机械制造及其自动化专业外文翻译--差速器壳体工艺及工装设计
机械专业中英文对照-机械专业中英文对照
机械专业英语词汇陶瓷 ceramics合成纤维 synthetic fibre电化学腐蚀 electrochemical corrosion车架 automotive chassis悬架 suspension转向器 redirector变速器 speed changer板料冲压 sheet metal parts孔加工 spot facing machining气动夹紧 pneuma lock数学模型 mathematical model画法几何 descriptive geometry投影 projection剖视图 profile chart标准件 standard ponent零件图 part drawing装配图 assembly drawing尺寸标注 size marking技术要求 technical requirements刚度 rigidity内力 internal force位移 displacement截面 section疲劳极限 fatigue limit断裂 fracture塑性变形 plastic distortion脆性材料 brittleness material刚度准那么 rigidity criterion垫片 spacer直齿圆柱齿轮 straight toothed spur gear 斜齿圆柱齿轮 helical-spur gear直齿锥齿轮 straight bevel gear运动简图 kinematic sketch齿轮齿条 pinion and rack蜗杆蜗轮 worm and worm gear虚约束 passive constraint曲柄 crank凸轮 cams共轭曲线 conjugate curveX成法 generation method定义域 definitional domain值域 range导数\\微分 differential coefficient求导 derivation定积分 definite integral不定积分 indefinite integral曲率 curvature偏微分 partial differential毛坯 rough游标卡尺 slide caliper千分尺 micrometer calipers攻丝 tap二阶行列式 second order determinant逆矩阵 inverse matrix线性方程组 linear equations概率 probability随机变量 random variable排列组合 permutation and bination气体状态方程 equation of state of gas动能 kinetic energy势能 potential energy机械能守恒 conservation of mechanical energy动量 momentum桁架 truss轴线 axes余子式 cofactor逻辑电路 logic circuit触发器 flip-flop脉冲波形 pulse shape数模 digital analogy液压传动机构 fluid drive mechanism机械零件 mechanical parts淬火冷却 quench淬火 hardening回火 tempering调质 hardening and tempering磨粒 abrasive grain结合剂 bonding agent砂轮 grinding wheel龙门刨削 planing主轴 spindle主轴箱 headstock卡盘 chuck加工中心 machining center车刀 lathe tool车床 lathe钻削镗削 bore车削 turning磨床 grinder基准 benchmark钳工 locksmith锻 forge压模 stamping拉床 broaching machine拉孔 broaching装配 assembling铸造 found流体动力学 fluid dynamics流体力学 fluid mechanics加工 machining液压 hydraulic pressure切线 tangent机电一体化 mechanotronics mechanical-electrical integration 气压 air pressure pneumatic pressure稳定性 stability介质 medium液压驱动泵 fluid clutch液压泵 hydraulic pump阀门 valve失效 invalidation强度 intensity载荷 load应力 stress安全系数 safty factor可靠性 reliability螺旋 helix键 spline销 pin滚动轴承 rolling bearing滑动轴承 sliding bearing弹簧 spring制动器 arrester brake十字结联轴节 crosshead联轴器 coupling链 chain皮带 strap精加工 finish machining粗加工 rough machining变速箱体 gearbox casing腐蚀 rust氧化 oxidation磨损 wear耐用度 durability随机信号 random signal离散信号 discrete signal超声传感器 ultrasonic sensor集成电路 integrate circuit挡板 orifice plate剩余应力 residual stress套筒 sleeve扭力 torsion冷加工 cold machining电动机 electromotor汽缸 cylinder过盈配合 interference fit热加工 hotwork摄像头 CCD camera倒角 rounding chamfer优化设计 optimal design工业造型设计 industrial moulding design有限元 finite element滚齿 hobbing插齿 gear shaping伺服电机 actuating motor铣床 milling machine钻床 drill machine镗床 boring machine步进电机 stepper motor丝杠 screw rod导轨 lead rail组件 subassembly可编程序逻辑控制器 Programmable Logic Controller PLC 电火花加工 electric spark machining电火花线切割加工 electrical discharge wire - cutting相图 phase diagram热处理 heat treatment固态相变 solid state phase changes有色金属 nonferrous metal陶瓷 ceramics 合成纤维 synthetic fibre电化学腐蚀 electrochemical corrosion车架 automotive chassis悬架 suspension转向器 redirector变速器 speed changer板料冲压 sheet metal parts孔加工 spot facing machining气动夹紧 pneuma lock数学模型 mathematical model画法几何 descriptive geometry机械制图 Mechanical drawing投影 projection视图 view剖视图 profile chart标准件 standard ponent零件图 part drawing装配图 assembly drawing尺寸标注 size marking技术要求 technical requirements刚度 rigidity内力 internal force位移 displacement截面 section疲劳极限 fatigue limit断裂 fracture塑性变形 plastic distortion脆性材料 brittleness material刚度准那么 rigidity criterion垫圈 washer垫片 spacer直齿圆柱齿轮 straight toothed spur gear 斜齿圆柱齿轮 helical-spur gear直齿锥齿轮 straight bevel gear运动简图 kinematic sketch齿轮齿条 pinion and rack蜗杆蜗轮 worm and worm gear虚约束 passive constraint曲柄 crank摇杆 racker凸轮 cams共轭曲线 conjugate curveX成法 generation method定义域 definitional domain值域 range导数\\微分 differential coefficient求导 derivation定积分 definite integral不定积分 indefinite integral曲率 curvature偏微分 partial differential毛坯 rough游标卡尺 slide caliper千分尺 micrometer calipers攻丝 tap二阶行列式 second order determinant逆矩阵 inverse matrix线性方程组 linear equations概率 probability随机变量 random variable排列组合 permutation and bination气体状态方程 equation of state of gas动能 kinetic energy势能 potential energy机械能守恒 conservation of mechanical energy 动量 momentum桁架 truss轴线 axes余子式 cofactor逻辑电路 logic circuit触发器 flip-flop脉冲波形 pulse shape数模 digital analogy液压传动机构 fluid drive mechanism机械零件 mechanical parts淬火冷却 quench淬火 hardening回火 tempering调质 hardening and tempering磨粒 abrasive grain结合剂 bonding agent砂轮 grinding wheelConveyer 流水线物料板Rivet table 拉钉机Screw driver 起子Pneumatic screw driver 气动起子worktable 工作桌OOBA 开箱检查fit together 组装在一起fasten 锁紧(螺丝)fixture 夹具(治具)pallet 栈板barcode 条码barcode scanner 条码扫描器fuse together 熔合fuse machine热熔机ME 制造工程师MT 制造生技cosmetic inspect 外观检查inner parts inspect 内部检查thumb screw 大头螺丝lbs. inch 镑、英寸EMI gasket 导电条front plate 前板rear plate 后板chassis 基座bezel panel 面板power button 电源按键reset button 重置键Hi-pot test of SPS 高源高压测试Voltage switch of SPS 电源电压接拉键sheet metal parts 冲件plastic parts 塑胶件SOP 制造作业程序material check list 物料检查表work cell 工作间trolley 台车carton 纸箱sub-line 支线left fork 叉车personnel resource department 人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂mon equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |plein|刨床miller铣床grinder磨床linear cutting线切割electrical sparkle电火花staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vice manager副理section supervisor课长deputy section supervisor =vice section superisor副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检to connect material接料to reverse material 翻料wet station沾湿台Tiana天那水cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |\\'skr?pid|报废scrape ..v.刮;削deficient purchase来料不良manufacture procedure制程deficient manufacturing procedure制程不良oxidation |\\' ksi\\'dei?n|氧化scratch刮伤dents压痕defective upsiding down抽芽不良defective to staking铆合不良embedded lump镶块feeding is not in place送料不到位stamping-missing漏冲production capacity生产力education and training教育与训练proposal improvement提案改善spare parts=buffer备件forklift叉车trailer=long vehicle拖板车pound die合模die locker锁模器pressure plate=plate pinch压板administration/general affairs dept总务部automatic screwdriver电动启子thickness gauge厚薄规gauge(or jig)治具power wire电源线buzzle蜂鸣器defective product label不良标签identifying sheet list标示单location地点present members出席人员conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheet PCE组装厂生产排配表model机锺work order工令revision版次production control confirmation生产确认approved by核准stock age analysis sheet 库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked 待验或重工cause description原因说明prepared by制表 notes说明year-end physical inventory difference analysis sheet 年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传 rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸convex凹short射料不足nick缺口speck瑕??shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车 mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机阿基米德蜗杆 Archimedes worm安全系数 safety factor; factor of safety安全载荷 safe load凹面、凹度 concavity扳手 wrench 板簧 flat leaf spring 半圆键 woodruff key变形 deformation摆杆 oscillating bar摆动从动件 oscillating follower摆动从动件凸轮机构 cam with oscillating follower摆动导杆机构 oscillating guide-bar mechanism摆线齿轮 cycloidal gear摆线齿形 cycloidal tooth profile摆线运动规律 cycloidal motion摆线针轮cycloidal-pin wheel包角 angle of contact保持架 cage背对背安装 back-to-back arrangement背锥 back cone ; normal cone背锥角 back angle背锥距 back cone distance比例尺 scale比热容 specific heat capacity闭式链 closed kinematic chain闭链机构 closed chain mechanism臂部 arm变频器frequency converters变频调速 frequency control of motor speed变速 speed change变速齿轮 change gear change wheel变位齿轮 modified gear变位系数 modification coefficient标准齿轮 standard gear标准直齿轮 standard spur gear外表质量系数 superficial mass factor外表传热系数 surface coefficient of heat transfer外表粗糙度 surface roughness并联式组合 bination in parallel并联机构 parallel mechanism并联组合机构 parallel bined mechanism并行工程 concurrent engineering并行设计 concurred design, CD不平衡相位 phase angle of unbalance不平衡 imbalance (or unbalance)不平衡量 amount of unbalance不完全齿轮机构 intermittent gearing波发生器 wave generator波数 number of waves补偿 pensation参数化设计parameterization design, PD剩余应力 residual stress操纵与控制装置 operation control device槽轮 Geneva wheel槽轮机构 Geneva mechanism ;Maltese cross槽数 Geneva numerate槽凸轮 groove cam侧隙 backlash差动轮系 differential gear train差动螺旋机构 differential screw mechanism 差速器 differential常用机构 conventional mechanism; mechanism in mon use车床 lathe承载量系数 bearing capacity factor承载能力 bearing capacity 成对安装 paired mounting尺寸系列 dimension series齿槽 tooth space齿槽宽 spacewidth齿侧间隙 backlash齿顶高 addendum齿顶圆 addendum circle 齿根高 dedendum齿根圆 dedendum circle齿厚 tooth thickness齿距 circular pitch齿宽 face width齿廓 tooth profile齿廓曲线 tooth curve齿轮 gear 齿轮变速箱 speed-changing gear boxes齿轮齿条机构 pinion and rack齿轮插刀 pinion cutter; pinion-shaped shaper cutter齿轮滚刀 hob ,hobbing cutter齿轮机构 gear齿轮轮坯 blank齿轮传动系 pinion unit齿轮联轴器 gear coupling齿条传动 rack gear齿数 tooth number齿数比 gear ratio齿条rack齿条插刀 rack cutter; rack-shaped shaper cutter齿形链、无声链 silent chain齿形系数 form factor齿式棘轮机构 tooth ratchet mechanism插齿机 gear shaper重合点 coincident points重合度 contact ratio冲床 punch传动比 transmission ratio, speed ratio传动装置 gearing; transmission gear传动系统 driven system传动角 transmission angle传动轴 transmission shaft串联式组合 bination in series串联式组合机构 series bined mechanism串级调速 cascade speed control创新 innovation creation创新设计 creation design垂直载荷、法向载荷 normal load唇形橡胶密封 lip rubber seal磁流体轴承 magnetic fluid bearing从动带轮 driven pulley从动件 driven link, follower从动件平底宽度 width of flat-face从动件停歇 follower dwell从动件运动规律 follower motion从动轮 driven gear粗线 bold line粗牙螺纹 coarse thread大齿轮 gear wheel打包机 packer打滑 slipping带传动 belt driving带轮 belt pulley带式制动器 band brake单列轴承 single row bearing单向推力轴承 single-direction thrust bearing单万向联轴节 single universal joint单位矢量 unit vector当量齿轮 equivalent spur gear; virtual gear当量齿数 equivalent teeth number; virtual number of teeth当量摩擦系数 equivalent coefficient of friction当量载荷 equivalent load刀具 cutter导数 derivative倒角 chamfer导热性 conduction of heat 导程 lead导程角 lead angle等加等减速运动规律 parabolic motion; constant acceleration and deceleration motion等速运动规律 uniform motion; constant velocity motion等径凸轮 conjugate yoke radial cam等宽凸轮 constant-breadth cam等效构件 equivalent link等效力 equivalent force等效力矩 equivalent moment of force等效量 equivalent等效质量 equivalent mass等效转动惯量 equivalent moment of inertia等效动力学模型dynamically equivalent model底座 chassis低副 lower pair点划线 chain dotted line〔疲劳〕点蚀 pitting垫圈 gasket垫片密封 gasket seal碟形弹簧 belleville spring顶隙 bottom clearance定轴轮系 ordinary gear train; gear train with fixed axes动力学 dynamics动密封 kinematical seal 动能 dynamic energy动力粘度 dynamic viscosity动力润滑 dynamic lubrication动平衡 dynamic balance动平衡机 dynamic balancing machine动态特性 dynamic characteristics动态分析设计 dynamic analysis design动压力 dynamic reaction动载荷 dynamic load端面 transverse plane端面参数transverse parameters端面齿距 transverse circular pitch端面齿廓 transverse tooth profile端面重合度 transverse contact ratio端面模数transverse module端面压力角 transverse pressure angle锻造 forge对称循环应力 symmetry circulating stress对心滚子从动件 radial (or in-line ) roller follower对心直动从动件 radial (or in-line ) translating follower对心移动从动件 radial reciprocating follower对心曲柄滑块机构 in-line slider-crank (or crank-slider) mechanism多列轴承 multi-row bearing多楔带 poly V-belt多项式运动规律 polynomial motion多质量转子 rotor with several masses惰轮 idle gear额定寿命 rating life额定载荷 load ratingII 级杆组 dyad发生线 generating line 发生面 generating plane 法面 normal plane法面参数 normal parameters法面齿距 normal circular pitch法面模数 normal module法面压力角 normal pressure angle法向齿距 normal pitch 法向齿廓 normal tooth profile法向直廓蜗杆 straight sided normal worm法向力 normal force反应式组合 feedback bining反向运动学 inverse ( or backward) kinematics反转法 kinematic inversion反正切 ArctanX成法 generating cutting仿形法 form cutting方案设计、概念设计 concept design, CD防振装置 shockproof device飞轮 flywheel飞轮矩 moment of flywheel非标准齿轮 nonstandard gear非接触式密封 non-contact seal非周期性速度波动 aperiodic speed fluctuation非圆齿轮 non-circular gear粉末合金 powder metallurgy分度线 reference line; standard pitch line分度圆 reference circle; standard (cutting) pitch circle分度圆柱导程角 lead angle at reference cylinder分度圆柱螺旋角 helix angle at reference cylinder分母 denominator分子 numerator分度圆锥 reference cone; standard pitch cone分析法 analytical method封闭差动轮系 planetary differential复合铰链 pound hinge复合式组合 pound bining复合轮系 pound (or bined) gear train复合平带 pound flat belt复合应力 bined stress复式螺旋机构 pound screw mechanism复杂机构 plex mechanism杆组 Assur group 干预 interference 刚度系数 stiffness coefficient刚轮 rigid circular spline钢丝软轴 wire soft shaft刚体导引机构 body guidance mechanism刚性冲击 rigid impulse (shock)刚性转子 rigid rotor刚性轴承 rigid bearing刚性联轴器rigid coupling高度系列 height series高速带 high speed belt高副 higher pair格拉晓夫定理 Grashoff`s law根切 undercutting公称直径 nominal diameter高度系列 height series功 work工况系数 application factor工艺设计 technological design工作循环图 working cycle diagram工作机构operation mechanism工作载荷 external loads工作空间 working space工作应力 working stress工作阻力 effective resistance工作阻力矩 effective resistance moment公法线 mon normal line公共约束 general constraint公制齿轮 metric gears功率 power功能分析设计 function analyses design共轭齿廓 conjugate profiles共轭凸轮 conjugate cam构件 link鼓风机 blower固定构件 fixed link; frame固体润滑剂 solid lubricant关节型操作器jointed manipulator惯性力 inertia force惯性力矩 moment of inertia ,shaking moment惯性力平衡 balance of shaking force惯性力完全平衡 full balance of shaking force惯性力局部平衡 partial balance of shaking force惯性主矩 resultant moment of inertia惯性主失 resultant vector of inertia 冠轮 crown gear广义机构 generation mechanism广义坐标 generalized coordinate轨迹生成 path generation轨迹发生器 path generator滚刀 hob滚道raceway滚动体 rolling element滚动轴承 rolling bearing滚动轴承代号 rolling bearing identification code滚针 needle roller滚针轴承 needle roller bearing滚子 roller滚子轴承 roller bearing滚子半径 radius of roller滚子从动件 roller follower滚子链 roller chain滚子链联轴器 double roller chain coupling滚珠丝杆 ball screw滚柱式单向超越离合器 roller clutch过度切割 undercutting函数发生器 function generator 函数生成function generation 含油轴承 oil bearing耗油量 oil consumption耗油量系数 oil consumption factor赫兹公式 H. Hertz equation合成弯矩 resultant bending moment合力 resultant force合力矩 resultant moment of force黑箱 black box横坐标 abscissa互换性齿轮 interchangeable gears花键 spline 滑键、导键 feather key滑动轴承 sliding bearing滑动率 sliding ratio滑块 slider环面蜗杆 toroid helicoids worm环形弹簧 annular spring缓冲装置 shocks; shock-absorber灰铸铁 grey cast iron回程 return回转体平衡 balance of rotors混合轮系 pound gear train积分 integrate 机电一体化系统设计 mechanical-electrical integration system design 机构 mechanism机构分析 analysis of mechanism机构平衡 balance of mechanism机构学 mechanism机构运动设计 kinematic design of mechanism机构运动简图 kinematic sketch of mechanism机构综合 synthesis of mechanism机构组成constitution of mechanism机架 frame, fixed link机架变换 kinematic inversion机器 machine机器人 robot机器人操作器 manipulator机器人学robotics技术过程 technique process技术经济评价 technical and economic evaluation技术系统 technique system机械 machinery机械创新设计mechanical creation design, MCD机械系统设计 mechanical system design, MSD机械动力分析 dynamic analysis of machinery机械动力设计 dynamic design of machinery机械动力学 dynamics of machinery机械的现代设计 modern machine design机械系统 mechanical system机械利益 mechanical advantage 机械平衡 balance of machinery机械手 manipulator机械设计 machine design; mechanical design机械特性 mechanical behavior机械调速 mechanical speed governors机械效率 mechanical efficiency机械原理 theory of machines and mechanisms机械运转不均匀系数 coefficient of speed fluctuation 机械无级变速 mechanical stepless speed changes根底机构 fundamental mechanism根本额定寿命 basic rating life基于实例设计 case-based design,CBD 基圆 base circle基圆半径 radius of base circle基圆齿距 base pitch基圆压力角 pressure angle of base circle基圆柱 base cylinder基圆锥 base cone急回机构 quick-return mechanism急回特性 quick-return characteristics急回系数 advance-to return-time ratio急回运动 quick-return motion 棘轮 ratchet棘轮机构 ratchet mechanism棘爪 pawl极限位置 extreme (or limiting) position极位夹角 crank angle between extreme (or limiting) positions计算机辅助设计 puter aided design, CAD计算机辅助制造 puter aided manufacturing, CAM计算机集成制造系统 puter integrated manufacturing system, CIMS计算力矩 factored moment; calculation moment计算弯矩 calculated bending moment加权系数 weighting efficient加速度 acceleration 加速度分析 acceleration analysis加速度曲线 acceleration diagram尖点 pointing; cusp尖底从动件 knife-edge follower间隙 backlash间歇运动机构 intermittent motion mechanism减速比 reduction ratio减速齿轮、减速装置 reduction gear减速器 speed reducer减摩性 anti-friction quality 渐开螺旋面 involute helicoid渐开线 involute渐开线齿廓 involute profile渐开线齿轮 involute gear渐开线发生线 generating line of involute渐开线方程 involute equation渐开线函数 involute function渐开线蜗杆 involute worm渐开线压力角 pressure angle of involute渐开线花键 involute spline简谐运动 simple harmonic motion键 key键槽 keyway交变应力 repeated stress交变载荷 repeated fluctuating load交叉带传动 cross-belt drive 交织轴斜齿轮 crossed helical gears胶合 scoring角加速度 angular acceleration角速度 angular velocity角速比 angular velocity ratio角接触球轴承 angular contact ball bearing角接触推力轴承 angular contact thrust bearing角接触向心轴承 angular contact radial bearing角接触轴承 angular contact bearing铰链、枢纽 hinge校正平面 correcting plane接触应力 contact stress接触式密封 contact seal阶梯轴 multi-diameter shaft结构structure结构设计 structural design截面 section节点 pitch point节距 circular pitch; pitch of teeth节线 pitch line节圆 pitch circle节圆齿厚 thickness on pitch circle节圆直径 pitch diameter节圆锥 pitch cone节圆锥角 pitch cone angle解析设计 analytical design紧边 tight-side 紧固件 fastener径节 diametral pitch径向 radial direction径向当量动载荷 dynamic equivalent radial load径向当量静载荷 static equivalent radial load径向根本额定动载荷 basic dynamic radial load rating径向根本额定静载荷 basic static radial load tating径向接触轴承 radial contact bearing 径向平面 radial plane径向游隙 radial internal clearance径向载荷 radial load径向载荷系数 radial load factor径向间隙 clearance静力 static force静平衡 static balance静载荷 static load静密封 static seal局部自由度 passive degree of freedom矩阵 matrix矩形螺纹 square threaded form锯齿形螺纹 buttress thread form矩形牙嵌式离合器 square-jaw positive-contact clutch绝对尺寸系数 absolute dimensional factor绝对运动 absolute motion绝对速度 absolute velocity均衡装置 load balancing mechanism抗压强度 pression strength 开口传动 open-belt drive 开式链 open kinematic chain开链机构 open chain mechanism可靠度 degree of reliability可靠性 reliability可靠性设计 reliability design, RD空气弹簧 air spring空间机构 spatial mechanism空间连杆机构 spatial linkage空间凸轮机构 spatial cam空间运动副 spatial kinematic pair空间运动链 spatial kinematic chain空转 idle宽度系列 width series框图 block diagram雷诺方程Reynolds‘s equation 离心力 centrifugal force 离心应力 centrifugal stress 离合器 clutch离心密封 centrifugal seal理论廓线 pitch curve理论啮合线 theoretical line of action隶属度 membership力 force力多边形 force polygon力封闭型凸轮机构 force-drive (or force-closed) cam mechanism力矩 moment力平衡 equilibrium力偶 couple力偶矩 moment of couple连杆connecting rod, coupler连杆机构 linkage连杆曲线 coupler-curve连心线 line of centers链 chain链传动装置 chain gearing链轮 sprocket sprocket-wheel sprocket gear chain wheel联组 V 带 tight-up V belt联轴器 coupling shaft coupling两维凸轮 two-dimensional cam临界转速 critical speed六杆机构 six-bar linkage龙门刨床 double Haas planer轮坯 blank轮系 gear train螺杆 screw螺距 thread pitch螺母 screw nut螺旋锥齿轮helical bevel gear螺钉 screws螺栓 bolts螺纹导程 lead螺纹效率 screw efficiency螺旋传动 power screw螺旋密封 spiral seal螺纹 thread (of