小学奥数排列和组合试题及答案
四年级奥数-排列组合(1)
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有2112520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
小学奥数之排列组合问题
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。
小学奥数~排列组合
5数的一半,即 A= 60 种,选 B . 奥数解排列组合应用题排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效 途径;下面就谈一谈排列组合应用题的解题策略 .1.相邻问题捆绑法 :题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排 列.例 1. A, B, C , D, E 五人并排站成一排,如果 A, B 必须相邻且 B 在 A 的右边,那么不同的排法种数有 A 、60 种B 、48 种C 、36 种D 、24 种解析:把 A, B 视为一人,且 B 固定在 A 的右边,则本题相当于 4 人的全排列,A 4 = 24 种, 4答案: D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端.例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种解析:除甲乙外,其余 5 个排列数为 A 5 种,再用甲乙去插 6 个空位有 A 2 种,不同的排56法种数是 A 5 A 2 = 3600 种,选 B .563.定序问题缩倍法 :在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法.例 3. A, B, C , D, E 五人并排站成一排,如果 B 必须站在 A 的右边( A, B 可以不相邻)那么不同的排法种数是 A 、24 种 B 、60 种 C 、90 种 D 、120 种解析: B 在 A 的右边与 B 在 A 的左边排法数相同,所以题设的排法只是 5 个元素全排列1 2 5 4.标号排位问题分步法 :把元素排到指定位置上,可先把某个元素按规定排入,第二步 再排另一个元素,如此继续下去,依次即可完成.例 4.将数字 1,2,3,4 填入标号为 1,2,3,4 的四个方格里,每格填一个数,则每个 方格的标号与所填数字均不相同的填法有 A 、6 种 B 、9 种 C 、11 种 D 、23 种解析:先把 1 填入方格中,符合条件的有 3 种方法,第二步把被填入方格的对应数字填 入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3 ×1=9 种填法,选 B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例 5.(1)有甲乙丙三项任务,甲需 2 人承担,乙丙各需一人承担,从 10 人中选出 4 人承担这三项任务,不同的选法种数是 A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种解析:先从 10 人中选出 2 人承担甲项任务,再从剩下的 8 人中选 1 人承担乙项任务,第三步从另外的 7 人中选 1 人承担丙项任务,不同的选法共有C 2 C 1C 1 = 2520 种,选C .10 87C 4 C 4C 4(2)12 名同学分别到三个不同的路口进行流量的调查,若每个路口 4 人,则不同的分 配方案有A 、 C 4 C 4C 4 种B 、 3C 4 C 4C 4 种C 、 C 4 C 4 A 3 种D 、128412 841283答案: A .6.全员分配问题分组法:例 6.(1)4 名优秀学生全部保送到 3 所学校去,每所学校至少去一名,则不同的保送 方案有多少种?解析:把四名学生分成 3 组有 C 2 种方法,再把三组学生分配到三所学校有 A 3 种,故共43有 C 2 A 3 = 36 种方法.43说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5 本不同的书,全部分给 4 个学生,每个学生至少一本,不同的分法种数为 A 、480 种 B 、240 种 C 、120 种 D 、96 种 答案: B .7.名额分配问题隔板法:例 7.10 个三好学生名额分到 7 个班级,每个班级至少一个名额,有多少种不同分配方 案?解析:10 个名额分到 7 个班级,就是把 10 个名额看成 10 个相同的小球分成 7 堆,每堆 至少一个,可以在 10 个小球的 9 个空位中插入 6 块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为 C 6 = 84 种.98.限制条件的分配问题分类法:例 8.某高校从某系的 10 名优秀毕业生中选 4 人分别到西部四城市参加中国西部经济开 发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案 A 4 种;②若甲参加而乙不参加,先安排甲有 3 种方8法,然后安排其余学生有 A 3 方法,所以共有 3 A 3 ;③若乙参加而甲不参加同理也有 3 A 3 种;888④若甲乙都参加,则先安排甲乙,有 7 种方法,然后再安排其余 8 人到另外两个城市有A 2 种,共有 7 A 2 方法.