浙江省高考数学二轮复习专题10:解析几何

合集下载

高三数学二轮复习专题突破课件:解析几何

高三数学二轮复习专题突破课件:解析几何
3
A.[1,+∞) B.[-1,- )
3
C.( ,1]
4
4
D.(-∞,-1]
答案:B
解析:∵y=kx+4+2k=k(x+2)+4,所以直线过定点(-2,4),曲线y=
4 − x 2 变形为x2+y2=4(y≥0),表示圆的上半部分,当直线与半圆相切时直线斜
3
率为k=- ,当直线过点(2,0)时斜率为-1,结合图象可知实数k的取值范围是
a=2
所以 ሺ2 − 3 − ሻ2 + 2 = 2 ,解得 b = 1 .
r=2
2 + ሺ1 − ሻ2 = 2
所以圆的方程为(x-2)2+(y-1)2=4.
4.[2023·广东深圳二模]过点(1,1)且被圆x2 +y2 -4x-4y+4=0所
x+y-2=0
截得的弦长为2 2的直线的方程为___________.
-2)的距离为 2 − 0 2 + 0 + 2 2 =2 2,由于圆心
α
2
5

2 2 2 2
α
αபைடு நூலகம்
α = 2sin cos =
2
2
与点(0,-2)的连线平分角α,所以sin =
10
α
6
, 所 以 cos = , 所 以 sin
4
2
4
10
6
15

× = .故选B.
4
4
4
r

(2)[2023·河南郑州二模]若圆C1:x2+y2=1与圆C2:(x-a)2+(y-b)2
解析:圆x2+y2-4x-4y+4=0,即(x-2)2+(y-2)2=4,
圆心为(2,2),半径r=2,

浙江专用高考数学二轮复习指导二透视高考解题模板示范规范拿高分模板4解析几何问题课件

浙江专用高考数学二轮复习指导二透视高考解题模板示范规范拿高分模板4解析几何问题课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
x2P=9kk22+m281,即
xP=3
±km k2+9.
(11 分)
将点m3 ,m的坐标代入 l 的方程得 b=m(33-k),因此 xM=k3m((k2k+-93)). (12 分)
四边形 OAPB 为平行四边形,当且仅当线段 AB 与线段 OP 互相平分,即 xP=2xM.
于是 3
解题模板
第一步 先假定:假设结论成立. 第二步 再推理:以假设结论成立为条件,进行推理求解. 第三步 下结论:若推出合理结果,经验证成立则肯定假设;若推出矛盾则 否定假设. 第四步 再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规 范性.
【训练 4】 如图,过椭圆 M:x22+y2=1 的右焦点 F 作直线交椭圆于 A, C 两点. (1)当 A,C 变化时,在 x 轴上求定点 Q,使得∠AQF=∠CQF; (2)设直线 QA 与椭圆 M 的另一个交点为 B,连接 BF 并延长交椭圆于点 D,当四边形 ABCD 的面积取得最大值时,求直线 AC 的方程.
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。

高考复习方案 专题 解析几何 高三数学 理科 二轮复习 浙江省专用

高考复习方案 专题 解析几何 高三数学 理科 二轮复习 浙江省专用

考 y0),则该点与圆心连线的斜率为yx00,切线垂直于切点与圆心的
点 考 向
连线,故切线的斜率为-x0,所以切线方程为 y0
y-y0=-xy00(x-
探 x0),即 x0x+y0y=x20+y02.又点(x0,y0)在圆 x2+y2=2 上,所以切
究 线方程为 x0x+y0y=2,该直线与 x,y 轴的交点坐标分别为
返回目录
第13讲 直线与圆
体验高考
4.[2014·陕西卷] 若圆 C 的半
核 心
径为 1,其圆心与点(1,0)关于直线
知 y=x 对称,则圆 C 的 标准方程④ 为

聚 ____________.

[答案] x2+(y-1)2=1
主干知识
⇒ 圆的方程 关键词:圆心、 半径、标准方程、 一般方程,如④.
y-y0=k(x-x0)
在 y 轴上的截距为 b 时, y=kx+b
yy2--yy11=xx2--xx11(x1≠ x2,y1≠y2)
在 x,y 轴上的截距分别 为 a,b 时,ax+by=1
返回目录
第13讲 直线与圆
—— 教师知识必备 ——
直线 方程
一般 式
Ax+By+C=0(A2+B2≠0),B≠0 时,斜率 k= -AB,纵截距为-CB
D2+E2-4F 2
返回目录
第13讲 直线与圆
—— 教师知识必备 ——
相交
相切
相离


线 圆 线 代数法
与 的与
圆 方 圆 几何法

方 程 圆 代数法


圆 几何法
方程组有 两组解
d<r 方程组有 两组解 r1-r2 <d<r1+r2

二轮复习之解析几何突破

二轮复习之解析几何突破
算 . 对 而 言 第 二 类 方 法 显 得 很 简 相
捷 . 必须有较 好的平面几何功底. 但 ( ) 于 圆锥 曲线 中 的 “ 焦 问 2对 触
注 意 到 圆C、 圆 是 两 个 相 离
的等 圆 ,所 以 它 们 关 于线 段 CC 的 】2 中垂线对称 , 难 猜想 , 不 点P在 线 段
的 恒 等 式 , 而得 到 关 手口 6 两 个 从 ,的
方 程 , 而 求 得 口 6 值 ; 家 不 妨 进 ,的 大
试一试 !
解 答 .介 绍 解 决 解 析 几 何 问题 中 要
注 意 的 问 题 及 一 些 常 用 的 解 题 对
单 。 往 往 伴 随 而 来 的 是 繁 杂 的 运 但
足 条 件 的 点P 再 加 以证 明 即可. 后
注意利用平 几知识 破解解析几何 问题
___- --__- _ _---・_ --___-- - -__・… _
题 方 法 时 ,应 优 先 考 虑 和 用 圆锥 曲 j 线 的定义 及平 面几何 的知识 解之 . 即 明确 解 决 这 类 问题 的最 常 用 的 思 路 是 充 分 利 用 其 几 何 意 义去 解 决 问 题 .在 具 体 操 作 中要 注 意 以下 两 个
I, Z, 被 圆C。圆 c 截 得 的 弦 长 可 j 则 。Z } : 、 2
上 述 两 类 问题 与平 面 几 何 知 识 通 常
有 着 天 然 的联 系 .
3 .破 解 技 巧 : 1 对 于 直 线 与 圆 ()
或 者 虽 然 有 了 一 个 “ 题 方 案 ” 但 解 . 在 具体操 作 过程 中又 遇到这样 、 那 样 的 困难 。 难 走 到 “ 想 的 彼 岸 ” 很 理 .

《高考解析几何二轮复习资料》

《高考解析几何二轮复习资料》

《高考解析几何二轮复习资料》第一讲 《直线与圆篇》类型一 直线方程[例1](2012年高考浙江卷)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件练习1.在平面直角坐标系xOy 中,已知A (0,-1),B (-3,-4)两点,若点C 在∠AOB 的平分线上,且|OC →|=10,则点C 的坐标是________.类型二 圆的方程[例2](2012年杭州五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A 、B ,则 △ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5练习2.(2012年长春高三摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.类型三 直线与圆的位置关系[例3](2012年高考天津卷)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)练习3.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( ) A .(-1,1) B .(0,2) C .(-2,0)D .(1,3)练习4.(2012·临沂一模)直线l 过点(4,0)且与圆(x -1)2+(y -2)2=25交于A 、B 两点,如果|AB |=8,那么直线l 的方程为________.练习5.直线y =kx +3与圆(x -1)2+(y +2)2=4相交于M 、N 两点,若|MN |≥23,则k 的取值范围是( )A.⎝⎛⎭⎫-∞,-125B.⎝⎛⎦⎤-∞,-125C.⎝⎛⎭⎫-∞,125D.⎝⎛⎦⎤-∞,125 高考真题1.(2012年高考江苏卷)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.2.[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切 C .l 与C 相离D .以上三个选项均有可能3.[2012·重庆卷] 对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切 C .相交但直线不过圆心 D .相交且直线过圆心第二讲 圆锥曲线篇 (一)基础知识部分1、圆锥曲线的定义:(1)8=表示的曲线是 。

高三数学二轮复习重点

高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。

以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。

培优提能课(五) 解析几何 2023高考数学二轮复习课件

培优提能课(五)   解析几何 2023高考数学二轮复习课件
联立yx=2+k2xy+2=y04-kx0,消元可得(1+2k2)x2+4k(y0-kx0)x+2(y0-kx0)2-4 =0,
由题意,Δ=0,即[4k(y0-kx0)]2-4(1+2k2)[2(y0-kx0)2-4]=0 且 x02+2y20
=4, 整理得(x20-4)k2-2x0y0k+y20-2=0.
3.
因为点 B,B′关于 x 轴对称,所以 B′-38+34kk2,4
3k2-3 3+4k2
3,
所以直线 PB′的方程为 y=
3-4
3k2-3 3+4k2
8 3k
3 x+
3=43kx+
3,
3+4k2

y=0,得
x=-4
33k,所以
M-4
33k,0.
令 y=kx+
3=0,得
x=-
k3,所以
N-
k3,0.
目录
02
提能2 隐圆问题
目录
隐圆问题在近几年各地模考和高考的填空题和解答题中都出现过,难 度为中、高档题.在题设中没有明确给出圆的相关信息,而是隐含在题目 中,要通过分析、转化,发现圆(或圆的方程),从而最终利用圆的知识来 求解,我们称这类问题为“隐圆”问题.
目录
角度一 利用圆的定义(垂直)确定隐圆
所以|BM|=
1+2xy002x0(x204+-42yy2020)+x0
= x20+8 4y20,
目录
|AM|=
1+-2xy002x0(x204+-42yy2002)-x0
= 2x|02x+0y40|y20,
即 S△ABM=12|AM||BM|=x820|+x0y40y|02≤2, 当且仅当xx0202= +42yy2200, =4,即 x02=38,y02=23时取等号. 故△ABM面积的最大值为2.