a screw)螺旋副 helical pair螺旋机构 screw mechanism螺旋角 helix angle螺旋线 helix ,helical line绿色设计 green design design for environment马耳他机构 Geneva wheel Geneva gear 马耳他十字 Maltese cross 脉动无级变速 pulsating stepless speed changes脉动循环应力 fluctuating circulating stress脉动载荷 fluctuating load铆钉 rivet迷宫密封 labyrinth seal密封 seal密封带 seal belt密封胶 seal gum密封元件 potted ponent密封装置sealing arrangement面对面安装 face-to-face arrangement面向产品生命周期设计 design for product`s life cycle, DPLC名义应力、公称应力 nominal stress模块化设计 modular design, MD模块式传动系统 modular system模幅箱 morphology box模糊集 fuzzy set模糊评价 fuzzy evaluation模数 module 摩擦 friction摩擦角 friction angle摩擦力 friction force摩擦学设计 tribology design, TD摩擦阻力 frictional resistance摩擦力矩 friction moment 摩擦系数 coefficient of friction摩擦圆 friction circle磨损 abrasion wear; scratching末端执行器 end-effector目标函数 objective function耐腐蚀性 corrosion resistance 耐磨性 wear resistance 挠性机构 mechanism with flexible elements挠性转子 flexible rotor内齿轮 internal gear内齿圈 ring gear内力 internal force内圈 inner ring能量 energy能量指示图 viscosity逆时针 counterclockwise (or anticlockwise)啮出 engaging-out 啮合 engagement, mesh, gearing啮合点 contact points啮合角 working pressure angle啮合线 line of action啮合线长度 length of line of action 啮入 engaging-in牛头刨床 shaper凝固点 freezing point; solidifying point扭转应力 torsion stress扭矩 moment of torque扭簧 helical torsion spring诺模图 NomogramO 形密封圈密封 O ring seal盘形凸轮 disk cam 盘形转子 disk-like rotor 抛物线运动 parabolic motion疲劳极限 fatigue limit 疲劳强度 fatigue strength偏置式 offset偏 ( 心 ) 距 offset distance偏心率 eccentricity ratio偏心质量 eccentric mass偏距圆 offset circle偏心盘 eccentric偏置滚子从动件 offset roller follower偏置尖底从动件 offset knife-edge follower偏置曲柄滑块机构 offset slider-crank mechanism 拼接 matching评价与决策 evaluation and decision频率 frequency平带 flat belt平带传动 flat belt driving平底从动件 flat-face follower平底宽度 face width平分线 bisector平均应力 average stress平均中径 mean screw diameter平均速度 average velocity平衡 balance平衡机 balancing machine平衡品质 balancing quality平衡平面 correcting plane平衡质量 balancing mass平衡重 counterweight平衡转速 balancing speed平面副 planar pair, flat pair平面机构 planar mechanism平面运动副 planar kinematic pair平面连杆机构 planar linkage平面凸轮 planar cam平面凸轮机构 planar cam mechanism平面轴斜齿轮 parallel helical gears普通平键 parallel key其他常用机构 other mechanism in mon use 起动阶段 starting period 启动力矩 starting torque气动机构 pneumatic mechanism奇异位置 singular position起始啮合点 initial contact , beginning of contact气体轴承 gas bearing千斤顶 jack嵌入键 sunk key强迫振动 forced vibration切齿深度 depth of cut曲柄 crank曲柄存在条件 Grashoff`s law曲柄导杆机构 crank shaper (guide-bar) mechanism曲柄滑块机构 slider-crank (or crank-slider) mechanism曲柄摇杆机构 crank-rocker mechanism曲齿锥齿轮 spiral bevel gear曲率 curvature曲率半径 radius of curvature曲面从动件 curved-shoe follower曲线拼接 curve matching曲线运动 curvilinear motion曲轴 crank shaft驱动力 driving force驱动力矩 driving moment (torque)全齿高 whole depth权重集 weight sets球 ball球面滚子 convex roller球轴承 ball bearing球面副 spheric pair球面渐开线 spherical involute球面运动 spherical motion球销副 sphere-pin pair球坐标操作器 polar coordinate manipulator燃点 spontaneous ignition 热平衡 heat balance; thermal equilibrium 人字齿轮 herringbone gear冗余自由度 redundant degree of freedom 柔轮 flexspline柔性冲击 flexible impulse; soft shock柔性制造系统 flexible manufacturing system; FMS柔性自动化 flexible automation润滑油膜lubricant film润滑装置 lubrication device润滑 lubrication润滑剂 lubricant三角形花键 serration spline 三角形螺纹 V thread screw 三维凸轮three-dimensional cam三心定理 Kennedy`s theorem砂轮越程槽 grinding wheel groove砂漏 hour-glass少齿差行星传动 planetary drive with small teeth difference设计方法学 design methodology设计变量 design variable设计约束 design constraints深沟球轴承 deep groove ball bearing生产阻力productive resistance升程 rise升距 lift实际廓线 cam profile十字滑块联轴器double slider coupling; Oldham‘s coupling矢量 vector输出功output work输出构件 output link输出机构 output mechanism输出力矩 output torque输出轴 output shaft输入构件 input link数学模型 mathematic model实际啮合线 actual line of action双滑块机构 double-slider mechanism, ellipsograph双曲柄机构 double crank mechanism双曲面齿轮 hyperboloidgear双头螺柱 studs双万向联轴节 constant-velocity (or double) universal joint双摇杆机构 double rocker mechanism双转块机构 Oldham coupling 双列轴承 double row bearing双向推力轴承 double-direction thrust bearing松边 slack-side顺时针 clockwise瞬心 instantaneous center死点 dead point四杆机构 four-bar linkage速度 velocity速度不均匀 ( 波动 ) 系数 coefficient of speed fluctuation速度波动 speed fluctuation速度曲线velocity diagram速度瞬心 instantaneous center of velocity塔轮 step pulley 踏板 pedal 台钳、虎钳 vice太阳轮 sun gear弹性滑动 elasticity sliding motion弹性联轴器 elastic coupling flexible coupling弹性套柱销联轴器 rubber-cushioned sleeve bearing coupling套筒 sleeve梯形螺纹 acme thread form特殊运动链 special kinematic chain特性 characteristics替代机构 equivalent mechanism调节 modulation, regulation调心滚子轴承self-aligning roller bearing调心球轴承 self-aligning ball bearing调心轴承 self-aligning bearing调速 speed governing调速电动机 adjustable speed motors调速系统 speed control system调压调速 variable voltage control调速器 regulator, governor铁磁流体密封 ferrofluid seal停车阶段stopping phase停歇 dwell同步带 synchronous belt同步带传动 synchronous belt drive凸的,凸面体 convex凸轮 cam凸轮倒置机构 inverse cam mechanism凸轮机构 cam , cam mechanism凸轮廓线 cam profile凸轮廓线绘制 layout of cam profile凸轮理论廓线 pitch curve凸缘联轴器 flange coupling 图册、图谱 atlas图解法 graphical method推程 rise推力球轴承 thrust ball bearing推力轴承 thrust bearing退刀槽 tool withdrawal groove退火anneal陀螺仪 gyroscopeV 带 V belt外力 external force 外圈 outer ring 外形尺寸 boundary dimension万向联轴器 Hooks coupling universal coupling 外齿轮 external gear弯曲应力 beading stress弯矩 bending moment腕部 wrist往复移动 reciprocating motion往复式密封 reciprocating seal网上设计 on-net design, OND微动螺旋机构 differential screw mechanism位移 displacement位移曲线 displacement diagram位姿 pose , position and orientation稳定运转阶段 steady motion period稳健设计 robust design蜗杆 worm蜗杆传动机构 worm gearing蜗杆头数 number of threads蜗杆直径系数 diametral quotient蜗杆蜗轮机构 worm and worm gear蜗杆形凸轮步进机构 worm cam interval mechanism蜗杆旋向 hands of worm蜗轮 worm gear涡圈形盘簧 power spring无级变速装置 stepless speed changes devices无穷大 infinite系杆 crank arm, planet carrier 现场平衡 field balancing 向心轴承 radial bearing向心力 centrifugal force相对速度 relative velocity相对运动 relative motion相对间隙 relative gap象限 quadrant橡皮泥plasticine细牙螺纹 fine threads销 pin消耗 consumption小齿轮 pinion小径 minor diameter橡胶弹簧 balata spring修正梯形加速度运动规律 modified trapezoidal acceleration motion修正正弦加速度运动规律 modified sine acceleration motion斜齿圆柱齿轮 helical gear斜键、钩头楔键 taper key 泄漏 leakage谐波齿轮 harmonic gear谐波传动 harmonic driving谐波发生器 harmonic generator斜齿轮的当量直齿轮 equivalent spur gear of the helical gear心轴 spindle行程速度变化系数 coefficient of travel speed variation行程速比系数 advance-to return-time ratio行星齿轮装置planetary transmission行星轮 planet gear行星轮变速装置 planetary speed changing devices行星轮系 planetary gear train形封闭凸轮机构positive-drive (or form-closed) cam mechanism虚拟现实 virtual reality虚拟现实技术 virtual reality technology, VRT虚拟现实设计 virtual reality design, VRD虚约束 redundant (or passive) constraint许用不平衡量 allowable amount of unbalance许用压力角 allowable pressure angle许用应力allowable stress; permissible stress悬臂结构 cantilever structure悬臂梁 cantilever beam循环功率流 circulating power load旋转力矩 running torque旋转式密封 rotating seal旋转运动 rotary motion选型 type selection压力 pressure 压力中心 center of pressure 压缩机 pressor压应力pressive stress压力角 pressure angle牙嵌式联轴器 jaw (teeth) positive-contact coupling雅可比矩阵 Jacobi matrix摇杆 rocker液力传动hydrodynamic drive液力耦合器 hydraulic couplers液体弹簧 liquid spring液压无级变速 hydraulic stepless speed changes液压机构 hydraulic mechanism一般化运动链 generalized kinematic chain移动从动件 reciprocating follower移动副 prismatic pair, sliding pair移动关节 prismatic joint移动凸轮 wedge cam盈亏功 increment or decrement work应力幅 stress amplitude应力集中 stress concentration应力集中系数 factor of stress concentration应力图 stress diagram应力—应变图 stress-strain diagram优化设计 optimal design油杯 oil bottle油壶 oil can油沟密封 oily ditch seal有害阻力 useless resistance有益阻力 useful resistance有效拉力 effective tension有效圆周力 effective circle force有害阻力 detrimental resistance余弦加速度运动 cosine acceleration (or simple harmonic) motion预紧力 preload原动机 primer mover圆带 round belt圆带传动 round belt drive圆弧齿厚 circular thickness圆弧圆柱蜗杆 hollow flank worm圆角半径 fillet radius圆盘摩擦离合器 disc friction clutch圆盘制动器 disc brake 原动机 prime mover原始机构 original mechanism圆形齿轮 circular gear圆柱滚子 cylindrical roller圆柱滚子轴承 cylindrical roller bearing圆柱副 cylindric pair圆柱式凸轮步进运动机构 barrel (cylindric) cam圆柱螺旋拉伸弹簧 cylindroid helical-coil extension spring圆柱螺旋扭转弹簧cylindroid helical-coil torsion spring圆柱螺旋压缩弹簧 cylindroid helical-coil pression spring圆柱凸轮 cylindrical cam圆柱蜗杆 cylindrical worm圆柱坐标操作器 cylindrical coordinate manipulator圆锥螺旋扭转弹簧 conoid helical-coil pression spring圆锥滚子 tapered roller圆锥滚子轴承 tapered roller bearing圆锥齿轮机构 bevel gears圆锥角 cone angle原动件 driving link约束 constraint约束条件 constraint condition约束反力 constraining force跃度 jerk跃度曲线 jerk diagram运动倒置 kinematic inversion运动方案设计 kinematic precept design运动分析 kinematic analysis运动副 kinematic pair运动构件 moving link运动简图 kinematic sketch运动链 kinematic chain运动失真 undercutting运动设计 kinematic design运动周期 cycle of motion运动综合 kinematic synthesis运转不均匀系数 coefficient of velocity fluctuation运动粘度 kenematic viscosity 载荷 load 载荷—变形曲线 load—deformation curve 载荷—变形图 load—deformation diagram窄 V 带 narrow V belt毡圈密封 felt ring seal展。
机械设计及其自动化 外文翻译 数控机床
【英文】High-speed machining the development ofHigh-speed machining is oriented to the 21st century a new high-tech, high-efficiency, High-precision and high surface quality as a basic feature, in the automobile industry, aerospace, Die Manufacturing and instrumentation industries gained increasingly widespread application, and has made significant technical and economic benefits. contemporary advanced manufacturing technology an important component part。
High-speed machining is to achieve high efficiency of the core technology manufacturers, intensive processes and equipment packaged so that it has a high production efficiency. It can be said that the high-speed machining is an increase in the quantity of equipment significantly improve processing efficiency essential to the technology. High-speed machining is the major advantages : improve production efficiency, improve accuracy and reduce the processing of cutting resistance。
机械设计制造及其自动化毕业设计外文翻译
机械设计制造及其自动化毕业设计外文翻译英文原文名Automatic production line PLC control of automatic feeding station中文译名基于PLC的自动化生产线自动上料站的控制中文译文:自动化生产线自动上料站的PLC控制自动生产线是由工件传送系统和控制系统,将一组自动机床和辅助设备按照工艺顺序联结起来,自动完成产品全部或部分制造过程的生产系统,简称自动线。
二十世纪20年代,随着汽车、滚动轴承、小电机和缝纫机和其他工业发展,机械制造业开始出现在自动生产线,第一个是组合机床自动线。
在20世纪20年代,第一次出现在汽车工业流水生产线和半自动生产线,然后发展成自动生产线。
第二次世界大战后,在机械制造工业发达国家,自动生产线的数量急剧增加。
采用自动生产线生产的产品应该足够大,产品设计和技术应该是先进的、稳定的和可靠的,基本上保持了很长一段时间维持不变。
自动线用于大,大规模生产可以提高劳动生产率,稳定和提高产品质量,改善劳动条件,降低生产区域,降低生产成本,缩短生产周期,保证生产平衡、显著的经济效益。
自动生产线的一个干预指定的程序或命令自动操作或控制的过程,我们的目标是稳定、准确、快速。
自动化技术广泛用于工业、农业、军事、科学研究、交通运输、商业、医疗、服务和家庭,等自动化生产线不仅可以使人们从繁重的体力劳动、部分脑力劳动以及恶劣、危险的工作环境,能扩大人的器官功能,极大地提高劳动生产率,提高人们认识世界的能力,可以改变世界。
下面我说下它的应用范围:机械制造业中有铸造、锻造、冲压、热处理、焊接、切削加工和机械装配等自动线,也有包括不同性质的工序,如毛坯制造、加工、装配、检验和包装等的综合自动线。
加工自动线发展最快,应用最广泛的机械制造。
主要包括:用于处理盒、外壳、各种各样的部件,如组合机床自动线;用于加工轴、盘部分,由通用、专业化、或自动机器自动专线;转子加工自动线;转子自动线加工过程简单、小零件等。
变速箱壳体机械加工工艺设计外文文献翻译、中英文翻译、外文翻译
Gearbox shell machining process design《Manufacturing Engineering and Technology—Machining》Mechanical Industry Press In March 2004, version 1 p560—564(Serope kalpakjian)(Steven R.Schmid)AbstractGearbox shell is a more complex structure of spare parts box, its high precision, complex process, and the processing quality will affect the overall performance engine, so it has become the engine manufacturer's focus parts one.Machining process planning must guarantee the machining quality of parts, to meet the technical requirements stipulated in drawings, at the same time should also have high productivity and efficiency. Therefore, machining process planning design is an important work, requires designers must have a rich experience in production practice and wide range of mechanical manufacturing technology basic theory knowledge. In the specified procedure, should according to the production of parts and the existing equipment conditions, taking the processing quality into account, productivity and economy requirements, after repeated analysis and comparison, to determine the optimal or the best solution.1.Technical Characteristics of the gearbox shellThe gearbox shell process features are: the structure of complex shape; processing plane, more than holes; uneven wall thickness and stiffness is low; processing of high precision typical of box-type processing part. The main processing of the surface of cylinder block top surface, the main bearing side, cylinder bore, the main and camshaft bearing bore holes and so on, they will directly affect the machining accuracy of the engine assembly precision and performance, mainly rely on precision equipment, industrial fixtures reliability and processing technology to ensure the reasonableness.2.The gearbox shell process design principles and the basisDesign Technology program should be to ensure product quality at the same time, give full consideration to the production cycle, cost and environmental protection; based on the enterprises ability to actively adopt advanced process technology and equipment, and constantly enhance their level of technology. Gearbox shell machining process design should follow the following basic principles: 2.1 The selection of processing equipmentThe principle of selection adopted the principle of selection adopted the principle of combining rigid-flexible, processing each horizontal machining center is located mainly small operations with vertical machining center, the key process a crank hole, cylinder hole, balancer shaft hole High-speed processing of high-precision horizontal machining center, an upper and lower non-critical processes before and after the four-dimensional high-efficiency rough milling and have a certain adjustment range of special machine processing;2.2 Concentration process principleFocus on a key process in principle process the body cylinder bore, crankshaft hole, Balance Shaft hole surface finishing and the combination of precision millingcylinder head, using a process focused on a setup program to complete all processing elements in order to ensure product accuracy The key quality processes to meet the cylinder capacity and the relevant technical requirements;3.The gearbox shell machining process design the main contentGearbox shell complex structure, high precision, arge size, is thin-walled parts, there are a number of high precision plane and holes. Engine block machining process characteristics; mainly flat and the hole processing, processing of flat generally use planing, milling methods such as processing, processing of hole used mainly boring, processing and multi-purpose drilling holes. As the cylinder complex structure. so how to ensure that the mutual position of the surface processing precision is an important issue.3.1 The selection of blankGearbox shell on the materials used are generally gray cast iron HT150,HT200,HT250,there is also cast aluminum or steel plate, this engine block using high-strength alloy cast iron. Cylinder in the processing prior to aging treatment in order to eliminate stress and improve the rough casting mechanical properties. Improve the rough accuracy, reduction of machining allowance, is to improve the automated production line system productivity and processing quality of the important measures. As the foreign box-type parts of rough quality and high precision, and its production-line system has been implemented directly on the blank line, not only eliminating the need for blank check device also saves the rough quality problems due to waste of machining time, increase overall efficiency. Therefore, the refinement of rough is to improve the productivity of the most promising way out. For the engine block production line, can be rough in parts on-line pre-milling six face, removing most of the margin, to facilitate direct on-line parts.3.2 Machining process selection and processing of the benchmarkChoose the right processing technology base is directly related to the processing quality can ensure the parts. Generally speaking, process benchmarking can be divided into coarse and fine reference base.3.2.1 Coarse reference baseThe baseline for the on-line thick rough ,which is particularly important the choice of benchmark crude, if crude benchmark choice unreasonable, will the uneven distribution of machining allowance, processing and surface offsets, resulting in waste. In the cylinder production line, we have adopted for the coarse side of the base;3.2.2 Fine reference baseRefined the base of this box for the engine block parts, the general use of "side two sales "for a full range of uniform benchmarks, For the longer automated production positioning. In the gearbox shell of the process, we have adopted to the side, bottom and the spindle hole positioning, in the processing center on the process.3.3 Machining Processing Stages and processes of the arrangementsOften a part of many apparent need for processing, of course, the surface machining accuracy are different. Processing of high precision surface, often afterrepeated processing; As for the processing of the surface of low precision, only need to go through one or two on the list. Thus, when the development process in order to seize the "processing high precision surface, "this conflict, the reasonable arrangement processes and rational division stage of processing. Arrange the order of the principle of process is: after the first coarse refined, the first surface after the hole, the first benchmark other. In the engine block machining, the same should follow this principle.3.3.1 roughing stage engine block machining processThe arrangements for roughing process, to fully carry out rough rough, trim most of the margin in order to ensure production efficiency;3.3.2 semi-finishing phase of the engine block machiningIn order to ensure the accuracy of the middle of some important surface processing, and arrange some semi-finishing operations, will be required accuracy and surface roughness of the surface of the middle of some processing to complete, while demanding the surface of semi-finished, to prepare for future finishing;3.3.3 The finishing stageThe finishing stage of requiring high accuracy and surface roughness of the surface processing; 3.3.4 secondary processingSecondary processing such as small surface screw holes, you can finish of the major surface after the one hand, when the workpiece deformation process little impact at the same time also reduced the rejection rate;In addition,if the main surface of a waste,these small the surface will not have to be processed,thus avoiding a waste of man-hours.However,if the processing is very easy for a small surface bumps the main surface,it should be placed on a small surface finish prior to the main surface finishing;3.3.5 make proper arrangements for secondary processesMake proper arrangements for secondary processes such as product inspection process,in part roughing stage,the key process before and after processing,spare parts all the processing has been completed,should be appropriate arrangements. Stage of processing division,has the following advantages:First,it can take measures to eliminate the rough workpiece after the stress,to ensure accuracy; second,finishing on the back,and will not damage during transport the surface of the workpiece has been processed;again,first roughing the surface defects can be detected early and promptly deal with rough,do not waste working hours.But most small parts,do not sub very thin.3.4 The gearbox shell surface of the main processing and secondary processes3.4.1 Plane processingPlane processing at present, the milling of engine blocks is the primary means of planar processing,domestic milling feed rate is generally 300-400mm/min,and foreign 2000-4000mm/min milling feed rate compared to far cry,to be on increasing,therefore,improve the milling feed rate,reduce overhead time is to improve the productivity of the major means of finishing a number of plane engine block when the milling feed rate to reach 2399mm/min,greatly improved efficiency; Top surface of the cylinder milling is a key process in the process,the flatnessrequirements for 0.02/145mm,the surface roughness of Ra1.6um.Processing in the cylinder,the use of side and spindle bearing bore positioning,top,bottom and middle vagay only aperture while processing used in the processing line outside of the knife device can better meet the engine block machining accuracy;3.4.2 General holes MachiningGeneral holes Machining holes in general are still using the traditional processing of drilling,expansion,boring,reaming,tapping and other craft approach. Issues in the design process of specific programs,use of coated cutting tools,cutting tools and other advanced tools within the cooling,and using a large flow of cooling systems,greatly improving the cutting speed,improved productivity;3.4.3 Deep hole processingDeep hole processing of the traditional processing method is used to grade twist drill feed,low efficiency of their production,processing and quality is poor.The deep hole in the engine block processing,the use of gun drilling process;3.4.4 CleaningCleaning is divided into wet cleaning and dry cleaning.Machining cylinder automatic production line using a large flow of wet cleaning;3.4.5 DetectionDetect points outside the line detection and line detection of two kinds. Quality inspection in the engine block,according to the actual situation with lines outside the detection,the main use of coordinate measuring machine integrated measurements of the cylinder,each 200 samples 1-5 pieces,each class random one.