实验二絮凝沉淀
絮凝沉淀法前处理对氨氮测定结果的影响
表 2 单 ̄ : mg / L
0. 61 9 o. 64 8 o . 6 27 0. 3 67 o. 3 3 3 o. 3 2 8
如 溴 麝香 草 酚蓝 ) 想 结 果 。不 同地 区 的 分 析 人 员 可 根 据 当 已到达。 如果溶液达到终点后 , 立 即返 加 入 适 量 的指 示 剂 (
回, 说 明可能含有亚硝酸盐 。 当水 中亚 以 1 mo l / L的酸或碱溶 液滴定至 中性 , 地 的水 质 情 况 总结 出适 合 自己条 件 的
4 . p H 值 的 调 节
同一 站 点 的监 测数 据 , 根 据 季节 , 结 合 水量 变化 , 用 以往 水质 资料 中 C O D 值
如果水 样 的 p H值 不在 6 . 5~8 . 5 或 C O D 值 结 合 B O D 值 进行 分 析 , 摸
钟, 溶液蓝色不再返 回, 即可视 为终点 之 间 , 应调 节 p H值 , 取一 部分 样 品 , 索每个 监测 断面 的稀释 比, 可 以得 出理
培养测 定 , 稀 释的 目的是 降低水 样 中有 机物浓 度 , 使 整个分 解过 程在 有充 足溶
水样 中含有亚铁 盐时 ,每 mg F e
. 1 4 m g溶 解 氧 ( 4 F e O + O 2 = 解 氧 的条件 下进行 , 然而 , 酸度太大亦是有害的 , 因为这样 可 消 耗 0 用碘 量法 测定有 机
硫代硫酸钠反应 , 因而 影 响 终 点 , 造成 1 %的碘化钾溶液摇匀 ,以淀粉做指示 B O D 时就 能及 时有结 果 , 而B O D 值 则
误差 。 三、 干 扰 现 象 与 解 决 办 法
剂 ,游离 的碘用硫代硫酸钠溶液滴定 , 必 须在 样 品采 集 后 马 上处 理 ,在 没 有 根据 1 0 0 m l 水样所需硫代硫酸钠溶液 C O D值 参考 的情况 下 ,确定 稀释 比 , 只
混凝沉淀实验
混凝沉淀实验混凝沉淀实验是一种重要的水处理方式,可以将水中的悬浮物和有机物等杂质去除,从而使水质得到改善。
本文就混凝沉淀实验进行详细的介绍。
一、实验原理混凝沉淀实验的原理是利用混凝剂与悬浮物或有机物形成絮凝体,然后通过沉淀或过滤的方式将其去除。
混凝剂一般是一些带正电荷基团的高分子化合物,如聚丙烯酰胺、聚电解质等,它们能够吸附水中的负离子和颗粒物,并与之发生化学反应,形成大量的絮凝体。
随着絮凝体的增大,它们的密度也会逐渐增大,最终形成一个沉淀层,从而使水中的悬浮物和有机物得到去除。
二、实验步骤1、制备混凝剂溶液:取一定量的聚丙烯酰胺、硫酸铝钾等混凝剂,依次加入适量的蒸馏水中,搅拌至均匀即可。
2、制备原水:取适量的自来水或污水,在室温下搅拌均匀。
3、加入混凝剂溶液:将混凝剂溶液缓慢加入原水中,同时用玻璃杆轻轻搅拌,使混凝剂和水充分混合。
4、沉淀:等待一段时间,观察水中的悬浮物是否得到沉淀。
如果饱和度较高,可以加入一些碳酸钠调节pH值,促进沉淀的形成。
5、过滤:对于无法沉淀的悬浮物或有机物,可以通过过滤的方式进行去除。
选取一定的滤纸或过滤膜,在上面放置漏斗,将水过滤出去即可。
三、实验注意事项1、混凝剂的种类和用量应根据实际情况进行选择和调节,避免浪费和造成不必要的污染。
2、加入混凝剂时,应缓慢加入,并注意搅拌均匀,以充分发挥其混凝效果。
3、沉淀时,应注意观察沉淀的形成情况,及时调整pH值,促进沉淀的形成。
4、过滤时,选择合适的滤纸或过滤膜,避免粘附和遗漏。
5、实验结束后,应及时清洗实验仪器和工具,以避免留下污染物和影响下次实验。
四、实验结果混凝沉淀实验的结果主要体现在沉淀效果和悬浮物或有机物去除率上,通常采用浊度或残留物质含量等指标进行评价。
沉淀效果越好,悬浮物或有机物去除率也越高,说明混凝沉淀实验的效果越好。
五、实验应用混凝沉淀实验广泛应用于各类水处理工艺中,如自来水厂、废水处理厂、地下水处理等。
它可以有效地去除水中的悬浮物和有机物,降低水中的浊度、COD、BOD等污染指标,从而保障水质安全和环境健康。
沉淀实验实验报告
沉淀实验实验报告篇一:自由沉淀实验报告六、实验数据记录与整理1、实验数据记录沉降柱直径水样来源柱高静置沉淀时间/min表面皿表面皿编号质量/g表面皿和悬浮物总质量/g水样中悬浮物质量/g水样体积/mL悬浮物沉降柱浓度/工作水(g/ml)深/mm颗粒沉沉淀效速/率/%(mm/s)残余颗粒百分比/%0 5 10 20 30 60 1200 1 2 3 4 5 679.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.124131.0 30.0 30.0 30.0 30.0 31.0 31.00.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363846.0 808.0 780.0 724.0 664.0 500.0 361.01.860 0.883 0.395 0.230 0.069 0.02111.40 20.44 26.28 30.11 32.30 33.76100 87.96 79.56 73.72 69.89 67.70 66.242、实验数据整理(2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下:图2.2:沉淀时间t与沉淀效率E的关系曲线2-2、绘制去除率与沉淀速度的曲线如下:图2.2:颗粒沉速u与沉淀效率E的关系曲线2-3、绘制去除率与沉淀速度的曲线如下:图2.3:颗粒沉速u与残余颗粒百分比的关系曲线(1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。