高三数学二轮复习冲刺:例谈解析几何中的齐次化技巧

高三数学二轮复习冲刺:例谈解析几何中的齐次化技巧

例谈解析几何中齐次化技巧一.基本原理在解析几何计算与二次曲线“半径”(曲线上一点到坐标原点的连线)斜率有关的问题时,我们可以进行“1”代换的齐次化计算,即一般计算步骤为:22222)(1b kx y ny mx ny mx b kx y -=+⇒⎩⎨⎧=++=,整理可得:0(2=+⋅+C xy B x y A 0(2=+⋅+C x y B x y A 中的几何意义为:直线与曲线的交点与原点的连线的斜率,即,OA OB 的斜率,设为12,k k ,由韦达定理知12B k k A +=-,12C k k A=,从而能通过最初的二次曲线和直线相交,得出,OA OB 的性质,倒过来,我们也可以通过,OA OB 的性质与二次曲线得出AB 的性质.下面通过例题予以分析.二.典例分析例1.已知双曲线22:154x y Γ-=的左右焦点分别为1F ,2F ,P 是直线8:9l y x =-上不同于原点O 的一个动点,斜率为1k 的直线1PF 与双曲线Γ交于A ,B 两点,斜率为2k 的直线2PF 与双曲线Γ交于C ,D 两点.(1)求1211k k +的值;(2)若直线OA ,OB ,OC ,OD 的斜率分别为OA k ,OB k ,,OC k ,OD k ,问是否存在点P ,满足0OA OB OC OD k k k k +++=,若存在,求出P 点坐标;若不存在,说明理由.解析:(1)由已知1(3,0)F -,2(3,0)F ,设(9,8)P λλ-,(0)λ≠,∴1839k λλ=--,2893k λλ-=-,121139939884k k λλλλ---+=+=--.(2)由题意知直线113k x k y AB =-:,与双曲线方程联立得2121229)(45k x k y y x -=-,同除以2x ,令x y k =得0454929141(1221=--+k k k k ,因此498914192211211+=+=+k k k k k k OB OA .同理将直线223:k x k y CD -=-与双曲线方程联立可得498222+=+k k k k OD OC ,所以0498498222211=+++=+++k k k k k k k k OD OC OB OA ,即0)49)((2121=++k k k k .由(1)知21k k -≠,令点)98,(00x x P -,所以94398398000021-=--⋅+-=x x x x k k ,所以解得590±=x ,∴存在98(,55P -或98(,)55P -满足题意.例2.如图,已知椭圆12222=+b y a x (a b 0)>>过点(1,22),离心率为22,左右焦点分别为12F F .点P 为直线l :2x y +=上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为A B 、和,C D O 、为坐标原点.(1)求椭圆的标准方程;(2)设直线1PF 、2PF 斜率分别为1k 2k 、.()i 证明:12132k k -=(ⅱ)问直线l 上是否存在一点P ,使直线OA OB OC OD 、、、的斜率OA OB OC OD k k k k 、、、满足0OA OB OC OD k k k k +++=?若存在,求出所有满足条件的点P 的坐标;若不存在,说明理由.解析:(1)椭圆方程为2212x y +=.(2)设B A ,的坐标为),(),,(2211y x y x ,AB 方程为)1(1+=x k y ,022)11(12)1(21221221=-+-⇒⎪⎩⎪⎨⎧=++=x xy k y k y x x k y 即021(2)(11(1221=-+-x y k x y k 故12211--=+k k k k OB OA .同理,设D C ,坐标为),)(,(4433y x y x ,CD 方程:)1(2-=x k y ,则12222--=+k k k k OD OC ,故:0))(1(012122121222211=+-⇒=--+--k k k k k k k k .则⎪⎩⎪⎨⎧=-=23112121k k k k ,解得:P 的坐标为)43,45(或⎪⎩⎪⎨⎧=-=+23102121k k k k ,解得:P 的坐标为)2,0(三.习题演练已知椭圆C :()222210x y a b a b+=>>24y x =的焦点F .(1)求椭圆C 的标准方程;(2)O 为坐标原点,过O 作两条射线,分别交椭圆于M ,N 两点,若OM ,ON 斜率之积为45-,求证:MON △的面积为定值.答案:(1)椭圆方程为22154x y +=;(2)MON S =△为定值.。

春季高考二轮复习--《解析几何》讲义

春季高考二轮复习--《解析几何》讲义

第八章《解析几何》例1(1)、已知两点A(-3,3),B(3,-1),则直线AB 的倾斜角等于( )A. π3B. 2π3C. π6D. 56π (2)、如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A. k 1<k 2<k 3B. k 3<k 1<k 2C. k 3<k 2<k 1D. k 1<k 3<k 2(3)、已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A. 1B. -1C. -2或-1D. -2或1(4)、已知直线的倾斜角为120°,在y 轴上的截距为-2,则此直线的方程为( )A. y =3x +2B. y =-3x +2C. y =-3x -2D. y =3x -2(5)过点M(1,-2)的直线与x 轴、y 轴分别交于P 、Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为( )A. 2x +y =0B. 2x -y -4=0C. x +2y +3=0D. x -2y -5=0变式训练:1、直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( )A. 3x +2y -1=0B. 3x +2y +7=0C. 2x -3y +5=0D. 2x -3y +8=02、已知点A(1,-2),B(5,6),直线l 经过AB 的中点M ,且在两坐标轴上的截距相等,则直线l 的方程是________.3、过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是( )A. 2x +y -12=0B. 2x +y -12=0或2x -5y =0C. x -2y -1=0D. x +2y -9=0或2x -5y =04、已知点A(-2,3),B(3,2),过点P(0,-2)的直线l 与线段AB 没有公共点,则直线l 的斜率的取值范围是__.例2、(1)点(1,-1)到直线x -y +1=0的距离是( )A. 12 B. 32 C. 322 D. 22(2)若经过点(3,a)、(-2,0)的直线与经过点(3,-4)且斜率为12的直线垂直,则a 的值为( )A. 52 B. 25C. 10D. -10 (3)已知过点A(-2,m)和B(m,4)的直线与直线2x +y -1=0平行,则m 的值为( )A. 0B. -8C. 2D. 10(4)直线Ax +3y +C =0与直线2x -3y +4=0的交点在y 轴上,则C 的值为________.(5)直线x -2y +1=0关于x =3对称的直线方程为________.变式训练:1、已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m 、n 的值,使(1)l 1与l 2相交于点P(m ,-1);(2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.2、P 点在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则P 点坐标为( )A. (1,2)B. (2,1)C. (1,2)或(2,-1)D. (2,1)或(-1,2)3、过点P(0,1),且与点A(3,3)和B(5,-1)的距离相等的直线方程是( )A. y =1B. 2x +y -1=0C. y =1或2x +y -1=0D. 2x +y -1=0或2x +y +1=0例3、(1)、已知圆的方程为x 2+y 2-2x =0,则圆心坐标为( )A. (0,1)B. (0,-1)C. (1,0)D. (-1,0)(2)已知方程x 2+y 2+2kx +4y +3k +8=0表示一个圆,则实数k 的取值范围是( )A. -1<k<4B. -4<k<1C. k<-4或k>1D. k<-1或k>4(3)圆心在曲线y =14x 2(x<0)上,并且与直线y =-1及y 轴都相切的圆的方程是( ) A. (x +2)2+(y -2)2=2 B. (x -1)2+(y -2)2=4 C. (x -2)2+(y -1)2=4 D. (x +2)2+(y -1)2=4(4)点P(4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A. (x -2)2+(y +1)2=1B. (x -2)2+(y +1)2=4C. (x +4)2+(y -2)2=4D. (x +2)2+(y -1)2=1(5)直线y =x -1上的点到圆x 2+y 2+4x -2y +4=0的最近距离为( )A. 2 2 B. 2-1 C. 22-1 D. 1 变式训练:1. 根据下列条件求圆的方程:(1)经过A(5,2),B(3,2),圆心在直线2x -y -3=0上;(2)半径为5且与x 轴交于A(2,0),B(10,0)两点;(3)圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分.2、已知点P(x ,y)是圆(x +2)2+y 2=1上任意一点.(1)求x -2y 的最大值和最小值;(2)求y -2x -1的最大值和最小值;(3)求(x -2)2+(y -3)2的最大值和最小值. 例4、(1)、圆x 2+y 2-4x =0在点P(1,3)处的切线方程为( )A. x +3y -2=0B. x +3y -4=0C. x -2y +4=0D. x -3y +2=0(2)、对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( )A. 相离B. 相切C. 相交但直线不过圆心D. 相交且直线过圆心(3)、圆C 1:x 2+y 2=1与圆C 2:x 2+(y -3)2=1的内公切线有且仅有( )A. 1条B. 2条C. 3条D. 4条(4)、直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( ) A. 2 5 B. 2 3 C. 3 D. 1(5)、圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长为________.变式训练:1、直线ax -y +2a =0与圆x 2+y 2=9的位置关系是( )A. 相离B. 相切C. 相交D. 不确定2、若直线x -y +1=0与圆(x -a)2+y 2=2有公共点,则实数a 的取值范围是( )A. [-3,-1]B. [-1,3]C. [-3,1]D. (-∞,-3]∪[1,+∞)3、求过点P(1,2),且与圆x 2+y 2=1相切的直线方程。