变速箱壳体机械加工工艺设计摘自:《机械工程与技术(机加工)》(英文版)机械工业出版社2004年3月第1版美国卡卡尔帕基安·施密德摘要变速箱壳体是变速器机零件中结构较为复杂的箱体零件,其精度要求高,加工工艺复杂,并且加工加工质量的好坏直接影响发动机整个机构的性能,因此,它成为各个发动机生产厂家所关注的重点零件之一。
变速箱壳体机械加工工艺设计外文文献翻译、中英文翻译、外文翻译
变速箱壳体机械加工工艺设计外文文献翻译、中英文翻译、外文翻译This article discusses the design of a gearbox shell machining process。
The process includes rough machining。
semi-finishing。
and finishing ns。
The article also covers the n of cutting tools。
cutting parameters。
and cutting fluids。
The goal of the process design is to achieve high n and efficiency XXX.nThe gearbox shell XXX power from the engine to the wheels。
The shell must be machined to high n to XXX n。
In this article。
we will discuss the design of a machining process for the gearbox shell.Rough MachiningXXX of the material from the gearbox shell。
This n is XXX。
care must be XXX to the workpiece。
The use of cutting fluids is also important to ce heat n and XXX.Semi-FinishingThe semi-XXX shape and size。
This n is XXX n and surface quality。
The use of cutting fluids is also important to ce heat n and XXX finish.FinishingXXX finishing n is the final step in the machining process。
(机械制造行业)机械专业中英文对照翻译大全
(机械制造行业)机械专业中英文对照翻译大全机械专业英语词汇中英文对照翻译一览表陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheel后角clearance angle龙门刨削planing主轴spindle主轴箱headstock卡盘chuck加工中心machining center 车刀lathe tool车床lathe钻削镗削bore车削turning磨床grinder基准benchmark钳工locksmith锻forge压模stamping焊weld拉床broaching machine 拉孔broaching装配assembling铸造found流体动力学fluid dynamics 流体力学fluid mechanics加工machining液压hydraulic pressure切线tangent机电一体化mechanotronics mechanical-electrical integration气压air pressure pneumatic pressure稳定性stability介质medium液压驱动泵fluid clutch液压泵hydraulic pump阀门valve失效invalidation强度intensity载荷load应力stress安全系数safty factor可靠性reliability螺纹thread螺旋helix键spline销pin滚动轴承rolling bearing滑动轴承sliding bearing弹簧spring制动器arrester brake十字结联轴节crosshead联轴器coupling链chain皮带strap精加工finish machining粗加工rough machining变速箱体gearbox casing腐蚀rust氧化oxidation磨损wear耐用度durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor 集成电路integrate circuit挡板orifice plate残余应力residual stress套筒sleeve扭力torsion冷加工cold machining电动机electromotor汽缸cylinder过盈配合interference fit热加工hotwork摄像头CCD camera倒角rounding chamfer优化设计optimal design工业造型设计industrial moulding design有限元finite element滚齿hobbing插齿gear shaping伺服电机actuating motor铣床milling machine钻床drill machine镗床boring machine步进电机stepper motor丝杠screw rod导轨lead rail组件subassembly可编程序逻辑控制器Programmable Logic Controller PLC 电火花加工electric spark machining电火花线切割加工electrical discharge wire - cutting 相图phase diagram热处理heat treatment固态相变solid state phase changes有色金属nonferrous metal陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant 逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy 动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheelAssembly line 组装线Layout 布置图Conveyer 流水线物料板Rivet table 拉钉机Rivet gun 拉钉枪Screw driver 起子Pneumatic screw driver 气动起子worktable 工作桌OOBA 开箱检查fit together 组装在一起fasten 锁紧(螺丝)fixture 夹具(治具)pallet 栈板barcode 条码barcode scanner 条码扫描器fuse together 熔合fuse machine热熔机repair修理operator作业员QC品管supervisor 课长ME 制造工程师MT 制造生技cosmetic inspect 外观检查inner parts inspect 内部检查thumb screw 大头螺丝lbs. inch 镑、英寸EMI gasket 导电条front plate 前板rear plate 后板chassis 基座bezel panel 面板power button 电源按键reset button 重置键Hi-pot test of SPS 高源高压测试Voltage switch of SPS 电源电压接拉键sheet metal parts 冲件plastic parts 塑胶件SOP 制造作业程序material check list 物料检查表work cell 工作间trolley 台车carton 纸箱sub-line 支线left fork 叉车personnel resource department 人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |plein|刨床miller铣床grinder磨床linear cutting线切割electrical sparkle电火花welder电焊机staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vice manager副理section supervisor课长deputy section supervisor =vice section superisor副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检to connect material接料to reverse material 翻料wet station沾湿台Tiana天那水cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |\\'skr?pid|报废scrape ..v.刮;削deficient purchase来料不良manufacture procedure制程deficient manufacturing procedure制程不良oxidation |\\' ksi\\'dei?n|氧化scratch刮伤dents压痕defective upsiding down抽芽不良defective to staking铆合不良embedded lump镶块feeding is not in place送料不到位stamping-missing漏冲production capacity生产力education and training教育与训练proposal improvement提案改善spare parts=buffer备件forklift叉车trailer=long vehicle拖板车compound die合模die locker锁模器pressure plate=plate pinch压板bolt螺栓administration/general affairs dept总务部automatic screwdriver电动启子thickness gauge厚薄规gauge(or jig)治具power wire电源线buzzle蜂鸣器defective product label不良标签identifying sheet list标示单location地点present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheet PCE组装厂生产排配表model机锺work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门stock age analysis sheet 库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked 待验或重工total合计cause description原因说明part number/ P/N 料号type形态item/group/class类别quality品质prepared by制表notes说明year-end physical inventory difference analysis sheet 年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸convex凹short射料不足nick缺口speck瑕??shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机阿基米德蜗杆Archimedes worm安全系数safety factor; factor of safety安全载荷safe load凹面、凹度concavity扳手wrench板簧flat leaf spring半圆键woodruff key变形deformation摆杆oscillating bar摆动从动件oscillating follower摆动从动件凸轮机构cam with oscillating follower 摆动导杆机构oscillating guide-bar mechanism 摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile摆线运动规律cycloidal motion摆线针轮cycloidal-pin wheel包角angle of contact保持架cage背对背安装back-to-back arrangement背锥back cone ;normal cone背锥角back angle背锥距back cone distance比例尺scale比热容specific heat capacity闭式链closed kinematic chain闭链机构closed chain mechanism臂部arm变频器frequency converters变频调速frequency control of motor speed 变速speed change变速齿轮change gear change wheel变位齿轮modified gear变位系数modification coefficient标准齿轮standard gear标准直齿轮standard spur gear表面质量系数superficial mass factor表面传热系数surface coefficient of heat transfer 表面粗糙度surface roughness并联式组合combination in parallel并联机构parallel mechanism并联组合机构parallel combined mechanism并行工程concurrent engineering并行设计concurred design, CD不平衡相位phase angle of unbalance不平衡imbalance (or unbalance)不平衡量amount of unbalance不完全齿轮机构intermittent gearing波发生器wave generator波数number of waves补偿compensation参数化设计parameterization design, PD残余应力residual stress操纵及控制装置operation control device槽轮Geneva wheel槽轮机构Geneva mechanism ;Maltese cross 槽数Geneva numerate槽凸轮groove cam侧隙backlash差动轮系differential gear train差动螺旋机构differential screw mechanism差速器differential常用机构conventional mechanism; mechanism in common use车床lathe承载量系数bearing capacity factor承载能力bearing capacity成对安装paired mounting尺寸系列dimension series齿槽tooth space齿槽宽spacewidth齿侧间隙backlash齿顶高addendum齿顶圆addendum circle齿根高dedendum齿根圆dedendum circle齿厚tooth thickness齿距circular pitch齿宽face width齿廓tooth profile齿廓曲线tooth curve齿轮gear齿轮变速箱speed-changing gear boxes齿轮齿条机构pinion and rack齿轮插刀pinion cutter; pinion-shaped shaper cutter 齿轮滚刀hob ,hobbing cutter齿轮机构gear齿轮轮坯blank齿轮传动系pinion unit齿轮联轴器gear coupling齿条传动rack gear齿数tooth number齿数比gear ratio齿条rack齿条插刀rack cutter; rack-shaped shaper cutter齿形链、无声链silent chain齿形系数form factor齿式棘轮机构tooth ratchet mechanism插齿机gear shaper重合点coincident points重合度contact ratio冲床punch传动比transmission ratio, speed ratio传动装置gearing; transmission gear传动系统driven system传动角transmission angle传动轴transmission shaft串联式组合combination in series串联式组合机构series combined mechanism 串级调速cascade speed control创新innovation creation创新设计creation design垂直载荷、法向载荷normal load唇形橡胶密封lip rubber seal磁流体轴承magnetic fluid bearing从动带轮driven pulley从动件driven link, follower从动件平底宽度width of flat-face从动件停歇follower dwell从动件运动规律follower motion从动轮driven gear粗线bold line粗牙螺纹coarse thread大齿轮gear wheel打包机packer打滑slipping带传动belt driving带轮belt pulley带式制动器band brake单列轴承single row bearing单向推力轴承single-direction thrust bearing单万向联轴节single universal joint单位矢量unit vector当量齿轮equivalent spur gear; virtual gear当量齿数equivalent teeth number; virtual number of teeth当量摩擦系数equivalent coefficient of friction当量载荷equivalent load刀具cutter导数derivative倒角chamfer导热性conduction of heat导程lead导程角lead angle等加等减速运动规律parabolic motion; constant acceleration and deceleration motion等速运动规律uniform motion; constant velocity motion等径凸轮conjugate yoke radial cam等宽凸轮constant-breadth cam等效构件equivalent link等效力equivalent force等效力矩equivalent moment of force等效量equivalent等效质量equivalent mass等效转动惯量equivalent moment of inertia等效动力学模型dynamically equivalent model底座chassis低副lower pair点划线chain dotted line(疲劳)点蚀pitting垫圈gasket垫片密封gasket seal碟形弹簧belleville spring顶隙bottom clearance定轴轮系ordinary gear train; gear train with fixed axes 动力学dynamics动密封kinematical seal动能dynamic energy动力粘度dynamic viscosity动力润滑dynamic lubrication动平衡dynamic balance动平衡机dynamic balancing machine动态特性dynamic characteristics动态分析设计dynamic analysis design动压力dynamic reaction动载荷dynamic load端面transverse plane端面参数transverse parameters端面齿距transverse circular pitch端面齿廓transverse tooth profile端面重合度transverse contact ratio端面模数transverse module端面压力角transverse pressure angle锻造forge对称循环应力symmetry circulating stress对心滚子从动件radial (or in-line ) roller follower对心直动从动件radial (or in-line ) translating follower对心移动从动件radial reciprocating follower对心曲柄滑块机构in-line slider-crank (or crank-slider) mechanism多列轴承multi-row bearing多楔带poly V-belt多项式运动规律polynomial motion多质量转子rotor with several masses惰轮idle gear额定寿命rating life额定载荷load ratingII 级杆组dyad发生线generating line发生面generating plane法面normal plane法面参数normal parameters法面齿距normal circular pitch法面模数normal module法面压力角normal pressure angle法向齿距normal pitch法向齿廓normal tooth profile法向直廓蜗杆straight sided normal worm法向力normal force反馈式组合feedback combining反向运动学inverse ( or backward) kinematics 反转法kinematic inversion反正切Arctan范成法generating cutting仿形法form cutting方案设计、概念设计concept design, CD防振装置shockproof device飞轮flywheel飞轮矩moment of flywheel非标准齿轮nonstandard gear非接触式密封non-contact seal非周期性速度波动aperiodic speed fluctuation非圆齿轮non-circular gear粉末合金powder metallurgy分度线reference line; standard pitch line分度圆reference circle; standard (cutting) pitch circle 分度圆柱导程角lead angle at reference cylinder分度圆柱螺旋角helix angle at reference cylinder分母denominator分子numerator分度圆锥reference cone; standard pitch cone分析法analytical method封闭差动轮系planetary differential复合铰链compound hinge复合式组合compound combining复合轮系compound (or combined) gear train复合平带compound flat belt复合应力combined stress复式螺旋机构Compound screw mechanism 复杂机构complex mechanism杆组Assur group干涉interference刚度系数stiffness coefficient刚轮rigid circular spline钢丝软轴wire soft shaft刚体导引机构body guidance mechanism 刚性冲击rigid impulse (shock)刚性转子rigid rotor刚性轴承rigid bearing刚性联轴器rigid coupling高度系列height series高速带high speed belt高副higher pair格拉晓夫定理Grashoff`s law根切undercutting公称直径nominal diameter高度系列height series功work工况系数application factor工艺设计technological design工作循环图working cycle diagram工作机构operation mechanism工作载荷external loads工作空间working space工作应力working stress工作阻力effective resistance工作阻力矩effective resistance moment 公法线common normal line公共约束general constraint公制齿轮metric gears功率power功能分析设计function analyses design 共轭齿廓conjugate profiles共轭凸轮conjugate cam构件link鼓风机blower固定构件fixed link; frame固体润滑剂solid lubricant关节型操作器jointed manipulator惯性力inertia force惯性力矩moment of inertia ,shaking moment 惯性力平衡balance of shaking force惯性力完全平衡full balance of shaking force惯性力部分平衡partial balance of shaking force 惯性主矩resultant moment of inertia惯性主失resultant vector of inertia冠轮crown gear广义机构generation mechanism广义坐标generalized coordinate轨迹生成path generation轨迹发生器path generator滚刀hob滚道raceway滚动体rolling element滚动轴承rolling bearing滚动轴承代号rolling bearing identification code 滚针needle roller滚针轴承needle roller bearing滚子roller滚子轴承roller bearing滚子半径radius of roller滚子从动件roller follower滚子链roller chain滚子链联轴器double roller chain coupling 滚珠丝杆ball screw滚柱式单向超越离合器roller clutch过度切割undercutting函数发生器function generator函数生成function generation含油轴承oil bearing耗油量oil consumption耗油量系数oil consumption factor赫兹公式H. Hertz equation合成弯矩resultant bending moment合力resultant force合力矩resultant moment of force黑箱black box横坐标abscissa互换性齿轮interchangeable gears花键spline滑键、导键feather key滑动轴承sliding bearing滑动率sliding ratio滑块slider环面蜗杆toroid helicoids worm环形弹簧annular spring缓冲装置shocks; shock-absorber灰铸铁grey cast iron回程return回转体平衡balance of rotors混合轮系compound gear train积分integrate机电一体化系统设计mechanical-electrical integration system design机构mechanism机构分析analysis of mechanism机构平衡balance of mechanism机构学mechanism机构运动设计kinematic design of mechanism机构运动简图kinematic sketch of mechanism机构综合synthesis of mechanism机构组成constitution of mechanism机架frame, fixed link机架变换kinematic inversion机器machine机器人robot机器人操作器manipulator机器人学robotics技术过程technique process技术经济评价technical and economic evaluation 技术系统technique system机械machinery机械创新设计mechanical creation design, MCD机械系统设计mechanical system design, MSD机械动力分析dynamic analysis of machinery机械动力设计dynamic design of machinery机械动力学dynamics of machinery机械的现代设计modern machine design机械系统mechanical system机械利益mechanical advantage机械平衡balance of machinery机械手manipulator机械设计machine design; mechanical design机械特性mechanical behavior机械调速mechanical speed governors机械效率mechanical efficiency机械原理theory of machines and mechanisms机械运转不均匀系数coefficient of speed fluctuation机械无级变速mechanical stepless speed changes基础机构fundamental mechanism基本额定寿命basic rating life基于实例设计case-based design,CBD基圆base circle基圆半径radius of base circle基圆齿距base pitch基圆压力角pressure angle of base circle基圆柱base cylinder基圆锥base cone急回机构quick-return mechanism急回特性quick-return characteristics急回系数advance-to return-time ratio急回运动quick-return motion棘轮ratchet棘轮机构ratchet mechanism棘爪pawl极限位置extreme (or limiting) position极位夹角crank angle between extreme (or limiting) positions 计算机辅助设计computer aided design, CAD计算机辅助制造computer aided manufacturing, CAM计算机集成制造系统computer integrated manufacturingsystem, CIMS计算力矩factored moment; calculation moment 计算弯矩calculated bending moment加权系数weighting efficient加速度acceleration加速度分析acceleration analysis加速度曲线acceleration diagram尖点pointing; cusp尖底从动件knife-edge follower间隙backlash间歇运动机构intermittent motion mechanism 减速比reduction ratio减速齿轮、减速装置reduction gear减速器speed reducer减摩性anti-friction quality渐开螺旋面involute helicoid渐开线involute渐开线齿廓involute profile渐开线齿轮involute gear渐开线发生线generating line of involute渐开线方程involute equation渐开线函数involute function渐开线蜗杆involute worm渐开线压力角pressure angle of involute渐开线花键involute spline简谐运动simple harmonic motion键key键槽keyway交变应力repeated stress交变载荷repeated fluctuating load交叉带传动cross-belt drive交错轴斜齿轮crossed helical gears胶合scoring角加速度angular acceleration角速度angular velocity角速比angular velocity ratio角接触球轴承angular contact ball bearing角接触推力轴承angular contact thrust bearing 角接触向心轴承angular contact radial bearing 角接触轴承angular contact bearing铰链、枢纽hinge校正平面correcting plane接触应力contact stress接触式密封contact seal阶梯轴multi-diameter shaft结构structure结构设计structural design截面section节点pitch point节距circular pitch; pitch of teeth节线pitch line节圆pitch circle节圆齿厚thickness on pitch circle节圆直径pitch diameter节圆锥pitch cone节圆锥角pitch cone angle解析设计analytical design紧边tight-side紧固件fastener径节diametral pitch径向radial direction径向当量动载荷dynamic equivalent radial load径向当量静载荷static equivalent radial load径向基本额定动载荷basic dynamic radial load rating 径向基本额定静载荷basic static radial load tating径向接触轴承radial contact bearing径向平面radial plane径向游隙radial internal clearance径向载荷radial load径向载荷系数radial load factor径向间隙clearance静力static force静平衡static balance静载荷static load静密封static seal局部自由度passive degree of freedom矩阵matrix矩形螺纹square threaded form锯齿形螺纹buttress thread form矩形牙嵌式离合器square-jaw positive-contact clutch 绝对尺寸系数absolute dimensional factor绝对运动absolute motion绝对速度absolute velocity均衡装置load balancing mechanism抗压强度compression strength开口传动open-belt drive开式链open kinematic chain开链机构open chain mechanism可靠度degree of reliability可靠性reliability可靠性设计reliability design, RD空气弹簧air spring空间机构spatial mechanism空间连杆机构spatial linkage空间凸轮机构spatial cam空间运动副spatial kinematic pair 空间运动链spatial kinematic chain 空转idle宽度系列width series框图block diagram雷诺方程Reynolds‘s equation离心力centrifugal force离心应力centrifugal stress离合器clutch离心密封centrifugal seal理论廓线pitch curve理论啮合线theoretical line of action 隶属度membership力force力多边形force polygon。