原水悬浮物的浓度:C0?水样中悬浮物质量1.6974??0.0548g/ml水样体积31.0悬浮物的浓度:C5?水样中悬浮物质量1.1508??0.0371g/ml水样体积31.0沉淀速率:u?h?10(500-250)??0.069mm/sti?6060?60C0-C50.0548-0.0371?100%??100%?32.30 C00.0548C50.0371?100%??100%?67.70 C00.0548沉淀效率:E5?残余颗粒百分比P5?篇二:混凝沉淀实验报告实验名称:混凝沉淀实验一、实验目的1、通过实验观察混凝现象、加深对混凝沉淀理论的理解;2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件;3、了解影响混凝条件的相关因数。
沉淀实验实验报告
沉淀实验实验报告篇一:自由沉淀实验报告六、实验数据记录与整理1、实验数据记录沉降柱直径水样来源柱高静置沉淀时间/min表面皿表面皿编号质量/g表面皿和悬浮物总质量/g水样中悬浮物质量/g水样体积/mL悬浮物沉降柱浓度/工作水(g/ml)深/mm颗粒沉沉淀效速/率/%(mm/s)残余颗粒百分比/%0 5 10 20 30 60 1200 1 2 3 4 5 679.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.124131.0 30.0 30.0 30.0 30.0 31.0 31.00.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363846.0 808.0 780.0 724.0 664.0 500.0 361.01.860 0.883 0.395 0.230 0.069 0.02111.40 20.44 26.28 30.11 32.30 33.76100 87.96 79.56 73.72 69.89 67.70 66.242、实验数据整理(2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下:图2.2:沉淀时间t与沉淀效率E的关系曲线2-2、绘制去除率与沉淀速度的曲线如下:图2.2:颗粒沉速u与沉淀效率E的关系曲线2-3、绘制去除率与沉淀速度的曲线如下:图2.3:颗粒沉速u与残余颗粒百分比的关系曲线(1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。
原水悬浮物的浓度:C0?水样中悬浮物质量1.6974??0.0548g/ml水样体积31.0悬浮物的浓度:C5?水样中悬浮物质量1.1508??0.0371g/ml水样体积31.0沉淀速率:u?h?10(500-250)??0.069mm/sti?6060?60C0-C50.0548-0.0371?100%??100%?32.30 C00.0548C50.0371?100%??100%?67.70 C00.0548沉淀效率:E5?残余颗粒百分比P5?篇二:混凝沉淀实验报告实验名称:混凝沉淀实验一、实验目的1、通过实验观察混凝现象、加深对混凝沉淀理论的理解;2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件;3、了解影响混凝条件的相关因数。
自由沉淀实验(2)
实验一 颗粒自由沉淀实验一、实验目的1.加深对自由沉淀特点、基本概念及沉淀规律的理解。
2.掌握颗粒自由沉淀的实验方法,并能对实验数据进行分析、整理,计算和绘制颗粒自由沉淀曲线。
二、实验原理沉淀是水污染控制中用以去除水中杂质的常用方法。
根据水中悬浮颗粒的凝聚性能和浓度,沉淀通常可以分成四种不同的类型:自由沉淀、絮凝沉淀、区域沉淀、压缩沉淀。
浓度较稀的、粒状颗粒的沉降称为自由沉淀,其特点是在静沉过程中颗粒互不干扰、等速下沉,其沉淀在层流区符合Stokes(斯托克斯)公式。
但是由于水中颗粒的复杂性,颗粒粒径、颗粒密度很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。
由于自由沉淀时颗粒是等速下沉,下沉速度与沉淀高度无关,因而自由沉淀可在一般沉淀柱内进行,但其直径应该足够大,一般应使D≥100mm ,以免沉淀颗粒受柱壁的干扰。
自由沉淀所反映的一般是沙砾、河流等的沉淀特点。
