2018北京市中考数学二模分类26题代数综合
北京市2018年中考数学二模试题汇编(20份)
代几综合题2018昌平二模28.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0) ,点 B (1,1) ,点 C (1-, 2-),则A 、B 、C 三点的 “横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3. 因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5) ,S (3,2-) ,T (4-,3-)中,与点A 、B 为正方点的是 ; (2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为 ; (3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形; ②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.y xxy yx2018朝阳二模28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时, ①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标. (2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.2018东城二模28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)C t +, ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围;②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.2018房山二模28. 已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.(1)已知⊙O的半径为1,在点E(1,1),F(-12,32),M(0,-1)中,⊙O的“关联点”为;(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为 5 ,求n的值;(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线443y x=-+与x轴,y轴分别交于点A,B. 若线段AB上存在⊙D的“关联点”,求m的取值范围.2018丰台二模28.在平面直角坐标系xOy 中,将任意两点()11,y x P 与()22y x Q ,之间的“直距”定义为:2121y y x x D PQ -+-=.例如:点M (1,2-),点N (3,5-),则132(5)5MN D =-+---=. 已知点A (1,0)、点B (-1,4).(1)则_______=AO D ,_______=BO D ;(2)如果直线AB 上存在点C ,使得CO D 为2,请你求出点C 的坐标; (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出EO D 的取值范围.2018海淀二模28.对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-.(1)写出函数21y x =-的限减系数; (2)0m >,已知1y x=(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围.(3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.2018平谷二模28.对于平面直角坐标系xOy 中的点P 和⊙M ,给出如下定义:若⊙M 上存在两个点A ,B ,使AB =2PM ,则称点P 为⊙M 的“美好点”. (1)当⊙M 半径为2,点M 和点O 重合时,○1点()120P -, ,()211P ,,()322P ,中,⊙O 的“美好点”是 ; ○2点P 为直线y=x+b 上一动点,点P 为⊙O 的“美好点”,求b 的取值范围; (2)点M 为直线y=x 上一动点,以2为半径作⊙M ,点P 为直线y =4上一动点,点P 为⊙M 的“美好点”,求点M 的横坐标m 的取值范围.2018石景山二模28.在平面直角坐标系xOy 中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的“伴随圆”. (1)已知,点()1,0P ,①点1,2A ⎛⎝⎭在点P 的“伴随圆” (填“上”或“内”或“外”); ②点()1,0B -在点P 的“伴随圆” (填“上”或“内”或“外”);(2)若点P 在x 轴上,且点P 的“伴随圆”与直线x y 33=相切,求点P 的坐标; (3)已知直线2+=x y 与x 、y 轴分别交于点A ,B ,直线2-=x y 与x 、y 轴分别交于点C ,D ,点P 在四边形ABCD 的边上并沿DA CD BC AB →→→的方向移动,直接写出点P 的“伴随圆”经过的平面区域的面积.2018西城二模28. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”Q L 的取值范围是 .(2)点D 在直线+3y =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q ,求点D 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)2018怀柔二模28. A 为⊙C 上一点,过点A 作弦AB ,取弦AB 上一点P ,若满足131<≤ABAP ,则称P 为点A 关于⊙C 的黄金点.已知⊙C 的半径为3,点A 的坐标为(1,0). (1)当点C 的坐标为(4,0)时,①在点D (3,0),E (4,1),F (7,0)中,点A 关于⊙C 的黄金点是 ; ②直线3333-=x y 上存在点A 关于⊙C 的黄金点P ,求点P 的横坐标的取值范围; (2)若y 轴上存在..点A 关于⊙C 的黄金点,直接写出点C 横坐标的取值范围.2018门头沟二模28.在平面直角坐标系xOy中的某圆上,有弦MN,取MN的中点P,我们规定:点P到某点(直”表示.线)的距离叫做“弦中距”,用符号“d中以(3,0)W-为圆心,半径为2的圆上.(1)已知弦MN长度为2.①如图1:当MN∥x轴时,直接写出到原点O的d的长度;中的取值范围.②如果MN在圆上运动时,在图2中画出示意图,并直接写出到点O的d中(2)已知点(5,0)y x=-,求到直线2=-的dy xM-,点N为⊙W上的一动点,有直线2中备用图2018顺义二模28.已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果a ≤PQ,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (-1,1),B (-1,-1),C (1,-1),D (1,1) .(1)在11(,0)2-P,21(2P,3P 中,正方形ABCD 的“关联点”有 ; (2)已知点E 的横坐标是m ,若点E在直线=y 上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线1=+y 与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.代数综合题2018昌平二模26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式; ②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.2018朝阳二模26.已知二次函数)0(222≠--=a ax ax y .(1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.2018东城二模26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.2018房山二模26. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.2018丰台二模26.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D . (1)当1h =-时,求点D 的坐标; (2)当1x ≤≤≤1-≤1时,求函数的最小值m .(用含h 的代数式表示m )2018海淀二模26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( ); (2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.2018平谷二模26.在平面直角坐标系中,点D 是抛物线223y ax ax a =--()0a >的顶点,抛物线与x轴交于点A ,B (点A 在点B 的左侧). (1)求点A ,B 的坐标;(2)若M 为对称轴与x 轴交点,且DM =2AM ,求抛物线表达式; (3)当30°<∠ADM <45°时,求a 的取值范围.2018石景山二26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.2018西城二模26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为3x (30x >),若当2-≤n ≤1-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.2018怀柔二模26.在平面直角坐标系xOy 中,二次函数C 1:()332--+=x m mx y (m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 和点C 的坐标; (2)当AB =4时,①求二次函数C 1的表达式;②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,请说明理由;(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤25时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围.2018门头沟二模26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+. (1)当该抛物线过原点时,求m 的值;(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B . ①直接写出C 点坐标;②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.x2018顺义二模26.在平面直角坐标系中,二次函数221y x ax a =+++的图象经过点 M (2,-3). (1)求二次函数的表达式;(2)若一次函数(0)y kx b k =+≠的图象与二次函数221y x ax a =+++的图象经过x 轴上同一点,探究实数k ,b 满足的关系式;(3)将二次函数221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )在平移后的图象上,且m >n ,结合图象求x 0的取值范围.反比例综合题2018昌平二模22.如图,在平面直角坐标系xOy 中,一次函数+(0)y ax b a =≠与反比例函数ky k x=≠(0)的图象交于点A (4,1)和B (1-,n ). (1)求n 的值和直线+y ax b =的表达式;(2)根据这两个函数的图象,直接写出不等式0kax b x+-<的解集.x2018朝阳二模21. 如图,在平面直角坐标系xOy 中,直线61+=x k y 与函数)0(2>=x xk y 的图象的两个交点分别为A (1,5),B . (1)求21,k k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线61+=x k y 和函数)0(2>=x xk y 的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.2018东城二模22. 已知函数1y x =的图象与函数()0y kx k =≠的图象交于点(),P m n .(1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.2018房山二模22. 如图,在平面直角坐标系xOy 中,直线y kx m =+与双曲线2y x=-相交于 点A (m ,2).(1)求直线y kx m =+的表达式; (2)直线y kx m =+与双曲线2y x=-的另一个交点为B ,点P 为x 轴上一点,若AB BP =,直接写出P 点坐标 .2018丰台二模22.在平面直角坐标系xOy 中,直线l :21(0)y mx m m =-+≠. (1)判断直线l 是否经过点M (2,1),并说明理由; (2)直线l 与反比例函数ky x=的图象的交点分别为点M ,N ,当OM =ON 时,直接写出点N 的坐标.2018海淀二模22.已知直线l 过点(2,2)P ,且与函数(0)ky x x=>的图象相交于,A B 两点,与x 轴、y 轴分别交于点,C D ,如图所示,四边形,ONAE OFBM 均为矩形,且矩形OFBM 的面积为3. (1)求k 的值;(2)当点B 的横坐标为3时,求直线l 的解析式及线段BC 的长; (3)如图是小芳同学对线段,AD BC 的长度关系的思考示意图.记点B 的横坐标为s ,已知当23s <<时,线段BC 的长随s 的增大而减小,请你参考小芳的示意图判断:当3s ≥时,线段BC 的长随s 的增大而 . (填“增大”、“减小”或“不变”)2018平谷二模21.如图,在平面直角坐标系xOy 中,函数()0ky k x=≠的图象与直线y =x -2交于点A (a ,1). (1)求a ,k 的值;(2)已知点P (m ,0)(1≤m < 4),过点P 作平行于y 轴的直线,交直线y =x -2于点M (x 1,y 1),交函数()0ky k x=≠的图象于点N (x 1,y 2),结合函数的图象,直接写出12y y -的取值范围.2018石景山二模22.在平面直角坐标系xOy 中,直线1:2l y x b =-+与x 轴,y 轴分别交于点1(,0)2A ,B ,与反比例函数图象的一个交点为(),3M a . (1)求反比例函数的表达式;(2)设直线2:2l y x m =-+与x 轴,y 轴分别交于点C ,D ,且3OCD OAB S S ∆∆=,直接写出m 的值 .2018西城二模23. 如图,在平面直角坐标系xOy 中,函数my x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8.(1)求m ,n 的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.2018怀柔二模23.在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线)0(≠=m xmy 相交于A ,B 两点,A 点坐标为(-3,2),B 点坐标为(n ,-3). (1)求一次函数和反比例函数表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是5,直接写出点P 的坐标.2018门头沟二模20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数ky x=(k ≠0)的图象相交于点(2,2)M . (1)求k 的值;(2)点(0,)P a 是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数y x =、反比例函数ky x=的图象相交于点1(,)A x b 、2(,)B x b ,当12x x <时,画出示意图并直接写出a 的取值范围.2018顺义二模20.如图,在平面直角坐标系xOy 中,函数ky x=(x >0)的图象与直线21y x =+交于点A (1,m ).(1)求k 、m 的值;(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线21y x =+于点B ,交函数ky x=(x >0)的图象于点C .横、纵坐标都是整数的点叫做整点. ①当3n =时,求线段AB 上的整点个数; ②若ky x=(x >0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.函数操作题2018昌平二模25.有这样一个问题:探究函数3126y x x =-的图象与性质.小彤根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)求m 的值为 ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(3)方程31226x x -=-实数根的个数为 ; (4)观察图象,写出该函数的一条性质 ; (5)在第(2)问的平面直角坐标系中画出直线12y x =,根据图象写出方程311262x x x -=的一个正数根约为 (精确到0.1).2018朝阳二模25. 在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt △ABC 中,∠C =90°,AC =BC =6cm ,D 是线段AB 上一动点,射线DE ⊥BC 于点E ,∠EDF = °,射线DF 与射线AC 交于点F .设B ,E 两点间的距离为x cm ,E ,F 两点间的距离为y cm .图1 图2(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.2018东城二模25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为 ;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:描点、画函数图象:如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点, 根据描出的点画出该函数的图象; 观察分析、得出结论:根据以上信息可得,当x = 时,y 有最小值. 由此,小强确定篱笆长至少为 米.2018房山二模25. 有这样一个问题:探究函数3126y x x =-的图象与性质. 小东根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小东的探究过程,请补充完整: (1)函数3126y x x =-的自变量x 的取值范围是 ; (2) 下表是y 与x 的几组对应值则m的值为;(3) 如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质.2018丰台二模25.数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:Array(1)设小正方形的边长为x dm,体积为y dm3,根据长方体的体积公式得到y和x的关系式:;(2)确定自变量x的取值范围是;(3)列出y与x的几组对应值.(说明:表格中相关数值保留一位小数)(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.2018海淀二模25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。
北京专版中考数学一轮复习7.5代数压轴综合题试卷部分课件
解析 (1)y=ax2-4ax-4=a(x-2)2-4a-4.