机械毕业设计英文外文翻译585主减速器和差速器
附录A 英文文献Final drive\DifferentialAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.PowerflowThe drive axle must transmit power through a 90° angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear,which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Fig 1 Drive axleRear-wheel driveRear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection, but the actuator is located at the front or the back of the adjacent shaftof the two bridges is arranged in series. Vehicle before and after the two ends of the driving force of the drive axle, is the sub-actuator and the transmission through the middle of the bridge. The advantage is not onlya reduction of the number of drive shaft, and raise the driving axle of the common parts of each other, and to simplify the structure, reduces the volume and quality.Fig 2 Rear-wheel-drive axle Some vehicles do not follow this typical example. Such as the older Porsche or Volkswagen vehicles which were rear engine, rear drive. These vehicles use a rear mounted transaxle with halfshafts connected to the drive wheels. Also, some vehicles were produced with a front engine, rear transaxle setup with a driveshaft connecting the engine to the transaxle, and halfshafts linking the transaxle to the drive wheels.Differential operationIn order to remove the wheel around in the kinematics due to the lack of co-ordination about the wheel diameter arising from a differentor the same rolling radius of wheel travel required, inter-wheel motor vehicles are equipped with about differential, the latter to ensure that the car driver Bridge on both sides of the wheel when in range with a trip to the characteristics of rotating at different speeds to meet the requirements of the vehicle kinematics.Fig 3 Principle of differentialThe accompanying illustration has been provided to help understand how this occurs.1.The drive pinion, which is turned by the driveshaft, turns the ring gear.2.The ring gear, which is attached to the differential case, turns the case.3.The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case.4.The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft .5.Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit.6.The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns.7.When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears.8.When it is necessary to turn a corner, the differential gearing becomes effective and allows the axle shafts to rotate at different speeds .Open-wheel differential on each general use the same amount of torque. To determine the size of the wheel torque to bear two factors: equipment and friction. In dry conditions, when a lot of friction, the wheel bearing torque by engine size and gear restrictions are hours in the friction (such as driving on ice), is restricted to a maximum torque, so that vehicles will not spin round. So even if the car can produce more torque, but also need to have sufficient traction to transfer torque to the ground. If you increase the throttle after the wheels slip, it will only make the wheels spin faster.Fig 4 Conventional differential Limited-slip and locking differential operationFig 5 Limited-slip differentialDifferential settlement of a car in the uneven road surface and steering wheel-driven speed at about the different requirements; but is followed by the existence of differential in the side car wheel skid can not be effective when the power transmission, that is, the wheel slip can not produce the driving force, rather than spin the wheel and does not have enough torque. Good non-slip differential settlement of the car wheels skid on the side of the power transmission when the issue, that is, locking differential, so that no longer serve a useful differential right andleft sides of the wheel can be the same torque.Limited-slip and locking differential operation can be divided into two major categories:(1) mandatory locking type in ordinary differential locking enforcement agencies to increase, when the side of the wheel skid occurs, the driver can be electric, pneumatic or mechanical means to manipulate the locking body meshing sets of DIP Shell will be with the axle differential lock into one, thus the temporary loss of differential role. Relatively simple structure in this way, but it must be operated by the driver, and good roads to stop locking and restore the role of differential.(2) self-locking differential installed in the oil viscosity or friction clutch coupling, when the side of the wheel skid occurs when both sides of the axle speed difference there, coupling or clutch friction resistance on the automatic, to make certain the other side of the wheel drive torque and the car continued to travel. When there is no speed difference on both sides of the wheel, the frictional resistance disappeared, the role of automatic restoration of differentials. More complicated structure in this way, but do not require drivers to operate. Has been increasingly applied in the car. About non-slip differential, not only used for the differential between the wheels, but also for all-wheel drive vehicle inter-axle differential/.Gear ratioThe drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put anotherway, the driveshaft must turn 4.11 times to turn the wheels once. The role of the final drive is to reduce the speed from the drive shaft, thereby increasing the torque. Lord of the reduction ratio reducer, a driving force for car performance and fuel economy have a greater impact. In general, the more reduction ratio the greater the acceleration and climbing ability, and relatively poor fuel economy. However, if it is too large, it can not play the full power of the engine to achieve the proper speed. The main reduction ratio is more Smaller ,the speed is higher, fuel economy is better, but the acceleration and climbing ability will be poor.附录B 文献翻译主减速器和差速器所有的汽车都装有不同类型的主减速器和差速器来驱动汽车行驶。
机械设计制造及其自动化专业英语翻译(最新整理1)
Unit 1 Metals金属Unit 2 Selection of Construction Materials工程材料的选择Unit 3 Mechanical Properties of MaterialsUnit5 Design of machine and machine elements机器和机器零件的设计Machine design机器设计1 Machine design is the art of planning or devising new or improved machines to accomplish specific purposes. In general, a machine will consist of a combination of several different mechanical elements properly designed and arranged to work together, as a whole. During theinitial planning of a machine, fundamental decisions must be made concerning loading, type of kinematic elements to be used, and correct utilization of the properties of engineering materials. Economic considerations are usually of prime importance when the design of new machinery is undertaken. In general, the lowest over-all costs are designed. Consideration should be given not only to the cost of design, manufacture the necessary safety features and be of pleasing external appearance. The objective is to produce a machine which is not only sufficiently rugged to function properly for a reasonable life, but is at the same time cheap enough to be economically feasible.机器设计为了特定的目的而发明或改进机器的一种艺术。
机械设计制造及其自动化《专业英语》翻译
2、应力和应变在任何工程结构中独立的部件或构件将承受来自于部件的使用状况或工作的外部环境的外力作用。
如果组件就处于平衡状态,由此而来的各种外力将会为零,但尽管如此,它们共同作用部件的载荷易于使部件变形同时在材料里面产生相应的内力。
有很多不同负载可以应用于构件的方式。
负荷根据相应时间的不同可分为:(a)静态负荷是一种在相对较短的时间内逐步达到平衡的应用载荷。
(b)持续负载是一种在很长一段时间为一个常数的载荷, 例如结构的重量。
这种类型的载荷以相同的方式作为一个静态负荷; 然而,对一些材料与温度和压力的条件下,短时间的载荷和长时间的载荷抵抗失效的能力可能是不同的。
(c)冲击载荷是一种快速载荷(一种能量载荷)。
振动通常导致一个冲击载荷, 一般平衡是不能建立的直到通过自然的阻尼力的作用使振动停止的时候。
(d)重复载荷是一种被应用和去除千万次的载荷。
(e)疲劳载荷或交变载荷是一种大小和设计随时间不断变化的载荷。
上面已经提到,作用于物体的外力与在材料里面产生的相应内力平衡。
因此,如果一个杆受到一个均匀的拉伸和压缩,也就是说, 一个力,均匀分布于一截面,那么产生的内力也均匀分布并且可以说杆是受到一个均匀的正常应力,应力被定义为应力==负载 P /压力 A,因此根据载荷的性质应力是可以压缩或拉伸的,并被度量为牛顿每平方米或它的倍数。
如果一个杆受到轴向载荷,即是应力,那么杆的长度会改变。
如果杆的初始长度L和改变量△L已知,产生的应力定义如下:应力==改变长△L /初始长 L因此应力是一个测量材料变形和无量纲的物理量 ,即它没有单位;它只是两个相同单位的物理量的比值。
一般来说,在实践中,在荷载作用下材料的延伸是非常小的, 测量的应力以*10-6的形式是方便的, 即微应变, 使用的符号也相应成为ue。
从某种意义上说,拉伸应力与应变被认为是正的。
压缩应力与应变被认为是负的。
因此负应力使长度减小。
当负载移除时,如果材料回复到初始的,无负载时的尺寸时,我们就说它是具有弹性的。
机械工程毕业设计外文翻译
毕业设计论文外文资料原文及译文学院:机电工程学院专业:机械设计制造及其自动化班级:学号:姓名:Mechanical engineering1.The porfile of mechanical engineeringEngingeering is a branch of mechanical engineerig,it studies mechanical and power generation especially power and movement.2.The history of mechanical engineering18th century later periods,the steam engine invention has provided a main power fountainhead for the industrial revolution,enormously impelled each kind of mechznical biting.Thus,an important branch of a new Engineering – separated from the civil engineering tools and machines on the branch-developed together with Birmingham and the establishment of the Associantion of Mechanical Engineers in 1847 had been officially recognized.The mechanical engineering already mainly used in by trial and error method mechanic application technological development into professional engineer the scientific method of which in the research,the design and the realm of production used .From the most broad perspective,the demend continuously to enhance the efficiencey of mechanical engineers improve the quality ofwork,and asked him to accept the history of the high degree of education and training.Machine operation to stress not only economic but also infrastructure costs to an absolute minimun.3.The field of mechanical engineeringThe commodity machinery development in the develop country,in the high level material life very great degree is decided each kind of which can realize in the mechanical engineering.Mechanical engineers unceasingly will invent the machine next life to produce the commodity,unceasingly will develop the accuracy and the complexity more and more high machine tools produces the machine.The main clues of the mechanical development is:In order to enhance the excellent in quality and reasonable in price produce to increase the precision as well as to reduce the production cost.This three requirements promoted the complex control system development.The most successful machine manufacture is its machine and the control system close fusion,whether such control system is essentially mechanical or electronic.The modernized car engin production transmission line(conveyer belt)is a series of complex productions craft mechanizationvery good example.The people are in the process of development in order to enable further automation of the production machinery ,the use of a computer to store and handle large volumes of data,the data is a multifunctional machine tools necessary for the production of spare parts.One of the objectives is to fully automated production workshop,three rotation,but only one officer per day to operate.The development of production for mechanical machinery must have adequate power supply.Steam engine first provided the heat to generate power using practical methods in the old human,wind and hydropower,an increase of engin .New mechanical engineering industry is one of the challenges faced by the initial increase thermal effciency and power,which is as big steam turbine and the development of joint steam boilers basically achieved.20th century,turbine generators to provide impetus has been sustained and rapid growth,while thermal efficiency is steady growth,and large power plants per kW capital consumption is also declining.Finally,mechanical engineers have nuclear energy.This requires the application of nuclear energy particularly high reliability and security,which requires solving many new rge power plants and the nuclear power plant control systems have become highly complex electroonics,fluid,electricity,water and mechanical parts networks All in all areas related to the mechanical engineers.Small internal combustion engine,both to the type (petrol and diesel machines)or rotary-type(gas turbines and Mong Kerr machine),as well as their broad application in the field of transport should also due to mechanical enginerrs.Throughout the transport,both in the air and space,or in the terrestrial and marine,mechanial engineers created a variety of equipment and power devices to their increasing cooperation with electrical engineers,especially in the development of appropration control systems.Mechanical engineers in the development of military weapons technology and civil war ,needs a similar,though its purpose is to enhance rather than destroy their productivity.However.War needs a lot of resources to make the area of techonlogy,many have a far-reaching development in peacetime efficiency.Jet aircraft and nuclear reactors are well known examples.The Biological engineering,mechanical engineering biotechnology is a relatively new and different areas,it provides for the replacement of the machine or increase thebody functions as well as for medical equipment.Artficial limbs have been developed and have such a strong movement and touch response function of the human body.In the development of artificial organ transplant is rapid,complex cardiac machines and similar equipment to enable increasingly complex surgery,and injuries and ill patients life functions can be sustained.Some enviromental control mechanical engineers through the initial efforts to drainage or irrigation pumping to the land and to mine and ventilation to control the human environment.Modern refrigeration and air-conditioning plant commonaly used reverse heat engine,where the heat from the engine from cold places to more external heat.Many mechanical engineering products,as well as other leading technology development city have side effects on the environment,producing noise,water and air pollution caused,destroyed land and landscape.Improve productivity and diver too fast in the commodity,that the renewable naturalforces keep pace.For mechanical engineers and others,environmental control is rapidly developing area,which includes a possible development and production of small quantities of pollutants machine sequnce,and the development of new equipment and teachnology has been to reduce and eliminate pollution.4.The role of mechanical engineeringThere are four generic mechanical engineers in common to the above all domains function.The 1st function is the understanding and the research mechanical science foundation.It includes the power and movement of the relationship dynamics For example,in the vibration and movement of the relationship;Automatic control;Study of the various forms of heart,energy,power relations between the thermodynamic;Fluidflows; Heat transfer; Lubricant;And material properties.The 2nd function will be conducts the research,the desing and the development,this function in turn attempts to carry on the essential change to satisfy current and the future needs.This not only calls for a clear understanding of mechanical science,and have to breakdown into basic elements of a complex system capacity.But also the need for synthetic and innovative inventions.The 3rd function is produces the product and the power,include plan,operation and maintenance.Its goal lies in the maintenance eitherenhances the enterprise or the organization longer-tern and survivabilaty prestige at the same time,produces the greatest value by the least investments and the consumption.The 4th function is mechanical engineer’s coordinated function,including the management,the consultation,as well as carries on the market marking in certain situation.In all these function,one kind unceasingly to use the science for a long time the method,but is not traditional or the intuition method tendency,this is a mechanical engineering skill aspect which unceasingly grows.These new rationalization means typical names include:The operations research,the engineering economics,the logical law problem analysis(is called PABLA) However,creativity is not rationalization.As in other areas,in mechanical engineering,to take unexpected and important way to bring about a new capacity,still has a personal,marked characteristice.5.The design of mechanical engineeringThe design of mechanical is the design has the mechanical property the thing or the system,such as:the instrument and the measuring appliance in very many situations,the machine design must use the knowledge of discipline the and so on mathematics,materials science and mechanics.Mechanical engineering desgin includeing all mechanical desgin,but it was a study,because it also includes all the branches of mechsnical engineering,such as thermodynamics all hydrodynamics in the basic disciplines needed,in the mechanical engineering design of the initial stude or mechanical design.Design stages.The entire desgin process from start to finish,in the process,a demand that is designed for it and decided to do the start.After a lot of repetition,the final meet this demand by the end of the design procees and the plan.Design considerations.Sometimes in a system is to decide which parts needs intensity parts of geometric shapesand size an important factor in this context that we must consider that the intensity is an important factor in the design.When we use expression design considerations,we design parts that may affect the entire system design features.In the circumstances specified in the design,usually for a series of such functions must be taken into account.Howeever,to correct purposes,we should recognize that,in many cases thedesign of important design considerations are not calculated or test can determine the components or systems.Especially students,wheen in need to make important decisions in the design and conduct of any operation that can not be the case,they are often confused.These are not special,they occur every day,imagine,for example,a medical laboratory in the mechanical design,from marketing perspective,people have high expectations from the strength and relevance of impression.Thick,and heavy parts installed together:to produce a solid impression machines.And sometimes machinery and spare parts from the design style is the point and not the other point of view.Our purpose is to make those you do not be misled to believe that every design decision will needreasonable mathematical methods.Manufacturing refers to the raw meterials into finished products in the enterprise.Create three distinct phases.They are:input,processing exprot.The first phase includes the production of all products in line with market needs essential.First there must be the demand for the product,the necessary materials,while also needs such as energy,time,human knowledge and technology resourcess .Finall,the need for funds to obtain all the other resources. Lose one stage after the second phase of the resources of the processes to be distributed.Processing of raw materials into finished