具有大小不同颗粒的悬浮物静沉总去除率E 与截留速度u 0、颗粒质量分数的关系如下:dp u ui P E p ⎰+-=001)1( (1-1)式中 E ——总沉淀效率;P 0——沉速小于u i 的颗粒在全部悬浮颗粒中所占的百分数;1-P 0——沉速大于或等于u i 的颗粒去除百分数; u i ——某一指定颗粒的最小沉降速度;u ——小于最小沉降速度u i 的颗粒沉速。
公式推导如下:设在水深为H 的沉淀柱内进行自由沉淀实验。
实验开始,沉淀时间为0,此时沉淀柱内悬浮物分布是均匀的,即每个断面上颗粒的数量与粒径的组成相同,悬浮物浓度为C 0(mg/L),此时去除率E=0。
实验开始后,不同沉淀时间t i ,颗粒最小沉淀速度u i 相应为u i =it H(1-2) u i 此即为t i 时间内从水面下沉到取样点的最小颗粒d i 所具有图1-1 自由沉淀实验示意的沉速。
此时取样点处水样悬浮物浓度为C i ,未被去除之颗粒即示意d<d i 的颗粒所占的百分比为P i = 0C C i(1-3) 因此,被去除的颗粒(粒径d≥d i )所占比例为取样口u i uE 0=1-P i (1-4)实际上沉淀时间t i 内,由水中沉至池底的颗粒是由两部分颗粒组成。
絮凝沉淀实验报告
竭诚为您提供优质文档/双击可除絮凝沉淀实验报告篇一:环境工程专业----实验报告颗粒自由沉淀实验一、实验目的1、过实验学习掌握颗粒自由沉淀的试验方法。
2、进一步了解和掌握自由沉淀的规律,根据实验结果绘制时间-沉淀率(t-e)、沉速-沉淀率(u-e)和ct/co~u 的关系曲线。
二、实验原理沉淀是指从液体中借重力作用去除固体颗粒的一种过程。
根据液体中固体物质的浓度和性质,可将沉淀过程分为自由沉淀、沉淀絮凝、成层沉淀和压缩沉淀等4类。
本实验是研究探讨污水中非絮凝性固体颗粒自由沉淀的规律。
实验用沉淀管进行。
设水深为h,在t时间内能沉到深度h颗粒的沉淀速度vh/t。
根据给定的时间to计算出颗粒的沉速uo。
凡是沉淀速度等于或大于u0的颗粒在t0时就可以全部去除。
设原水中悬浮物浓度为co则沉淀率=(co-ct)/c03100%在时间t时能沉到深度h颗粒的沉淀速度u:u=(h310)/(t360)(mm/s)式中:c0——原水中所含悬浮物浓度,mg/lc1————经t时间后,污水中残存的悬浮物浓度,mg/l;h——取样口高度cm;t——取样时间,min。
三、实验步骤1、做好悬浮固体测定的准备工作。
将中速定量滤纸选好,放入托盘,调烘箱至105±1℃,将托盘放入105℃的烘箱烘45min,取出后放入干燥器冷却30min,在1/10000天平上称重,以备过滤时用。
2、开沉淀管的阀门将软化淤泥和水注入沉淀管中曝气搅拌均匀。
3、时用100ml容量瓶取水样100ml(测得悬浮物浓度为c0)记下取样口高度,开动秒表。
开始记录沉淀时间。
4、时间为5、10、15、20、30、40、60min时,在同一取样口分别取100ml水样,测其悬浮物浓度为(ct)。
5、一次取样应先排出取样口中的积水,减少误差,在取样前和取样后必须测量沉淀管中液面至取样口的高度,计算时采用二者的平均值。
6、已称好的滤纸取出放在玻璃漏斗中,过滤水样,并用蒸馏水冲净,使滤纸上得到全部悬浮性固体,最后将带有滤渣的滤纸移入烘箱,重复实验步骤(1)的工作。
水厂絮凝沉淀实验报告(3篇)
第1篇一、实验目的本次实验旨在了解水厂絮凝沉淀工艺的基本原理,掌握絮凝沉淀实验的操作方法,并通过实验验证不同絮凝剂对水中悬浮物去除效果的影响,为实际水厂运行提供理论依据。
二、实验原理絮凝沉淀是一种常用的水处理方法,通过向水中投加絮凝剂,使悬浮物颗粒相互碰撞、聚集,形成较大的絮体,从而加快沉降速度,达到去除水中悬浮物的目的。
实验中主要研究絮凝剂投加量、pH值、搅拌速度等因素对絮凝沉淀效果的影响。
三、实验材料与仪器1. 实验材料:自来水、硫酸铝、硫酸铁、氢氧化钠、pH试纸、搅拌器、烧杯、漏斗、滤纸、电子秤等。
2. 实验仪器:电热恒温水浴锅、紫外可见分光光度计、秒表、温度计等。
四、实验步骤1. 准备实验用水:取一定量的自来水,加入一定量的氢氧化钠,调节pH值至实验所需范围。
2. 确定实验参数:根据实验目的,设置不同的絮凝剂投加量、pH值、搅拌速度等实验参数。
3. 投加絮凝剂:向实验用水中投加适量的絮凝剂,充分搅拌,使絮凝剂与悬浮物充分接触。
4. 沉淀:将搅拌后的混合液静置沉淀,观察沉淀情况。
5. 取样:在沉淀后,取上层清液,用紫外可见分光光度计测定悬浮物浓度。
6. 记录实验数据:记录实验过程中各参数及实验结果。
五、实验结果与分析1. 絮凝剂投加量对絮凝沉淀效果的影响实验结果表明,随着絮凝剂投加量的增加,悬浮物去除率逐渐提高,但超过一定范围后,去除率提高幅度逐渐减小。
这是因为絮凝剂投加量过多,会导致絮体过大,沉降速度过快,部分絮体在沉降过程中破碎,降低去除率。
2. pH值对絮凝沉淀效果的影响实验结果表明,在实验pH值范围内,随着pH值的升高,悬浮物去除率逐渐提高。
这是因为pH值对絮凝剂的水解反应有显著影响,合适的pH值有利于絮凝剂水解,提高絮凝效果。
3. 搅拌速度对絮凝沉淀效果的影响实验结果表明,在一定范围内,随着搅拌速度的提高,悬浮物去除率逐渐提高。
这是因为搅拌速度越快,絮凝剂与悬浮物接触越充分,有利于絮凝反应进行。
完整word版混凝沉淀试验
