垂直于弦的直径课件完美版1

合集下载

垂直于弦的直径时课件

垂直于弦的直径时课件

02
垂直于弦的直径的性质证明
证明方法
01
02
03
三角形类似证明法
通过构造与垂直于弦的直 径相关的两个三角形,并 证明这两个三角形类似, 从而得出直径的性质。
圆周角定理证明法
利用圆周角定理,推导出 与垂直于弦的直径相关的 角的关系,从而证明直径 的性质。
反证法
假设与垂直于弦的直径相 关的性质不成立,通过推 理得出矛盾,从而证明直 径的性质成立。
总结词
在椭圆中,垂直于弦的直径同样具有平分弦和弧的特性。
详细描述
在椭圆中,如果有一条直径垂直于弦,那么这条直径也会平分这条弦,即弦被分 成两等分。同时,该直径还会平分弦所对的弧,即该弧被分为两个相等的部分。 这个性质在椭圆中同样适用,是几何学中的一个基本定理。
实例三:抛物线中的垂直于弦的直径
总结词
实例一:圆中的垂直于弦的直径
总结词
在圆中,垂直于弦的直径平分该弦,并且平分弦所对的弧。
详细描述
在圆中,如果有一条直径垂直于弦,那么这条直径会平分这 条弦,即弦被分成两等分。同时,该直径还会平分弦所对的 弧,即该弧被分为两个相等的部分。这是圆的基本性质之一 ,也是几何学中的一个基本定理。
实例二:椭圆中的垂于弦的直径
03
垂直于弦的直径的应用
在几何图形中的应用
垂直于弦的直径是几何图形中 重要的概念,它有助于理解图 形的形状、大小和性质。
在圆中,垂直于弦的直径将弦 分为两段相等的部分,这是等 腰三角形的一个重要性质。
垂直于弦的直径还可以用于确 定圆心角和圆周角的关系,以 及解决与圆相关的几何问题。
在物理中的应用
05
垂直于弦的直径的练习题及答案
练习题一及答案

24.垂直于弦的直径PPT课件(人教版)

24.垂直于弦的直径PPT课件(人教版)

(√ ) (√ ) (×)

经过圆心
中心
圆心
垂直于弦的 直径平分弦,并且平分弦所对的两条弧
垂直
弦所对的两条弧
问题:你知道赵州桥吗?它是1300多年前我国隋代建 造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主 桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主 桥拱的半径吗?
∵AB∥CD,∴ON⊥CD于N
在RtAOM中,AM 5cm,OM OA2 AM2 12cm. 在RtOCN中,CN 12cm,ON OC2 CN 2 5cm.
∵MN=OM-ON,∴MN=7cm. (2)当AB、CD在O点异侧时,如图②所示,
由(1)可知OM=12cm,ON=5cm,MN=OM+ON,
(并2且)平A分M=A(BBM及,AA(DCB=.BC,AD=BD,即直径CD平分弦AB,
这样,我们就得到下面的定理:垂直于弦的直径平分弦, 并且平分弦所对的两条弧。进一步,我们还可以得到结论:平 分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 。
知识点一 垂径定理及其推论
C
知识点一 垂径定理及其推论
通过本节课的学习,我们就会很容易解决这一问题.
探究:1.圆是轴对称图形吗?如果是,它的对称轴是什 么?你能找到多少条对称轴?
分析讨论:圆是轴对称图形,它的对称轴是直径,我能找到 无数多条直径.
探究: 2.你是用什么方法解决上述问题的?与同伴进行 交流.
分析讨论我:是利用沿着圆的任意一条直径折叠的方法解决 圆的对称轴问题的.
.2垂直于弦的直径
判断:
(1)直径是弦.( √ )
(2)弦是直径. ( × )