products of these processes.To complete the design,based on the design,and then develop plans.Plan implemented through various production processes.Management of resources and processes to ensure efficiency and productivity.For example,we must carefully manage resources to ensure proper use of funds.Finally,people are talking about the product market was cast.Stage is the final stage of exporting finished or stage.Once finished just purchased,it must be delivered to the users.According to product performance,installation and may have to conduct further debugging in addition,some products,especially those very complex products User training is necessary.6.The processes of materials and maunfacturingHere said engineering materials into two main categories:metals and non-ferrous,high-performance alloys and power metals.Non-metallic futher divided into plastice,synthetic rubber,composite materials and ceramics.It said the productionproccess is divided into several major process,includingshape,forging,casting/ founding,heat treatment,fixed/connections ,measurement/ quality control and materal cutting.These processes can be further divide into each other’s craft.Various stages of the development of the manufacturing industry Over the years,the manufacturing process has four distinct stages of development, despite the overlap.These stages are:The first phase is artisanal,the second Phase is mechanization.The third phase is automation the forth Phase is integrated.When mankind initial processing of raw materials into finished products will be,they use manual processes.Each with their hands and what are the tools manuslly produced.This is totally integrated production take shape.A person needs indentification,collection materials,the design of a product to meet that demand,the production of such products and use it.From beginning to end,everything is focused on doing the work of the human ter in the industrial revolution introduced mechanized production process,people began to use machines to complete the work accomplished previously manual. This led to the specialization.Specialization in turn reduce the manufacture of integrated factors.In this stage of development,manufacturing workers can see their production as a whole represent a specific piece of the part of the production process.One can not say that their work is how to cope with the entire production process,or how they were loaded onto a production of parts finished.Development of manufacting processes is the next phase of the selection process automation.This is a computer-controlled machinery and processes.At this stage,automation island began to emerge in the workshop lane.Each island represents a clear production process or a group of processes.Although these automated isolated island within the island did raise the productivity of indivdual processes,but the overall productivity are often not change.This is because the island is not caught in other automated production process middle,but not synchronous with them .The ultimate result is the efficient working fast parked through automated processes,but is part of the stagnation in wages down,causing bottlenecks.To better understand this problem,you can imagine the traffic in the peak driving a red light from the red Service Department to the next scene. Occasionally you will find a lot less cars,more than being slow-moving vehicles,but the results can be found by thenext red light Brance.In short you real effect was to accelerate the speed of a red Department obstruction offset.If you and other drivers can change your speed and red light simultaneously.Will advance faster.Then,all cars will be consistent,sommth operation,the final everyone forward faster.In the workshop where the demand for stable synchronization of streamlined production,and promoted integration of manufacturing development.This is a still evolving technology.Fully integrated in the circumstances,is a computer-controllrd machinery and processing.integrated is completed through computer.For example in the preceding paragraph simulation problems,the computer will allow all road vehicles compatible with the change in red.So that everyone can steady traffic.Scientific analysis of movement,timing and mechanics of the disciplines is that it is composed of two pater:statics and dynamics.Statics analyzed static system that is in the system,the time is not taken into account,research and analysis over time and dynamics of the system change.Dynameics from the two componets.Euler in 1775 will be the first time two different branches: Rigid body movement studies can conveniently divided into two parts:geometric and mechanics.The first part is without taking into account the reasons for the downward movement study rigid body from a designated location to another point of the movement,and must use the formula to reflect the actual,the formula would determine the rigid body every point position. Therefore,this study only on the geometry and,more specifically,on the entities from excision.Obviously,the first part of the school and was part of a mechanical separation from the principles of dynamics to study movement,which is more than the two parts together into a lot easier.Dynamics of the two parts are subsequently divided into two separate disciplines,kinematic and dynamics,a study of movement and the movement strength.Therefore,the primary issue is the design of mechanical systems understand its kinematic.Kinematic studies movement,rather than a study of its impact.In a more precise kinematic studies position,displacement,rotation, speed,velocity and acceleration of disciplines,for esample,or planets orbiting research campaing is a paradigm.In the above quotation content should be pay attention that the content of the Euler dynamics into kinematic and rigid body dynamics is based on the assumptionthat they are based on research.In this very important basis to allow for the treatment of two separate disciplines.For soft body,soft body shape and even their own soft objects in the campaign depends on the role of power in their possession.In such cases,should also study the power and movement,and therefore to a large extent the analysis of the increased complexity.Fortunately, despite the real machine parts may be involved are more or less the design of machines,usually with heavy material designed to bend down to the lowest parts.Therefore,when the kinematic analysis of the performance of machines,it is often assumed that bend is negligible,spare parts are hard,but when the load is known,in the end analysis engine,re-engineering parts to confirm this assnmption.机械工程1.机械工程简介机械工程是工程学的一个分支,它研究机械和动力的产,尤其是力和动力。
差速器壳体工艺及工装设计
差速器壳体工艺及工装设计摘要随着社会的发展,汽车在生产和生活中的越来越广泛,差速器是汽车中的重要部件,其壳体的结构及加工精度直接影响差速器的正常工作,因此研究差速器的加工方法和工艺的编制是十分必要和有意义的。
本次设计主要内容有:差速器的工作原理结构分析,差速器壳体的工艺编制,夹具的设计及加工中对定位基准的选择,工序工装设计中切削用量,夹紧力的计算等。
关键词:差速器,壳体,夹具设计Differential Device Case Process and Boring Suits DesignABSTRACTAlong with social development, motor vehicle production and life in an increasingly wide differential device is an important vehicle components, and its interior structure and processing precision differential device directly affect the normal work, study differential device case processing methods and techniques of preparation is necessary and meaningful. The current design of the main elements: differential device structures operating principles of analysis, differential device case preparation processes, design and smooth-bore jig for positioning baseline processing options smooth-bore design processes suits cutting consumption, increased computing power.Key word: Differential device, Case, Jig design第1章绪论 11.1 课题的背景及意义 11.2 差速器的主要分类 21.2.1 开式差速器 21.2.2 限滑差速器 31.3 差速器结构 31.3.1 对称式锥齿轮差速器中的运动特性关系式 4 1.3.2 对称式锥齿轮差速器中的转矩分配关系式 5 1.4 壳体的加工工艺71.4 论文主要内容8第2章零件的作用及结构及工艺分析102.1 零件的作用及结构102.2 零件的工艺分析11第3章工艺规程设计133.1 确定生产类型133.2 毛坯的选择133.2.1 毛坯种类及制造方法的形状及选择133.2.2 毛坯的精度等级133.3 基准的选择143.3.1 粗基准的选择143.3.2 精基准的选择143.4 工艺路线的制定143.5 确定个工序余量及工序尺寸极限偏差163.6 确定切削用量和切削183.7 确定工序单件工时19第4章机床专用夹具设计——工序的专用夹具设计224.1 工作量分析234.2 定位基准的选择244.3 夹紧力的计算244.4 定位误差分析264.5 结构特点284.6 使用方法和应注意的问题28致谢29参考文献30第1章绪论1.1 课题的背景及意义对于整车的结构体系来说,差速器只是装在两个驱动半轴之间的一个小轴承。
机械设计制造及自动化毕业设计英文翻译资料
A NOVEL INTEGRATED SYSTEM FOR RAPID PRODUCT DEVELOPMENTThis paper presents a novel integrated system of rapid product development for reducing the time and cost of product development. The system is composed of four building blocks —digital prototype, virtual prototype, physical prototype and rapid tooling manufacturing system. It can aid effectively in product design, analysis, prototype, mould, and manufacturing process development by integrating closely the various advanced manufacturing technologies which involve the 3D CAD, CAE, reverse engineering, rapid prototyping and rapid tooling. Furthermore, two actual examples are provided to illustrate the application of this integrated system. The results indicate that the system has a high potential to reduce further the cycle and cost of product development.Keywords: Rapid product development; rapid prototyping; integrated system.1. IntroductionDue to the pressure of international competition and market globalization in the 21st century, there continues to be strong driving forces in industry to compete effectively by reducing manufacturing times and costs while assuring high quality products and services. Current industries are facing the new challenges: quick response to business opportunity has been considered as one of the most important factors to ensure company competitiveness; manufacturing industry is evolving toward digitalization, network and globalization. Therefore, new products must be more quickly and cheaply developed, manufactured and introduced to the market. In order to meet the demand of rapid product development, the various new technologies such as reverse engineering (RE), 3D CAD, rapid prototyping (RP), and rapid tooling (RT) have emerged and are regarded as key enabling tools with the ability to shorten the product development and manufacturing time. For example, it has been claimed that RP can cut new product development costs by up to 70% and the time to market by 90%.1 In the form of a better design, more design possibilities, a 3D CAD model can be shown to the customer for approval and prevents misunderstandings. A virtual prototyping is employed to guide in optimizationof the product design and manufacturing process planning, which may result in the accurate determination of the process parameters, and reduce the number of costly physical prototype iterations. Rapid tooling technique offers a fast and low cost method to produce moulds, and shows a high potential for faster response to market demands. When properly integrated among 3D CAD, CAE, RE, RP and RT, these technologies will play a much more important role to reduce further the development cycle and cost of the product production. On the basis of above technologies, a novel integrated system of rapid product development is to be founded so as to meet the requirement of rapid product development.2. Architecture of the Integrated Development SystemThe development process from initial conceptual design to commercial product is an iterative process which includes: product design; analysis of performance, safety and reliability; product prototyping for experimental evaluation; and design modification. Therefore, any step of the new product development process has a direct and strong influence on time-to-market in short order. A good product development system must enable designers or design teams to consider all aspects of product design, manufacturing, selling and recycling at the early stage of the design cycle. So that design iteration and changes can be made easily and effectively. The more fluent the feedback is the higher possibility of success the system has. Design for manufacturing (DFM) and concurrent engineering (CE) necessitate that product and process design be developed simultaneously rather than sequentially.The integrated system of rapid product development is composed of four modules: digital prototype, virtual prototype, physical prototype and rapid tooling.The product development starts from the creation of a 3D CAD model using a CAD software package. At that stage, the product geometry is defined and its aesthetic and dimensional characteristics are verified. The main function of digital prototype is to perform 3D CAD modelling. The CAD model is regarded as a central component of the whole system or project information base which means that in all design, analysis and manufacturing activities the same data is utilized. The product and its components are directly designed on a 3D CAD system (e.g.Pro/Engineer, Unigraphics, CATIA, IDEAS, etc.) during the creative design. If a physical partis ready, the model can be constructed by the reverse engineering technique. RE is a methodology for constructing CAD models of physical parts by digitizing an existing part, creating a digital model and then using it to manufacture components. RE can reduce the development cycle when redesigns become necessary for improved product quality. Preexisting parts with features for improved performance can be readily incorporated into the desired part design. Therefore, it is very useful in creating the CAD model of an existing part when the engineering design is lost or has gone through many design changes. When a designer creates a new design using mock-up, it is also necessary to construct the CAD model of the mock-up for further use of the design data in analysis and manufacturing. The three primary steps in RE process are part digitization, features extraction, and CAD modelling. Part digitization is accomplished by a variety of contact or non-contact digitizers. There are various commercial systems available for part digitization. These systems range from coordinate measuring machine (CMM), laser scanners to ultrasonic digitizers. They can be classified into two broad categories: contact and non-contact. Laser triangulation scanner (LTS), magnetic resonance images (MRI), and computer tomography (CT) are commonly used as non-contact devices. Contact digitizers mainly have CMM and cross-sectional imaging measurement (CIM). Feature extraction is normally achieved by segmenting the digitized data and capturing surface features such as edges. Part modelling is fulfiled through fitting a variety of surfaces to the segmented data points.In order to reduce the iterations of design-prototype-test cycles, increase the product process and manufacturing reliability, it is necessary to guide in optimizing the product design and manufacturing process through virtual prototype (VP). VP is a process of using 3D CAD model, in lieu of a physical prototype, for testing and evaluation of specific characteristics of a product or a manufacturing process. It is often carried out by CAE and virtual manufacturing system. Computer aided engineering (CAE) analysis is an integral part of time-compression technologies. Various software tools available (i.e. ANSYS, MARC, I-DEAS, AUTOFORM, DYNAFORM, etc.) can speed up the development of new products by initiating design optimization before physical prototypes are built. The CAD models can be transferred to a CAE environment for an analysis of the product functional performance and of the manufacturing processes for producing the product’s components. It has also proven to be ofgreat value in the design optimization of part geometry, to determine its dimensions and to control warpage and shrinkage while minimizing process-induced residual stresses and deformations. Virtual manufacturing system (VM) is the natural extension of CAE. It simulates the product functionality and the processes for producing it prior to the development of physical prototypes. VM enables a designer to visualize and optimize a product process with a set of process parameters. The visualization of a virtually simulated part prior to physical fabrication helps to reduce unwanted prototype iterations. Therefore, a product virtual manufacturing system may result in accurate determination of the process parameters, and reduce the number of costly physical prototype iterations. 