【精编版】【高考复习方案】专题-解析几何-高三数学(理科)二轮复习-浙江省专用共63页文档

【精编版】【高考复习方案】专题-解析几何-高三数学(理科)二轮复习-浙江省专用共63页文档
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——ቤተ መጻሕፍቲ ባይዱ联
【精编版】【高考复习方案】 专题-解析几何-高三数学(理科)
二轮复习-浙江省专用
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹

XX高三数学二轮专题复习-解析几何中斜率之和为零的问题探究

XX高三数学二轮专题复习-解析几何中斜率之和为零的问题探究

XX高三数学二轮专题复习-解析几何中斜率之和为零的问题探究解析几何中斜率之和为零的问题探究【教学目标】1.掌握斜率之和为零这类问题的基本解法,在探究中不断推广,深入,掌握一般性的结论;通过一类问题的探究提高学生的分析能力,引导学生养成探究、拓展、深入思考的习惯.【教学重、难点】重点是方法的确定与推广;难点是运算的简化.【教学方法】探究研讨式【教学过程】引入:解析几何中有很多的问题值得探究,不同背景下表现出来的同种问题往往会有一致的结果,通过探究会让我们对此类问题有更深刻的认识。

今天要和大家一起探究的问题是斜率之和为零的问题,例如:探究问题一:已知椭圆及定点,是椭圆上两个不同的动点,且直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出该定值.思考1:如果定点,结果是什么呢?思考2:如果椭圆方程是,椭圆上的定点。

结果又是什么呢?思考3:上述结论能推广到双曲线和抛物线吗?试一试.得出结论:椭圆:双曲线:抛物线:探究问题二:已知椭圆,是椭圆上的动点,且直线经过椭圆内的定点,问在轴上是否存在定点使?若存在,请求出该定点,若不存在,请说明理由.思考1:若椭圆内的定点改为,问在轴上是否存在定点使?若存在,请求出该定点,若不存在,请说明理由.思考2:若椭圆改为圆,方程为,结果会如何呢?思考3:若椭圆改为抛物线呢?课堂收获:课后练习:已知是长轴为4,焦点在轴上的椭圆上的三点,点A是长轴的一个顶点,Bc过椭圆的中心o,且.求椭圆的方程;如果椭圆上的两点P、Q,使得的平分线垂直于,问是否总存在实数,使得?说明理由.是抛物线上的一点,动弦分别交轴于两点,且,若为定点,证明:直线的斜率为定值.在直角坐标系中,曲线,是曲线上的两个动点,且直线经过定点,问在轴上是否存在定点,使得?请说明理由.。

高三数学二轮复习微专题 ——解析几何中的线段长度问题

高三数学二轮复习微专题 ——解析几何中的线段长度问题
考点聚焦
122
高三数学二轮复习微专题
——解析几何中的线段长度问题
■田荣成
在近几年高考及模拟试题中较多的出现线段长度(共线向 量)的问题。线段的长度问题常用的方法是两点间距离公式、 弦长公式。但对一些特殊的线段长度问题若仍然采用通法去 求解,则计算量成倍增加,费时费力,学生的畏难情绪油然而 生,大多中途放弃,能坚持算下去的少数学生中也极少有人能 算出正确答案。所以要攻克解析几何这座堡垒,一方面要坚持 培养学生的计算能力,另一方面也要重视条件转化方法的选 择,提升思维量,降低计算量,否则就把学生引入了“苦算”的汪 洋大海中去了。
(作者单位:河北省唐山市滦南县第一中学)
考点聚焦
123
称此方法为化斜为“平竖”法。在得到两交点的坐标关系后,可
用弦长公式求解 HG 长。
分别过 H, G 点作 H1, G1 垂直于 y 轴,垂足为 H1, G1。
因为 HH1 ∥ EO ∥ GG1
所以
|HE| |EG|
=
|H1O| |OG1|
=
3
H
本文拟从一道较常见的模拟试题入手,从五个不同的角度 介绍破解策略,供读者参考,希望能给读者一点启发。
x2 y2 【例】已知椭圆C:8 +4 = 1,过左焦点 E 的直线与椭圆 C 交于 G, H 两点,且 HE = 3 EG,试求此时弦长 HG。 何使【用分条析件】H本E题=中3 E出G现,以三及条如线何段表H示E,所EG求,问HG题的HG长的度长,那度么呢如? 【分方析法:1此】向题量中的的坐条标件法HE = 3 EG 是以向量形式给出的,所 以很容易想到向量的坐标法,在上述方法求出 H, G 点坐标后 可以用两点间距离公式求出 HG 长。
三、解题步骤 针对七选五这一题型,我建议以下解题步骤:1. 通读全文, 了解文章大意,明白上下文的逻辑。2. 浏览选项,并抓住选项 中的关键词语,做到心中有数。3. 详读段落,先易后难各个击 破,注重上下文的联系。4. 复读检查,攻克难点,注重上下文意 义关联。5. 研究两个多余选项,确定排除干扰。另外,在解题 过程中要牢记八字方针:空前空后,先易后难。 结语:通过以上分析,我们不难发现七选五题型并不像我 们想象得那么难,每一个空的设置都符合考试大纲的要求。由 此看出,高考题中的七选五是有答题模板的,只要我们掌握以 上解题技巧和方法,多练习高考真题,这一题型是可以拿高分 甚至满分的,毕竟把简单练到极致就会成功! 参考文献 [1]胡小力,赖丽燕 . 新课改背景下的英语试卷分析[D]. 中国考试(研究版),2009. [2]邓景鸿,彭桂华 . 全面破解高考英语阅读七选五[D]. 高考金刊,2016.

高考数学二轮复习课件:解答题双规范案例之——解析几何问题

高考数学二轮复习课件:解答题双规范案例之——解析几何问题

解答题双规范案例之——解析几何问题【重在“巧设”】1.解析几何部分知识点多,运算量大,能力要求高,在高考试题中大都是在压轴题的位置出现,是考生“未考先怕”的题型之一,不是怕解题无思路,而是怕解题过程中繁杂的运算.2.在遵循“设——列——解”程序化运算的基础上,应突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.【思维流程】【典例】(12分)(2018·全国卷II)设抛物线C:y2=4x 的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.切入点:利用直线方程与抛物线联立,并结合抛物线弦长公式求解.关键点:设出圆心坐标,利用圆的性质求解.【标准答案】【解析】(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0). …………1分①设A(x1,y1),B(x2,y2),由得k2x2-(2k2+4)x+k2=0. …………2分②Δ=16k2+16>0,故x1+x2= .…………3分③所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)= . …4分④由题设知 =8,解得k=-1(舍去),k=1.……5分⑤因此l的方程为y=x-1. ………………6分⑥(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5. ………………………8分⑦设所求圆的圆心坐标为(x0,y),则解得或 …………………10分⑧因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.……………………………12分⑨【阅卷现场】第(1)问踩点得分①设出直线方程得1分.②将方程组化为关于x的一元二次方程得1分.③利用根与系数关系求出x1+x2正确得1分,错误不得分④利用抛物线的性质写出|AB|,并用含有斜率k的式子表示出来得1分.⑤求出斜率得1分.⑥写出直线方程得1分.第(2)问踩点得分⑦求出AB的垂直平分线方程得2分.⑧求出圆心坐标得2分.⑨写出圆的方程得2分,每正确一个得1分.。

