1.4.1倒格子和布里渊区解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c1
同样可以证明:
c 2 a 2 , c3 a 3 ,
r
*
a1 a1
r r
r
三. 倒易点阵(Reciprocal lattice)的物理意义:
倒易点阵的物理意义和在分析周期性结构和相应物性中作 为基本工具的作用,需要我们在使用中逐步理解。 r r r r 当一个点阵具有位移矢量 R n n1 a1 n1 a 2 n1 a 3 时,考虑到周期性特点,一个物理量在 r 点的数值 ( r ) r r r 也应该具有周期性: (r ) (r Rn ) 两边做Fourier展开,有: v v v v v v '(Ghkl ) exp(iGhkl r ) '(Ghkl ) exp(iGhkl r ) exp(iGhkl Rn )
二. 倒易点阵和晶体点阵之间的关系:
倒易点阵是从晶体点阵(以后简称正点阵)中定义出的, 可以方便地证明它和正点阵之间有如下关系: v v bi a j 2 ij 1. 两个点阵的基矢之间: 1, i j ij 0, i j
v v 2. 两个点阵的格矢之积是 2 的整数倍: Ghkl Rn 2 m
1.4
倒格子和布里渊区
(Reciprocal lattice; Brillouin zones)
一. 定义 二. 倒易点阵和晶体点阵的关系 三. 倒易点阵的物理意义 四. 倒易点阵实例
五. 布里渊区
一. 定义:假设 a1 , a2 , a3 是一个晶体点阵的基矢,该点阵的
格矢为: R n n1 a1 n1 a 2 n1 a 3
d h1h2 h3
v uur Gh h h 2 1 2 3 OA v v Gh1h2 h3 Gh1h2 h3
由此我们得出结论:倒易点阵的一个基矢是和正点阵晶格中 的一族晶面相对应的,它的方向是该族晶面的法线方向,而 它的大小是该族晶面面间距倒数的2π倍。又因为倒易点阵基 矢对应一个阵点,因而可以说:晶体点阵中的晶面取向和晶 面面间距这 2 个参量在倒易点阵里只用一个点阵矢量(或说 阵点)就能综合地表达出来。
3. 两个点阵原胞体积之间的关系是:
3 v v v (2 ) * b1 (b2 b3 )
4. 正点阵晶面族 (h,k,l) 与倒易点阵格矢 G hkl 相互垂直, u r r r r 2
Ghkl hb1 kb2 lb3
且有:
d hkl u r G hkl
u r
uu r v uu r uu r 同理 Gh h h CB 0 而且 CA, CB 都在(ABC)面上, u r 所以 G h h h 与晶面系 (h1h2h3 ) 正交。
1 2 3
1 2 3
晶面系的面间距就是原点到ABC面的距离,由于 Gh h h ( ABC)
1 2 3
u r
可以证明:
1. 证明:根据矢量运算规则,从倒格矢定义即可说明。
v v v v v v v v Rn Ghkl (n1a1 n2 a2 n3a3 ) (hb1 kb2 lb3 ) 2 (n1h n2 k n3l ) 2 m (m为整数)
3. 证明见习题1.11
2. 证明:
现在定义 3个新的基矢 r r r b1 , b2 , b3 构成一个新点阵:
( h,k,l 是整数。) 位移矢量
G hkl hb1 kb2 lb3 就构成了上面点阵的
u r
r
r
r
倒易点阵,上面变换公式中出现的 2 因子,对于晶体学 家来说并没有多大用处,但对于固体物理研究却带来了极 大的方便。倒易点阵的概念是Ewald 1921年在处理晶体X 射线衍射问题时首先引入的,对我们理解衍射问题极有帮 助,更是整个固体物理的核心概念。
2 r r c1 * (b 2 b 3 )
v v v v 2 v 3 又因为: b1 (b2 b3 ) (2 ) (a1 b1 ) (2 ) r 2 (2 ) 2 r r 所以:
*
2 r r 2 r r (2 ) 2 r b 2 b3 ( a 3 a1 ) ( a1 a 2 ) a1
上述第4点的图示。
u r u u r ur 5. 正点阵和倒易点阵是互易的:由正点阵 a , a , a 给出倒易 1 2 3 r r r r r r 点阵 b1 , b2 , b3 现假定 b1 , b2 , b3 为正点阵,则其
倒易点阵根据定义为: 利用三重矢积公式: 可以得到: r
r
v v v v v v v v v A ( B C ) B( A C ) C ( A B)
u u r
u r
u r
u r
h1 h2 h3
于是:
CA OA OC CB OB OC
uu r
ห้องสมุดไป่ตู้
uu r
uur
a1 h1 a2 h2
r
a3 h3 a3 h3
r
uu r
uu r
uur
r
r
uu r v Gh h h CA
1 2 3
v v v v v a1 a3 ( h1b1 h2b2 h3b3 ) ( ) h1 h3 2 2 0
r r r
r
r
r
r
v v v a (a2 a3 ) 原胞体积是: 1
v v v a2 a3 b1 2 v v v a1 a2 a3 v v v a3 a1 b2 2 v v v a1 a2 a3 v v v a1 a2 b3 2 v v v a1 a2 a3
4. 证明:先证明倒格矢 Gh1 ,h2 ,h3 h1 a1 h2 a2 h3 a3
与正格子的晶面系 (h1h2h3 ) 正交。 如图所示,晶面系 (h1h2h3 ) 中最靠近原点的晶面(ABC) u r u r u r r r r 在正格子基矢 a1 , a2 , a3 的截距分别为: a1 , a 2 , a 3