3D CAD model and VP allow most problems with unfitting to become obvious early in the product development process. Assemblies can be verified for interference as VP can be exercised through a range of tasks. Structure and thermal analysis can be performed on the same model employing CAE applications as well as simulating down-stream manufacturing processes. It is clear that VP increases process and product reliability. Although VP is intended to ensure that unsuitable designs are rejected or modified, in many cases, a visual and physical evaluation of the real component is needed. This often requires physical prototype to be produced. Hence, once the VP is finished, the model may often be sent directly to physical fabrication.The CAD model can be directly converted to the physical prototype using a RP technique or high-speed machining (HSM) process. The 3D CAD model is to be exported not only in the STL format which is considered the de facto standard for interfacing CAD and RP systems, but also in the NC coding which can be used by HSM. HSM has a potential for rapid producing plaster or wooden pattern for RT. RP is a new forming process which fabricates physical parts layer by layer under computer control directly from 3D CAD models in a very short time. In contrast to traditional machining methods, the majority of rapid prototyping systems tend to fabricate parts based on additive manufacturing process, rather than subtraction or removal of material. Therefore, this type of fabrication is unconstrained by the limitations attributed to conventional machining approaches. The application of RP technique as a useful tool can provide benefits throughout the process of developing new products. Specifically, there are serious benefits that RP can bring in the areas of market research, sales support, promotionalmaterial, and the ever-important product launch. Physical RP can also become a powerful communications tool to ensure that everyone involved in the development process fully understands and appreciates the product being developed. Hence, it can help to reduce substantially the inevitable risks in the route from product concept to commercial success, and help shorten time-to-market, improve quality and reduce cost. Over the last 20 years, RP machines have been widely used in industry. The RP methods commercially available include Stereolithgraphy (SLA), Selective Laser Sintering (SLS), Fused Deposition Manufacturing (FDM), Laminated Object Manufacturing (LOM), Ballistic Particle Manufacturing (BMP), and Three-Dimensional Printing (3D printing), etc.Once the design has been accepted, the realization of the production line represents a major task with a long lead time before any product can be put to the market. In particular, the preparation of complex tooling is usually in the critical path of a project and has therefore a direct and strong influence on time-to-market. In order to reduce the product development time and cost, the new technique of RT has been developed. RT is a technique that can transform the RP patterns into functional parts, especially metal parts. It offers a fast and low cost method to produce moulds and functional parts. Furthermore, the integration of both RP and RT in development strategy promotes the implementation of concurrent engineering in companies. Numerous processes have been developed for producing dies from RP system. The RT methods can generally be divided into direct and indirect tooling categories, and also soft (firm) and hard tooling subgroups. Indirect RT requires some kinds of master patterns, which can be made by conventional methods (e.g. HSM), or more commonly by an RP process such as SLA or SLS. Direct RT, as the name suggests, involves the manufacturing of a tool cavity directly on a RP system, hence eliminating the intermediate step of generating a pattern. Soft tooling can be obtained via replication from a positive pattern or master. Soft tooling is associated with low costs; used for low volume production and uses materials that have low hardness levels such as silicones, epoxies, low melting point alloys, etc. RTV silicone rubber moulds, epoxy moulds, metal spraying moulds, etc. are some of these typical soft moldings. Hard tooling is associated with higher volume of production, and the use of materials of greater hardness. Keltool process, Quickcast process, and the ExpressTool process are some of these hard toolings. Electrical discharge machining (EDM) seemsto be an interesting area in which rapid tooling finds a potential application. Some methods of making EDM electrodes based on RP technique have developed, such as abrading process, copper electroforming and net shape casting, etc. On the basis of the above techniques, a novel integrated system of rapid product development is to be proposed. Its overall architecture is shown in Fig. 1.3. Case Studies3.1. Case study 1: ImpellerA total of thirty plastic impellers, with a relatively complex geometry, were required by acustomer within fifteen working days from the receipt of a 2D CAD model. There were many factors to be considered in deciding the most appropriate route for producing the impellers. These factors mainly involved cost, lead-time, the number of parts required, the final material for the parts, and the part geometry. In order to maximize the benefits in terms of time and cost reduction for the parts, it was decided to use silicon rubber mould and the parts were eventually produced by vacuum casting process. Silicon rubber mould is an easy, relatively inexpensive and fast way to fabricate prototype or pre-production tools. It can be utilized for moulding parts in wax, polyurethane, ABS, and a few epoxy materials. The process is best suited for projects where form, fit, or functional testing can be done with a material which mimics the characteristics of the production material. The casting parts with fine details and very thin walls can be easily and rapidly produced. The whole process flow involved the 3D CAD modelling, producing master pattern (RP prototype), silicon rubber mould, and casting green parts. The time sequence for the fabrication of impellers was described as follows. Due to the complexity of the impeller, the task of generating the 3D CAD model using Pro/Engineer software package took almost 3 calendar days. The master pattern for this project was built on a SPS 600 machine in 2 calendar days. SL process was chosen because it was cost effective and the surface finish was good. The next step involved creating a roomtemperature vulcanized (RTV) silicone rubber mold which was completed within an additional 3 calendar days. Finally, the ABS materials were cast into silicon rubber mould under the vacuum casting condition, and the green parts were achieved in 4 calendar days. The required 30 components were produced successfully and completed in 12 calendar days. The primary process stages are illustrated in Fig. 2. These impellers only cost about 5 thousand RMB and took 12 working days. Consequently, in contrast to the traditional development mode, the impellers developed using the integrated system can cut cost by up to 50% and the time-to-market by 75%. When evaluated against satisfying urgent requirement with respect to time, the procedure is clearly worth pursuing, as indicated by the case study described above. Gong from a 3D CAD solid modeling to fully functional production impellers in less than 12 working days is certainly extraordinary.With proper implementation of the process by qualified personnel, working within the scope of the constraints noted, the acceptance and advancement of the integrated manufacturing methodis likely to grow.3.2. Case study 2: MannequinTen plastic mannequins were required by a client in three months from the receipt of the plaster model of the emulational body. This component was an ideal candidate for using integrated system to development, with a very complex surface and a requirement for only 10 parts. In order to produce the plastic mannequin, the various technologies including reverse engineering, 3D CAD, rapid prototyping and rapid tooling were used to complete model measuring, surfaces reconstructing, 3D CAD modelling, prototype and mould building. The whole development work was presented below. The first step of the project was to construct a CAD model of the emulational body by RE process. ATOS measuring equipment made in GOM Inc. which has a high scanning (10,000 points/sec) and can measure models in a wide range from 500mm to 10mm, was employed to capture the digitized data of the plaster mold. Figure 3(a) shows the point clouds of the body model. The subsequent process was to perform surfaces reconstructing. To speed this process, a special reverse engineering program, called CopyCAD (DelcamInc.), was used to create quickly and easily the CAD surfaces from the digitized data. After surfaces reconstructing, many errors in the original model and the joints must be modified by PowerShape software package (another software of Delcam Inc.). The surfaces model of the body is represented in Fig. 3(b). To fabricate easily, the surface model was divided into 11 individual components which included the head, body, upper arms, forearms, tights, shanks and feet using Pro/Engineer software package. Subsequently, every surface model was converted to a solid model, and many holes and slots needed to be designed for fixing joints such as shoulder, knees, etc. Then, the solid parts and joints were assembled to form the solid model of the emulational body. Figure 3(c) illustrates the completed CAD solid model. The RP prototypes of these components were built on a LPS 600 machine. The assembly RP body model is shown in Fig. 3(d). In addition, silicon rubber moulds of these components were fabricated for producing the green parts. Finally, the required 10 plastic mannequins were produced successfully and the project was completed in about 12 weeks. Figures 3(e) and (f) describe respectively the silicon rubber mould of half head and the green product. The case indicates the rapid development of large product and complex surfaces can be realized quickly following the integrated development mode.4. ConclusionIn this paper, we have presented an integrated system based on RP for rapid product developing. The system consists of four modules: digital prototype, virtual prototype, physical prototype and rapid tooling. It employs fully and integrates closely the various advanced manufacturing technologies which involve the 3D CAD, RE, CAE, RP, and RT. In this system, the procedure of development from design to end product is worked step by step: design, analysis, rapid prototype and tooling. By evaluating the whole process and its various components, and comparing them with traditional process, it has been clear that one can reap benefits in various ways. The system can effectively compress the design and manufacturing cycle time and reduce the development cost, which is an important factor in competition. Using this integrated system to develop new product shows a high potential for faster response to market and customers’ demands. As a result, it will play a more and more important role to reduce the manufacturing cycle and cost of product development in the future. AcknowledgementsThis research was supported by The National High Technology Research and Development Program (863 Program) under the project “The integrated manufacturing technology and equipments of rapid tooling for rapid product development”(No.2023AA421270), and “Tenth Five-Year” National Key T echnologies R&D Program of China under the project “Research and demonstrator of rapid manufacturing integrated system based on rapid prototyping” (No. 2023BA205B10- CMTT1001).。
差速器壳体工艺及工装设计外文文献翻译、中英文翻译、外文翻译
外文文献及译文文献题目:Differential shell process and boring tooling design 文献来源: Taylor&Francis文献发表日期: 2011年09月01日学生姓名:学号:系别:专业:指导教师:职称:2017年5月19日Differential shell process and boring tooling designThe motor car engine power transmission shaft and the clutch, and finally to drive around again assigned half shaft drive wheels, in this article, the drive power transmission way, it is the final assembly of the main parts is reducer and differential. Gear reducer is increased, the function of torque and completely on gear meshing gears, between are easy to understand. But more difficult to understand differential,what, why "differential differential"?The car is driven car differential main parts. It is in the power of both half shaft transmission shaft, allowing both half with different speed spinning wheels, satisfyboth pure rolling form as possible, reducing equidistant not tire and ground friction.spider diagramObject graph theory differentialfunctionalAt the turn of the car wheel track line, if the car is circular arc, turn left at the center, and at the same time, the wheels went arc length, the wheels than to balance the difference, left, and right wheel wheels slowlySlip differentialFaster, with different speed up the distance.If you make a whole after wheel, can accomplish on both sides of the wheel speed difference, is also does not have an automatic adjustment. In order to solve this problem, a hundred years ago, France Renault automotive company founder luis Renault will design a differential this thing.Slip differentialconstituteOrdinary differential planetary wheel planetary gear, by plane (differential shell), half axle gear parts etc. The power of the engine into the differential transmission.StructurePlanetary wheel frame, driven directly by the planets wheel drive, right and left two half shaft, wheel drive left and right. Meet the design requirements of differential (left) and the shaft speed (right)= 2 (axial rotational speed) planet round frame. When the car goes, left, right wheel and planetary wheel frame of equal speed, and in a state of equilibrium in the balance among car when turning round to destruction, reduce the speed, the wheel speed increase.StructurePrincipleThis adjustment is automatic differential here, involves "minimal energy consumption principle", namely earth all objects are tend to minimum energy. Such a grain of beans in a bowl, beans will automatically stays in the bowl bottom and never stay in the bowl wall, because the bowl bottom is the lowest energy (potential), it automatically select static (minimum) without energy. In the same Wheel in turning also will be the lowest power consumption tendency, automatically adjusted according to turn radius of the wheel speed around.A 3d effectWhen turning wheel, because the pull of the phenomenon, the medial wheel slip phenomenon, two driving wheel at will produce two opposite direction of additional force, due to the "principle of minimal energy consumption, will inevitably lead to the wheel speed different sides, thus destroyed the balance between three and half shaft are reflected by the half axle gear planetary gears, forced to produce the half shaft rotation speed, speed, the medial axis speed slow speed, so as to realize the difference on both sides wheels.If the drive wheels on both sides of the drive shaft with a whole rigid connection, only two wheels at the same Angle rotation. So, when the steering wheel, due to the lateral than inside the distance moved across the wheels, will make the scroll wheel on the slide, and drag on the scroll wheel inside the slip. Even the car run straight road gravamen, because although flat tire surface or rolling radius (but ranging from manufacturing error, wear different tyres, ranging from uneven pressure or carrying of sliding wheel) and cause.When the wheel sliding tire wear, not only aggravate increased power and fuel consumption, still can make steering difficulties, braking performance deteriorated. As for the wheels, and does not occur in structure sliding must ensure each wheelat different angles can rotate.Axis between differential driven wheels usually use bearing spindle support in the, can at any Angle rotation, and drive wheels with two and half shaft rigid connection, between two and half shaft with differential. The differential and called shaft between differential.Many of the drive shaft, and to make each off-road vehicle drive to different velocity rotating, in order to eliminate the bridge of the drive wheels, some in two axles sliding between between shaft with differential.Differential inspection1 differential shell doesn't have any properties of crack, shell and planetary gear differential half shaft washer, contact between gear, should be smooth without groove, If there is a slight groove or wear, can continue to use after grinding, or should be replaced or be repaired.2 the planetary gear differential shell and planetary gear wheel when the fitting clearance shall not greater than 0.1-0.15 mm, half axle gear shaft neck and shell hole for clearance, with no obvious loose labels should be replaced or feeling, or repair.Shell's processing technologyThe processing quality not only affects shell, the assembly precision and accuracy, but also affects the movement of the machine working accuracy, performance and life.There are many kinds of shell structure, its size and form with the structure of the machineand the shell in machine has the different function. But they remain on the analysis from the craft had a lot in common and its structure features are:(1) appearance is basically composed of six or five plane again into the closed-end polyhedron, integral and combined two,(2) structure shape is more complex. Inside the cavity is often, some places "partition wall, shell and uneven thickness thin.(3) shell walls are usually decorate have parallel hole or vertical hole,(4) on the shell, main processing is the number of plane, in addition to many higher accuracy and precision of supporting bearing with less demanding tighten pore.Shell parts technical requirements:(1) bearing support size precision and accuracy, surface roughness, requirements,(2) position precision including hole axis of the distance between the dimension precision, the same axis parallel degree in each hole, and Kong Duan facing the coaxial tolerance of vertical axis holes; etc.(3) to meet the needs and positioning of the shell processing machine assembly request, shell and assembly of shell with the datum plane positioning due and certain degree, and the surface roughness requirements, The bearing hole and assembling a certain distance between datum due to the accuracy requirement of.差速器壳体工艺及工装设计汽车发动机的动力经离合器、变速器、传动轴最后传送到驱动桥再左右分配给半轴驱动车轮,在这条动力传送途径上,驱动桥是最后一个总成,它的主要部件是减速器和差速器。
机械毕业设计英文外文翻译400驱动桥差速器