实验报告实验项目名称:混凝沉淀实验(所属课程:水污染控制工程)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:一、实验目的(1)观察混凝现象及过程,了解混凝的净水机理及影响混凝的重要因素。
(2)确认某水样的最佳投药量及其相应的pH值。
(3)测定计算反应过程的G值和GT值,是否在适宜的范围内。
二、实验原理水中的胶体颗粒,主要是带负电的黏土颗粒。
胶体间的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粒具有分散稳定性,三者中以静电斥力影响最大。
因此,胶体颗粒靠自然沉淀是不能除去的。
向水中投加混凝剂能提供大量的正离子,压缩胶团的扩散层,使ξ电位降低,静电斥力减小。
此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚、水化胶中的水分子与胶粒有固定联系,具有弹性和较高的黏度,把这些分子排挤除去需要克服特殊的阻力,阻碍胶粒直接接触。
有些水化膜的存在决定于双电层状态,投加混凝剂降低ξ电位,有可能是水化作用减弱,混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用。
即使ξ电位没有降低或减低不多,胶粒不能相互接触,通过高分子连状物媳妇叫李,也能形成絮凝体。
投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体。
这时,水流速度梯度G值的大小起着主要的作用,具体计算见有关教材。
三、实验设备与试剂(1)无极调速六联搅拌机1台。
(4)秒表1块。
(5)1000mL量筒1个。
(6)1mL,2mL,5ml,10mL移液管各1支。
(7)200mL烧杯1个,吸耳球等。
(8)1000mL烧杯6个。
页共页第实验报告(9)10%Al(SO)溶液500mL。
342(10)实验用原水(配制)。
(11)注射针筒。
(12)10%的NaOH溶液和10%HCl溶液500mL各一瓶。
四、实验步骤(2)1000mL量筒量取6份水样至6个1000mL烧杯中,另量取200mL水样放在200mL的烧杯中。
絮凝沉降实验
絮凝沉降实验一、实验目的1、加深对絮凝沉淀的基本概念、特点及沉淀规律的理解;2、掌握絮凝实验方法,并能利用实验数据绘制絮凝静沉曲线。
二、实验原理悬浮物浓度不太高,一般在600~700mg/L 以下的絮状颗粒的沉淀属于絮凝沉淀,如给水工程中混凝沉淀,污水处理中初沉池内的悬浮物沉淀均属此类。
沉淀过程中由于颗粒相互碰撞,凝聚变大,沉速不断加大,因此颗粒沉速实际上是一变速。
静沉中絮凝沉淀颗粒去除率的计算基本思想与自由沉淀一致,但方法有所不同。
自由沉淀采用累积曲线计算法,而絮凝沉淀采用的是纵深分析法,颗粒去除率按下式计算。
式中:E ——沉降高度为H 、沉降时间为T 时沉淀柱中颗粒的总去除率; E T ——沉降时间为T 时,沉降高度H 处颗粒的去除率;H ——沉淀高度(0、H 3、H 2、H 1、H 0),由水面向下量测; h ——沉淀时间T 对应各等效率曲线间中点的高度(h 1、h 2...h n )。
三、实验设备及材料 有机玻璃沉淀柱 内径D =100mm 高H=2000mm)()()(112211-++++-++-+-+=+n T E n T T T T T E E Hh E E Hh E E Hh E E n T1、检查实验流程;2、准备预测水样;3、关闭沉淀柱总进水阀、各柱进水阀和排空阀;4、开启水泵出水阀和回流阀;5、开启水泵,通过回流搅拌水样;6、待水样搅匀后取样测定原水悬浮物浓度SS0值;7、关闭回流阀,同时打开沉淀柱总进水阀和各柱进水阀,调节开度,保证以相同的速度向1~4沉淀柱内进水;8、当水位达到溢流孔时,关闭各进水阀,同时记录各柱沉淀开始时间;9、当达到各柱相应的沉淀时间时,在该柱上下各采样口同时取样,并测定水样悬浮物浓度;五、实验数据记录与处理表1 絮凝沉淀实验记录表(mg/L):日期:水样初始悬浮物浓度SS表2 各取样点悬浮物去除率值E1、绘制等效率曲线;(1)以沉淀时间t为横坐标,以取样深度H为纵坐标,将各取样点的去除率绘于坐标纸上;(2)用内插法绘出等去除率曲线。
最新混凝沉淀实验报告
最新混凝沉淀实验报告实验目的:本次实验旨在探究不同条件下混凝土的沉淀特性,包括水泥品种、水泥用量、水胶比、掺合料及外加剂等因素对混凝土沉淀性能的影响。
通过实验数据分析,为优化混凝土配合比和提高工程质量提供科学依据。
实验材料:1. 不同品种的硅酸盐水泥2. 粉煤灰、矿渣等掺合料3. 聚羧酸盐高效减水剂4. 标准砂、碎石等骨料5. 蒸馏水实验方法:1. 按照预定的水胶比和水泥用量,配制不同配合比的混凝土试样。
2. 将水泥、掺合料、骨料和外加剂按比例混合均匀。
3. 加入适量的蒸馏水,调整至适当的浆体浓度。
4. 将混合浆体置于沉淀实验模具中,保持静置24小时。
5. 测量并记录沉淀层的厚度和质量。
6. 分析不同因素对沉淀性能的影响。
实验结果:1. 水泥品种对沉淀性能有一定影响,硅酸盐水泥中,快硬硅酸盐水泥的沉淀层较薄。