课件《垂直于弦的直径》优秀课件完整版_人教版1

课件《垂直于弦的直径》优秀课件完整版_人教版1

∴⊙O的半径为5厘米。
解决求赵州桥拱半径的问题
AB
如图,用A⌒B表示主桥拱,设A⌒B所在圆的圆心为O,半 径为R.经过圆心O 作弦AB 的垂线OC,D为垂足,OC 与AB 相交于点D,根据前面的结论,D 是A⌒B 的中点, C是AB的中点,CD 就是拱高.AB=48米,CD=16米
C
A
D
B
R
O
三、
A⌒D=⌒BD

垂径定理的推论
通过垂径定理的证明及应用,我们还可以进一步得到 垂径定理的推论:平分弦(不是直径)的直径垂直于 弦,并且平分弦所对的两条弧.
例 如图所示,⊙O的直径CD=10 cm,AB是⊙O的弦, AM= BM,OM∶OC=3∶5,求AB的长.
解:∵圆O的直径CD=10cm, ∴圆O的半径为5cm,即OC=5cm, ∵OM:OC=3:5, ∴OM= 3 OC=3cm, 连接OA,5 ∵AB⊥CD, ∴M为AB的中点,即AM=BM=1 AB,
船能过拱桥吗
如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出 水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水 面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?
●相信自己能独立 完成解答.
船能过拱桥吗
解 : 如 图 ,用 AB表 示 桥 拱 , AB 所 在 圆 的 圆 心 为O,半 径为 R m, 6.下列经说法过错圆误的心是O( 作) 弦 A B 的 垂 线 O D, D 为 垂 足 , 与AB 相 交 于 点 C . 根
㎝,
O
D
A
B
C
C
O
反思:在⊙ O中,若⊙ O的半径r、 A
B
圆心到弦的距离d、弦长a中,
D

《垂直于弦的直径》圆PPT课件

《垂直于弦的直径》圆PPT课件

·O
或作弦心距构造直角三角形,利用垂径定理和勾股
定理求解.
A
C
B
垂径定理 圆是轴对称图形
知识小结 内容
推论
垂直于弦的直径平分弦, 并且平分弦所对的两条弧
一条直线满足:①过圆心;②垂直于弦; ③平 分弦(不是直径); ④平分弦所对的优弧; ⑤平分弦所对的劣弧.满足其中两个条件就 可以推出其他三个结论(“知二推三”)
第二十四章 圆 24.1 圆的有关性质
垂直于弦的直径
1
理解圆的轴对称性及垂径定理的推 导.(难点)

习 目
2
能初步应用垂径定理进行计算和证明. (重点)

3
通过圆的对称性,培养学生对数学的 审美观,并激发学生对数学的热爱.
观察思考 把一个圆沿着它的任意一条直径对折,重复几次,
你发现了什么?由此你能得到什么结论?
1.半径为4cm的⊙O 中,弦AB=2 cm,
那么圆心O 到弦AB 的距离是
.
O
4
A1E B
2.⊙O 的直径为10 cm,圆心O 到弦AB的距离OE=4cm,
则弦AB 的长是 6cm .
O
54
A EB
达标练习
3.如图,⊙M 与x轴交于A,B 两点,与y轴交于C,D 两点,
(0, 若M(2,0),B(5,0),则C点的坐标是
a 2
2
例题变式
如图,在⊙O中,弦AB的长为 6 cm,圆心O到AB的距离(弦心距)为 4 cm,
求⊙O的半径.
解: 过圆心O 作OE⊥AB于E, A
,(垂径定理)
3E B
4
O
在Rt △ AOE 中 ,
方法总结

《垂直于弦的直径》ppt

《垂直于弦的直径》ppt

①④
①⑤ ②③ ②④ ②⑤
②③⑤
②③④ ①④⑤ ①③⑤ ①③④
③④
③⑤ ④⑤
①②⑤
①②④ ①②③
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
AD=BD
O · A
E D