附录英文文献翻译Drive axle/differentialAll vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road.PowerflowThe drive axle must transmit power through a 90° angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels.This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.Figure 11Component parts of a typical driven axle assembly.Differential operationThe differential is an arrangement of gears with two functions: to permit the rear wheels to turn at different speeds when cornering and to divide the power flow between both rear wheels.The accompanying illustration has been provided to help understand how this occurs. The drive pinion, which is turned by the driveshaft, turns the ring gear (1).The ring gear, which is attached to the differential case, turns the case (2).The pinion shaft, located in a bore in the differential case, is at right angles to the axle shafts and turns with the case (3).The differential pinion (drive) gears are mounted on the pinion shaft and rotate with the shaft (4). Differential side gears (driven gears) are meshed with the pinion gears and turn with the differential housing and ring gear as a unit (5).The side gears are splined to the inner ends of the axle shafts and rotate the shafts as the housing turns (6).When both wheels have equal traction, the pinion gears do not rotate on the pinion shaft, since the input force of the pinion gears is divided equally between the two side gears (7).When it is necessary to turn a corner, the differential gearing becomes effective and allows theaxle shafts to rotate at different speeds (8).As the inner wheel slows down, the side gear splined to the inner wheel axle shaft also slows. The pinion gears act as balancing levers by maintaining equal tooth loads to both gears, while allowing unequal speeds of rotation at the axle shafts. If the vehicle speed remains constant, and the inner wheel slows down to 90 percent of vehicle speed, the outer wheel will speed up to 110 percent. However, because this system is known as an open differential, if one wheel should become stuck (as in mud or snow), all of the engine power can be transferred to only one wheel. Figure 12Overview of differential gear operating principles.Limited-slip and locking differential operationLimited-slip and locking differentials provide the driving force to the wheel with the best traction before the other wheel begins to spin. This is accomplished through clutch plates, cones or locking pawls.The clutch plates or cones are located between the side gears and the inner walls of the differential case. When they are squeezed together through spring tension and outward force from the side gears, three reactions occur. Resistance on the side gears causes more torque to be exerted on the clutch packs or clutch cones. Rapid one wheel spin cannot occur, because the side gear is forced to turn at the same speed as the case. So most importantly, with the side gear and the differential case turning at the same speed, the other wheel is forced to rotate in the same direction and at the same speed as the differential case. Thus, driving force is applied to the wheel with the better traction.Locking differentials work nearly the same as the clutch and cone type of limited slip, except that when tire speed differential occurs, the unit will physically lock both axles together and spin them as if they were a solid shaft.Figure 13Limited-slip differentials transmit power through the clutches or cones to drive the wheel having the best traction.Identifying a limited-slip drive axleMetal tags are normally attached to the axle assembly at the filler plug or to a bolt on the cover. During the life of the vehicle, these tags can become lost and other means must be used to identify the drive axle.To determine whether a vehicle has a limited-slip or a conventional drive axle by tire movement, raise the rear wheels off the ground. Place the transmission in PARK (automatic) or LOW (manual), and attempt to turn a drive wheel by hand. If the drive axle is a limited-slip type, it will be very difficult (or impossible) to turn the wheel. If the drive axle is the conventional (open) type, the wheel will turn easily, and the opposing wheel will rotate in the reverse direction.Place the transmission in neutral and again rotate a rear wheel. If the axle is a limited-slip type, the opposite wheel will rotate in the same direction. If the axle is a conventional type, the opposite wheel will rotate in the opposite direction, if it rotates at all.Gear ratioThe drive axle of a vehicle is said to have a certain axle ratio. This number (usually a whole number and a decimal fraction) is actually a comparison of the number of gear teeth on the ring gear and the pinion gear. For example, a 4.11 rear means that theoretically, there are 4.11 teeth on the ring gear for each tooth on the pinion gear or, put another way, the driveshaft must turn 4.11 times to turn the wheels once. Actually, with a 4.11 ratio, there might be 37 teeth on the ring gear and 9 teeth on the pinion gear. By dividing the number of teeth on the pinion gear into the number of teeth on the ring gear, the numerical axle ratio (4.11) is obtained. This also provides a good method of ascertaining exactly which axle ratio one is dealing with.Another method of determining gear ratio is to jack up and support the vehicle so that both drive wheels are off the ground. Make a chalk mark on the drive wheel and the driveshaft. Put the transmission in neutral. Turn the wheel one complete turn and count the number of turns that the driveshaft/halfshaft makes. The number of turns that the driveshaft makes in one complete revolution of the drive wheel approximates the axle ratio.Figure 14The numerical ratio of the drive axle is the number of the teeth on the ring gear divided by the number of the teeth on the pinion gear.译文:驱动桥/差速器所有的车辆有一些类型的驱动桥/差速器总成包含在传动系统中。
机械设计制造及其自动化精品毕业设计“差速器壳”的工艺规程和钻端面12孔钻床夹具设计英文翻译
Forging craft not when produces flaw1.Big crystal grainhyperpyrexia and the distortion degree insufficiency, or the end hammers the hyperpyrexia, or the distortion degree falls the human critical deformation range to cause. Aluminum alloy distortion degree oversized, forms the texture; Also the heat-resisting alloy distortion temperature excessively is low, forms when the mix distortion organization possibly causes the thick crystal grain2.The crystal grain is non-uniformThe crystal grain non-uniform is refers to forging certain spots the crystal grain to be specially thick, certain spots are actually small. Has the crystal grain non-uniform primary cause is semifinished materials each place distortion causes the crystal grain stave degree non-uniform not one, either the partial region distortion degree falls the human critical deformation range, either heat-resisting alloy partial work hardening, either when quenching heating the partial crystal grain is thick. High-temperature steel and heat-resisting alloy to crystal grain non-uniform specially sensitive. The crystal grain non-uniform will cause the forging the lasting performance, the weary performance to drop obviously.3.Chilling phenomenonWhen distortion because the temperature somewhat low or the distortion speed too is quick, as well as hammers the after-cooling excessively quickly, possibly causes the conditioning which the recrystallization causes not to be able to follow the strengthening which the distortion causes (hardening), after thus caused the hot forging the forging interior still the part retention cold-work organization. This kind of organization's existence enhanced the forging intensity and degree of hardness, but reduced the plasticity and toughness. The serious chilling phenomenon possibly causes the forging crack, sees example 78, 79, 83, 84.4.CrackThe crack is usually when forging has the big tensile stress, the shear stress or the additional tensile stress causes. The crack occurs the spot usually is biggest in the semifinished materials stress, the thickness thinnest spot. If the semifinished materials surface and the interior have the micro crack, or in the semifinished materials have the organization flaw, either hot-working temperature not when causes the material plasticity to reduce, either distortion speed excessively quickly, distortion degree oversized, surpasses the material permission the plastic indicator and so on, then in removes thick, pulls out long, the punch holes, the broaching, curving and working procedures and so on in extrusion all possibly produces the crack.5.ChapThe chap is presents the shallow turtle shape crack in the forging surface. In the forging forming the tension stress surface (e.g., fill has not protruded part or curving part) easiest to produce this kind of flaw. Causes the chap internal cause possibly is various:①Raw material gathers fusible elements and so on the Cu, Sn excessively are many.②When high temperature long time heating, the steel materials surface has the copper to separate out the surface which, the superficial crystal grain thick, the decarbonization, or passes through heats up many times.③The fuel measures including the sulfur excessively high, has the sulfur to infiltrate the human steel materials surface.6.Edge crackThe edge crack is when the drop forging and the cutting edge produces the crack in a minute modular surface place. The edge crack produces the reason possibly is:①In drop forging operation because hits hard causes the metal intense flowing to produce puts on the muscle phenomenon.②The magnesium alloy die forged item cutting edge temperature excessively is low; Copper alloy die forged item cutting edge hyperpyrexia.7.Minute modular surface crackThe minute modular surface crack refers to the crack which produces along a forging minute modular surface. Raw material mixes with nonmetallic many, when drop forging to divides the modular surface flowing and the centralism or the pipe remaining after the drop forging pushes the human edge often the shape ingredient modular surface crack.8.FoldThe fold was in the flow of metal process has oxidized the surface layer metal converged to form together. It may be (or multi-stocks) the metal convection convergence forms by two; Also might be the massive flowing is close to the part rapidly by a metal the surface layer strap flowing, both convergence will form; Also may be because the distortion metal has, the backflow curving forms; Also may be the partial metal local distortion, is oppressed others in another part of metals to form. Folding and raw material and semifinished materials shape, mold design, formed working procedure arrangement, lubrication situation and forging actual operation and so on related Not only the fold reduced the components load bearing area, when works because here stress concentration often becomes the weary source9.Puts on the classPuts on the class is the streamline distributes the improper one form. Is putting on flows the area, has certain angle distribution the streamline to converge originally to form together puts on the class, possibly and causes to put on flows the area inside and outside grain size difference to be disparate. Puts on the reason which the class produces with the fold to be similar, is by two metals or strap, but puts on flows the part which another metal affluxes form the metal still was a whole puts on the class to cause the forging mechanics performance to reduce, when puts on especially flows the belt both sides crystal grain difference is disparate, the performance reduces obviously.10.The forging streamline distribution is not suitableThe forging streamline distribution along is not refers on forging low time has streamline disorder phenomena and so on streamline cut-off, backflow, turbulent flow. If the mold design does not work as or the forging method choice is unreasonable, prefabricated semifinished materials streamline disorder; The worker does not operate when and the mold wears causes the metal to produce the non-uniform flowing, all may cause the forging streamline distribution not to be suitable. The streamline along cannot cause each mechanics performance to reduce, therefore regarding the important forging, all has the request which the streamline distributes.11.The casting organization remainsThe casting organization remains mainly appears in uses the ingot casting to make the semifinished materials in the forging. The cast condition organization mainly remains in the forging difficult deformation range. Forging compared to insufficient and forging method not when is the primary cause casting organization which the casting organizationremains produces remains can cause the forging the performance drop, attacks the tenacity and the weary performance in particular and so on.12.Carbide segregation rank not symbol requestThe carbide segregation rank symbol request mainly does not appear in the Lai body labor molding tool steel. Mainly is in the forging carbide distributes non-uniform, assumes the greatly massive centralism distribution or assumes the netted distribution. Creates this kind of flaw the primary cause is raw material carbide segregation rank is bad, adds it changes hammers when hammers compared to insufficient or the forging method not when has this kind of flaw forging, when heat treatment quenching easy partial superheat and quenches the crack. Makes the cutting tool and the mold use when easy breaking and so on.13.Banded structureThe banded structure is the ferrite and the pearlyte, the ferrite and the austenite, the ferrite and the bainite aswell as the ferrite and the martensite assumes the belt-shaped distribution in the forging one kind of organization, they appear in Asia altogether fold in the steel, the austenite steel and half martensite steel. This kind of organization, is when which the banded structure which two coexists in the situation forges distortion produces to be able to reduce the material the crosswise plastic indicator, specially resilience. Often is easy in forging either the components work along the lines of ferrite or two intersection point dehiscence.14.Partial backfill insufficiencyThe partial backfill insufficient mainly occurs in the muscle rib, the convex angle, the corner, the fillet spot, the size does not conform to the pattern requirement. Produces the reason possibly is:①The forging temperature is low, the metal fluidity is bad;②The equipment tonnage insufficient or the hammer strength is insufficient;③The system molds the design not to be unreasonable, the semifinished materials volume or the section size are unqualified;④In the mold chest cavity piles up the oxide skin or the welded together distortion metal.15.Owes the pressureOwes the pressure to refer is vertical increases, the reason to the minute modular surface direction size which produces possibly is generally:①The forging temperature is low.②The equipment tonnage is insufficient, hammer strength insufficiency or hammer number of times insufficient16.Wrong movesWrong moves is the forging is opposite along the minute modular surface upper half in the lower part has the displacement. Produces the reason possibly is:①Slide (hammer head) and between guide rail gap oversized;②The forging die design is unreasonable, lacks eliminates wrong moves the strength to close up an opening or the guide pillar;③Mold installment not good17.The spool thread is curvingThe forging spool thread is curving, has the error with the plane geometry position. Produces the reason possibly is:①The forging leaves when the mold does not pay attention;②When cutting edge the stress is uneven;③The forging cools when various part of temperature decrease speed not one;④The cleaning up and the heat treatment improper锻造工艺不当产生的缺陷1.大晶粒大晶粒通常是由于始锻温度过高和变形程度不足、或终锻温度过高、或变形程度落人临界变形区引起的。
机械设计制造及其自动化专业英语翻译超级大全.docx
U n i t1M e t a l s金属The use of metals has always been a key factor in the development of the social systems of man. Of the roughly 100 basic elements of which all matter is composed, about half are classified as metals. The distinction between a metal and a nonmetal is not always clear-cut. The most basic definition centers around the type of bonding existing between the atoms of the element, and around the characteristics of certain of the electrons associated with these atoms. In a more practical way, however, a metal can be defined as an在人类社会的发展中,金属的应用起着关键性的作用。
构成物质的大约100种基本元素中,大约有一半为金属。
金属和非金属之间的区别不是特别明显。
最基本的定义集中在元素原子间存在的连接形式和与这些原子相关联的电子的某些特性。
然而,在实际应用中,可以将具有某些特性集合金属定义为某种元素。
除了少数例外金属在常温下是固态的。
它们是热和电的良导体,不透光。
它们往往具有较高的密度。
许多金属具有延展性,也就是说,在不被破坏的情况下它们的形状在外力的作用下可以发生变化。
引起永久变形所需的力和最终使金属断裂所需的力相当大,尽管发生断裂所需的力远element which has a particular package of properties.Metals are crystalline when in the solid state and, with few exceptions (e.g. mercury), are solid at ambient temperatures. They are good conductors of heat and electricity and are opaque to light. They usually have a comparatively high density. Many metals are ductile-that is, their shape can be changed permanently by the application of a force without breaking. The forces required to cause this deformation and those required to break or fracture a metal are comparatively high, although, the fracture forces is not nearly as high as would be expected from simple 没有像所预期的撕开金属原子所需的力那么大。
机械专业中英文对照翻译大全.doc
机械专业英语词汇中英文对照翻译一览表陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant 逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination 气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheel后角clearance angle龙门刨削planing主轴spindle主轴箱headstock卡盘chuck加工中心machining center 车刀lathe tool车床lathe钻削镗削bore车削turning磨床grinder基准benchmark钳工locksmith锻forge压模stamping焊weld拉床broaching machine拉孔broaching装配assembling铸造found流体动力学fluid dynamics流体力学fluid mechanics加工machining液压hydraulic pressure切线tangent机电一体化mechanotronics mechanical-electrical integration气压air pressure pneumatic pressure稳定性stability介质medium液压驱动泵fluid clutch液压泵hydraulic pump阀门valve失效invalidation强度intensity载荷load应力stress安全系数safty factor可靠性reliability螺纹thread螺旋helix键spline销pin滚动轴承rolling bearing滑动轴承sliding bearing弹簧spring制动器arrester brake十字结联轴节crosshead联轴器coupling链chain皮带strap精加工finish machining粗加工rough machining变速箱体gearbox casing腐蚀rust氧化oxidation磨损wear耐用度durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor 集成电路integrate circuit挡板orifice plate残余应力residual stress套筒sleeve扭力torsion冷加工cold machining电动机electromotor汽缸cylinder过盈配合interference fit热加工hotwork摄像头CCD camera倒角rounding chamfer优化设计optimal design工业造型设计industrial moulding design有限元finite element滚齿hobbing插齿gear shaping伺服电机actuating motor铣床milling machine钻床drill machine镗床boring machine步进电机stepper motor丝杠screw rod导轨lead rail组件subassembly可编程序逻辑控制器Programmable Logic Controller PLC 电火花加工electric spark machining电火花线切割加工electrical discharge wire - cutting 相图phase diagram热处理heat treatment固态相变solid state phase changes有色金属nonferrous metal陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear 斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank摇杆racker凸轮cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域range导数\\微分differential coefficient求导derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant 逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy 动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheel Assembly line 组装线Layout 布置图Conveyer 流水线物料板Rivet table 拉钉机Rivet gun 拉钉枪Screw driver 起子Pneumatic screw driver 气动起子worktable 工作桌OOBA 开箱检查fit together 组装在一起fasten 锁紧(螺丝)fixture 夹具(治具)pallet 栈板barcode 条码barcode scanner 条码扫描器fuse together 熔合fuse machine热熔机repair修理operator作业员QC品管supervisor 课长ME 制造工程师MT 制造生技cosmetic inspect 外观检查inner parts inspect 内部检查thumb screw 大头螺丝lbs. inch 镑、英寸EMI gasket 导电条front plate 前板rear plate 后板chassis 基座bezel panel 面板power button 电源按键reset button 重置键Hi-pot test of SPS 高源高压测试Voltage switch of SPS 电源电压接拉键sheet metal parts 冲件plastic parts 塑胶件SOP 制造作业程序material check list 物料检查表work cell 工作间trolley 台车carton 纸箱sub-line 支线left fork 叉车personnel resource department 人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |plein|刨床miller铣床grinder磨床linear cutting线切割electrical sparkle电火花welder电焊机staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vice manager副理section supervisor课长deputy section supervisor =vice section superisor副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检to connect material接料to reverse material 翻料wet station沾湿台Tiana天那水cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |\\'skr?pid|报废scrape ..v.