令x=0,得y=-4,∴A(0,-4).抛物线的对称轴为直线x=2,
∴B(2,0).
(2)当抛物线经过点(1,0)时,a=- 4 ,
3
当抛物线经过点(2,0)时,a=-1.
结合函数图象可知,a的取值范围为- 4 ≤a≤1.
3
10.(2018北京丰台一模,26)在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a的最高点的纵坐标是 2. (1)求抛物线的对称轴及抛物线的表达式; (2)将抛物线在1≤x≤4之间的部分记为图象G1,将图象G1沿直线x=1翻折,翻折后的图象记为G2, 图象G1和G2组成图象G.过点(0,b)作与y轴垂直的直线l,当直线l和图象G只有两个公共点时,将 这两个公共点分别记为P1(x1,y1),P2(x2,y2),求b的取值范围和x1+x2的值.
∴3k b 0,
b
3,
解得 k 1 , ∴直线 b B C3 的, 表达式为y=-x+3.
(2)∵y=x2-4x+3=(x-2)2-1,
∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2.
由题意可知,点P(x1,y1),Q(x2,y2)(x1<x2)关于直线x=2对称, ∴x2-2=2-x1, ∴x1+x2=4. 由x1<x2<x3,结合函数的图象,可得-1<y3<0, 即-1<-x3+3<0, 解得3<x3<4. ∴7<x1+x2+x3<8.
解题关键 解决本题第二问的关键是要根据示意图寻找临界点,求x1+x2时要借助抛物线的对 称性.
11.(2018北京石景山一模,26)在平面直角坐标系xOy中,将抛物线G1:y=mx2+2 (m3 ≠0)向右平 移 3个单位长度后得到抛物线G2,点A是抛物线G2的顶点. (1)直接写出点A的坐标; (2)过点(0, 3)且平行于x轴的直线l与抛物线G2交于B,C两点. ①当∠BAC=90°时,求抛物线G2的表达式; ②若60°<∠BAC<120°,直接写出m的取值范围.
北京市2018年中考数学试题及答案(word版)
第 1-8 题均有四个选项,符合题意的选项只有一个。
⎧(A ) ⎨⎧x = -1 ⎩ y = 2⎩ y = -2⎩ y = 1 ⎩ y = -1考生 须知2018 年北京市高级中等学校招生考试数学试卷姓名 准考证号 考场号 座位号1. 本试卷共 8 页,共三道大题,28 道小题。
满分 100 分。
考试时间 120 分钟。
2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3. 试卷答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将试卷、答题卡和草稿纸一并交回。
一、选择题(本题共 16 分,每小题 2 分)..1. 下列几何体中,是圆柱的为2. 实数 a , b , c 在数轴上的对应点的位置如图所示,则正确的结论是(A ) a >4(B ) c - b >0(C ) ac >0 (D ) a + c >03. 方程式 ⎨ x - y = 3⎩3x - 8 y = 14的解为⎧ x = 1⎧x = -2⎧ x = 2(B ) ⎨ (C ) ⎨(D ) ⎨4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于 35 个标准足球场的总面积。
已知每个标准足球场的面积为 7140m 2,则 FAST 的反射面总面积约为(A ) 7.14 ⨯103 m 2 (B ) 7.14 ⨯10 4 m 2 (C ) 2.5 ⨯105 m 2 (D ) 2.5 ⨯106 m 25. 若正多边形的一个外角是 60 o ,则该正多边形的内角和为(A ) 360o(B ) 540o (C ) 720o (D ) 900o2a - b ⎪⎪ ⋅ a - b 的值为( ( ( ( (⎛ a 2 + b 2 ⎫ a 6. 如果 a - b = 2 3 ,那么代数式 ⎝ ⎭(A ) 3(B ) 2 3(C ) 3 3 (D ) 4 37. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度 y (单位:m )与水平距离 x (单位:m )近似满足函数关系 y = ax 2 + bx = c (a ≠ 0)。
2018年北京市中考数学试题(含答案解析版)
2018年北京市高级中等学校招生考试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。
1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为 (A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x 4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。
已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为(A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯(D )26105.2m ⨯5. 若正多边形的一个外角是o60,则该正多边形的内角和为(A )o 360 (B )o540 (C )o 720 (D )o900 6. 如果32=-b a ,那么代数式b a a b a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为 (A )3 (B )32(C )33 (D )347. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。
下图记录了某运动员起跳后的x与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A)10m (B)15m (C)20m (D)22.5m8. 上图是老北京城一些地点的分布示意图。
在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。
(完整版)2018年北京市中考数学试卷(含答案解析)
2018年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A .B .C .D .2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .||4a >B .0c b ->C .0ac >D .0a c +>3.方程组33814x y x y -=⎧⎨-=⎩的解为A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =⎧⎨=-⎩4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m ,则FAST 的反射面积总面积约为 A .327.1410m ⨯B .427.1410m ⨯C .522.510m ⨯D .622.510m ⨯5.若正多边形的一个外角是60︒,则该正多边形的内角和为A .360︒B .540︒C .720︒D .900︒6.如果a b -=22()2a b ab a a b+-⋅-的值为A B . C . D .7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A.10m B.15m C.20m D.22.5m8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-)时,表示-,3左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-)-,7.5时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC∠.(填“>”,“=”或“<”)∠________DAE10在实数范围内有意义,则实数x 的取值范围是_______.11.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.12.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB ∠=________.13.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:时不超过45分钟”的可能性最大. 15.某公园划船项目收费标准如下:低为________元.16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).18.计算:04sin45(π2)|1|︒+---.19.解不等式组:3(1)1922x xxx+>-⎧⎪⎨+>⎪⎩.20.关于x的一元二次方程210ax bx++=.(1)当2b a=+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形;(2)若AB =,2BD =,求OE 的长.22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.23.在平面直角坐标系xOy 中,函数ky x=(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C . (1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ并延长交AB 于点C ,连接AC .已知6cm AB ,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(21),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC △为等腰三角形时,AP 的长度约为____cm .25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,x<≤,5060x<≤,90100x≤≤);≤,8090x<x<6070x<≤,7080x<≤这一组是:b.A课程成绩在708070 71 71 71 76 76 77 78 78.578.579 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.26.在平面直角坐标系xOy中,直线44=+与x轴、y轴分别交于点A,B,抛物线y x23y ax bx a=+-经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作⊥交DG的延长线于点H,连接BH.EH DE(1)求证:GF GC=;(2)用等式表示线段BH与AE的数量关系,并证明.28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2-).-),C(6,2-,6),B(2-,2(1)求d(点O,ABC△);(2)记函数y kx=,=(11xk≠)的图象为图形G,若d(G,ABC-≤≤,0△)1直接写出k的取值范围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值△)1范围.2018年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A .B .C .D .【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.【考点】实数与数轴3.方程组33814x y x y -=⎧⎨-=⎩的解为A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D . 【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m ,则FAST 的反射面积总面积约为 A .327.1410m ⨯ B .427.1410m ⨯ C .522.510m ⨯ D .622.510m ⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m ),故选C . 【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A .360︒B .540︒C .720︒D .900︒【答案】C【解析】由题意,正多边形的边数为360660n ︒==︒,其内角和为()2180720n -⋅︒=︒. 【考点】正多边形,多边形的内外角和.6.如果a b -=22()2a b ab a a b+-⋅-的值为A B . C . D .【答案】A【解析】原式()2222222a b a b ab a a a b a a b a a b -+--=⋅=⋅=--,∵a b -=,∴原式=.