高考数学二轮复习 专题10 数列求和及其应用教学案 理-人教版高三全册数学教学案

高考数学二轮复习 专题10 数列求和及其应用教学案 理-人教版高三全册数学教学案

专题10 数列求和及其应用高考对本节内容的考查仍将以常用方法求和为主,尤其是错位相减法及裂项求和,题型延续解答题的形式.预测2018高考对数列求和仍是考查的重点.数列的应用以及数列与函数等的综合的命题趋势较强,复习时应予以关注.1.数列求和的方法技巧(1)公式法:直接应用等差、等比数列的求和公式求和.(2)错位相减法这种方法主要用于求数列{a n·b n}的前n项和,其中{a n}、{b n}分别是等差数列和等比数列.(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.(5)分组转化求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.2.数列的综合问题(1)等差数列与等比数列的综合.(2)数列与函数、方程、不等式、三角、解析几何等知识的综合.(3)增长率、分期付款、利润成本效益的增减等实际应用问题. 数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.【误区警示】1.应用错位相减法求和时,注意项的对应.2.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n 项和.考点一.数列求和例1、25.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析(2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n ≥时, 21124n n n n n a a a a a --+++++=,①当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③2314n n n a a a ++++=- ()1n n a a -+,④将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为'd .在①中,取4n =,则235644a a a a a +++=,所以23'a a d =-, 在①中,取3n =,则124534a a a a a +++=,所以122'a a d =-, 所以数列{}n a 是等差数列.【变式探究】(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *.(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.【举一反三】 若A n 和B n 分别表示数列{a n }和{b n }的前n 项的和,对任意正整数n ,a n =2(n +1),3A n -B n =4n .(1)求数列{b n }的通项公式;(2)记c n =2A n +B n ,求{c n }的前n 项和S n .解:(1)由于a n =2(n +1), ∴{a n }为等差数列,且a 1=4. ∴A n =n (a 1+a n )2=n (4+2n +2)2=n 2+3n ,∴B n =3A n -4n =3(n 2+3n )-4n =3n 2+5n ,当n =1时,b 1=B 1=8,当n ≥2时,b n =B n -B n -1=3n 2+5n -[3(n -1)2+5(n -1)]=6n +2.由于b 1=8适合上式, ∴b n =6n +2.(2)由(1)知c n =2A n +B n =24n 2+8n =14⎝ ⎛⎭⎪⎫1n -1n +2, ∴S n =14⎣⎢⎡⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫14-16+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2= 14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=38-14⎝ ⎛⎭⎪⎫1n +1+1n +2. 【变式探究】(2016·山东卷)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2=-3n ·2n +2, ∴T n =3n ·2n +2.考点二、数列和函数、不等式的交汇例4、(2016·四川卷)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n3n -1.(2)证明:由(1)可知,a n =qn -1,∴双曲线x 2-y 2a 2n =1的离心率e n =1+a 2n =1+q2(n -1). 由e 2=1+q 2=53解得q =43.∵1+q2(k -1)>q2(k -1),∴1+q2(k -1)>qk -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n-1q -1,故e 1+e 2+…+e n >4n -3n3n -1.【变式探究】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n .1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328433n n n T +-=⨯+. 【解析】(I )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由已知2312b b +=,得()2112b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以, 2n n b =. 由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =, 3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2n n b =.(II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=⨯,有()221314n n n a b n -=-⨯, 故()23245484314n n T n =⨯+⨯+⨯++-⨯,()()23414245484344314n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得()231324343434314n n n T n +-=⨯+⨯+⨯++⨯--⨯得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析(2)见解析(2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,①当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③3.【2017山东,理19】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T .【答案】(I)12.n n x -=(II )(21)21.2n n n T -⨯+=(II )过123,,,P P P ……1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q ……1n Q +,由(I)得111222.n n n n n x x --+-=-= 记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n T b b b =+++……+n b=101325272-⨯+⨯+⨯+……+32(21)2(21)2n n n n ---⨯++⨯ ① 又0122325272n T =⨯+⨯+⨯+……+21(21)2(21)2n n n n ---⨯++⨯ ② ①-②得=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=1.【2016高考天津理数】已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设 ()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析2.【2016高考新课标3理数】已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ.【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-. 3.【2016高考浙江理数】设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )证明见解析;(II )证明见解析. 【解析】(I )由112n n a a +-≤得1112n n a a +-≤,故111222n n nn na a ++-≤,n *∈N ,所以1<,因此()1122n n a a -≥-.(II )任取n *∈N ,由(I )知,对于任意m n >,112n -<, 故3224mn ⎛⎫=+⋅ ⎪⎝⎭.4.【2016年高考北京理数】(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ; (3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.(Ⅲ)当1a a N ≤时,结论成立. 以下设1a a N >. 由(Ⅱ)知∅≠)(A G .设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(.记10=n . 则pn n n n a a a a <⋅⋅⋅<<<21.对p i ,,1,0⋅⋅⋅=,记{},ii i k n G k n k N a a *=∈<≤>N .如果∅≠i G ,取i i G m min =,则对任何iim n k i a a a m k <≤<≤,1.从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意p n k N ≤≤,pn k a a ≤,特别地,pn N a a ≤.对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n nn a a a a a .所以p a a a a a a i i pn pi n n N ≤-=-≤--∑=)(1111.因此)(A G 的元素个数p 不小于1N a a -.5.【2016年高考四川理数】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ .(Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n nn n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q ;(Ⅱ)详见解析. (Ⅱ)由(Ⅰ)可知,1nn a q .所以双曲线2221n y x a 的离心率 22(1)11nn n e a q .由2513qq 解得43q . 因为2(1)2(1)1+k kq q 1)1*kk q kN (). 于是11211+1n n nq e e e qqq , 故1231433n n n e e e .6.【2016高考上海理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析. (3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=.充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N , 使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠.设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.7.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg 99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 8.【2016高考山东理数】(本小题满分12分)已知数列{}na 的前n 项和S n =3n 2+8n ,{}nb 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}nb 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得 所以223+⋅=n n n T9.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+kT t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析 (3)下面分三种情况证明. ①若D 是C 的子集,则2C C DC D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令UE CD =,UF DC =则E ≠∅,F ≠∅,E F =∅.于是C E C D S S S =+,D F C D S S S =+,进而由C D S S ≥,得E F S S ≥. 设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠. 由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-,从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤, 故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.10.【2016高考山东理数】(本小题满分12分)已知数列{}na 的前n 项和S n =3n 2+8n ,{}nb 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}nb 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n项和T n .【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T .(Ⅱ)由(Ⅰ)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+, 又n n c c c c T +⋅⋅⋅+++=321,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得 所以223+⋅=n n n T【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为【答案】2011【2015高考天津,理18】(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且233445,,a a a a a a 成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列nb 的前n 项和.【答案】(I) 1222,2,.n n nn a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.【解析】(Ⅰ) 由已知,有34234534a a a a a a a a ,即4253a a a a -=-,所以23(1)(1)a q a q -=-,又因为1q ≠,故322a a ==,由31a a q =,得2q =,当21(*)n k n N =-∈时,1122122n k n k a a ---===,当2(*)n k n N =∈时,2222nkn k a a ===,所以{}n a 的通项公式为1222,2,.n n nn a n -⎧⎪=⎨⎪⎩为奇数,为偶数【2015高考四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值.【答案】(1)2n n a =;(2)10.【解析】(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>. 从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1322(1)a a a +=+. 所以11142(21)a a a +=+,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列. 故2n n a =. (2)由(1)得112n n a =.所以2311[1()]1111122112222212n n n nT -=++++==--. 由1|1|1000n T -<,得11|11|21000n --<,即21000n >. 因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知na >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+【2015江苏高考,20】(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得k n k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由.【答案】(1)详见解析(2)不存在(3)不存在(3)假设存在1a ,d 及正整数n ,k ,使得1n a ,2n k a +,23n k a +,34n ka +依次构成等比数列,则()()()221112n kn k n a a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a =(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++,且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦. 再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**).令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,则()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++.令()()()()()()()22213ln 13312ln 1231ln 1t t t t t t t ϕ=++-+++++,则()()()()()()()613ln 13212ln 121ln 1t t t t t t t ϕ'=++-+++++⎡⎤⎣⎦. 【2015高考浙江,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).【答案】(1)详见解析;(2)详见解析.【解析】(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,12n a ≤,由11(1)n n n a a a --=-得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由102n a <≤得,211[1,2]1n n n n n n a a a a a a +==∈--,即112n n a a +≤≤;(2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n n a a +≤-≤, ∴11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得 112(2)2(1)n S n n n ≤≤++. 【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233n n S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【答案】(I )13,1,3,1,n n n a n -=⎧=⎨>⎩; (II )13631243n nn T +=+⨯. (Ⅱ)因为3log n n n a b a = ,所以113b =当1n > 时,()11133log 313n n nn b n ---==-⋅所以1113T b ==当1n > 时,所以()()01231132313n n T n --=+⨯+⨯++- 两式相减,得所以13631243n nn T +=+⨯ 经检验,1n = 时也适合, 综上可得:13631243n nn T +=+⨯ 【2015高考安徽,理18】设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14n T n≥. 【答案】(Ⅰ)1n n x n =+;(Ⅱ)14n T n≥.1. 【2014高考湖南理第20题】已知数列{}n a 满足111,n n n a a a p +=-=,*n N ∈.(1)若{}n a 为递增数列,且123,2,3a a a 成等差数列,求P 的值; (2)若12p =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.【答案】(1)13p = (2) 1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数或()114332n n n a --=+ (2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以2121n n a a +->且222n n a a +<,则有22221221222121n n n n n n n n a a a a a a a a +-++-+-<-⎧⇒-<-⎨<⎩,因为(2)由题可得122122212121111,222n n n n n n n n n a a a a a a +-++-+-=⇒-=-=,因为{}21n a -是递增数列且{}2n a 是递减数列,所以21210n n a a +-->且2220n n a a +-<()2220n n a a +⇒-->,两不等式相加可得()21212220n n n n a a a a +-+--->2212221n n n n a a a a -++⇒->-,又因为2212112n n n a a ---=22212112n n n a a +++>-=,所以2210n n a a -->,即2212112n n n a a ---=,同理可得2322212n n n n a a a a +++->-且2322212n n n n a a a a +++-<-,所以212212n n n a a +-=-, 则当2n m =()*m N ∈时,21324322123211111,,,,2222m m m a a a a a a a a ---=-=--=-=,这21m -个等式相加可得2113212422111111222222m m m a a --⎛⎫⎛⎫-=+++-+++⎪ ⎪⎝⎭⎝⎭212222111111111224224113321144m m m -----=-=+--22141332m m a -⇒=+. 当21n m =+时,2132432122321111,,,,2222m m ma a a a a a a a +-=-=--=-=-,这2m 个等式相加可得2111321242111111222222m m m a a +-⎛⎫⎛⎫-=+++-+++ ⎪ ⎪⎝⎭⎝⎭2122211111111224224113321144m m m---=-=--- 21241332m m a +=-,当0m =时,11a =符合,故212241332m m a --=- 综上1141,33241,332n n n n a n --⎧-⎪⎪=⎨⎪+⎪⎩为奇数为偶数.【考点定位】等差数列、等比数列、数列单调性2. 【2014高考江西理第17题】已知首项都是1的两个数列(),满足.(1)令,求数列的通项公式; (2)若13n n b -=,求数列的前n 项和【答案】(1)2 1.n c n =-(2)(1)3 1.nn S n =-⋅+ 【考点定位】等差数列、错位相减求和3. 【2014高考全国1第17题】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数,(I )证明:2n n a a λ+-=;(II )是否存在λ,使得{}n a 为等差数列?并说明理由. 【答案】(I )详见解析;(II )存在,4λ=.【考点定位】递推公式、数列的通项公式、等差数列. 4. 【2014高考全国2第17题】已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112na a a ++<…+.【答案】n a =312n -【解析】本题第(1)问,证明等比数列,可利用等比数列的定义来证明,之后利用等比数列,求出其通项公式;对第(2)问,可先由第(1)问求出1na ,然后转化为等比数列求和,放缩法证明不等式.试题解析:(1)证明:由131n n a a +=+得1113()22n n a a ++=+3,(2)由(1因为当1n ≥时,13123n n --≥⋅,所以+1na 1113n -≤+++=1+21a +1n a 32< 【考点定位】本小题考查等比数列的定义、数列通项公式的求解、数列中不等式的证明5. 【2014高考山东卷第19题】已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(I )21n a n =-.(II )22,212,21n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数,(或1n 21(1)2+1n n T n -++-=)(II )11144(1)(1)(21)(21)n n n n n n nb a a n n --+=-=--+111(1)()2121n n n -=-+-+ 当n 为偶数时,1111111(1)()()()33523212121n T n n n n =+-+++--+---+1121n =-+221nn =+ 当n 为奇数时,1111111(1)()()()33523212121n T n n n n =+-++++-+---+1121n =++2221n n +=+ 所以22,212,21n n n n T n n n +⎧⎪⎪+=⎨⎪⎪+⎩为奇数为偶数,(或1n 21(1)2+1n n T n -++-=)【考点定位】等差数列的前n 项和、等比数列及其性质 。

