描述
在备考时间紧迫的情况下,要集中精力,注重重点和难点知识的复习。可以通过做真题、模拟考试等方式,快速 检验自己的掌握情况,找出薄弱环节,有针对性地进行巩固和提高。同时,要保持良好的心态和状态,不放弃努 力,积极应对挑战。
总结词
长期备考需要坚持不懈、持之以恒地努力。
详细描述
考研是一场持久战,需要坚持不懈、持之以 恒地努力。在备考过程中,要保持积极的心 态和状态,不断调整自己的学习方法和策略, 保持高效的学习效率和效果。同时,要注重 身心健康和平衡发展,合理安排休息和娱乐 时间,保持充沛的精力和良好的状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(x2 x 1)2
(x2 x 1)2
(x2 x 1)2
1
1 (2x 1) 3
dx 2
2 dx
(x2 x 1)
(x2 x 1)2
(x2
1 x
1)
dx
1 2
(2x 1) (x2 x 1)2
dx
3 2
(x2
1 x
1)2
dx
第一项
(
x2
1 x
1)
dx
d(x 1) 2
24
令tx 1
2
3
2
dt
t
2
3 2
2
2
由公式
(t 2
dt a2)2
1 2a2
(t
2
t a2)
dt
(t
2
a2
)
=
1 2a2
(t
2
t
a2)
1 a
arctan
t a
a2 3
4 a 3 2
则原式=
(t2
t
3)
2 arctan 3
2 3
t
C
x1 2
x2 x 1
2r cos sin
y y sin2 2r sin cos
r
2r sin cos r sin 2.
1
原式=
2
1 r ln(1 tan2 )J (r, )drd
00
1 r
2
1 r ln(1 tan2 )r sin 2 drd
00
1 r
2 ln(1 tan2 ) sin 2 d
(x
1 2
)2
3 2
2
2 arctan 3
2 (x 1) 32
第二项 1
2
(2x 1) (x2 x 1)2
dx
1 2
d (x2 x 1) (x2 x 1)2
1 2
(x2
1 x
1)
C.
10
第三项 3
1
dx= 3
d(x 1) 2
2 (x2 x 1)2
2 [(x 1)2 3]2
方法2:递推公式Ik
dt (t 2 1)k
t2 (t
1 2
t2 1)k
dt
t2
1
1
Ik1 (t2 1)k dt Ik1 2(k 1) td ((t 2 1)k1 )
Ik 1
1[ 2(k 1) (t2
t 1)k 1
Ik 1]
整理得:Ik
=
2(k
t 1)(t 2
1)k 1
2k 2(k
3 1)
Ik 1
dt
(t 2 1)2
1 2
t
(t
2
1)
t
dt 2 1
=
2(t
t
2
1)
1 2
arctan
t
C.
12
一道不定积分的解答:
(
x
x6 2
1)2
dx
解:将被积函数分子x6 (x2 11)3
在x2 1处二项式展开,得
x6 (x2 11)3 1 3(x2 1) 3(x2 1)2 (x2 1)3
(x y) ln(1 y )
计算二重积分I D
x dxdy, 1 x y
其中D (x, y) | x y 1,x 0,y 0.
解法1:由区域D的图形 知,可用极坐标计算该二重积分。

x
y
r cos2 r sin2
,其中0
r
1,0
2
.
x x
由于J (r, ) r
cos2
0
=4
0
lnt tdt 2
0 ln td (t 2 )
1
1
| 2t2 ln t 0 2
0t2
1 dt 2
1
tdt 1
1
1t
0
4
1 0
r2 1
r
dr
则 r1令 t t2,d1rr 2tdt
2 0 (1 t2 )2tdt
1t
2 1(t4 2t2 1)dt 0
| 2(1 t5 2 t3 t) 1
53
0
2
8 15
16 15
.
综上所述,原式=116 = 16 .
15 15
5
6
解法2:首先由于x与y具有轮换对称性,故有
I
= D
(x
y) ln(1 1 x y
y x
) dxdy
D
(
y
x) ln(1 1 y x
x y
) dydx
2I
D
(x
y) ln(1 1 x y
y) dxdy
D
(x
y) ln(1 1 x y
于是
x6 (x2 1)2
=
(x2
1 1)2
3 (x2 1)
3
(x2
1)
故原式=
(
x
2
1 1)2
3 (x2 1)
3
(x2
1)dx
1 x3 2x 3 ln x 1
3
2 x 1
1 (x2 1)2 dx
13
对于不定积分 1 dx作一次变换,
(x2 1)2
令t
x x
1 ,则x 1
1
2t 1t
x) y dxdy
(x y)[ln(1 y ) ln(1 x )]
D
x 1 x y
y dxdy
7
(x y) ln (x y)2
D
xy dxdy 1 x y
2 D
(
x
y) ln(x 1 x
y
y)dxdy
2 D
(
x y) 1 x
ln xdxdy y
于是I =
1
dx
1x (x y) ln(x y) dy
2 arctan 3
2 3
(
x
12 )
C.
4
11
求 dt 的两种方法
(t 2 1)2 方法1:令 t tan z, dt sec2 zdz,则
dt
(t2 1)2 =
sec2 zdz sec4 z =
1 sec2
dz z
cos2zdz 1 (z 1 sin 2z) 22
将z arctan( 2 (x 1))代入即可。 32
1
ln xdx
1 x
x y
0
0
1 x y
0
0 1 x y
视令xx为常y数u 得I =
1
dx
0
1 u ln u du
x 1u
1
ln xdx
0
1 x
u du 1u
8
变换积分次序,得:
I
1
du
u u ln u dx
1
u
u
du ln xdx
0 0 1u
0 1u 0
1 u2 ln udu 1
,
x
1
2 1t
, dx
2 (1 t)2
dt
(x2
1 1)2
dx
(
x
1 1)2 (
x
1)
2
dx
(1 t 2t
)2
(1 2
t
)2
2 (1 t)2
dt
1 8
(1
t
t
)2dt
14
1 12
8 (t2 t 1)dt
1 ( 1 2 ln t t) C 8t
u
u
du ln xdx
0 1u
0 1u 0
1 u2 ln u
1u
0
1 u du 0
(u ln u u)du 1u
1 u2
16
0
du . 1 u 15
9
求不定积分
x2 2 (x2 x 1)2 dx
解:原式
(x2 x 1) (x 1) dx
(x2 x 1) dx
x 1 dx
1
r2
dr.
0
0 1 r
2
于是分别只需计算
2 ln(1 tan2 ) sin 2 d和
1
r2
dr即可.
0
0 1 r
2 ln(1 tan2 ) sin 2 d 0
2 2 ln
1
sin cos d
0 cos2
4 2 ln cos sin cos d 0 3
4
2 ln cos
cos d (cos ) 令tcos
相关文档
最新文档