2. 随着水泥用量的增加,沉淀层厚度有所增加,但超过一定比例后,沉淀层厚度增长趋于平缓。
3. 较低的水胶比有助于减少沉淀层的厚度,提高混凝土的均匀性。
4. 掺入粉煤灰和矿渣等掺合料可以有效降低沉淀层的厚度,改善混凝土的工作性。
5. 使用聚羧酸盐高效减水剂能够显著改善混凝土的流动性,减少沉淀现象。
结论:通过本次实验,我们发现合理选择水泥品种、控制水泥用量、调整水胶比、使用合适的掺合料和外加剂可以有效控制混凝土的沉淀性能。
这些发现对于指导实际工程中的混凝土配合比设计具有重要意义。
未来的研究可以进一步探讨环境因素如温度、湿度对混凝土沉淀性能的影响,以及如何通过技术创新进一步提升混凝土的工程表现。
絮凝沉淀实验操作过程与数据处理
絮凝沉淀实验操作过程与数据处理
一、实验操作过程
1. 准备实验材料:取得所需的实验材料,包括溶液、试剂以及实验仪器等。
2. 样品制备:根据实验要求,制备待测的溶液样品。
3. 添加絮凝剂:将一定量的絮凝剂加入待测溶液中,并充分搅拌均匀。
4. 静置沉淀:将混合溶液静置一段时间,待絮凝物沉淀到底部。
5. 分离沉淀:使用特定的分离方法,将沉淀与上清液分离开来。
6. 干燥沉淀:将分离得到的沉淀置于恒温箱中,进行干燥处理。
7. 记录数据:记录实验过程中的相关数据,包括沉淀的质量、颜色等信息。
二、数据处理
1. 沉淀质量计算:根据实验记录的沉淀质量数据,计算出沉淀的质量。
2. 沉淀率计算:根据沉淀质量和待测溶液的初始质量,计算出沉淀的百分比。
3. 沉淀颜色分析:根据实验记录的沉淀颜色信息,进行颜色分析和比较。
4. 数据统计分析:对多次实验的数据进行统计分析,得出平均值和标准差等指标。
5. 结果讨论:根据实验数据的分析结果,进行结果的讨论和解释。
通过以上的实验操作过程和数据处理,可以得出以下结论:
1. 絮凝剂的添加对溶液中的悬浮物质有明显的沉淀作用。
2. 沉淀的质量和颜色与絮凝剂的种类、用量以及溶液中悬浮物质的性质有关。
3. 沉淀率可以作为评价絮凝效果的指标之一。
4. 通过统计分析多次实验的数据,可以得出更加准确的结论。
絮凝沉淀实验是一种常用的分离和净化技术,通过实验操作和数据处理可以得出结论,并对实验结果进行分析和讨论。
这些结果和分析可以为后续的研究和应用提供参考和指导。
(2021年整理)4(专)絮凝沉淀实验
4(专)絮凝沉淀实验编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(4(专)絮凝沉淀实验)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为4(专)絮凝沉淀实验的全部内容。
实验四絮凝沉淀实验一实验目的1.了解絮凝沉淀特点和规律;2.掌握絮凝沉淀实验方法和实验数据整理方法;3.借助实验室的沉淀分析来确定沉淀池必要的设计参数和运行参数的实验方法.二实验装置和仪器量筒100ml,烧杯 500ml,称量瓶,分析天平,抽滤瓶烘箱, 定时钟, 循环水真空泵,布氏漏斗,三实验相关知识点悬浮物浓度不太高,一般在600~700mg/L以下的絮凝颗粒,在沉降过程中颗粒之间相互碰撞而产生絮凝作用的沉淀称为絮凝沉淀。
在给水过程中的混凝沉淀、污水处理中,初沉池内的悬浮物沉淀均属此类。
絮凝沉淀过程中由于颗粒相互碰撞,使颗粒粒径和质量凝聚变大,从而沉降速度不断加大,因此,颗粒沉降实际是一个变速沉降过程。
在实验中所说的絮凝沉淀颗粒的沉速是该颗粒的平均沉淀速度。
絮凝颗粒在平流沉淀池中的沉淀轨迹是一条曲线,不同于自由沉淀的直线运动。
在沉淀池内颗粒去除率不仅与颗粒沉速有关,而且与沉淀有效水深有关。
因此在沉淀柱内,不仅要考虑器壁对悬浮颗粒沉淀的影响,还要考虑沉淀柱高对沉淀效率的影响。
实验装置如图4-1。
每根沉淀柱在高度方向每隔500~600mm 开设一取样口,柱上部设溢流孔。
将悬浮物浓度及水温已知的水样注入沉淀柱,搅拌均匀后开始计时,每隔20min 、40min 、60min 、……分别在每个取样口同时取样50~100mL ,测定其悬浮物浓度并利用下式计算各水样的去除率.%100c 00⨯-=c c E i以取样口高度为纵坐标,以取样时间为横坐标,将同一沉淀时间与不同高度的去除率标注在坐标内,将去除率相对的各点连成去除曲线,绘制絮凝沉淀等去除率曲线。
实验二 静置沉淀
实验二 静置沉淀一、实验目的观察沉淀过程,求出沉淀曲线。
沉淀曲线包括沉淀时间t 与沉淀效率E 的关系曲线和颗粒沉降速度u 与沉淀效率E 的关系曲线。
二、实验原理自由沉淀示意图如图2-1所示,在含有分散性颗粒的废水静置沉淀过程中,设实验筒内有效水深为H ,通过不同的沉淀时间t 可求得不同的颗粒沉淀速度u ,u=H/t 。
对于指定的沉淀时间t 0可求得颗粒沉淀速度u 0。
对于沉降速度等于或大于u 0的颗粒在t 0时可全部去除。
而对于沉速u<u 0的颗粒只有一部分去除,而且按u/u 0的比例去除。
图 1小于u 0颗粒所占百分数沉速u 0XX Odx图2-1自由沉淀示意图 图2-2 颗粒沉降速度累计频率图图2-2为颗粒沉降速度累计频率图,图中X 0代表沉降速度≤u 0的颗粒所占百分数,于是在悬浮颗粒总数中,去除的百分数可用1-X 0表示。