刮;削deficient purchase来料不良manufacture procedure制程deficient manufacturing procedure制程不良oxidation |\\' ksi\\'dei?n|氧化scratch刮伤dents压痕defective upsiding down抽芽不良defective to staking铆合不良embedded lump镶块feeding is not in place送料不到位stamping-missing漏冲production capacity生产力education and training教育与训练proposal improvement提案改善spare parts=buffer备件forklift叉车trailer=long vehicle拖板车compound die合模die locker锁模器pressure plate=plate pinch压板bolt螺栓administration/general affairs dept总务部automatic screwdriver电动启子thickness gauge厚薄规gauge(or jig)治具power wire电源线buzzle蜂鸣器defective product label不良标签identifying sheet list标示单location地点present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheet PCE组装厂生产排配表model机锺work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门stock age analysis sheet 库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked 待验或重工total合计cause description原因说明part number/ P/N 料号type形态item/group/class类别quality品质prepared by制表notes说明year-end physical inventory difference analysis sheet 年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts 良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸convex凹short射料不足nick缺口speck瑕??shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机阿基米德蜗杆Archimedes worm安全系数safety factor; factor of safety安全载荷safe load凹面、凹度concavity扳手wrench板簧flat leaf spring半圆键woodruff key变形deformation摆杆oscillating bar摆动从动件oscillating follower摆动从动件凸轮机构cam with oscillating follower 摆动导杆机构oscillating guide-bar mechanism 摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile摆线运动规律cycloidal motion摆线针轮cycloidal-pin wheel包角angle of contact保持架cage背对背安装back-to-back arrangement背锥back cone ;normal cone背锥角back angle背锥距back cone distance比例尺scale比热容specific heat capacity闭式链closed kinematic chain闭链机构closed chain mechanism臂部arm变频器frequency converters变频调速frequency control of motor speed 变速speed change变速齿轮change gear change wheel变位齿轮modified gear变位系数modification coefficient标准齿轮standard gear标准直齿轮standard spur gear表面质量系数superficial mass factor表面传热系数surface coefficient of heat transfer 表面粗糙度surface roughness并联式组合combination in parallel并联机构parallel mechanism并联组合机构parallel combined mechanism并行工程concurrent engineering并行设计concurred design, CD不平衡相位phase angle of unbalance不平衡imbalance (or unbalance)不平衡量amount of unbalance不完全齿轮机构intermittent gearing波发生器wave generator波数number of waves补偿compensation参数化设计parameterization design, PD残余应力residual stress操纵及控制装置operation control device槽轮Geneva wheel槽轮机构Geneva mechanism ;Maltese cross 槽数Geneva numerate槽凸轮groove cam侧隙backlash差动轮系differential gear train差动螺旋机构differential screw mechanism差速器differential常用机构conventional mechanism; mechanism in common use车床lathe承载量系数bearing capacity factor承载能力bearing capacity成对安装paired mounting尺寸系列dimension series齿槽tooth space齿槽宽spacewidth齿侧间隙backlash齿顶高addendum齿顶圆addendum circle齿根高dedendum齿根圆dedendum circle齿厚tooth thickness齿距circular pitch齿宽face width齿廓tooth profile齿廓曲线tooth curve齿轮gear齿轮变速箱speed-changing gear boxes齿轮齿条机构pinion and rack齿轮插刀pinion cutter; pinion-shaped shaper cutter 齿轮滚刀hob ,hobbing cutter齿轮机构gear齿轮轮坯blank齿轮传动系pinion unit齿轮联轴器gear coupling齿条传动rack gear齿数tooth number齿数比gear ratio齿条rack齿条插刀rack cutter; rack-shaped shaper cutter齿形链、无声链silent chain齿形系数form factor齿式棘轮机构tooth ratchet mechanism插齿机gear shaper重合点coincident points重合度contact ratio冲床punch传动比transmission ratio, speed ratio传动装置gearing; transmission gear传动系统driven system传动角transmission angle传动轴transmission shaft串联式组合combination in series串联式组合机构series combined mechanism 串级调速cascade speed control创新innovation creation创新设计creation design垂直载荷、法向载荷normal load唇形橡胶密封lip rubber seal磁流体轴承magnetic fluid bearing从动带轮driven pulley从动件driven link, follower从动件平底宽度width of flat-face从动件停歇follower dwell从动件运动规律follower motion从动轮driven gear粗线bold line粗牙螺纹coarse thread大齿轮gear wheel打包机packer打滑slipping带传动belt driving带轮belt pulley带式制动器band brake单列轴承single row bearing单向推力轴承single-direction thrust bearing单万向联轴节single universal joint单位矢量unit vector当量齿轮equivalent spur gear; virtual gear当量齿数equivalent teeth number; virtual number of teeth 当量摩擦系数equivalent coefficient of friction当量载荷equivalent load刀具cutter导数derivative倒角chamfer导热性conduction of heat导程lead导程角lead angle等加等减速运动规律parabolic motion; constant acceleration and deceleration motion等速运动规律uniform motion; constant velocity motion等径凸轮conjugate yoke radial cam等宽凸轮constant-breadth cam等效构件equivalent link等效力equivalent force等效力矩equivalent moment of force等效量equivalent等效质量equivalent mass等效转动惯量equivalent moment of inertia等效动力学模型dynamically equivalent model底座chassis低副lower pair点划线chain dotted line(疲劳)点蚀pitting垫圈gasket垫片密封gasket seal碟形弹簧belleville spring顶隙bottom clearance定轴轮系ordinary gear train; gear train with fixed axes 动力学dynamics动密封kinematical seal动能dynamic energy动力粘度dynamic viscosity动力润滑dynamic lubrication动平衡dynamic balance动平衡机dynamic balancing machine动态特性dynamic characteristics动态分析设计dynamic analysis design动压力dynamic reaction动载荷dynamic load端面transverse plane端面参数transverse parameters端面齿距transverse circular pitch端面齿廓transverse tooth profile端面重合度transverse contact ratio端面模数transverse module端面压力角transverse pressure angle锻造forge对称循环应力symmetry circulating stress对心滚子从动件radial (or in-line ) roller follower对心直动从动件radial (or in-line ) translating follower对心移动从动件radial reciprocating follower对心曲柄滑块机构in-line slider-crank (or crank-slider) mechanism多列轴承multi-row bearing多楔带poly V-belt多项式运动规律polynomial motion多质量转子rotor with several masses惰轮idle gear额定寿命rating life额定载荷load ratingII 级杆组dyad发生线generating line发生面generating plane法面normal plane法面参数normal parameters法面齿距normal circular pitch法面模数normal module法面压力角normal pressure angle法向齿距normal pitch法向齿廓normal tooth profile法向直廓蜗杆straight sided normal worm法向力normal force反馈式组合feedback combining反向运动学inverse ( or backward) kinematics 反转法kinematic inversion反正切Arctan范成法generating cutting仿形法form cutting方案设计、概念设计concept design, CD防振装置shockproof device飞轮flywheel飞轮矩moment of flywheel非标准齿轮nonstandard gear非接触式密封non-contact seal非周期性速度波动aperiodic speed fluctuation非圆齿轮non-circular gear粉末合金powder metallurgy分度线reference line; standard pitch line分度圆reference circle; standard (cutting) pitch circle 分度圆柱导程角lead angle at reference cylinder分度圆柱螺旋角helix angle at reference cylinder分母denominator分子numerator分度圆锥reference cone; standard pitch cone分析法analytical method封闭差动轮系planetary differential复合铰链compound hinge复合式组合compound combining复合轮系compound (or combined) gear train 复合平带compound flat belt复合应力combined stress复式螺旋机构Compound screw mechanism复杂机构complex mechanism杆组Assur group干涉interference刚度系数stiffness coefficient刚轮rigid circular spline钢丝软轴wire soft shaft刚体导引机构body guidance mechanism刚性冲击rigid impulse (shock)刚性转子rigid rotor刚性轴承rigid bearing刚性联轴器rigid coupling高度系列height series高速带high speed belt高副higher pair格拉晓夫定理Grashoff`s law根切undercutting公称直径nominal diameter高度系列height series功work工况系数application factor工艺设计technological design工作循环图working cycle diagram工作机构operation mechanism工作载荷external loads工作空间working space工作应力working stress工作阻力effective resistance工作阻力矩effective resistance moment 公法线common normal line公共约束general constraint公制齿轮metric gears功率power功能分析设计function analyses design 共轭齿廓conjugate profiles共轭凸轮conjugate cam构件link鼓风机blower固定构件fixed link; frame固体润滑剂solid lubricant关节型操作器jointed manipulator惯性力inertia force惯性力矩moment of inertia ,shaking moment 惯性力平衡balance of shaking force惯性力完全平衡full balance of shaking force惯性力部分平衡partial balance of shaking force 惯性主矩resultant moment of inertia惯性主失resultant vector of inertia冠轮crown gear广义机构generation mechanism广义坐标generalized coordinate轨迹生成path generation轨迹发生器path generator滚刀hob滚道raceway滚动体rolling element滚动轴承rolling bearing滚动轴承代号rolling bearing identification code 滚针needle roller滚针轴承needle roller bearing滚子roller滚子轴承roller bearing滚子半径radius of roller滚子从动件roller follower滚子链roller chain滚子链联轴器double roller chain coupling 滚珠丝杆ball screw滚柱式单向超越离合器roller clutch过度切割undercutting函数发生器function generator函数生成function generation含油轴承oil bearing耗油量oil consumption耗油量系数oil consumption factor赫兹公式H. Hertz equation合成弯矩resultant bending moment合力resultant force合力矩resultant moment of force黑箱black box横坐标abscissa互换性齿轮interchangeable gears花键spline滑键、导键feather key滑动轴承sliding bearing滑动率sliding ratio滑块slider环面蜗杆toroid helicoids worm环形弹簧annular spring缓冲装置shocks; shock-absorber灰铸铁grey cast iron回程return回转体平衡balance of rotors混合轮系compound gear train积分integrate机电一体化系统设计mechanical-electrical integration system design机构mechanism机构分析analysis of mechanism机构平衡balance of mechanism机构学mechanism机构运动设计kinematic design of mechanism机构运动简图kinematic sketch of mechanism机构综合synthesis of mechanism机构组成constitution of mechanism机架frame, fixed link机架变换kinematic inversion机器machine机器人robot机器人操作器manipulator机器人学robotics技术过程technique process技术经济评价technical and economic evaluation 技术系统technique system机械machinery机械创新设计mechanical creation design, MCD 机械系统设计mechanical system design, MSD 机械动力分析dynamic analysis of machinery机械动力设计dynamic design of machinery机械动力学dynamics of machinery机械的现代设计modern machine design机械系统mechanical system机械利益mechanical advantage机械平衡balance of machinery机械手manipulator机械设计machine design; mechanical design机械特性mechanical behavior机械调速mechanical speed governors机械效率mechanical efficiency机械原理theory of machines and mechanisms机械运转不均匀系数coefficient of speed fluctuation机械无级变速mechanical stepless speed changes基础机构fundamental mechanism基本额定寿命basic rating life基于实例设计case-based design,CBD基圆base circle基圆半径radius of base circle基圆齿距base pitch基圆压力角pressure angle of base circle基圆柱base cylinder基圆锥base cone急回机构quick-return mechanism急回特性quick-return characteristics急回系数advance-to return-time ratio急回运动quick-return motion棘轮ratchet棘轮机构ratchet mechanism棘爪pawl极限位置extreme (or limiting) position极位夹角crank angle between extreme (or limiting) positions计算机辅助设计computer aided design, CAD计算机辅助制造computer aided manufacturing, CAM计算机集成制造系统computer integrated manufacturing system, CIMS计算力矩factored moment; calculation moment计算弯矩calculated bending moment加权系数weighting efficient加速度acceleration加速度分析acceleration analysis加速度曲线acceleration diagram尖点pointing; cusp尖底从动件knife-edge follower间隙backlash间歇运动机构intermittent motion mechanism减速比reduction ratio减速齿轮、减速装置reduction gear减速器speed reducer减摩性anti-friction quality渐开螺旋面involute helicoid渐开线involute渐开线齿廓involute profile渐开线齿轮involute gear渐开线发生线generating line of involute渐开线方程involute equation渐开线函数involute function渐开线蜗杆involute worm渐开线压力角pressure angle of involute渐开线花键involute spline简谐运动simple harmonic motion键key键槽keyway交变应力repeated stress交变载荷repeated fluctuating load交叉带传动cross-belt drive交错轴斜齿轮crossed helical gears胶合scoring角加速度angular acceleration角速度angular velocity角速比angular velocity ratio角接触球轴承angular contact ball bearing角接触推力轴承angular contact thrust bearing 角接触向心轴承angular contact radial bearing 角接触轴承angular contact bearing铰链、枢纽hinge校正平面correcting plane接触应力contact stress接触式密封contact seal阶梯轴multi-diameter shaft结构structure结构设计structural design截面section节点pitch point节距circular pitch; pitch of teeth节线pitch line节圆pitch circle节圆齿厚thickness on pitch circle节圆直径pitch diameter节圆锥pitch cone节圆锥角pitch cone angle解析设计analytical design紧边tight-side紧固件fastener径节diametral pitch径向radial direction径向当量动载荷dynamic equivalent radial load径向当量静载荷static equivalent radial load径向基本额定动载荷basic dynamic radial load rating径向基本额定静载荷basic static radial load tating径向接触轴承radial contact bearing径向平面radial plane径向游隙radial internal clearance径向载荷radial load径向载荷系数radial load factor径向间隙clearance静力static force静平衡static balance静载荷static load静密封static seal局部自由度passive degree of freedom矩阵matrix矩形螺纹square threaded form锯齿形螺纹buttress thread form矩形牙嵌式离合器square-jaw positive-contact clutch 绝对尺寸系数absolute dimensional factor绝对运动absolute motion绝对速度absolute velocity均衡装置load balancing mechanism抗压强度compression strength开口传动open-belt drive开式链open kinematic chain开链机构open chain mechanism可靠度degree of reliability可靠性reliability可靠性设计reliability design, RD空气弹簧air spring空间机构spatial mechanism空间连杆机构spatial linkage空间凸轮机构spatial cam空间运动副spatial kinematic pair空间运动链spatial kinematic chain 空转idle宽度系列width series框图block diagram雷诺方程Reynolds‘s equation离心力centrifugal force离心应力centrifugal stress离合器clutch离心密封centrifugal seal理论廓线pitch curve理论啮合线theoretical line of action 隶属度membership力force力多边形force polygon力封闭型凸轮机构force-drive (or force-closed) cam mechanism力矩moment力平衡equilibrium力偶couple力偶矩moment of couple连杆connecting rod, coupler连杆机构linkage连杆曲线coupler-curve连心线line of centers链chain链传动装置chain gearing链轮sprocket sprocket-wheel sprocket gear chain wheel联组V 带tight-up V belt联轴器coupling shaft coupling两维凸轮two-dimensional cam临界转速critical speed六杆机构six-bar linkage龙门刨床double Haas planer轮坯blank。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文原文Differential shell process and boring tooling design The motor car engine power transmission shaft and the clutch, and finally to drive around again assigned half shaft drive wheels, in this article, the drive power transmission way, it is the final assembly of the main parts is reducer and differential. Gear reducer is increased, the function of torque and completely on gear meshing gears, between are easy to understand. But more difficult to understand differential, what, why "differential differential"?The car is driven car differential main parts. It is in the power of both half shaft transmission shaft, allowing both half with different speed spinning wheels, satisfy both pure rolling form as possible, reducing equi-distant not tire and ground friction.Spider diagramObject graph theory differentialfunctionalAt the turn of the car wheel track line, if the car is circular arc, turn left at the center, and at the same time, the wheels went arc length, the wheels than to balance the difference, left, and right wheel wheels slowlySlip differentialFaster, with different speed up the distance.If you make a whole after wheel, can accomplish on both sides of the wheel speed difference, is also does not have an automatic adjustment. In order to solve this problem, a hundred years ago, France Renault automotive company founderluis Renault will design a differential this thing.Slip differentialconstituteOrdinary differential planetary wheel planetary gear, by plane (d ifferential shell), half axle gear parts etc. The power of the engine into the differential transmissionStructurePlanetary wheel frame, driven directly by the planets wheel driv e, right and left two half shaft, wheel drive left and right. Meet the design requirements of differential (left) and the shaft speed (right) = 2 (axial rotational speed) planet round frame. When the car goe s, left, right wheel and planetary wheel frame of equal speed, and in a state of equilibrium in the balance among car when turning ro und to destruction, reduce the speed, the wheel speed increase.StructurePrincipleThis adjustment is automatic differential here, involves "minimal energyconsumption principle", namely earth all objects are tend to minimum energy. Such a grain of beans in a bowl, beans will automatically stays in the bowl bottom and never stay in the bowl wall, because the bowl bottom is the lowest energy (potential), it automatically select static (minimum) without energy. In the same way,A 3d effectWheel in turning also will be the lowest power consumption tendency, automatically adjusted according to turn radius of the wheel speed around.When turning wheel, because the pull of the phenomenon, the medial wheel slip phenomenon, two driving wheel at will produce two opposite direction of additional force, due to the "principle of minimal energy consumption, will inevitably lead to the wheel speed different sides, thus destroyed the balance between three and half shaft are reflected by the half axle gear planetary gears, forced to produce the half shaft rotation speed, speed, the medial axis speed slow speed, so as to realize the difference on both sides wheels.If the drive wheels on both sides of the drive shaft with a whole rigid connection, only two wheels at the same Angle rotation. So, when the steering wheel, due to the lateral than inside the distance moved across the wheels, will make the scroll wheel on the slide, and drag on the scroll wheel inside the slip. Even the car run straight road gravamen, because although flat tire surface or rolling radius (but ranging from manufacturing error, wear different tyres, ranging from uneven pressure or carrying of sliding wheel) and cause.When the wheel sliding tire wear, not only aggravate increased power and fuel consumption, still can make steering difficulties, braking performance deterio rated. As for the wheels, and does not occur in structure sliding must ensure each wheel at different angles can rotate.Axis between differential driven wheels usually use bearing spindle support in the, can at any Angle rotation, and drive wheels with two and half shaft rigid connection, between two and half shaft with differential. The differential and called shaft between differential.Many of the drive shaft, and to make each off-road vehicle drive to different velocity rotating, in order to eliminate the bridge of the drive wheels, some in two axles sliding between between shaft with differential.Differential inspection1 differential shell doesn't have any properties of crack, shell and planetary gear differential half shaft washer, contact between gear, should be smooth without groove, If there is a slight groove or wear, can continue to use after grinding, or should be replaced or be repaired.2 the planetary gear differential shell and planetary gear wheel when the fitting clearance shall not greater than 0.1-0.15 mm, half axle gear shaft neck and shell hole for clearance, with no obvious loose labels should be replaced or feeling, or repair.Shell's processing technologyThe processing quality not only affects shell, the assembly precision and accuracy, but also affects the movement of the machine working accuracy, performance and life.There are many kinds of shell structure, its size and form with the structure of the machine and the shell in machine has the different function. But they rema in on the analysis from the craft had a lot in common and its structure features are:(1) appearance is basically composed of six or five plane again into the closed-end polyhedron, integral and combined two,(2) structure shape is more complex. Inside the cavity is often, some places "partition wall, shell and uneven thickness thin.(3) shell walls are usually decorate have parallel hole or vertical hole,(4) on the shell, main processing is the number of plane, in addition to many higher accuracy and precision of supporting bearing with less demanding tighten pore.Shell parts technical requirements:(1) bearing support size precision and accuracy, surface roughness, requirements,(2) position precision including hole axis of the distance between the dimension precision, the same axis parallel degree in each hole, and KongDuan facing the coaxial tolerance of vertical axis holes; etc.(3) to meet the needs and positioning of the shell processing machine assembly request, shell and assembly of shell with the datum plane positioning due and certain degree, and the surface roughness requirements, The bearing hole and assembling a certain distance between datum due to the accuracy requirement of the size.中文译文差速器壳体工艺及工装设计汽车发动机的动力经离合器、变速器、传动轴,最后传送到驱动桥再左右分配给半轴驱动车轮,在这条动力传送途径上,驱动桥是最后一个总成,它的主要部件是减速器和差速器。