【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A.10m B.15m C.20m D.22.5m 【答案】B【解析】设对称轴为x h=,由(0,54.0)和(40,46.2)可知,040202h+<=,由(0,54.0)和(20,57.9)可知,020102h+>=,∴1020h<<,故选B.【考点】抛物线的对称轴.8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A.①②③B.②③④C.①④D.①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;-,④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-)”的基础上,将所有点向右平9-)时,表示左安门的点的坐标为(15,18移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC∠.(填“>”,“=”或“<”)∠________DAE【答案】>【解析】如下图所示,△是等腰直角三角形,∴45AFG∠>∠.FAG BAC∠=∠=︒,∴BAC DAE 另:此题也可直接测量得到结果.【考点】等腰直角三角形10在实数范围内有意义,则实数x的取值范围是_______.【答案】0x≥【解析】被开方数为非负数,故0x≥.【考点】二次根式有意义的条件.11.用一组a,b,c的值说明命题“若a b<”是错误的,这组值可以是a=_____,<,则ac bcb=______,c=_______.【答案】答案不唯一,满足a b-<,0c≤即可,例如:,2,1【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变.【考点】不等式的基本性质12.如图,点A,B,C,D在O上,CB CD∠==,30CAD∠=︒,50∠=︒,则ADBACD________.【答案】70【解析】∵CB CD =,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.【答案】103【解析】∵四边形ABCD 是矩形,∴4AB CD ==,AB CD ∥,90ADC ∠=︒,在Rt ADC △中,90ADC ∠=︒,∴5AC ==, ∵E 是AB 中点,∴1122AE AB CD ==, ∵AB CD ∥,∴12AF AE CF CD ==,∴21033CF AC ==. 【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:时不超过45分钟”的可能性最大.【答案】C【解析】样本容量相同,C线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C.【考点】用频率估计概率15.某公园划船项目收费标准如下:低为________元.【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元)【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从下图可知,创新产出排名全球第11,对应创新效率排名全球第3.【考点】函数图象获取信息三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AB =_______,CB =_______,∴PQ l ∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin 45(π2)|1|︒+---.【解析】解:原式4112=+-=. 【考点】实数的运算19.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.【考点】一元一次不等式组的解法20.关于x 的一元二次方程210ax bx ++=.(1)当2b a =+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【解析】(1)解:由题意:0a ≠.∵()22242440b a a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形;(2)若AB =,2BD =,求OE 的长.【解析】(1)证明:∵AB CD ∥∴CAB ACD ∠=∠ ∵AC 平分BAD ∠ ∴CAB CAD ∠=∠ ∴CAD ACD ∠=∠ ∴AD CD = 又∵AD AB = ∴AB CD = 又∵AB CD ∥∴四边形ABCD 是平行四边形 又∵AB AD = ∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB △中,90AOB ∠=︒.∴2OA ==. ∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC △中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.【解析】(1)证明:∵PC 、PD 与O ⊙相切于C 、D .∴PC PD =,OP 平分CPD ∠.在等腰PCD △中,PC PD =,PQ 平分CPD ∠. ∴PQ CD ⊥于Q ,即OP CD ⊥. (2)解:连接OC 、OD .∵OA OD =∴50OAD ODA ∠=∠=︒∴18080AOD OAD ODA ∠=︒-∠-∠=︒ 同理:40BOC ∠=︒∴18060COD AOD BOC ∠=︒-∠-∠=︒. 在等腰COD △中,OC OD =.OQ CD ⊥ ∴1302DOQ COD ∠=∠=︒.∵PD 与O ⊙相切于D . ∴OD DP ⊥. ∴90ODP ∠=︒.在Rt ODP △中,90ODP ∠=︒,30POD ∠=︒∴cos cos30OD OAOPPOD====∠︒【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【解析】(1)解:∵点A(4,1)在kyx=(0x>)的图象上.∴14k=,∴4k=.(2)①3个.(1,0),(2,0),(3,0).②a.当直线过(4,0)时:1404b⨯+=,解得1b=-b.当直线过(5,0)时:1504b⨯+=,解得54b=-c.当直线过(1,2)时:1124b⨯+=,解得74b=d.当直线过(1,3)时:1134b⨯+=,解得114b=∴综上所述:514b -<-≤或71144b <≤.【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(21),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC△为等腰三角形时,AP的长度约为____cm.【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,x<x<≤,5060≤,90100x<x≤≤);≤,7080≤,80906070x<x<≤这一组是:b.A课程成绩在7080x<70 71 71 71 76 76 77 78 78.578.579 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题: (1)写出表中m 的值;(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______; (3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人.∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围. 【解析】(1)解:∵直线44y x =+与x 轴、y 轴交于A 、B .∴A (1-,0),B (0,4) ∴C (5,4)(2)解:抛物线23y ax bx a =+-过A (1-,0)∴30a b a --=. 2b a =-∴223y ax ax a =-- ∴对称轴为212ax a-=-=. (3)解:①当抛物线过点C 时.251034a a a--=,解得13a=.②当抛物线过点B时.34a-=,解得43a=-.③当抛物线顶点在BC上时.此时顶点为(1,4)∴234a a a--=,解得1a=-.∴综上所述43a<-或13a≥或1a=-.【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.【解析】(1)证明:连接DF .∵A ,F 关于DE 对称. ∴AD FD =.AE FE =. 在ADE △和FDE △中. AD FDAE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△ ∴DAE DFE ∠=∠. ∵四边形ABCD 是正方形 ∴90A C ∠=∠=︒.AD CD = ∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒ ∴DFG C ∠=∠ ∵AD DF =.AD CD = ∴DF CD =在Rt DCG △和Rt DFG △. DC DFDG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △ ∴CG FG =. (2)2BH AE =.证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形. ∴AD AB =.90A ADC ∠=∠=︒. ∵DAE △≌DFE △ ∴ADE FDE ∠=∠ 同理:CDG FDG ∠=∠ ∴EDG EDF GDF ∠=∠+∠ 1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥ ∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒ ∴EHD EDH ∠=∠ ∴DE EH =. ∵90A ∠=︒∴90ADE AED ∠+∠=︒ ∵90DEH ∠=︒ ∴90AED BEH ∠+∠=︒ ∴ADE BEH ∠=∠ ∵AD AB =.AM AE = ∴DM EB =在DME △和EBH △中 DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △ ∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =. ∴222ME AE AM AE =+= ∴2BH AE =.【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2-).-),C(6,2-,2-,6),B(2(1)求d(点O,ABC△);(2)记函数y kx=,=(11k≠)的图象为图形G,若d(G,ABC-≤≤,0x△)1直接写出k的取值范围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值△)1范围.【解析】(1)如下图所示:∵B(2-)-,2-),C(6,2∴D(0,2-)∴d(O,ABC△)2==OD(2)10<≤kk≤或01-<31(3)4t =-或04t -≤≤或4t =+.【考点】点到直线的距离,圆的切线。
北京市2018年中考数学二模试题汇编(Word版)