而具有沉降速度u≤u 0的每种粒径的颗粒去除的部分等于u/u 0。
因此考虑到各种颗粒粒径时,此颗粒的去除百分数为dx ux u ⎰00(2-1)总去除率=⎰+-x xdx u x 0001)1( (2-2)式(2-2)中第二项可将沉淀分配曲线用图解积分法确定,如图2-2中的阴影部分。
贮水箱 管图2-3 静置沉淀实验装置示意图对于絮凝性悬浮物静置沉淀时的去除率,不仅与沉降速度有关,而且与深度有关。
因此实验筒的水深应与池深相同。
实验筒的不同深度设有取样口,在不同的选定时段,自不同深度取出水样,测定这部分水样中的颗粒浓度,并用以计算沉淀物质的百分数。
在横坐标为沉淀时间、纵坐标为深度的图上绘出等浓度曲线,为了确定一特定池中悬浮物的总去除率,可以采用与分散性颗粒相近似法求得(详见相关专业书籍介绍)。
上述是一般书中所提的废水静置沉淀实验方法。
这种方法的实验工作量相当大,因而我们在教学实验中未予采用,改为下述方法。
沉淀开始时可以认为悬浮物在水中均匀分布,但随着沉淀历时的增加,悬浮物在筒内的分布变为不均匀。
沉淀与絮凝Ⅱ
沉淀理论
拥挤沉淀 在高颗粒浓度下,颗粒间的斥力会干扰 沉淀过程。并且,也没有空间让流体流过颗 粒周围,从而阻碍颗粒的沉淀。
沉淀池的典型设计
停留时间(h) 表面负荷 (m3/m2· d) 2~4 20~40 0.75~1.5 1.5~2.5 1.5~2.5 2~3 60 30~50 24~32 16~28
R
C 0 Ci C0
100%
沉淀理论
絮凝沉淀实验
纵坐标为取 样口深度,横坐 标为取样时间, 将同一沉淀时间, 不同深度的去除 率画点,然后把 去除率相等的各 点连接成等去除 率曲线。
沉淀理论
絮凝沉淀实验 任给一个tn和hn,可以算出来一个沉降 速度vn,大于等于vn的颗粒都会被去除,小 于vn的颗粒v的去除率为v/vn。对于特定时 间t去除率也为h/hn。
絮凝的概念
ቤተ መጻሕፍቲ ባይዱ
脱稳的胶体或微小悬浮物聚集成大的 絮凝体的过程。 要使两个完全脱稳的胶体颗粒聚集成 大颗粒絮体,需要给胶体创造互相碰撞的 机会。 创造碰撞的动力有两种:一是布朗运 动;二是外力推动作用。
布朗运动(异向絮凝)
胶体颗粒的布朗运动是无规则的,每 一个脱稳的胶体颗粒可能不规则的向各个 方向运动,也可能同时受到来自各个方向 的颗粒的碰撞,两个胶体颗粒向不同的方 向运动而发生碰撞聚集。 布朗运动随颗粒粒径的增大而逐渐减 弱,当颗粒粒径大于0.5μ m时,布朗运动 不再起作用。
搅拌(同向絮凝)
当布朗运动不起作用时,需要外力来 推动流体运动,如在机械搅拌、水力等外 力作用下产生的流体运动推动脱稳的胶体 颗粒,使所有胶体颗粒向同一方向运动。 由于不同胶体颗粒存在速度快慢的差 异,速度快的胶体颗粒将赶上速度慢的胶 体颗粒。 如果两个胶体颗粒在垂直方向的球心 距离小于它们的半径之和,两个胶体颗粒 将会碰撞聚集而发生絮凝。
絮凝实验报告
絮凝实验报告絮凝实验报告一、引言在水处理过程中,水中的悬浮物质和浑浊物质是常见的问题,它们不仅影响水的质量,还会对水处理设备产生不良影响。
因此,寻找一种有效的方法去除水中的悬浮物质和浑浊物质是非常重要的。
本实验旨在研究絮凝剂对水中悬浮物质的去除效果,并对实验结果进行分析和讨论。
二、实验方法1. 实验材料本实验所使用的材料包括:自来水、絮凝剂(聚合氯化铝)、试管、滴管、计时器等。
2. 实验步骤(1)取一定量的自来水倒入试管中,作为实验样品。
(2)向试管中加入适量的絮凝剂。
(3)用滴管轻轻搅拌试管中的液体,使絮凝剂充分与水中的悬浮物质接触。
(4)记录下加入絮凝剂后的时间,并观察水中悬浮物质的变化。
(5)重复以上步骤,进行多次实验。
三、实验结果经过多次实验,我们观察到以下结果:1. 加入絮凝剂后,水中的悬浮物质逐渐凝聚成较大的颗粒。
2. 随着时间的推移,凝聚的颗粒逐渐沉淀到试管底部。
3. 在一定时间内,随着絮凝剂的加入量增加,凝聚物质的沉淀速度加快。
四、实验分析通过对实验结果的观察和分析,我们可以得出以下结论:1. 絮凝剂具有促进悬浮物质凝聚和沉淀的作用。
絮凝剂中的聚合氯化铝能够与水中的悬浮物质发生化学反应,形成较大的颗粒,从而使悬浮物质更容易沉淀。
2. 絮凝剂的加入量会影响凝聚物质的沉淀速度。
加入较多的絮凝剂能够增加凝聚物质的数量,从而加快沉淀速度。
但是,过量的絮凝剂可能会导致剩余絮凝剂残留在水中,影响水的质量。
3. 絮凝剂的作用时间也会影响凝聚物质的沉淀效果。
在一定时间内,凝聚物质的沉淀速度会逐渐增加,但是超过一定时间后,沉淀速度将趋于稳定。
五、实验改进为了进一步提高絮凝剂的效果,我们可以考虑以下改进措施:1. 对絮凝剂的种类和加入量进行进一步研究,找到最佳的絮凝剂使用方法。
2. 在实验中加入不同浓度的絮凝剂,观察其对悬浮物质的去除效果。
3. 结合其他水处理方法,如过滤和沉淀等,进一步提高水的净化效果。
实验三蛋白质的性质实验(二)-沉淀反应
硫酸铵、氯化钠、硫酸钠等。
有机溶剂沉淀蛋白质
有机溶剂沉淀法
在蛋白质溶液中加入一定量的有机溶剂,使蛋白 质沉淀析出的方法。
有机溶剂的作用