高考数学二轮复习 第二部分 专题一 选择、填空题常用的10种解法教案-人教版高三全册数学教案

高考数学二轮复习 第二部分 专题一 选择、填空题常用的10种解法教案-人教版高三全册数学教案

专题一 选择、填空题常用的10种解法抓牢小题,保住基本分才能得高分________________________________________________________________________ 原那么与策略:1.基本原那么:小题不用大做.2.基本策略:充分利用题干和选项所提供的信息作出判断.先定性后定量,先特殊后推理,先间接后直接,选择题可先排除后求解.解题时应仔细审题、深入分析、正确推演运算、谨防疏漏. 题型特点:1.高中低档题,且多数按由易到难的顺序排列.2.注重基本知识、基本技能与思想方法的考查.3.解题方法灵活多变不唯一.4.具有较好的区分度,试题层次性强.方法一 定义法所谓定义法,就是直接利用数学定义解题,数学中的定理、公式、性质和法那么等,都是由定义和公理推演出来的.简单地说,定义是对数学实体的高度抽象,用定义法解题是最直接的方法.一般地,涉及圆锥曲线的顶点、焦点、准线、离心率等问题,常用定义法解决.[例1] 如图,F 1,F 2是双曲线C 1:x 216-y 29=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.假设|F 1A |=|F 1F 2|,那么C 2的离心率是( )A.56B.23C.25D.45解析:由双曲线C 1的方程可得|F 1F 2|=216+9=10, 由双曲线的定义可得|F 1A |-|F 2A |=216=8, 由可得|F 1A |=|F 1F 2|=10, 所以|F 2A |=|F 1A |-8=2.设椭圆的长轴长为2a ,那么由椭圆的定义可得2a =|F 1A |+|F 2A |=10+2=12. 所以椭圆C 2的离心率e =2c 2a =1012=56.应选A.答案:A[增分有招] 利用定义法求解动点的轨迹或圆锥曲线的有关问题,要注意动点或圆锥曲线上的点所满足的条件,灵活利用相关的定义求解.如[本例]中根据双曲线的定义和条件,分别把A 到两个焦点的距离求出来,然后根据椭圆定义求出其长轴长,最后就可根据离心率的定义求值.[技法体验]1.(2017·广州模拟)如果P 1,P 2,…,P n 是抛物线C :y 2=4x 上的点,它们的横坐标依次为x 1,x 2,…,x n ,F 是抛物线C 的焦点,假设x 1+x 2+…+x n =10,那么|P 1F |+|P 2F |+…+|P n F |=( )A .n +10B .n +20C .2n +10D .2n +20解析:由题意得,抛物线C :y 2=4x 的焦点为(1,0),准线为x =-1,由抛物线的定义,可知|P 1F |=x 1+1,|P 2F |=x 2+1,…,|P n F |=x n +1,故|P 1F |+|P 2F |+…+|P n F |=x 1+x 2+…+x n +n =n +10,选A. 答案:A2.(2016·高考浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.假设点P 在双曲线上,且△F 1PF 2为锐角三角形,那么|PF 1|+|PF 2|的取值范围是________. 解析:借助双曲线的定义、几何性质及余弦定理解决.∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.假设△F 1PF 2为锐角三角形,那么由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF 1||PF 2|=|PF 1|+|PF 2|2-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2,∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8. 答案:(27,8)方法二 特例法特例法,包括特例验证法、特例排除法,就是充分运用选择题中单选题的特征,解题时,可以通过取一些特殊数值、特殊点、特殊函数、特殊数列、特殊图形、特殊位置、特殊向量等对选项进行验证的方法.对于定性、定值的问题可直接确定选项;对于其他问题可以排除干扰项,从而获得正确结论.这是一种求解选项之间有着明显差异的选择题的特殊化策略. [例2] (2016·高考浙江卷)实数a ,b ,c ( )A .假设|a 2+b +c |+|a +b 2+c |≤1,那么a 2+b 2+c 2<100 B .假设|a 2+b +c |+|a 2+b -c |≤1,那么a 2+b 2+c 2<100 C .假设|a +b +c 2|+|a +b -c 2|≤1,那么a 2+b 2+c 2<100 D .假设|a 2+b +c |+|a +b 2-c |≤1,那么a 2+b 2+c 2<100 解析:结合特殊值,利用排除法选择答案. 对于A ,取a =b =10,c =-110, 显然|a 2+b +c |+|a +b 2+c |≤1成立, 但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立. 对于B ,取a 2=10,b =-10,c =0, 显然|a 2+b +c |+|a 2+b -c |≤1成立, 但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立.对于C ,取a =10,b =-10,c =0,显然|a +b +c 2|+|a +b -c 2|≤1成立, 但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A ,B ,C 均不成立,所以选D. 答案:D[增分有招] 应用特例排除法的关键在于确定选项的差异性,利用差异性选取一些特例来检验选项是否与题干对应,从而排除干扰选项.[技法体验]1.函数f (x )=cos x ·log 2|x |的图象大致为( )解析:函数的定义域为(-∞,0)∪(0,+∞),且f (12)=cos 12log 2|12|=-cos 12,f (-12)=cos(-12)·log 2|-12| =-cos 12,所以f (-12)=f (12),排除A ,D ;又f (12)=-cos 12<0,故排除C.综上,选B. 答案:B2.E 为△ABC 的重心,AD 为BC 边上的中线,令AB →=a ,AC →=b ,过点E 的直线分别交AB ,AC 于P ,Q 两点,且AP →=m a ,AQ →=n b ,那么1m +1n=( )A .3B .4C .5D.13解析:由于题中直线PQ 的条件是过点E ,所以该直线是一条“动〞直线,所以最后的结果必然是一个定值.故可利用特殊直线确定所求值.法一:如图1,PQ ∥BC ,那么AP →=23AB →,AQ →=23AC →,此时m =n =23,故1m +1n=3.应选A.法二:如图2,取直线BE 作为直线PQ ,显然,此时AP →=AB →,AQ →=12AC →,故m =1,n =12,所以1m +1n =3.应选A. 答案:A方法三 数形结合法数形结合法,包含“以形助数〞和“以数辅形〞两个方面,其应用分为两种情形:一是代数问题几何化,借助形的直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是几何问题代数化,借助于数的精确性阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.[例3] (2017·安庆模拟)函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e,g (x )=x 2-2x ,设a 为实数,假设存在实数m ,使f (m )-2g (a )=0,那么实数a 的取值范围为( ) A .[-1,+∞)B .[-1,3]C .(-∞,-1]∪[3,+∞)D .(-∞,3]解析:∵g (x )=x 2-2x ,a为实数,∴2g (a )=2a 2-4a .∵函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0ln x ,e -2≤x ≤e ,作出函数f (x )的图象可知,其值域为[-2,6],∵存在实数m ,使f (m )-2g (a )=0,∴-2≤2a2-4a ≤6,即-1≤a ≤3, 应选B.答案:B[增分有招] 数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,如[本例]中求解,可通过作出图象,数形结合求解.[技法体验]1.(2017·珠海摸底)|a |=|b |,且|a +b |=3|a -b |,那么向量a 与b 的夹角为( ) A .30° B .45° C .60°D .120°解析:通解:设a 与b 的夹角为θ,由可得a 2+2a ·b +b 2=3(a 2-2a ·b +b 2),即4a ·b =a 2+b 2,因为|a |=|b |,所以a ·b =12a 2,所以cos θ=a ·b |a |·|b |=12,θ=60°,选C.优解:由|a |=|b |,且|a +b |=3|a -b |可构造边长为|a |=|b |=1的菱形,如图,那么|a +b |与|a -b |分别表示两条对角线的长,且|a +b |=3,|a -b |=1,故a 与b 的夹角为60°,选C. 答案:C2.点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线的焦点F 的距离之和取得最小值时,点P 的坐标为( ) A .(14,1)B .(14,-1)C .(1,2)D .(1,-2)解析:如图,因为点Q (2,-1)在抛物线的内部,由抛物线的定义可知,|PF |等于点P 到准线x =-1的距离.过Q (2,-1)作x =-1的垂线QH ,交抛物线于点K ,那么点K 为点P 到点Q (2,-1)的距离与点P 到准线x =-1的距离之和取得最小值时的点.将y =-1代入y 2=4x 得x =14,所以点P 的坐标为(14,-1),选B.答案:B方法四 待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫作待定系数法,其理论依据是多项式恒等——两个多项式各同类项的系数对应相等.使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.待定系数法主要用来解决所求解的数学问题具有某种确定的数学表达式,例如数列求和、求函数式、求复数、解析几何中求曲线方程等.[例4] (2017·天津红桥区模拟)椭圆C 的焦点在y 轴上,焦距等于4,离心率为22,那么椭圆C 的标准方程是( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 24+y 28=1 D.x 28+y 24=1 解析:由题意可得2c =4,故c =2,又e =2a =22,解得a =22,故b =222-22=2,因为焦点在y 轴上,应选C. 答案:C[增分有招] 待定系数法主要用来解决已经定性的问题,如[本例]中椭圆的焦点所在坐标轴,设出标准方程,根据列方程求解.[技法体验]1.假设等差数列{a n }的前20项的和为100,前45项的和为400,那么前65项的和为( ) A .640 B .650 C .660 D .780解析:设等差数列{a n}的公差为d ,依题意,得⎩⎪⎨⎪⎧ 20a 1+20×192d =10045a 1+45×442d =400⇒⎩⎪⎨⎪⎧a 1=9245d =1445,那么前65项的和为65a 1+65×642d =65×9245+65×642×1445=780.答案:D2.函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如下图,那么f (π4)的值为( )A. 2 B .0 C .1D. 3解析:由题图可知,A =2,34T =11π12-π6=34π,∴T =2πω=π,∴ω=2,即f (x )=2sin(2x +φ),由f (π6)=2sin(2×π6+φ)=2得2×π6+φ=2k π+π2,k ∈Z ,即φ=π6+2k π,k ∈Z ,又0<φ<π,∴φ=π6,∴f (x )=2sin(2x +π6),∴f (π4)=2sin(2×π4+π6)=2cos π6=3,应选D. 答案:D方法五 估值法估值法就是不需要计算出代数式的准确数值,通过估计其大致取值范围从而解决相应问题的方法.该种方法主要适用于比较大小的有关问题,尤其是在选择题或填空题中,解答不需要详细的过程,因此可以猜测、合情推理、估算而获得,从而减少运算量. [例5] 假设a =20.5,b =log π3,c =log 2sin 2π5,那么( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a解析:由指数函数的性质可知y =2x在R 上单调递增,而0<0.5<1,所以a =20.5∈(1,2).由对数函数的性质可知y =log πx ,y =log 2x 均在(0,+∞)上单调递增,而1<3<π,所以b =log π3∈(0,1);因为sin 2π5∈(0,1),所以c =log 2sin 2π5<0.综上,a >1>b >0>c ,即a >b >c .应选A. 答案:A[增分有招] 估算,省去很多推导过程和比较复杂的计算,节省时间,是发现问题、研究问题、解决问题的一种重要的运算方法.但要注意估算也要有依据,如[本例]是根据指数函数与对数函数的单调性估计每个值的取值范围,从而比较三者的大小,其实质就是找一个中间值进行比较.[技法体验]函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎪⎫ω>0,|φ|≤π2,其图象与直线y =-1相邻两个交点的距离为π.