代几综合题2018昌平二模28.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0) ,点 B (1,1) ,点 C (1-, 2-),则A 、B 、C 三点的 “横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3. 因为a =b ,所以A 、B 、C 三点为正方点. (1)在点R (3,5) ,S (3,2-) ,T (4-,3-)中,与点A 、B 为正方点的是 ; (2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为 ;(3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形; ②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.y xxy yx2018朝阳二模28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时, ①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标. (2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.2018东城二模28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)C t +, ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.2018房山二模28. 已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.(1)已知⊙O的半径为1,在点E(1,1),F(-12,32),M(0,-1)中,⊙O的“关联点”为;(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为 5 ,求n的值;(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线443y x=-+与x轴,y轴分别交于点A,B. 若线段AB上存在⊙D的“关联点”,求m的取值范围.2018丰台二模28.在平面直角坐标系xOy 中,将任意两点()11,y x P 与()22y x Q ,之间的“直距”定义为:2121y y x x D PQ -+-=.例如:点M (1,2-),点N (3,5-),则132(5)5MN D =-+---=. 已知点A (1,0)、点B (-1,4).(1)则_______=AO D ,_______=BO D ;(2)如果直线AB 上存在点C ,使得CO D 为2,请你求出点C 的坐标; (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出EO D 的取值范围.2018海淀二模28.对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-.(1)写出函数21y x =-的限减系数; (2)0m >,已知1y x=(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围.(3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.2018平谷二模28.对于平面直角坐标系xOy中的点P和⊙M,给出如下定义:若⊙M上存在两个点A,B,使AB=2PM,则称点P为⊙M的“美好点”.(1)当⊙M半径为2,点M和点O重合时,○1点()120P-,,()211P,,()322P,中,⊙O的“美好点”是;○2点P为直线y=x+b上一动点,点P为⊙O的“美好点”,求b的取值范围;(2)点M为直线y=x上一动点,以2为半径作⊙M,点P为直线y=4上一动点,点P为⊙M的“美好点”,求点M的横坐标m的取值范围.2018石景山二模28.在平面直角坐标系xOy 中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的“伴随圆”. (1)已知,点()1,0P ,①点1,22A ⎛-⎝⎭在点P 的“伴随圆” (填“上”或“内”或“外”); ②点()1,0B -在点P 的“伴随圆” (填“上”或“内”或“外”);(2)若点P 在x 轴上,且点P 的“伴随圆”与直线x y 33=相切,求点P 的坐标; (3)已知直线2+=x y 与x 、y 轴分别交于点A ,B ,直线2-=x y 与x 、y 轴分别交于点C ,D ,点P 在四边形ABCD 的边上并沿DA CD BC AB →→→的方向移动,直接写出点P 的“伴随圆”经过的平面区域的面积.2018西城二模28. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”Q L 的取值范围是 .(2)点D 在直线+3y x =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q ,求点D 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)2018怀柔二模28. A 为⊙C 上一点,过点A 作弦AB ,取弦AB 上一点P ,若满足131<≤ABAP ,则称P 为点A 关于⊙C 的黄金点.已知⊙C 的半径为3,点A 的坐标为(1,0). (1)当点C 的坐标为(4,0)时,①在点D (3,0),E (4,1),F (7,0)中,点A 关于⊙C 的黄金点是 ; ②直线3333-=x y 上存在点A 关于⊙C 的黄金点P ,求点P 的横坐标的取值范围; (2)若y 轴上存在..点A 关于⊙C 的黄金点,直接写出点C 横坐标的取值范围.2018门头沟二模28.在平面直角坐标系xOy中的某圆上,有弦MN,取MN的中点P,我们规定:点P到某点(直”表示.线)的距离叫做“弦中距”,用符号“d中以(3,0)W-为圆心,半径为2的圆上.(1)已知弦MN长度为2.①如图1:当MN∥x轴时,直接写出到原点O的d的长度;中的取值范围.②如果MN在圆上运动时,在图2中画出示意图,并直接写出到点O的d中(2)已知点(5,0)y x=-,求到直线2=-的dy xM-,点N为⊙W上的一动点,有直线2中备用图2018顺义二模28.已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果a ≤PQ,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (-1,1),B (-1,-1),C (1,-1),D (1,1) . (1)在11(,0)2-P,21(2P,3P 中,正方形ABCD 的“关联点”有 ; (2)已知点E 的横坐标是m ,若点E在直线=y 上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线1=+y 与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.代数综合题2018昌平二模26.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B 两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D . ①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式;②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.2018朝阳二模26.已知二次函数)0(222≠--=a ax ax y .(1)该二次函数图象的对称轴是直线 ; (2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.2018东城二模26.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.(1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.2018房山二模26. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.2018丰台二模26.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D . (1)当1h =-时,求点D 的坐标; (2)当1x -≤≤≤1≤1时,求函数的最小值m .(用含h 的代数式表示m )2018海淀二模26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( ); (2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.2018平谷二模26.在平面直角坐标系中,点D是抛物线223y ax ax a =--()0a >的顶点,抛物线与x 轴交于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标;(2)若M 为对称轴与x 轴交点,且DM =2AM ,求抛物线表达式; (3)当30°<∠ADM <45°时,求a 的取值范围.2018石景山二26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.2018西城二模26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为3x (30x >),若当2-≤n ≤1-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.2018怀柔二模26.在平面直角坐标系xOy 中,二次函数C 1:()332--+=x m mx y (m >0)的图象与x轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 和点C 的坐标; (2)当AB =4时,①求二次函数C 1的表达式;②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,请说明理由;(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤25时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围.2018门头沟二模26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+. (1)当该抛物线过原点时,求m 的值;(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B . ①直接写出C 点坐标;②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.2018顺义二模26.在平面直角坐标系中,二次函数221y x ax a =+++的图象经过点 M (2,-3). (1)求二次函数的表达式;(2)若一次函数(0)y kx b k =+≠的图象与二次函数221y x ax a =+++的图象经过x 轴上同一点,探究实数k ,b 满足的关系式; (3)将二次函数221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )在平移后的图象上,且m >n ,结合图象求x 0的取值范围.x反比例综合题2018昌平二模22.如图,在平面直角坐标系xOy 中,一次函数+(0)y ax b a =≠与反比例函数ky k x=≠(0)的图象交于点A (4,1)和B (1-,n ). (1)求n 的值和直线+y ax b =的表达式;(2)根据这两个函数的图象,直接写出不等式0kax b x+-<的解集.2018朝阳二模21. 如图,在平面直角坐标系xOy 中,直线61+=x k y 与函数)0(2>=x xk y 的图象的两个交点分别为A (1,5),B . (1)求21,k k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线61+=x k y 和函数)0(2>=x xk y 的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.x2018东城二模 22. 已知函数1y x=的图象与函数()0y kx k =≠的图象交于点(),P m n . (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.2018房山二模22. 如图,在平面直角坐标系xOy 中,直线y kx m =+与双曲线2y x=-相交于 点A (m ,2).(1)求直线y kx m =+的表达式; (2)直线y kx m =+与双曲线2y x=-的另一个交点为B ,点P 为x 轴上一点,若AB BP =,直接写出点坐标 .2018丰台二模22.在平面直角坐标系xOy 中,直线l :21(0)y mx m m =-+≠. (1)判断直线l 是否经过点M (2,1),并说明理由; (2)直线l 与反比例函数ky x=的图象的交点分别为点M ,N ,当OM =ON 时,直接写出点N 的坐标.2018海淀二模22.已知直线l 过点(2,2)P ,且与函数(ky x=的图象相交于,A B 两点,与x 轴、y 点,C D ,如图所示,四边形,ONAE OFBM 均为矩形,且矩形OFBM 的面积为3. (1)求k 的值;(2)当点B 的横坐标为3时,求直线l 的解析式及线段BC 的长;(3)如图是小芳同学对线段,AD BC 的长度关系的思考示意图.记点B 的横坐标为s ,已知当23s <<时,线段BC 的长随s 的增大而减小,请你参考小芳的示意图判断:当3s ≥时,线段BC 的长随s 的增大而 . (填“增大”、“减小”或“不变”)2018平谷二模21.