降低水的介电常数,消除或减少电荷间的相互作 用,使蛋白质失去水化层而聚集沉淀。
常用有机溶剂
乙醇、丙酮、甲醇等。
重金属盐沉淀蛋白质
01
02
03
重金属盐沉淀法
淀。
操作步骤
在蛋白质溶液中加入适量的盐溶 液(如硫酸铵、氯化钠等),搅 拌均匀后静置,待蛋白质沉淀后
将上清液与沉淀分开。
结果分析
通过离心或过滤的方法收集沉淀, 测定沉淀的质量和蛋白质含量,
计算沉淀收率。
有机溶剂沉淀蛋白质
原理
有机溶剂能够降低水的介电常数, 使蛋白质分子间的静电荷作用减 弱,导致蛋白质凝聚成沉淀。
实验结果
在实验中,我们观察到加入有机溶剂后,蛋白质溶液逐渐浑浊,最 终形成白色沉淀。
结果分析
有机溶剂沉淀实验结果表明,有机溶剂能够有效降低蛋白质的溶解 度,促使其从溶液中沉淀出来。
重金属盐沉淀蛋白质结果分析
1 2
实验原理
重金属盐能够与蛋白质结合形成不溶于水的复合 物,从而降低蛋白质的溶解度,使其沉淀。
实验的应用与拓展
应用
本实验方法可用于初步分离和纯 化蛋白质,为后续蛋白质的结构 和功能研究提供基础。
拓展
本实验方法还可以应用于生物制 品、食品、药品等领域中的蛋白 质分离纯化,为相关产品的研发 和质量控制提供技术支持。
感谢您的观看
THANKS
操作步骤
在蛋白质溶液中加入适量的有机溶 剂(如甲醇、乙醇等),搅拌均匀 后静置,待蛋白质沉淀后将上清液 与沉淀分开。
絮凝沉淀
4.2絮凝沉淀实验一、实验目的(1)加深对絮凝沉淀特点、基本概念及沉淀规律的理解。
(2)掌握絮凝实验的方法,并能利用实验数据绘制絮凝沉淀沉淀曲线。
二、实验原理悬浮物浓度不太高,一般在50—500mg/L范围的颗粒沉淀属于絮凝沉淀,如给水工程中混凝沉淀,污水处理中初沉池内的悬浮物沉淀均属此类型。
沉淀过程中由于颗粒相互碰撞,凝聚变大,沉速不断加大,因此颗粒沉速实际上是变化的。
我们所说的絮凝沉淀颗粒沉速,是指颗粒沉淀平均速度。
在平流沉淀池中,颗粒沉淀轨迹是一曲线,而不同于自由沉淀的直线运动。
在沉淀池内颗粒去除率不仅与颗粒沉速有关,而且与沉淀有效水深有关。
因此沉淀柱不仅要考虑器壁对悬浮物沉淀的影响,还要考虑柱高对沉淀效率的影响。
静沉中絮凝沉淀颗粒去除率的计算采用的是纵深分析法,颗粒去除率按下式计算:''''''121 000()()......() T T T T T T n T nH H HH H Hηηηηηηηη++++-=+-+-++-去除率同分散颗粒一样,分成两部分:全部被去除的颗粒和部分被去除的颗粒。
三、实验设备及用具1.有机玻璃沉淀柱:D ≥100mm,高H=1.5m,沿不同高度设有取样口。
管最上为溢流孔,管下为进水孔,共4套。
2.配水及投配系统:钢板水吃,搅拌装置,水泵,配水管。
3.定时钟、烧杯、20ml比色管、瓷盘等。
4.悬浮物定量分析所需设备及用具:有万公之一天平,带盖称量瓶、干燥皿、烘箱、抽虑装置、定量滤纸等。
5.水样:珠江水6.絮凝剂:硫酸铝、硫酸亚铁7.实验装置如下图所示:四、实验步骤:1、取珠江水做水样,实验前取水50L。
2、将欲测水样倒入水池,用小烧杯去少量水样,投加絮凝剂至产生絮花状沉淀,按比例往水池中加入絮凝剂,并进行搅拌,待搅拌均匀后,用比色管取20ml,此即搅匀后的原污水,可测量其SS值。
测量方法:取20ml水样后,用抽滤机抽滤,用少量清水将量筒清洗2-3次,将洗涤后的水同时进行抽滤,待抽滤完成后取出滤纸,用瓷盘盛放,与下面实验完成后,一起烘干沉重,并记录下重量W23、用万分之一分析天平准确称取21张滤纸(1张用于测量原水SS值,20张分别测定各沉淀时间下的SS值)记录下各滤纸的净重W1,并标明标号。
实验二 氨氮的测定
实验二氨氮的测定(一)纳氏试剂比色法(标准法)一.实验目的1.掌握絮凝沉淀法和蒸馏法进行水样预处理的操作技能。
2.掌握用纳氏试剂比色法(标准法)测定氨氮的原理和技术。
二.实验原理碘化汞和碘化钾的碱性溶液与氨反应,生成淡红棕色胶态化合物,其颜色深浅与氨氮含量成正比,通常可在波长410-425nm范围内测其吸光度,计算其含量。
本法最低检出浓度为0.025mg/L,测定上限为2mg/L。
水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水中氨氮的测定。
三.实验仪器、设备1.氨氮蒸馏装置。
2.分光光度计。
3.pH计。
4.50mL比色管。
5. 1mL、5mL和10mL吸管。
四.实验试剂1.无氨水:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。
2.1 mol/L HCl。
3.1 mol/L NaOH。
4.轻质MgO:将MgO在500℃下加热,以除去碳酸盐。
5.0.05%溴百里酚蓝指示剂。
6.硼酸吸收液:称取20g硼酸溶于无氨水,稀释至1L。
7.10% ZnSO4:称取10g ZnSO4溶于无氨水,稀释至100mL。
8.25%NaOH:称取25g氢氧化钠溶于无氨水,稀释至100mL,贮于聚乙烯瓶中。
9.纳氏试剂:可选择下列方法之一制备:①称取碘化钾5g,溶于10mL无氨水中,边搅拌边分次少量加入二氯化汞(HgCl2)粉末2.5g,直至出现微量朱红色沉淀溶解缓慢时,充分搅拌混合,并改为滴加二氯化汞饱和溶液,当出现少量朱红色沉淀不再溶解时,停止滴加。