假设f (x )>1对于任意的x ∈⎝ ⎛⎭⎪⎫-π12,π3恒成立,那么φ的取值范围是( )A.⎣⎢⎡⎦⎥⎤π6,π3B.⎣⎢⎡⎦⎥⎤π12,π2C.⎣⎢⎡⎦⎥⎤π12,π3D.⎝⎛⎦⎥⎤π6,π2解析:因为函数f (x )的最小值为-2+1=-1,由函数f (x )的图象与直线y =-1相邻两个交点的距离为π可得,该函数的最小正周期为T =π,所以2πω=π,解得ω=2.故f (x )=2sin(2x +φ)+1.由f (x )>1,可得sin(2x +φ)>0.又x ∈⎝ ⎛⎭⎪⎫-π12,π3,所以2x ∈⎝ ⎛⎭⎪⎫-π6,2π3.对于选项B ,D ,假设取φ=π2,那么2x +π2∈⎝ ⎛⎭⎪⎫π3,7π6,在⎝⎛⎭⎪⎫π,7π6上,sin(2x +φ)<0,不合题意;对于选项C ,假设取φ=π12,那么2x +π12∈⎝ ⎛⎭⎪⎫-π12,3π4,在⎝ ⎛⎭⎪⎫-π12,0上,sin(2x +φ)<0,不合题意.选A. 答案:A方法六 反证法反证法是指从命题正面论证比较困难,通过假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法.反证法证明问题一般分为三步:(1)反设,即否定结论;(2)归谬,即推导矛盾;(3)得结论,即说明命题成立. [例6] x ∈R ,a =x 2+32,b =1-3x ,c =x 2+x +1,那么以下说法正确的是( )A .a ,b ,c 至少有一个不小于1B .a ,b ,c 至多有一个不小于1C .a ,b ,c 都小于1D .a ,b ,c 都大于1解析:假设a ,b ,c 均小于1,即a <1,b <1,c <1,那么有a +b +c <3,而a +b +c =2x 2-2x +72=2⎝ ⎛⎭⎪⎫x -122+3≥3.显然两者矛盾,所以假设不成立.故a ,b ,c 至少有一个不小于1.选A. 答案:A[增分有招] 反证法证明全称命题以及“至少〞“至多〞类型的问题比较方便.其关键是根据假设导出矛盾——与条件、定义、公理、定理及明显的事实矛盾或自相矛盾.如[本例]中导出等式的矛盾,从而说明假设错误,原命题正确.[技法体验]如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,那么( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:由条件知△A 1B 1C 1的三个内角的余弦值均大于0,那么△A 1B 1C 1是锐角三角形. 假设△A 2B 2C 2是锐角三角形,那么由题意可得⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,解得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1,所以A 2+B 2+C 2=⎝ ⎛⎭⎪⎫π2-A 1+⎝ ⎛⎭⎪⎫π2-B 1+⎝ ⎛⎭⎪⎫π2-C 1,即π=3π2-π,显然该等式不成立,所以假设不成立.易知△A 2B 2C 2不是锐角三角形,所以△A 2B 2C 2是钝角三角形.应选D. 答案:D方法七 换元法换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者变为熟悉的形式,把复杂的计算和推证简化.换元的实质是转化,关键是构造元和设元.理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化.换元法经常用于三角函数的化简求值、复合函数解析式的求解等. [例7] 正数x ,y 满足4y -2yx=1,那么x +2y 的最小值为________.解析:由4y -2y x =1,得x +2y =4xy ,即14y +12x =1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫14y +12x =1+x 4y +y x ≥1+2x 4y ×y x =2⎝ ⎛⎭⎪⎫当且仅当x 4y =y x ,即x =2y 时等号成立.所以x +2y 的最小值为2.答案:2[增分有招] 换元法主要有常量代换和变量代换,要根据所求解问题的特征进行合理代换.如[本例]中就是使用常数1的代换,将条件改写为“14y +12x =1”,然后利用乘法运算规律,任何式子与1的乘积等于本身,再将其展开,通过构造基本不等式的形式求解最值.[技法体验]1.(2016·成都模拟)假设函数f (x )=1+3x+a ·9x,其定义域为(-∞,1],那么a 的取值范围是( ) A .a =-49B .a ≥-49C .a ≤-49D .-49≤a <0解析:由题意得1+3x +a ·9x≥0的解集为(-∞,1],即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13x 2+⎝ ⎛⎭⎪⎫13x +a ≥0的解集为(-∞,1].令t =⎝ ⎛⎭⎪⎫13x ,那么t ≥13,即方程t 2+t +a ≥0的解集为⎣⎢⎡⎭⎪⎫13,+∞,∴⎝ ⎛⎭⎪⎫132+13+a =0,所以a =-49.答案:A2.函数y =cos 2x -sin x 在x ∈⎣⎢⎡⎦⎥⎤0,π4上的最大值为________.解析:y =cos 2x -sin x =-sin 2x -sin x +1.令t =sin x ,又x ∈⎣⎢⎡⎦⎥⎤0,π4,∴t ∈⎣⎢⎡⎦⎥⎤0,22,∴y =-t 2-t +1,t ∈⎣⎢⎡⎦⎥⎤0,22. ∵函数y =-t 2-t +1在⎣⎢⎡⎦⎥⎤0,22上单调递减, ∴t =0时,y max =1. 答案:1方法八 补集法补集法就是问题涉及的类别较多,或直接求解比较麻烦时,可以通过求解该问题的对立事件,求出问题的结果,那么所求解问题的结果就可以利用补集的思想求得.该方法在概率、函数性质等问题中应用较多.[例8]某学校为了研究高中三个年级的数学学习情况,从三个年级中分别抽取了1,2,3个班级进行问卷调查,假设再从中任意抽取两个班级进行测试,那么两个班级不来自同一年级的概率为________.解析:记高一年级中抽取的班级为a 1,高二年级中抽取的班级为b 1,b 2, 高三年级中抽取的班级为c 1,c 2,c 3.从已抽取的6个班级中任意抽取两个班级的所有可能结果为(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 1,c 2),(a 1,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),共15种.设“抽取的两个班级不来自同一年级〞为事件A ,那么事件A 为抽取的两个班级来自同一年级. 由题意,两个班级来自同一年级的结果为(b 1,b 2),(c 1,c 2),(c 1,c 3),(c 2,c 3),共4种. 所以P (A )=415,故P (A )=1-P (A )=1-415=1115.所以两个班级不来自同一年级的概率为1115.答案:1115[增分有招] 利用补集法求解问题时,一定要准确把握所求问题的对立事件.如[本例]中,“两个班级不来自同一年级〞的对立事件是“两个班级来自同一年级〞,而高一年级只有一个班级,所以两个班级来自同一年级的可能性仅限于来自于高二年级,或来自于高三年级,显然所包含基本事件的个数较少.[技法体验]1.(2016·四川雅安中学月考)命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,那么实数a的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)解析:依题意可知“∀x ∈R,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)·(a -3)<0,解得-1<a <3.应选B. 答案:B2.函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,那么实数a 的取值范围为________. 解析:f ′(x )=2ax -1+1x.(1)假设函数f (x )在区间(1,2)上单调递增,那么f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x≥0,得a ≥12⎝ ⎛⎭⎪⎫1x -1x 2.①令t =1x ,因为x ∈(1,2),所以t ∈⎝ ⎛⎭⎪⎫12,1, 设h (t )=12(t -t 2)=-12⎝ ⎛⎭⎪⎫t -122+18,t ∈⎝ ⎛⎭⎪⎫12,1,显然函数y =h (t )在区间⎝ ⎛⎭⎪⎫12,1上单调递减,所以h (1)<h (t )<h ⎝ ⎛⎭⎪⎫12,即0<h (t )<18. 由①可知,a ≥18.(2)假设函数f (x )在区间(1,2)上单调递减,那么f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x≤0,得a ≤12⎝ ⎛⎭⎪⎫1x -1x 2.②结合(1)可知,a ≤0.综上,假设函数f (x )在区间(1,2)上单调,那么实数a 的取值范围为(-∞,0]∪⎣⎢⎡⎭⎪⎫18,+∞. 所以假设函数f (x )在区间(1,2)上不单调,那么实数a 的取值范围为⎝ ⎛⎭⎪⎫0,18.答案:⎝ ⎛⎭⎪⎫0,18 方法九 分离参数法分离参数法是求解不等式有解、恒成立问题常用的方法,通过分离参数将问题转化为相应函数的最值或范围问题求解,从而避免对参数进行分类讨论的繁琐过程.该种方法也适用于含参方程有解、无解等问题的解决.但要注意该种方法仅适用于分离参数后能够求解相应函数的最值或值域的情况.[例9] 假设不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,那么a 的最小值是________.解析:由于x >0,那么由可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝ ⎛⎭⎪⎫-x -1x max =-52,∴a ≥-52,故a 的最小值为-52.答案:-52[增分有招] 分离参数法解决不等式恒成立问题或有解问题,关键在于准确分离参数,然后将问题转化为参数与函数最值之间的大小关系.分离参数时要注意参数系数的符号是否会发生变化,如果参数的系数符号为负号,那么分离参数时应注意不等号的变化,否那么就会导致错解.[技法体验]1.(2016·长沙调研)假设函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,那么实数t 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,518 B .(-∞,3]C.⎣⎢⎡⎭⎪⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,那么有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,那么t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,应选C.答案:C2.(2016·湖南五校调研)方程log 12(a -2x)=2+x 有解,那么a 的最小值为________.解析:假设方程log 12(a -2x )=2+x 有解,那么⎝ ⎛⎭⎪⎫122+x =a -2x 有解,即14⎝ ⎛⎭⎪⎫12x +2x=a 有解,∵14⎝ ⎛⎭⎪⎫12x+2x≥1,故a 的最小值为1.答案:1方法十 构造法构造法是指利用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决.构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体问题的特点采取相应的解决办法,其基本的方法是借用一类问题的性质,来研究另一类问题的相关性质.常见的构造法有构造函数、构造方程、构造图形等.[例10] m ,n ∈(2,e),且1n 2-1m 2<ln mn,那么( )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定解析:由不等式可得1n 2-1m2<ln m -ln n ,即1n 2+ln n <1m2+ln m .设f (x )=1x2+ln x (x ∈(2,e)),那么f ′(x )=-2x 3+1x =x 2-2x3.因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增. 因为f (n )<f (m ),所以n <m .应选A. 答案:A[增分有招] 构造法的实质是转化,通过构造函数、方程或图形等将问题转化为对应的问题来解决.如[本例]属于比较两个数值大小的问题,根据数值的特点,构造相应的函数f (x )=1x2+ln x .[技法体验]1.a =ln 12 014-12 014,b =ln 12 015-12 015,c =ln 12 016-12 016,那么a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .c >b >aD .c >a >b解析:令f (x )=ln x -x ,那么f ′(x )=1x -1=1-xx.当0<x <1时,f ′(x )>0,即函数f (x )在(0,1)上是增函数.∵1>12 014>12 015>12 016>0,∴a >b >c .答案:A2.如图,球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,那么球O 的体积等于________.解析:如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,那么正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.答案:6π。