如图,在平面直角坐标系xOy 中,函数()0ky k x=≠的图象与直线y =x -2交于 点A (a ,1). (1)求a ,k 的值;(2)已知点P (m ,0)(1≤m < 4),过点P 作平行于y 轴的直线,交直线y =x -2于点M (x 1,y 1),交函数()0ky k x=≠的图象于点N (x 1,y 2),结合函数的图象,直接写出12y y -的取值范围.2018石景山二模22.在平面直角坐标系xOy 中,直线1:2l y x b =-+与x 轴,y 轴分别交于点1(,0)2A ,B ,与反比例函数图象的一个交点为(),3M a . (1)求反比例函数的表达式;(2)设直线2:2l y x m =-+与x 轴,y 轴分别交于点C ,D ,且3OCD OAB S S ∆∆=,直接写出m 的值 .2018西城二模23. 如图,在平面直角坐标系xOy 中,函数my x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8.(1)求m ,n 的值;(2)若直线y kx b =+(k ≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.2018怀柔二模23.在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线)0(≠=m xmy 相交于A ,B 两点,A 点坐标为(-3,2),B 点坐标为(n ,-3). (1)求一次函数和反比例函数表达式; (2)如果点P 是x 轴上一点,且△ABP 的面积是5,直接写出点P 的坐标.2018门头沟二模20. 如图,在平面直角坐标系xOy 中,一次函数y x =与反比例函数k y x=(k ≠0)的图象相交于点(2,2)M . (1)求k 的值;(2)点(0,)P a 是y 轴上一点,过点P 且平行于x 轴的直线分别与一次函数y x =、反比例函数k y x=的图象相交于点1(,)A x b 、2(,)B x b ,当12x x <时,画出示意图并直接写出a 的取值范围.2018顺义二模20.如图,在平面直角坐标系xOy 中,函数ky x=(x >0)的图象与直线21y x =+交于点A (1,m ).(1)求k 、m 的值;(2)已知点P (n ,0)(n ≥1),过点P 作平行于y 轴的直线,交直线21y x =+于点B ,交函数ky x=(x >0)的图象于点C .横、纵坐标都是整数的点叫做整点. ①当3n =时,求线段AB 上的整点个数;②若k y x=(x >0)的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.函数操作题2018昌平二模25.有这样一个问题:探究函数3126y x x =-的图象与性质.小彤根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)求m 的值为 ;(2)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象; (3)方程31226x x -=-实数根的个数为 ; (4)观察图象,写出该函数的一条性质 ; (5)在第(2)问的平面直角坐标系中画出直线12y x =,根据图象写出方程311262x x x -=的一个正数根约为 (精确到0.1).2018朝阳二模25. 在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF= °,射线DF与射线AC交于点F.设B,E两点间的距离为x cm,E,F两点间的距离为y cm.图1图2(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 cm.2018东城二模25. 小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).小强根据他学习函数的经验做了如下的探究. 下面是小强的探究过程,请补充完整:建立函数模型:设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为 ;列表(相关数据保留一位小数):根据函数的表达式,得到了x与y的几组值,如下表:描点、画函数图象:如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;观察分析、得出结论:根据以上信息可得,当x= 时,y有最小值.由此,小强确定篱笆长至少为米.2018房山二模25. 有这样一个问题:探究函数3126y x x =-的图象与性质. 小东根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小东的探究过程,请补充完整: (1)函数3126y x x =-的自变量x 的取值范围是 ; (2) 下表是y 与x 的几组对应值则m 的值为 ;(3) 如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质 .2018丰台二模25.数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:Array(1)设小正方形的边长为x dm,体积为y dm3,根据长方体的体积公式得到y和x的关系式:;(2)确定自变量x的取值范围是;(3)列出y与x的几组对应值.(说明:表格中相关数值保留一位小数)(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.2018海淀二模25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。
2018年北京市初三数学二模分类汇编-第12讲代数压轴题
第12讲代数压轴题【2018 •昌平二模】1.在平面直角坐标系xOy中,抛物线y =ax2 -2ax - 3a (a = 0), 与x轴交于A、B两点(点A在点B的左侧).(1)求点A和点B的坐标;(2)若点P (m , n)是抛物线上的一点,过点P 作x轴的垂线,垂足为点D.①在a 0的条件下,当-2乞m乞2时,n的取值范围是-4乞n乞5,求抛物线的表达式;②若D点坐标(4, 0),当PD>AD时,求a的取值范围.【答案】解:(1)把y=0代入二次函数得:a(x2-2x-3)=0即a(x-3)(x • 1) =0…x i =3,x2- -1•••点A在点B的左侧,••• A( -1,0) , B(3,0) ........................................ 2 分—2a(2)①抛物线的对称轴为直线:x二-——=1 ;a由题意二次函数的顶点为(1, -4) , .............................................. 3分代入解析式,可得a =1抛物线的解析式为y = x2 - 2x - 3 ....................................................................... 4分②••• D点坐标(4, 0), D x轴•••点P的横坐标为4,代入y =ax2 -2ax-3a得y =5a ......................................................... 5 分T D点坐标(4, 0) , A点坐标(-1 , 0)• . AD =5•/ PD AD•- a 1 或a v -1 ..................................................... 6 分【2018 •朝阳二模】2•已知二次函数y二ax2-2ax-2(a = 0).(1) __________________________________ 该二次函数图象的对称轴是直线;(2) 若该二次函数的图象开口向上,当-1 < x w 5时,函数图象的最高点为M,最低点为N ,点M的纵坐标为H,求点M和点N的坐标;2(3) 对于该二次函数图象上的两点A(x i, y i), B(X2, y2),设t w x i w t+1,当X2>3时,均有y i > y2,请结合图象,直接写出t的取值范围.【答案】(1) x=i ............................................................. 1分•••当x=5时,y的值最大,即M (5, 11) . ....... 3分2把M (5, H)代入y=ax2—2ax —2,解得a=l. .................................... 4 分(2)解:•••该二次函数的图象开口向上,对称轴为直线x=1 , -1W x W 5,2 2•••该二次函数的表达式为y=l x2 _x_2.2当x=1 时,y = _ 5,2• N (1, _5) . ................ 5 分2(3)—1W t w 2. ................................................... 7 分【2018 •东城二模】3.在平面直角坐标系xOy中,抛物线y=ax2,bx_3 a严0经过点A -1,0 和点B 4,5 .(1) 求该抛物线的表达式;(2) 求直线AB关于x轴的对称直线的表达式;(3) 点P是x轴上的动点,过点P作垂直于x轴的直线1,直线1与该抛物线交于点M,与直线AB交于点N •当PM v PN时,求点P的横坐标x p的取值范围.2018 年北京市初三数学二模分类汇编【答案】解:(1)把点(-1,0)和(4,5)分别代入y =ax2• bx-3(a = 0),f 0 = a - b - 3,得5 =16a 4b-3,解得 a = 1, b = 一2 .•••抛物线的表达式为 y=x 2-2x-3 .----------------------------------------------------- 2分(2)设点B 4,5关于x 轴的对称点为B ', 则点B 的坐标为 4, -5 .•直线AB 关于x 轴的对称直线为直线 AB . 设直线AB •的表达式为y =mx • n把点(-1,0)和(4, _5)分别代入y = mx • n , 丄0 _ -m n , 得、-5 =4m 十 n , 解得 m = -1 , n = -1 .•直线AB ■的表达式为y = —x —1 .即直线AB 关于x 轴的对称直线的表达式为 y 二-x —1(3)如图,直线 AB 与抛物线y=x —'2x —3交于点C . 设直线l 与直线AB '的交点为N ', 则 PN'=PN . •/ PM ::: PN , • PM ::: PN '.•••点M 在线段NN '上(不含端点).2•••点M 在抛物线y =x -2x-3夹在点C 与点B 之间 的部分上.2联立 y =x -2x -3与 y - -x -1 , 可求得点C 的横坐标为2. 又点B 的横坐标为4,【2018 •房山二模】4.在平面直角坐标系 xOy 中,二次函数y = ax 2 • bx • c ( a = 0 )的 图象经过 A (0,4),B (2,0),C (- 2, 0)三点..•.点p 的横坐标X p 的取值范围为2 ■■■ X p ::: 4 .------------------------------------------------ 7分(1 )求二次函数的表达式;(2)在x轴上有一点D (- 4, 0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A, B两点之间(含A, B两点)的曲线部分在平移过程中所扫过的面积.y J1■O x【答案】解:(1 )••• A ( 0, 4), B (2, 0), C (-2, 0)•••二次函数的图象的顶点为 A ( 0, 4)•••设二次函数表达式为y = ax2• 4将 B (2, 0)代入,得4a - 4=0解得,a - -1•••二次函数表达式y = -x2• 4 ........................................ 2'(2 [①设直线DA: y =kx b k = 0将 A (0, 4), D (-4, 0)代入,得b = 4-4k b = 0丄k =1解得,[b =4•直线DA: y = x 4由题意可知,平移后的抛物线的顶点E在直线DA上•••设顶点 E ( m , m +4)2•平移后的抛物线表达式为y m m 4又•••平移后的抛物线过点 B (2, 0)2•将其代入得,- 2-m m 4=0解得,m =5 , m 2 =0 (不合题意,舍去)•顶点E ( 5, 9) ............................................ 5分 ②30. ............................................................................................................ 