将上述溶液徐徐注入氢氧化钾溶液中(15g氢氧化钾溶于50mL无氨水中,冷却至室温),以无氨水稀释至100mL,混匀。
于暗处静置过夜,将上清液移入聚乙烯瓶中,密塞保存。
此试剂至少可稳定一个月。
②称取16g氢氧化钠,溶于50mL无氨水中,冷却至室温。
另称取7g碘化钾和10 g碘化汞(HgI2)分别用少量无氨水溶解,再混合,然后将此混合液在搅拌下徐徐注入氢氧化钠溶液中,用无氨水稀释至100mL,贮于聚乙烯瓶中,密塞于暗处保存,有效期可达一年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二絮凝沉淀
1.实验目的:
(1). 加深对絮凝沉降的特点、基本概念及沉降规律的理解。
(2). 掌握絮凝试验方法,并利用实验数据绘制絮凝沉降曲线
2.实验原理
颗粒在沉淀过程中,其尺寸、质量随深度的增加而增大,沉速也加大。
水处理工艺中的许多沉淀都属于絮凝沉淀。
絮凝颗粒的沉淀轨迹是一条曲线,且难以用数学方法表达,因此要用实验来确定必要的设计参数。
絮凝沉淀的实验中沉速与水深有关,因此需要使用具有多个取样口的沉淀柱来进行沉淀性能测定。
在不同的沉淀时间,从不同水深取出水样,测出悬浮物浓度,计算悬浮物去除率。
将这些去除率绘于相应的深度与时间的坐标上。
再绘出等去除率曲线。
最后借助于这些等去除率曲线,计算对应于某深度和停留时间的悬浮物去除率。
3.实验过程
絮凝沉降的实验流程框图如图1所示。
图1实验流程框图
絮凝沉降仿真实验的仪器面板如图2所示。
首先选择原水性质(1),设置好沉淀柱的多个取样口的对应深度(2),原水样的SS 数值(3), 指定采样的时间序列表(4),指定是否用实测结果进行修正(5)和实测水样的SS 数值(6)。
便获得在不同沉淀时间、不同水深的悬浮物浓度或(7)悬浮物去除率(8)。
图2 实验面板
等去除率曲线描绘出水样的絮凝沉降性能,借助于等去除率曲线能够计算对应于某深度和停留时间的悬浮物去除率,和进行沉淀池设计。
絮凝沉降的二沉池设计仿真实验仪器面板如图3所示。
首先指定是应用SVI或选择原水性质(1)作为二沉池设计控制准则,设置进入二沉池的水流量和从二沉池底排出的回流污泥流量(2);设置进水污泥浓度(3),设计二沉池的池形(4),和池体参数(5),虚拟仪器输出出水水样的SS 数值(6)和回流污泥浓度(7)。
二沉池设计所处的工况点及设计中应讨论的主要技术参数用图形(8)和数字仪表(9)显示出来。
图3絮凝沉降的沉淀池设计仿真实验仪器面板
例1使用内径为20cm,有5个距液面深度分别为0.5m、1m、1.6m、2.2m、2.8m采样口的沉淀柱,原水来自纺织厂,SS浓度为1500 mg/L,进行絮凝沉降实验。
按实验要求检查相应对话框,如果原有深度和时间不符合实验的要求,将光标移动到相应部位进
行修改。
原水来源选纺织厂,SS浓度1500 mg/L;不进行实测修正,填写对应深度-时间的SS浓度数值和去除百分数形式的实验记录表如表1和表2所示。
绘出等百分去除率曲线如图4所示。
表1指定深度和时间的ss 测定值(mg/L)
图4等百分去除率曲线
借助于等百分去除率曲线图4,计算对应于深度2.5m和停留时间30min的沉淀池的悬浮物去除率,具体计算方法如下:
解:计算对应于深度2.5m和停留时间30min的沉淀池的沉淀速度u0
沉速大于和等于u0的颗粒全部都被去除。
其相应的去除百分率为60%;在去除百分率60%至72%之间作中间曲线,该曲线与时间30min的垂直线相交于深度为2.3m处。
此区间颗粒的平均沉速是
此部分颗粒的相应的去除百分率为(1.28/1.39)×(72-60)=11.1%
注意到沉速的比,实际上就是平均深度与原始深度的比,并将类似的方法应用于其他区间,计算出总去除百分率E:
4.实验内容:
(1)二轧钢泥水絮凝沉降性能的测定与比较
要求:
1). 参考看例1的设置,除了泥水来源取自“二轧钢”外,其他参数完全相同,完成如表1的实验记录;2). 计算出全部去除百分率(%),完成表2,并与例1的结果进行比较;
3). 分别用本实验结果和例1 的结果绘制“等百分去除率图”比较两组图形,判断哪种泥水的沉降性能更好;
4). 根据两组图形分别计算对应于深度2.6m和停留时间45min的沉淀池的悬浮物去除率,检验以上判断是否正确。
(2)市政污水厂与焦化厂泥水絮凝沉降性能的测定与比较
要求:
1). 沉淀柱水深设计为4m,5 个采样口的深度为0.8m、1.4m、2.0m、2.8m、3.6m,原水分别来自市政污水厂和焦化厂,SS浓度为1800 mg/L;
2). 按照实验(1)的要求完成全部工作内容。
(3)市政污水厂沉淀池的可视化设计
市政污水厂沉淀池的处理水流量300(M3/h),污泥浓度1.6 g/L,设计幅流沉淀池和矩形沉淀池,要求出水ss浓度小于50 mg/L。
(用表格记录池体几何尺寸与出水浓度的关系)
5.思考题:
(1)自由沉降与絮凝沉降有何区别?
(2)两种不同性质的污水经絮凝沉淀实验后,所得同一去除率的曲线不同,试分析其原因,并加以讨论。