新人教版《垂直于弦的直径》课件公开课PPT

新人教版《垂直于弦的直径》课件公开课PPT

·O
AE B D
温馨提示:垂径定理是圆中一个重要的定理,三种语言要相
互转化,形成整体,才能运用自如.
辨析
1.下列图形是否具备垂径定理的条件? 如果不是,请说明为什么?
C
C
O
A
E
B
D
c
A
D
B
O
O
A
E
B
D
C
A
O
D
B
C
O
A
O
A
E
B
C
B
辨析
2.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,
则下列结论中不成立的是( )
2、能正确区分平方根与算术平方根的意义;
O
已化知(同抛平物行线于C第1:三y=x条2-直2x线的或图同象垂如直图于所第示三,把条C1直的线图),象沿y轴翻折,得到抛物线C2的图象,抛物线C1与抛物线C2的图象合称图象C3.
根弦据心刚 距才:的圆证心明到我弦们的知距道离,点A和点A′是对称点.请同学们用对称的知识找出图中能够重合的几何图形.
温(馨3)提若示A:B=垂8 c径m定,理CD是=2圆cm中,一求个⊙重O要的的半定径理. ,三种语言要相互转化,形成整体,才能运用自如.
如剪图一, 个A圆B形是纸⊙片O的,直沿径着,它C的D为任弦意,一C条D直⊥径AB对于折E,,则重下复列做结几论次中,不你成发立现的了是什(么?)由此你能得到什么结论?
∵不管m为何实数,总有(m-2)2≥0,∴Δ=(m-2)2+3>0,
2.运用方差解决实际问题的一般步骤是怎样的?
求⊙O的弦半心径.距:圆心到弦的距离 A OE· (A综A4解如22化2① (方(解121..、.CC掌已))3上:图(抛法:与与设求同)如能握知所 (, 物二 (BB原抛平11若图正CC点抛))述在线 :计物设设相相行DA,确到物,⊙上 如.B划线每 每等 等符于在区=直线O是 果安C个个8吗吗合第⊙分1中线Cc否 两排足足的??条m1三O平,的:存 条y,的球球顶中件条AA方=弦距DD在 直xC工为为点,的直2根与与DA离-一 线人xxAA=B点2线与元元BB的2B的的x点都有DD的P、或c算,,坐概相只相长m和P图A同y术使每每,标念等有等为C第人象垂为平得个个求,,吗一吗8并三.如直互方四c篮篮⊙并?个?m画条图于相根边球球O,会为,为出直其所第的垂的形为为圆度什什抛线坐示三半直意Ayy心量么么物元元平标C,条径且把义PO点??线,,行为D直.相到C;到是C根根1,(线2等A的2直正,据 B据那的-)2的图的,线方√题题么图两(象距"的形意意这象3条沿离"距?得得;若)弦y为)离.轴77存,xx3。==翻在cOm55折D,yy求.⊥,,,得出A44到B00点于xx抛++PD的物22,00坐线yyO==标EC⊥233;的若44A00C图不00于,,象存E解解,,在抛得得求,物说xx证线明==:C理55100四由与,,边;抛yy==形物77A00线D..O答CE2是:的正每图方个象形足合.球称为图5象0元C3,. 每个篮球为70元