浙江省杭州市高考数学真题分类汇编专题10:平面解析几何(基础题)

浙江省杭州市高考数学真题分类汇编专题10:平面解析几何(基础题)

浙江省杭州市高考数学真题分类汇编专题10:平面解析几何(基础题)姓名:________ 班级:________ 成绩:________一、平面解析几何 (共25题;共39分)1. (2分) (2018高二上·宁夏期末) 有一抛物线型拱桥,当水面离桥顶2m时,水面宽4m,若当水面下降1m时,则水面宽为()A .B .C . 4.5mD . 9m2. (2分) (2016高二上·临川期中) 椭圆 =1(a>b>0)的左、右焦点分别为F1、F2 , P是椭圆上的一点,l:x=﹣,且PQ⊥l,垂足为Q,若四边形PQF1F2为平行四边形,则椭圆的离心率的取值范围是()A . (,1)B . (0,)C . (0,)D . (,1)3. (2分) (2017高二上·牡丹江月考) 已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于A , B两点,若恰好将线段AB三等分,则()A .B .C .D .4. (2分)已知点P是双曲线右支上一点,分别是双曲线的左、右焦点,I为的内心,若成立,则双曲线的离心率为()A . 4B .C . 2D .5. (2分) (2017高二上·石家庄期末) 设F1、F2为椭圆的两个焦点,M为椭圆上一点,MF1⊥MF2 ,且|MF2|=|MO|(其中点O为椭圆的中心),则该椭圆的离心率为()A . ﹣1B . 2﹣C .D .6. (2分)已知直线l:y=kx与椭圆C:+=1(交于A、B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为()A .B .C .D .7. (2分)在△ABC中,若b=2 ,a=3,且三角形有解,则A的取值范围是()A . 0°<A≤30°B . 0°<A≤45°C . 0°<A≤60° 或120°≤A<180°D . 0°<A≤60°8. (2分) (2017高二上·牡丹江月考) 设经过点的等轴双曲线的焦点为,此双曲线上一点满足,则的面积为()A .B .C .D .9. (2分)已知△ABC的三边分别为4,5,6,则△ABC的面积为()A .B .C .D .10. (2分) (2018高一下·六安期末) 已知点,若动点的坐标满足,则的最小值为()A .B . 2C .D .11. (2分)(2013·福建理) 双曲线的顶点到渐近线的距离等于()A .B .C .D .12. (2分) (2018高三上·沧州期末) 已知点在以坐标原点为中心,坐标轴为对称轴,离心率为的椭圆上.若过点作长轴的垂线恰好过椭圆的一个焦点,与椭圆的另一交点为 .若的面积为12(为椭圆的另一焦点),则椭圆的方程为()A .B .C . 或D . 或13. (2分)(2017·来宾模拟) 若双曲线 =1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为()A .B .C .D .14. (1分) (2016高二上·江阴期中) 在平面直角坐标系xoy中,圆M:(x﹣a)2+(y+a﹣3)2=1(a>0),点N为圆M上任意一点.若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的取值范围为________15. (1分) (2017高二下·淄川开学考) 设抛物线y2=4x上一点P到直线x+2=0的距离是6,则点P到抛物线焦点F的距离为________.16. (1分) (2018高二上·沭阳月考) 已知双曲线(a>0)的一条渐近线为x+y=0,则a=________.17. (1分)已知直线l:2x﹣y+1=0与圆(x﹣2)2+y2=r2相切,则r等于________18. (1分) (2018高二上·扶余月考) 椭圆与直线y=1-x交于M,N两点,过原点与线段MN中点所在直线的斜率为则的值是 ________.19. (2分)(2017·江苏模拟) 在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l的右焦点,则双曲线的离心率为________.20. (1分)已知圆的方程为x2+y2+2y=0,则其半径和圆心坐标分别是________.21. (1分) (2016高二上·江北期中) 已知点P(x,y)在圆x2+y2=1上运动,则的最大值为________.22. (1分)已知双曲线的一个焦点到其一条渐近线的距离为,则实数的值是________.23. (1分)过点P(1,2)作一直线l,使直线l与点M(2,3)和点N(4,﹣5)的距离相等,则直线l 的方程为________ .24. (1分)(2020·漳州模拟) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.25. (1分) (2016高一下·定州期末) 已知直线l经过直线2x+y﹣5=0与x﹣2y=0的交点,且点A(5,0)到l的距离为3,则直线l的方程为________.参考答案一、平面解析几何 (共25题;共39分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、24-1、25-1、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省高考数学二轮复习专题 10:解析几何
姓名:________
班级:________
成绩:________
一、 单选题 (共 12 题;共 24 分)
1. (2 分) (2019 高二下·上海期末) 已知 F1 、 F2 为双曲线 C: ∠ F1 P F2 = 60° ,则 P 到 x 轴的距离为( )
的左、右焦点,点 P 在 C 上,
A.
B. C. D.
2. (2 分) (2017·山西模拟) 在双曲线 为直径的圆总过原点,则 C 的离心率为( )
A.3 B. C. D. 3. (2 分) (2018 高二上·长治月考) 已知圆 这两圆的位置关系是( ) A . 相交 B . 相离 C . 外切
第 1 页 共 24 页
的两条渐近线上各取一点 P,Q,若以 PQ
,圆
,则