7分【2018 •丰台二模】5.在平面直角坐标系 xOy 中,二次函数y =x 2 - 2hx • h 的图象的 顶点为点D .(1) 当h - -1时,求点D 的坐标; (2)当-1< x 益巾时,求函数的最小值 m .(用含h 的代数式表示m )【答案】解:(1):抛物线 y =x 2「2hx • h = (x-h ) 2+h-h 2,•顶点D 的坐标为(h , h-h 2),•••当h=-1时,点D 的坐标是(-1, -2). .... 3•分 (2)当 x=-1 时,y= 3h+1,当 x=1 时,y=-h+ 1.......... 3-分 ① 当h<-1时,函数的最小值 m=3h+1 ......... 5•分 ② 当-1时,,函数的最小值 m= h-h 2......... 6•分 ③ 当h>1时,,函数的最小值 m=-h+1......... 7•分43 2 1JLJL1 1 1||-4 -3 -2 -1 O 123 4-1 ---3 - -4 -x【2018 •海淀二模】6•在平面直角坐标系 xOy 中,已知点A (_3,1), B (_1,1), C (m,n ), 其中n 1,以点A,B,C 为顶点的平行四边形有三个,记第四个顶点分别为 D 1, D 2, D 3,图所示•(1 )若m 1, n =3,则点D 1, D 2, D 3的坐标分别是((2)是否存在点C ,使得点A, B,D 1, D 2, D 3在同一条抛物线上?若存D 3【答案】解:(1) D 1(-3,3),D 2( 1,3),D 3 (-3,-1)(2)不存在.理由如下:假设满足条件的C 点存在,即A ,B ,D 1,D 2,D 3在同一条抛物线上,则线段 AB 的 垂直平分线x =「2即为这条抛物线的对称轴, 而D 1,D 2在直线y = n 上,则D 1 D 2的 中点C 也在抛物线对称轴上,故 m - -2,即点C 的坐标为(-2,n ).由题意得:D 1 (-4, n ), D 2 (0, n ), D 3 ( -2, 2-n ).注意到D 3在抛物线的对称轴上,故 D 3为抛物线的顶点.设抛物线的表达式是2y=a x 2j 亠2 - n .当x - -1时,y = 1,代入得a = n -1. 所以 y =n -1 x 2? 2 - n .令 x=0,得 y=4n-1 2 - n=3n-2二 n ,解得 n = 1,与 n 1 矛盾.所以不存在满足条件的 C 点.【2018 •石景山二模】7.在平面直角坐标系 xOy 中,抛物线y = ax 2 • 4x • c a = 0经 过点A 3, 和B 0, 2 .(1)求抛物线的表达式和顶点坐标;(2) 将抛物线在 A 、B 之间的部分记为图象 M (含A 、B 两点).将图象M 沿直线x 二3翻折,得到图象 N .若过点C 9,4的直线y 二kx • b 与图象M 、图象 N 都相交,且只有两个交点,求 b 的取值范围.);在,求出点C 的坐标;若不存在,说明理由D iD 2【答案】26.解:(1 )•••抛物线 y 二 ax 24x c(a = 0)经过点 A(3, -4)和 B(0, 2),a - -2解得:I c = 2•••抛物线的表达式为 y = _2x 2 - 4x - 2. ...................................... 顶点坐标为(1,4).(2)设点B(0, 2)关于x = 3的对称点为B ' 则点B '6, 2).若直线y = kx b 经过点C 9,4和B 6, 2,可得b 二-2. 若直线y = kxb 经过点C 9,4和A 3, -4,可得b = -8.直线y = kx • b 平行x 轴时,b = 4 .综上,「8 :: b ::: -2或 b = 4............................... 7 分8.抛物线M : y =ax 2-4ax a -1 (a * 0)与x 轴交于A , B 两点(点A 在点B 左侧),抛物线的顶点为 D.(1) ____________________________________ 抛物线 M 的对称轴是直线 ;(2) 当AB=2时,求抛物线 M 的函数表达式;(3) 在(2)的条件下,直线l : y = kx b (k * 0)经过抛物线的顶点 D ,直线y = n 与抛物线M 有两个公共点,它们的横坐标分别记为 x-i , x 2,直线y = n 与直线I 的交点的横坐标记为X 3(>0 ),若当-2 < n w -1时,总有为—x 3>x 3— x 2> 0 ,12 c - -4c = 2【2018 •西城二模】 可得:请结合函数的图象,直接写出k的取值范围【答案】解:如图8.(1)x=2.(2)抛物线M的函数表达式为y-1x2 2^32 2(3)k 5.4。
2018年北京市初中中考数学二模分类27题几何综合题
2018北京市中考数学二模分类27题几何综合题2018东城二模(1)如下图,点P位于等边△ABC的内部,且∠ACP=∠CBP.∠BPC的度数为________°;延伸BP至点D,使得PD=PC,连结AD,CD.①依题意,补全图形;②证明:AD+CD=BD;在(2)的条件下,若BD的长为2,求四边形ABCD的面积.2018西城二模27.如图1,在等边三角形ABC中,CD 为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BCBQ,设∠DAQ=α(0°<α<60°上,连结且α≠30°).(1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE(用含α的式子表示);②研究线段CE,AC,CQ之间的数目关系,并加以证明;(2)当30°<α<60°时,直接写出线段 CE,AC,CQ之间的数目关系.图1备用图2018海淀二模27.如图,在等边△ABC中,D,E分别是边AC,BC上的点,且CDCE,DBC30,点C与点F对于BD对称,连结AF,FE,FE交BD于G.(1)连结DE,DF,则DE,DF之间的数目关系是;(2)若DBC,求FEC的大小;(用的式子表示)(2)用等式表示线段BG,GF和FA之间的数目关系,并证明.A FG DBE C2018旭日二模27.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延伸AM到点D,AE=AD,EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD=度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数目关系,并证明.2018丰台二模27.如图,正方形ABCD中,点E是逆时针旋转90°,获得AF,连结BC边上的一个动点,连结AE,将线段EF,交对角线BD于点G,连结AG.AE绕点A1)依据题意补全图形;2)判断AG与EF的地点关系并证明;3)当AB=3,BE=2时,求线段BG的长.D CEA B2018石景山二模27.在△ABC中,∠ABC=90°,AB=BC=4,点M是线段BC的中点,点N在射线MB上,连结AN,平移△ABN,使点N挪动到点M,获得△DEM(点D与点A对应,点E与点B对应),DM交AC于点P.(1)若点N是线段MB的中点,如图1.①依题意补全图1;②求DP的长;(2)若点N在线段MB的延伸线上,射线DM与射线AB交于点Q,若MQ=DP,求CE的长.AAN B M CB CN M图1备用图2018门头沟二模27.如图,在正方形ABCD 中,连结BD,点E为CB边的延伸线上一点,点F是线段AE的中点,过点F作AE的垂线交BD于点M,连结ME、MC.(1)依据题意补全图形,猜想MEC与MCE的数目关系并证明;(2)连结FB,判断FB、FM之间的数目关系并证明.A DFE B C2018顺义二模27.在等边△ABC外侧作直线AM,点C对于AM的对称点为D,连结BD交AM于点E,连结CE,CD,AD.(1)依题意补全图1,并求BEC的度数;(2)如图2,当MAC30时,判断线段BE与DE之间的数目关系,并加以证明;(3)若0MAC120,当线段DE2BE时,直接写出MAC的度数.ADEMB C图2AB C M图12018房山二模已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连结CB.1)直接写出∠D与∠MAC之间的数目关系;2)①如图1,猜想AB,BD与BC之间的数目关系,并说明原因;如图2,直接写出AB,BD与BC之间的数目关系;(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD= 2时,直接写出BC的值.MMA ABNC D C DBN图2图12018怀柔二模27.在△ABC中,AB=BC=AC,点M为直线BC上一个动点(不与B,C重合),连结AM,将线段AM绕点M顺时针旋转60°,获得线段MN,连结NC.A ABM C M BC第27题图2第27题图1(1)假如点M在线段BC上运动.①依题意补全图1;②点M在线段BC上运动的过程中,∠MCN的度数能否确立?假如确立,求出∠MCN的度数;假如不确立,说明原因;(2)假如点M在线段CB的延伸线上运动,依题意补全图2,在这个过程中,∠M CN的度数能否确立?假如确立,直接写出∠MCN的度数;假如不确立,说明原因.2018平谷二模27.正方形ABCD的对角线 AC,BD交于点O,作∠CBD的角均分线BE,分别交CD,OC于点E,F.(1)依照题意,补全图形(用尺规作图,保存作图印迹);2)求证:CE=CF;3)求证:DE=2OF.ADOB C2018昌平二模如图,在△ABC中,AB=AC>BC,BD是AC边上的高,点C对于直线BD的对称点为点E,连结BE.(1)①依题意补全图形;②若∠BAC=,求∠DBE的大小(用含的式子表示);(2)若DE=2AE,点F是BE中点,连结AF,BD=4,求AF的长.2018年北京市初中中考数学二模分类27题几何综合题11 / 1111AAD B DBCC(备用图)。
北京市2018年中考数学二模试题汇编代几综合题
代几综合题2018昌平二模28.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0) ,点 B (1,1) ,点 C (1-, 2-),则A 、B 、C 三点的 “横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3. 因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5) ,S (3,2-) ,T (4-,3-)中,与点A 、B 为正方点的是 ; (2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为 ; (3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形; ②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.y xxy yx2018朝阳二模28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时, ①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标. (2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.2018东城二模28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =.基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)C t +, ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围;②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________.2018房山二模28. 已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.(1)已知⊙O的半径为1,在点E(1,1),F(-12,32),M(0,-1)中,⊙O的“关联点”为;(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为 5 ,求n的值;(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线443y x=-+与x轴,y轴分别交于点A,B. 若线段AB上存在⊙D的“关联点”,求m的取值范围.2018丰台二模28.在平面直角坐标系xOy 中,将任意两点()11,y x P 与()22y x Q ,之间的“直距”定义为:2121y y x x D PQ -+-=.