垂直于弦的直径公开课版课件

垂直于弦的直径公开课版课件
垂直于弦的直径公开 课版课件
• 垂直于弦的直径的基本概念 • 垂直于弦的直径的性质证明 • 垂直于弦的直径定理的应用 • 垂直于弦的直径定理的推论 • 垂直于弦的直径定理的证明方法
目录
Part
01
垂直于弦的直径的基本概念
定义与性质
定义
垂直于弦的直径是一条线段,它 过圆心并与给定的弦垂直。
性质
推论二:经过圆心,平分弦的线段垂直于该弦
总结词
此推论说明,如果一条线段经过圆心并平分弦,那么这条线段垂直于该弦。
详细描述
由于线段经过圆心,它必然与圆相交于两点。由于它平分弦,这两点将与弦形成两个相等的部分。根 据垂径定理,经过圆心的线段与弦垂直。
推论三:平分弦的直径垂直于该弦
总结词
这个推论表明,如果一条直径平分弦,那么这条直径垂直于该弦。
利用圆的性质证明
总结词:逻辑周密
详细描述:根据圆的性质,直径是圆中最长的弦,因此它必然平分与之垂直的任何其他弦。
利用反证法证明
总结词:反向思考
详细描述:第一假设与弦垂直的直径不平分该弦,然后通过一系列逻辑推理,最终得出矛盾,从而证 明垂直于弦的直径必然平分该弦。
THANKS
感谢您的观看
总结词
垂直于弦的直径将弦分为两段相等的线 段,这是垂直于弦的直径的基本性质之 一。
VS
详细描述
由于直径是弦的中垂线,它必然将弦分为 两段相等的线段。这是基于几何学的基本 定理,即任何经过圆心并垂直于弦的线段 都将弦平分,并将弦分为两段相等的线段 。这个性质在解决几何问题时非常有用, 因为它可以帮助我们快速找到弦的中点, 从而简化问题。
Part
03
垂直于弦的直径定理的应用
在几何证明题中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.如图,AB是⊙O的直径,∠BAC=42°,点D是弦AC的中 点,则∠DOC的度数是___4_8__度.
8.如图,点A,B是⊙
O上两点,AB=10,点P是⊙O上
的动点(P与A,B不重合),连接AP,PB,过点O分别作OC⊥AP
于C,OD⊥PB于D,则CD=__ 5__.
知识点3:垂径定理的应用 9.如图,石拱桥的桥顶到水面的距离CD为8 m,桥拱半径OC为 5 m,则水面宽AB为( ) D A.4 m B.5 m C.6 m D.8 m

2、统筹全局、集中力量、保证重点、 组织好 与有关 单位的 协作、 分期分 批配套 地组织 施工。

3、做好整体施工部署和分部施工方案 ,合理 安排施 工顺序 、组织 平行流 水立体 交差作 业,充 分利用 空间和 时间发 挥作业 面的使 用效益 。

4、坚持“百年大计,质量第一”确保 安全施 工,贯 彻执行 各项规 章制度 。
A. 3 B. 5 C. 15 D. 17
5.(2015·广元)如图,已知⊙O 的直径 AB⊥CD 于点 E,则 下列结论中错误的是( B )
A.CE=DE B.AE=OE C.B︵C=B︵D D.△OCE≌△ODE
6.(2015·牡丹江)如图,AB 是⊙O 的直径,弦 CD⊥AB 于 点 E,若 AB=8,CD=6,则 BE=__4_-____7___.
13.在圆柱形油槽内装有一些油,截面如图,油面宽AB为6 分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8 分米,则圆柱形油槽直径MN为( C )
A.6分米 B.8分米 C.10分米 D.12分米
14.如图,⊙O 的直径 AB 垂直于弦 CD,垂足 P 是 OB 的 中点,CD=6 cm,求直径 AB 的长.
10.如图,某窗户由矩形和弓形组成.已知弓形的跨度 AB =3 m,弓形的高 EF=1 m,计划安装玻璃,请帮工程师求出A︵B所 在圆 O 的半径.
解:设⊙O 的半径为 r,则 OE=r-1.由垂径定理,得 BE=12 AB=1.5,OE⊥AB.由 OE2+BE2=OB2,得(r-1)2+1.52=r2,解 得 r=183
解:过点O作OH⊥CD于H,交AB于G,连接OA,OC,由 AB∥CD有OG⊥AB,∴CH=DH,AG=BG,在Rt△OCH中, 由勾股定理得OH=15,在Rt△OAG中,由勾股定理得OG=8, 所以AB与CD的距离为OH-OG=7(cm)
17.如图,某地有一座圆弧形的拱桥,桥下水面宽为 7.2 m,拱顶高 出水面 2.4 m,现有一艘宽 3 m,船舱顶部为正方形并高出水面 2 m 的货 船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.
解:4 3 cm
15.如图,两个圆都以点O为圆心,大圆的弦AB交小圆于C,D, 求证:AC=BD.
解:过点O作OM⊥AB,垂足为M,由垂径定理可得MA=MB ,MC=MD,故AC=BD
16.如图,⊙O的半径为17 cm,弦AB∥CD,AB=30 cm,CD =16 cm,圆心O位于AB,CD的上方,求AB和CD的距离.