所以共有不同的派遣方法总数为 A 4 + 3 A 3 + 3 A 3 + 7 A 2 = 4088 种.8888889.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况 分别计数,最后总计.例 9.(1)由数字 0,1,2,3,4,5 组成没有重复数字的六位数,其中个位数字小于十 位数字的共有 A 、210 种 B 、300 种 C 、464 种 D 、600 种解析:按题意,个位数字只可能是 0、1、2、3 和 4 共 5 种情况,分别有 A 5 、 A 1 A 1 A 3 、54 3 3A 1 A 1 A 3 、3 3 3A 1 A 1 A 3 和 A 1 A 3 个,合并总计 300 个,选B .2 3 33 3(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做A={7,14,21,98}共有14个元,100}共有86个元素;由此可知,素,不能被7整除的数组成的集合记做ðA={1,2,3,4,I从A中任取2个元素的取法有C2,从A中任取一个,又从ðA中任取一个共有C1C1,14I1486两种情形共符合要求的取法有C2+C1C1=1295种.141486(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将I={1,2,3,100}分成四个不相交的子集,能被4整除的数集A={4,8,12,100};能被4除余1的数集B={1,5,9,97},能被4除余2的数集C={2,6,,98},能被4除余3的数集D={3,7,11,99},易见这四个集合中每一个有25个元素;从A中任取两个数符合要;从B,D中各取一个数也符合要求;从C中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有C2+C1C1+C2种.2525252510.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式n(A B)=n(A)+n(B)-n(A B).例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:n(I)-n(A)-n(B)+n(A⋂B)=A4-A3-A3+A2=252种.655411.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
(完整版)排列组合练习试题和答案解析
A.9种B.12种C.15种D.18种
5.将7只相同的小球全部放入4个不同盒子,每盒至少1球的方法有多少种?
6.某中学从高中7个班中选出12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有1人参加的选法有多少种?
A.1:14 B.1:28 C.1:140 D.1:336
十、插空
1.要排一个有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?
2、4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()
A.2880 B.1152 C.48 D.144
3.要排一个有5个歌唱节目和3个舞蹈节目的演出节目单,如果舞蹈节目不相邻,则有多少种不同排法?
(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成 的形式,同上奇约数的个数为4×3×2=24个.
3. 2名医生和4名护士被分配到两所学校为学生体检,每校分配1名医生和2名护士,不同分配方法有多少种?
4.有四位同学参加三项不同的比赛,
(1)每位同学必须参加一项竞赛,有多少种不同的结果?
十一、隔板法
1.不定方程 的正整数解的组数是,非负整数解的组数是。
2.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有
A.84种B.120种C.63种D.301种
3.要从7所学校选出10人参加素质教育研讨班,每所学校至少参加1人,则这10个名额共有种分配方法。
(1)可以组成多少个数字不重复的三位数?
4年级奥数排列与组合问题例题
排列数与组合数的计算公式,以及与此相关的计数问题.其中要注意区分排列与组合,它们的差别体现在是有序,还是无序.例题:1.“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少种不同的写法?[分析与解]我们从左往右书写,先写I,再写M,最后写O,这样I的颜色有5种选择,M的颜色有4种选择,O的颜色有3种选择.所以“IMO”共有5×4×3=60种不同的写法.评注:从m个数中选出n数排成一排,则共有=m×(m-1)×(m-2)×…×(m-n+1)种方法.2.从数字0,l,2,3,4,5中任意挑选5个组成能被5除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?[分析与解]能被5除尽的数,其个位只能是0或5,如果个位为0,则剩下的4个数位可以从1,2,3,4,5中任意选择4个不同的数字排成一排,于是有=5×4×3×2=120种选法;如果个位为5,则首位只能从1,2,3,4这4个位置中选择1个,剩下的3个数位可以从1,2,3,4中剩下的3个数及0中任意选择3个不同的数字排成一排,于是有4×=4×4×3×2=96种选法;所以,共可组成120+96=216个不同的五位数.3.