例如:点M (1,2-),点N (3,5-),则132(5)5MN D =-+---=. 已知点A (1,0)、点B (-1,4).(1)则_______=AO D ,_______=BO D ;(2)如果直线AB 上存在点C ,使得CO D 为2,请你求出点C 的坐标; (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出EO D 的取值范围.2018海淀二模28.对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-.(1)写出函数21y x =-的限减系数; (2)0m >,已知1y x=(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围.(3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.2018平谷二模28.对于平面直角坐标系xOy 中的点P 和⊙M ,给出如下定义:若⊙M 上存在两个点A ,B ,使AB =2PM ,则称点P 为⊙M 的“美好点”. (1)当⊙M 半径为2,点M 和点O 重合时,○1点()120P -, ,()211P ,,()322P ,中,⊙O 的“美好点”是 ; ○2点P 为直线y=x+b 上一动点,点P 为⊙O 的“美好点”,求b 的取值范围; (2)点M 为直线y=x 上一动点,以2为半径作⊙M ,点P 为直线y =4上一动点,点P 为⊙M 的“美好点”,求点M 的横坐标m 的取值范围.2018石景山二模28.在平面直角坐标系xOy 中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的“伴随圆”. (1)已知,点()1,0P ,①点1,2A ⎛⎝⎭在点P 的“伴随圆” (填“上”或“内”或“外”); ②点()1,0B -在点P 的“伴随圆” (填“上”或“内”或“外”);(2)若点P 在x 轴上,且点P 的“伴随圆”与直线x y 33=相切,求点P 的坐标; (3)已知直线2+=x y 与x 、y 轴分别交于点A ,B ,直线2-=x y 与x 、y 轴分别交于点C ,D ,点P 在四边形ABCD 的边上并沿DA CD BC AB →→→的方向移动,直接写出点P 的“伴随圆”经过的平面区域的面积.2018西城二模28. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx称为点Q 的“理想值”,记作Q L .如(1,2)Q -的“理想值”221Q L ==--. (1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”Q L 等于_________;②如图,C ,⊙C 的半径为1. 若点Q 在⊙C 上,则点Q 的“理想值”Q L 的取值范围是 .(2)点D 在直线+3y =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q ,求点D 的横坐标D x 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤件的最大圆,并直接写出相应的半径r 的值.(要求画图位置准确,但不必尺规作图)2018怀柔二模28. A 为⊙C 上一点,过点A 作弦AB ,取弦AB 上一点P ,若满足131<≤ABAP ,则称P 为点A 关于⊙C 的黄金点.已知⊙C 的半径为3,点A 的坐标为(1,0). (1)当点C 的坐标为(4,0)时,①在点D (3,0),E (4,1),F (7,0)中,点A 关于⊙C 的黄金点是 ; ②直线3333-=x y 上存在点A 关于⊙C 的黄金点P ,求点P 的横坐标的取值范围; (2)若y 轴上存在..点A 关于⊙C 的黄金点,直接写出点C 横坐标的取值范围.2018门头沟二模28.在平面直角坐标系xOy中的某圆上,有弦MN,取MN的中点P,我们规定:点P到某点(直”表示.线)的距离叫做“弦中距”,用符号“d中以(3,0)W-为圆心,半径为2的圆上.(1)已知弦MN长度为2.①如图1:当MN∥x轴时,直接写出到原点O的d的长度;中的取值范围.②如果MN在圆上运动时,在图2中画出示意图,并直接写出到点O的d中(2)已知点(5,0)y x=-,求到直线2=-的dy xM-,点N为⊙W上的一动点,有直线2中备用图2018顺义二模28.已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果a ≤PQ ,则称点P 为正方形ABCD 的“关联点”. 在平面直角坐标系xOy 中,若A (-1,1),B (-1,-1),C (1,-1),D (1,1) .(1)在11(,0)2-P ,21(2P ,3P 中,正方形ABCD 的“关联点”有 ;(2)已知点E 的横坐标是m ,若点E 在直线=y 上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线1=+y 与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.。
2018北京市中考数学二模分类27题几何综合题
2021北京市中考数学二模分类27题几何综合题LtD2021北京市中考数学二模分类27题几何综合题2021东城二模△的内部,且∠ACP= 27. 如下图,点P位于等边ABC∠CBP.(1) ∠BPC的度数为________°;(2) 延长BP至点D,使得PD=PC,连接AD,CD.①依题意,补全图形;②证明:AD+CD=BD;(3) 在(2)的条件下,假设BD的长为2,求四边形ABCD的面积.2021西城二模27. 如图1,在等边三角形ABC中,CD为中线,点Q在线段CD上运动,将线段QA绕点Q顺时针旋转,使得点A的对应点E落在射线BC 上,连接BQ,设∠DAQ=α〔0°<α<60°且α≠30°〕.〔1〕当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE〔用含α的式子表示〕;②探究线段CE,AC,CQ之间的数量关系,并加以证明;〔2〕当30°<α<60°时,直接写出线段CE,AC,CQ之间的数量关系.2021海淀二模27.如图,在等边ABC △中, ,D E分别是边,AC BC 上的点,且CD CE = ,30DBC ∠<︒ ,点C 与点F 关于BD 对称,连接,AF FE ,FE 交BD 于G .图 1备用图〔1〕连接,DE DF ,那么,DE DF 之间的数量关系是 ;〔2〕假设DBC α∠=,求FEC ∠的大小; 〔用α的式子表示〕〔2〕用等式表示线段,BG GF 和FA 之间的数量关系,并证明.GFEDCBA2021朝阳二模27.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE= AD,∠EAD=90°,CE交AB于点F,CD=DF.〔1〕∠CAD= 度;〔2〕求∠CDF的度数;〔3〕用等式表示线段CD和CE之间的数量关系,并证明.2021丰台二模27.如图,正方形ABCD 中,点E 是BC 边上的一个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对角线BD 于点G ,连接AG . 〔1〕根据题意补全图形;〔2〕判定AG 与EF 的位置关系并证明; 〔3〕当AB = 3,BE = 2时,求线段BG 的长.ABC ED2021石景山二模27.在△ABC 中,∠ABC =90°,AB =BC =4,点M 是线段BC 的中点,点N 在射线MB 上,连接AN ,平移△ABN ,使点N 移动到点M ,得到△DEM 〔点D 与点A 对应,点E 与点B 对应〕,DM 交AC 于点P .〔1〕假设点N 是线段MB 的中点,如图1.① 依题意补全图1; ② 求DP 的长;〔2〕假设点N 在线段MB 的延长线上,射线DM 与射线AB 交于点Q ,假设MQ =DP ,求CE 的长.图1N MA B C N M AB C 备用图2021门头沟二模27. 如图,在正方形ABCD中,连接BD,点E 为CB边的延长线上一点,点F是线段AE的中点,过点F作AE的垂线交BD于点M,连接ME、MC.〔1〕根据题意补全图形,猜测MEC∠的数量∠与MCE关系并证明;〔2〕连接FB,判断FB 、FM之间的数量关系并证明.2021顺义二模27.在等边ABC△外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.〔1〕依题意补全图1,并求BEC∠的度数;〔2〕如图2 ,当30MAC∠=︒时,判断线段BE与DE之间的数量关系,并加以证明;〔3〕假设0120MAC︒<∠<︒,当线段2DE BE=时,直接写出MAC∠的度数.图2M ED CBA2021房山二模27. AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连接CB .〔1〕直接写出∠D 与∠MAC 之间的数量关系; 〔2〕① 如图1,猜测AB ,BD 与BC 之间的数量关系,并说明理由;② 如图2,直接写出AB ,BD 与BC 之间的数量关系;〔3〕在MN 绕点A 旋转的过程中,当∠图1MCBABCD =30°,BD = 2 时,直接写出BC 的值.2021怀柔二模27.在△ABC 中,AB=BC =AC ,点M 为直线BC 上一个动点〔不与B ,C 重合〕,连结AM ,将线段AM 绕点M 顺时针旋转60°,得到线段MN ,连结NC .图C ADBMN图CADB NBB第27第27(1)如果点M在线段BC上运动.①依题意补全图1;②点M在线段BC上运动的过程中,∠MCN的度数是否确定?如果确定,求出∠MCN的度数;如果不确定,说明理由;(2)如果点M在线段CB的延长线上运动,依题意补全图2,在这个过程中,∠MCN的度数是否确定?如果确定,直接写出∠MCN的度数;如果不确定,说明理由.2021平谷二模27.正方形ABCD的对角线AC,BD交于点O,作∠CBD的角平分线BE,分别交CD,OC于点E,F.〔1〕依据题意,补全图形〔用尺规作图,保存作图痕迹〕;〔2〕求证:CE=CF;〔3〕求证:DE=2OF.2021昌平二模27.如图,在△ABC 中,AB =AC >BC ,BD 是AC 边DBCOA上的高,点C 关于直线BD 的对称点为点E ,连接BE .〔1〕 ①依题意补全图形;②假设∠BAC =α,求∠DBE 的大小〔用含α的式子表示〕;(2) 假设DE =2AE ,点F 是BE 中点,连接AF ,BD =4,求AF 的长.DCBADCBA〔备用图〕。
2018年北京市东城区中考数学二模试卷(解析版)
20. (5 分)已知关于 x 的一元二次方程 kx2﹣6x+1=0 有两个不相等的实数根. (1)求实数 k 的取值范围; (2)写出满足条件的 k 的最大整数值,并求此时方程的根. 21. (5 分)如图,在菱形 ABCD 中,∠BAD=α,点 E 在对角线 BD 上.将线段 CE 绕点 C 顺时针旋转 α,得到 CF,连接 DF.
第 2 页(共 29 页)
亿立方米. 已知丹江口水库来水量比河北四库来水量的 2 倍多 1.82 亿立方米, 求河北四库来水量.设河北四库来水量为 x 亿立方米,依题意,可列一元一 次方程为 .
14. (2 分)每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙 舟的习俗. 某班同学为了更好地了解某社区居民对鲜肉粽 (A) 、 豆沙粽 (B) 、 小枣粽(C) 、蛋黄粽(D)的喜爱情况,对该社区居民进行了随机抽样调查, 并将调查情况绘制成如下两幅统计图(尚不完整) .
8. (2 分)有一圆形苗圃如图 1 所示,中间有两条交叉过道 AB,CD,它们为苗 圃⊙O 的直径,且 AB⊥CD.入口 K 位于 中点,园丁在苗圃圆周或两条交
叉过道上匀速行进.设该园丁行进的时间为 x,与入口 K 的距离为 y,表示 y 与 x 的函数关系的图象大致如图 2 所示, 则该园丁行进的路线可能是 ( )
16. (2 分)阅读下列材料: 数学课上老师布置一道作图题: 已知:直线 l 和 l 外一点 P. 求作:过点 P 的直线 m,使得 m∥l. 小东的作法如下: 作法:如图 2,
第 3 页(共 29 页)
(1)在直线 l 上任取点 A,连接 PA; (2) 以点 A 为圓心, 适当长为半径作弧, 分别交线段 PA 于点 B, 直线 l 于点 C; (3)以点 P 为圆心,AB 长为半径作弧 DQ,交线段 PA 于点 D; (4)以点 D 为圆心,BC 长为半径作弧,交弧 DQ 于点 E,作直线 PE.所以直 线 PE 就是所求作的直线 m. 老师说: “小东的作法是正确的. ” 请回答:小东的作图依据是 .