8、贯彻执行国家,地区对环保、劳动 安全、 工业卫 生、计 量、消 防、苗木运输过程保持一定的水分,在 长途运 输的过 程中必 须及时 淋水, 注意轻 拿轻放 ,以防 止泥头 松散
方法技能: 在圆中常添的辅助线是连接半径或作出弦心距,通过垂径定 理和勾股定理实现弦长、半径、弦心距等数量之间的联系. 易错提示: 对于需自己画图的几何题,易忽视图形位置关系的多种可能 性而漏解.

1、认真贯彻执行国家及部颁有关基本 建设的 技术规 范、规 程。遵 循设计 单位技 术文件 上的质 量要求 ,实施 质量控 制及检 验。
A.1个 B.2个 C.3个 D.4个
知识点2:垂径定理及推论
3.(2015·遂宁)如图,在半径为5
cm的⊙O中,弦AB=6
cm,OC⊥AB于点C,则OC=( B )
A.3 cm B.4 cm C.5 cm D.6 cm
4.如图,在⊙O 中,OC⊥弦 AB 于点 C,AB=4,OC=1, 则 OB 的长是( B )

5、因地制宜、就地取材、厉行节约、 采取革 新、改 造、挖 潜措施 、减少 投资、 降低成 本。强 化现场 科学管 理、创 安全、 文明样 板工地 。

6、做好人力、物力的综合平衡调度, 做好雨 季施工 安排, 确保均 衡施工 ,按时 完成工 期。

7、要对植物进行不定期修剪,对不同 的植物 品种采 取不同 的修剪 方法, 包括拾 整枯枝 黄叶、 病虫害 的枝条 、徒长 枝等, 定期为 整形灌 木及地 被修剪 以保持 其植株 的美观 及线条 的优美 。
11.如图,在平面直角坐标系中,点 O 为坐标原点,点 P 在第一 象限,⊙P 与 x 轴交于 O,A 两点,点 A 的坐标为(6,0),⊙P 的半径为 13,则点 P 的坐标为___(3_,__2_)__.
12.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B, F,E,GB=8 cm,AG=1 cm,DE=2 cm,则EF=__ _6_ cm.
解:能顺利通过.理由:由题意 AB=7.2,CD=2.4,设⊙O 的半径 为 R,在 Rt△AOD 中,OD=R-2.4,AD=3.6,∴R2=(R-2.4)2+3.62, ∴ R = 3.9. 在 Rt △ OHN 中 , 若 HN = 1.5 , 则 OH = ON2-HN2 =
3.92-1.52=3.6.∵OD=OC-DC=3.9-2.4=1.5,∴DH=OH-OD= 3.6-1.5=2.1(m),NF=ME=HD=2.1 m>2 m,∴此货船能顺利通过
第二十四章 圆
24.1 圆的有关性质
24.1.2 垂直于弦的直径
知识点1:圆的对称性 1.下列说法正确的是( B ) A.直径是圆的对称轴 B.经过圆心的直线是圆的对称轴 C.与圆相交的直线是圆的对称轴 D.与半径垂直的直线是圆的对称轴 2.如图所示的美丽图案,既是轴对称图形又是中心对称图形的 有( C )
相关文档
最新文档