D . 内含
4. (2 分) 方程 2x2+ky2=1 表示的是焦点在 y 轴上的椭圆,则实数 k 的取值范围是( )
A . (0,+∞)
B . (2,+∞)
C . (0,2)
D . (0,1)
5. (2 分) 已知 、 分别为椭圆 C 的两个焦点,点 B 为其短轴的一个端点,若 椭圆的离心率为( )
为等边三角形,则该
A. B. C.2
D.
6. (2 分) (2019 高三上·成都月考) 对圆
上任意一点

的取值与 x,y 无关,则实数 a 的取值范围是( )
A.
B.
C.
D.
7. (2 分) 直线 l 过圆(x﹣2)2+(y+2)2=25 内一点 M(2,2),则 l 被圆截得的弦长恰为整数的直线共有 ()
A . 8条
B . 7条
第 2 页 共 24 页


C . 6条
D . 5条
8. (2 分) (2016·铜仁) 已知
是椭圆的两个焦点,过 且与椭圆长轴垂直的直线交椭圆于 A,B 两点,

为正三角形,则这个椭圆的离心率是( )
A. B. C. D. 9. (2 分) (2020·哈尔滨模拟) 过椭圆 于另一个点 B,且点 B 在 轴上的射影恰好为右焦点 F,若
的左顶点 A 的斜率为 的直线交椭圆 C 则椭圆离心率的取值范围是( )
A. B.
C.
D.
10. (2 分) (2019·丽水月考) 函数
在点
处切线方程为( )
A.
B.
C.
D.
11. (2 分) 已知实数 x、y 满足 x2+y2-2x+4y-20=0,则 x2+y2 的最小值是 ( )
第 3 页 共 24 页


A . 30-10 B . 5- C.5 D . 25
12. (2 分) (2019 高二上·长春月考) 已知椭圆
|F1F2|=2c,若椭圆上存在点 M 使得 ()
中,
A . (0, -1)
=1(a>b>0)的左、右焦点分别为 F1 , F2 , 且 ,则该椭圆离心率的取值范围为
B.
C.
D . ( -1,1)
二、 填空题 (共 6 题;共 7 分)
13. (1 分) (2017 高一下·河北期末) 已知直线 2x+y﹣2=0 与直线 4x+my+6=0 平行,则它们之间的距离为 ________.
14. (1 分) (2015 高三上·潍坊期末) 已知双曲线 C1:
(a>0,b>0)的离心率为 2,若抛物
线 C2:x2=2py(p>0)的焦点到双曲线 C1 的渐近线的距离为 2,则 p=________.
15. (2 分) (2016 高三上·宝安模拟) 过点(3,2 垂直,则 k 的值为________.
)的直线与圆 x2+y2﹣2x﹣3=0 相切,且与直线 kx+y+1=0
16. (1 分) (2019 高二上·四川期中) 若过点(1,2)总可以作两条直线与圆

第 4 页 共 24 页


切,则实数 k 的取值范围是________.
17. (1 分) (2019·龙岩模拟) 已知抛物线
的焦点为 ,其准线与 轴的交点为 ,过点 作
直线与抛物线交于
两点.若以
为直径的圆过点 ,则
的值为________.
18. (1 分) (2018 高二上·沈阳期末) 如图,椭圆的中心在坐标原点 ,顶点分别是
,焦
点分别为
,延长

交于 点,若
为钝角,则此椭圆的离心率的取值范围是
________.
三、 解答题 (共 9 题;共 90 分)
19.(5 分)(2019 高二上·小店月考) 在平面直角坐标系
中,点

,直线


(1) 若点 在圆 外,求实数 的取值范围;
(2) 有一动圆 的半径为 ,圆心在 上,若动圆 横坐标 的取值范围.
上存在点
,使
,求圆心 的
20. (10 分) (2020 高一下·内蒙古期末) 已知圆 C: C 相切.求:
(1) 实数 b 的值;
,若直线
与圆
(2) 过
的直线 l 与圆 C 交于 P、Q 两点,如果
.求直线 l 的方程.
21. (10 分) 已知椭圆 C: + =1(m>0).
(Ⅰ)若 m=2,求椭圆 C 的离心率及短轴长;
(Ⅱ)若存在过点 P(﹣1,0),且与椭圆 C 交于 A、B 两点的直线 l,使得以线段 AB 为直径的圆恰好通过坐标 原点,求 m 的取值范围.
第 5 页 共 24 页


22. (15 分) (2020 高二上·慈溪期末) 在
中,
的角平分线在直线
上,
,
为垂足,且 所在直线的方程为
.
(1) 求点 的坐标;
(2) 若点 的坐标为
,求 边上高的长度 .
23. (10 分) (2018 高二上·黑龙江期中) 已知抛物线
上一点,且

的焦点为 ,点
为抛物线
(1) 求抛物线的方程.
(2) 直线
与抛物线交于两个不同的点
,若
,求实数 的值.
24. (10 分) (2019 高二上·大兴期中) 已知椭圆 的两个焦点分别是
经过点
.

,且椭圆
(1) 求椭圆 的标准方程;
(2) 当 取何值时,直线
与椭圆 有两个公共点;只有一个公共点;没有公共点?
25. (10 分) (2019 高二上·石门月考) 已知椭圆 :
且经过点
.
的长轴长是短轴长的 倍,
(1) 求 的标准方程;
(2) 的右顶点为 ,过 右焦点的直线 与 交于不同的两点 值.
, ,求
面积的最大
26. (10 分) (2015 高二上·集宁期末) 已知顶点在原点,焦点在 y 轴上的抛物线被直线 y=2x+1 截得的弦长

.求抛物线的方程.
27. (10 分) (2020·西安模拟) 已知椭圆 :
连结 TF 并延长与椭圆 交于点 S , 且
.
的上顶点为
,右焦点为 F ,
第 6 页 共 24 页


(1) 求椭圆 的方程;
(2) 已知直线
与 x 轴交于点 M , 过点 M 的直线 AB 与 交于 A、B 两点,点 P 为直线
上任意
一点,设直线 AB 与直线
交于点 N , 记 PA , PB , PN 的斜率分别为 , , ,则是否存在实数
,使得
恒成立?若是,请求出 的值;若不是,请说明理由.
第 7 页 共 24 页


一、 单选题 (共 12 题;共 24 分)
答案:1-1、 考点: 解析:
参考答案
答案:2-1、 考点:
解析: 答案:3-1、 考点:
第 8 页 共 24 页


解析: 答案:4-1、 考点:
解析: 答案:5-1、 考点: 解析: 答案:6-1、 考点: 解析:
第 9 页 共 24 页


答案:7-1、 考点:
解析: 答案:8-1、 考点: 解析:
第 10 页 共 24 页


答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、
考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共6题;共7分)
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
三、解答题 (共9题;共90分)答案:19-1、
答案:19-2、
考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:
答案:23-1、
答案:23-2、考点:
解析:
答案:24-1、。

相关文档
最新文档