2018年北京市初三数学二模分类汇编-第12讲:代数压轴题
第12讲 代数压轴题【2018·昌平二模】1.在平面直角坐标系xOy 中,抛物线223(0)y ax ax a a =--≠,与x 轴交于A 、B两点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式; ②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.【答案】解:(1)把0y = 代入二次函数得:2(23)0a x x --=即(3)(1)0a x x -+= ∴123,1x x ==- ∵点A 在点B 的左侧,∴(1,0)A -,(3,0)B ………………………………2分 (2)①抛物线的对称轴为直线:21ax a-=-=; 由题意二次函数的顶点为(1,4)-,…………………………………3分 代入解析式,可得1a =抛物线的解析式为223y x x =--……………………………………………………4分②∵D 点坐标(4,0),PD x ⊥轴 ∴点P 的横坐标为4,代入223y ax ax a =--得5y a =……………………………………………5分 ∵D 点坐标(4,0),A 点坐标(1-,0) ∴5AD = ∵PD AD >∴1a >或1a -<……………………………………6分【2018·朝阳二模】2.已知二次函数)0(222≠--=a ax ax y .(1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标; (3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.【答案】(1)x =1 ………………………………………1分(2)解:∵该二次函数的图象开口向上,对称轴为直线x =1,-1≤x ≤5,∴当x =5时,y 的值最大,即M (5,211). …………3分把M (5,211)代入y =ax 2-2ax -2,解得a =21. …………………4分∴该二次函数的表达式为y =2212--x x .当x =1时,y =25-,∴N (1,25-). ………………………5分(3)-1≤t ≤2. ………………………………………7分【2018·东城二模】3.在平面直角坐标系xOy 中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,. (1)求该抛物线的表达式;(2)求直线AB 关于x 轴的对称直线的表达式;(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N .当PM PN <时,求点P 的横坐标P x 的取值范围.【答案】解:(1)把点(10)-,和(45),分别代入23(0)y ax bx a =+-≠, 得 0--35164-3a b a b =⎧⎨=+⎩,,解得12a b ==-,.∴抛物线的表达式为223y x x =--. -------------------------------------------------------------2分(2)设点()45B ,关于x 轴的对称点为B ',则点B '的坐标为()45,-.∴直线AB 关于x 轴的对称直线为直线AB '.设直线AB '的表达式为y mx n =+, 把点(10)-,和(45)-,分别代入y mx n =+, 得054m n m n =-+⎧⎨-=+⎩,,解得11m n =-=-,.∴直线AB '的表达式为1y x =--.即直线AB 关于x 轴的对称直线的表达式为1y x =--. --------------------------------------4分(3)如图,直线AB '与抛物线223y x x =--交于点C .设直线l 与直线AB '的交点为N ', 则 'PN PN =. ∵PM PN <, ∴'PM PN <.∴点M 在线段'NN 上(不含端点).∴点M 在抛物线223y x x =--夹在点C 与点B 之间的部分上.联立223y x x =--与1y x =--,可求得点C 的横坐标为2. 又点B 的横坐标为4,∴点P 的横坐标P x 的取值范围为24P x <<. --------------------------------------------------7分【2018·房山二模】4. 在平面直角坐标系x O y 中,二次函数2y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B . ①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.【答案】解:(1)∵A (0,4),B (2,0),C (-2,0) ∴二次函数的图象的顶点为A (0,4) ∴设二次函数表达式为24y ax =+ 将B (2,0)代入,得44=0a + 解得,1a =-∴二次函数表达式24y x =-+ ……………………………………2′ (2)①设直线DA :()0y kx b k =+≠ 将A (0,4),D (-4,0)代入,得 440b k b =⎧⎨-+=⎩解得,14k b =⎧⎨=⎩∴直线D A : 4y x =+……………………………………………………3分 由题意可知,平移后的抛物线的顶点E 在直线DA 上 ∴设顶点E (m ,m +4)∴平移后的抛物线表达式为()24y x m m =--++ 又∵平移后的抛物线过点B (2,0) ∴将其代入得,()224=0m m --++解得,15m =,20m =(不合题意,舍去)∴顶点E (5,9)…………………………………………………………5分 ② 30.………………………………………………………………………………7分 【2018·丰台二模】5.在平面直角坐标系xOy 中,二次函数22y x hx h =-+的图象的顶点为点D .(1)当1h =-时,求点D 的坐标;(2)当1x -≤≤≤1≤1时,求函数的最小值m . (用含h 的代数式表示m )【答案】解:(1)∵抛物线22y x hx h =-+=(x -h )2+h -h 2,∴顶点D 的坐标为(h ,h -h 2),∴当h =-1时,点D 的坐标是(-1,-2). …………3分(2)当x =-1时,y = 3h+1,当x =1时,y =-h+1. …………4分 ① 当h <-1时,函数的最小值m = 3h+1 …………5分 ② 当-1≤h ≤1时,,函数的最小值m = h -h 2 …………6分 ③ 当h >1时,,函数的最小值m =-h+1 …………7分【2018·海淀二模】6.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示. (1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( ); (2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.【答案】解:(1)1D (-3,3),2D (1,3),3D (-3,-1) (2)不存在. 理由如下:假设满足条件的C 点存在,即A ,B ,1D ,2D ,3D 在同一条抛物线上,则线段AB 的垂直平分线2x =-即为这条抛物线的对称轴,而1D ,2D 在直线y n =上,则1D 2D 的中点C 也在抛物线对称轴上,故2m =-,即点C 的坐标为(-2,n ).由题意得:1D (-4,n ),2D (0,n ),3D (-2,2n -).注意到3D 在抛物线的对称轴上,故3D 为抛物线的顶点. 设抛物线的表达式是()222y a x n =++-. 当1x =-时,1y =,代入得1a n =-. 所以()()2122y n x n =-++-.令0x =,得()41232y n n n n =-+-=-=,解得1n =,与1n >矛盾. 所以 不存在满足条件的C 点.【2018·石景山二模】7.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()34,A -和()02,B .(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.【答案】26.解:(1)∵抛物线240y ax x c a =++≠()经过点34(,)A -和02(,)B , 可得:91242a c c ⎧++=-⎨=⎩解得:22a c ⎧=-⎨=⎩∴抛物线的表达式为2242y x x =-++. ……………………… 2分 ∴顶点坐标为()14,. ……………………… 3分(2)设点02(,)B 关于3x =的对称点为B’, 则点B’()62,. 若直线y kx b =+经过点()94,C 和()62B ',,可得2b =-. 若直线y kx b =+经过点()94,C 和()34,A -,可得8b=-.直线y kx b =+平行x 轴时,4b =.综上,824b b -<<-=或. ……………………… 7分yx–1123456789–1–2–3–4–512345CB'ABO【2018·西城二模】8. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为(),若当≤n ≤时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.【答案】解:如图8.(1)x=2.…………………………… 1分 (2)抛物线M 的函数表达式为213222y x x =-+-. ………………………… 4分 (3)54k >. ………………………………………………………………………… 6分3x 30x >2-1-图8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018北京市中考数学二模分类26题代数综合题
2018东城二模 26.在平面直角坐标系
中,抛物线()230y ax bx a =+-≠经过点()1,0A -和点()45B ,.
(1)求该抛物线的表达式;
(2)求直线AB 关于x 轴的对称直线的表达式;
(3)点是轴上的动点,过点作垂直于轴的直线,直线与该抛物线交于
点M ,与直线AB 交于点N .当PM PN <时,求点的横坐标P x 的取值范围.
2018西城二模
26. 抛物线M :241y ax ax a =-+- (a ≠0)与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .
(1)抛物线M 的对称轴是直线____________; (2)当AB =2时,求抛物线M 的函数表达式;
(3)在(2)的条件下,直线l :y kx b =+(k ≠0)经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为(),若当≤n ≤时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.
xOy
P x P x l l P 3x 30x >2-1-
26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点
,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.
(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( ); (2)是否存在点C ,使得点123,,,,A B D D D 在同一条抛物线上?若存在,求出点C 的坐标;若不存在,说明理由.
2018朝阳二模
26.已知二次函数)0(222≠--=a ax ax y .
(1)该二次函数图象的对称轴是直线 ; (2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,
点M 的纵坐标为211,求点M 和点N 的坐标;
(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,
均有y 1 ≥ y 2,请结合图象,直接写出t 的取值范围.
O
y
x
D 3
D 1
D 2
B
A
C
26.在平面直角坐标系xOy 中,二次函数2
2y x hx h =-+的图象的顶点为点D .
(1)当1h =-时,求点D 的坐标; (2)当1x -≤≤≤1≤1时,求函数的最小值m .
(用含h 的代数式表示m )
2018石景山二
26.在平面直角坐标系xOy 中,抛物线()240y ax x c a =++≠经过点()
34,A -和
()02,B .
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿直线3x =翻折,得到图象N .若过点()
94,C 的直线y kx b =+与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.
4411
23121
3x
O
y
4
3243
2
26.在平面直角坐标系xOy 中,有一抛物线其表达式为222y x mx m =-+. (1)当该抛物线过原点时,求m 的值;
(2)坐标系内有一矩形OABC ,其中(4,0)A 、(4,2)B . ①直接写出C 点坐标;
②如果抛物线222y x mx m =-+与该矩形有2个交点,求m 的取值范围.
2018顺义二模
26.在平面直角坐标系中,二次函数2
21y x ax a =+++
的图象经过点 M (2,-3). (1)求二次函数的表达式;
(2)若一次函数(0)y kx b k =+≠的图象与二次函数2
21y x ax a =+++的图象经过x 轴上
同一点,探究实数k ,b 满足的关系式; (3)将二次函数
221y x ax a =+++的图象向右平移2个单位,若点P (x 0,m )和Q (2,n )
在平移后的图象上,且m >n ,结合图象求x 0的取值范围.
x
26. 在平面直角坐标系x O y 中,二次函数2
y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的表达式;
(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .
①求平移后图象顶点E 的坐标;
②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.
2018怀柔二模
26.在平面直角坐标系xOy 中,二次函数C 1:()332--+=x m mx y (m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 和点C 的坐标; (2)当AB =4时,
①求二次函数C 1的表达式;
②在抛物线的对称轴上是否存在点D ,使△DAC 的周长最小,若存在,求出点D 的坐标,若不存在,
请说明理由;
(3)将(2)中抛物线C 1向上平移n 个单位,得到抛物线C 2,若当0≤x ≤
2
5
时,抛物线C 2与x 轴只有一个公共点,结合函数图象,求出n 的取值范围.
26.在平面直角坐标系中,点D 是抛物线2
23y ax ax a =--()0a >的顶点,抛物线与x
轴交于点A ,B (点A 在点B 的左侧). (1)求点A ,B 的坐标;
(2)若M 为对称轴与x 轴交点,且DM =2AM ,求抛物线表达式; (3)当30°<∠ADM <45°时,求a 的取值范围.
2018昌平二模
26.在平面直角坐标系xOy 中,抛物线2
23(0)y ax ax a a =--≠,与x 轴交于A 、B 两
点(点A 在点B 的左侧). (1)求点A 和点B 的坐标;
(2)若点P (m ,n )是抛物线上的一点,过点P 作x 轴的垂线,垂足为点D .
①在0a >的条件下,当22m -≤≤时,n 的取值范围是45n -≤≤,求抛物线的表达式; ②若D 点坐标(4,0),当PD AD >时,求a 的取值范围.。