用2,4,5,7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?[分析与解]有75□□这样的数最大,有2个;74□□其次,有2个;7254是72□□中最大的,所以从大到小排列,7254是第5个数,于是从小到大排列,7254是第24-5+1=20个数.4.有些四位数由4个不为零且互不相同的数字组成,并且这4个数字的和等于12.将所有这样的四位数从小到大依次排列,第24个这样的四位数是多少7.[分析与解]4个不为零且互不相等的数的和最小为1+2+3+4=10,于是4个不为零且互不相等的数的和为12只能是1+2+3+6=1+2+4+5,于是,首位为1的数有+=3×2×1+3×2×1=6+6=12个,首位为2的数有+=12个,所以从小到大排列,第24个这样的数是首位为2的最大的数,即为2631.5.用0,l,2,3,4这5个数字,组成各位数字互不相同的四位数,例如1023,2341等,求全体这样的四位数之和.[分析与解]当4在千位的数有=4×3×2=24个,3在千位的数有=24个,2在千位的数有=24个,1在千位的数有=24个.当4在百位的数有3×=3×3×2=18个,3在百位的数有3×=18个,2在百位的数有3×=18个,1在百位的数有3×=18个,0在百位的数有=24个(注意到0对所求的四位数之和没有影响,所以下面的讨论中,我们不考虑0在十位、个位的情况).当4在十位的数有3×=3×3×2=18个,3在十位的数有3×=18个,2在十位的数有3×=18个,1在十位的数有3×=18个.当4在个位的数有3×=3×3×2=18个,3在个位的数有3×=18个,2在个位的数有3×=18个,1在个位的数有3×=18个.所以这些四位数之和为24×(4+3+2+1)×1000+18×(4+3+2+1)×100+18×(4+3+2+1)×10+18×(1+2+3+4)×1=240000+18000+1800+180=259980.6.计算机上编程序打印出前10000个正整数:l,2,3,…,10000时,不幸打印机有毛病,每次打印数字3时,它都打印出x.问其中被错误打印的共有多少个数?[分析与解]显然10000不含有3,我们把1看成0001,把19看成0019,于是题中除10000外所有的数均变成4位数.于是,只有一个数位为3的有4×9×9×9=2916(注意,在本题中我们可以在千位取0,两个数位上的数可以相同),两个数位为3的有×9×9=4×3÷2×9×9=486,三个数位为3的有×9=4×9=36,四个数位为3的只有3333这一个数.所以,被错误打印的有2916+486+36+1=3439个数.评注:如果把题目改为:计算机上编程序打印出前10000个正整数:l,2,3,…,10000时,不幸打印机有毛病,每次打印数字3时,它都打印出x.问其中有多少个x?则应是下面为一种求解方式:1~9中只含有1个3,10~19中含有1个3,20~29中含有1个3,30~39中含有10+1=11个3,40~49,50~59,60~69,70~79,80~89,90~99这6组数中,每组数均含有1个3,于是1~99中含有1×9+11=20个3.所以100~199中也含有20个3,200~299中含有20个3,300~399中含有20+100=120个3,400~499,500~599,600~699,700~799,800~899,900~999这6组数中,每组均含有20个3,所以1~999中含有20×9+120=300个3;所以1000~1999中含有300个3,2000~2999中含有300个3,3000~3999中含有300+1000=1300个3,4000~4999,5000~5999,6000~6999,7000~7999,8000~8999,9000~9999这6组数中,每组均含有300个3,所以1~9999中含有300×9+1300=4000个3.7.在1000和9999之间,千位数字与十位数字之差(大减小)为2,并且4个数位上的数字各不相同的四位数有多少个?[分析与解]1000~9999千位数字与十数字差为2有9—7、8—6、7—5、6—4、5—3、4—2、3—1、2—0共8种情况.若千位和十位为2—0情形:则只有千位为2,十位为0,剩下百位、十位的确定方法有=8×7=56种.若千位与十位数字差为2,取自剩下的7种时,由于千位、十位均不为0,故可变换,这样确定千位、十位的方法有2×7=14种,而剩下百位、个位的确定方法有56种,因而这样的四位数有56×14=784种.所以满条件四位数共784+56=840种.8.如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选法?[分析与解]如果选择语文、数学,有3×4种方法;如果选择数学、外语,有4×5种方法;如果选择语文、外语,有3×5种方法.于是共有3×4+4×5+3×5=47种不同的选法.9.某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增加了3个车站,铁路上两站之间往返的车票不一样.那么,这样需要增加多少种不同的车票?[分析与解]现在10个车站,共需=10×9=90种车票,而开始7个车站需=7×6=42种车票,于是需增加90-42=48种不同的车票.10.7个相同的球,放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?[分析与解]先在每个盒中放入1个球,这样还剩下3个球放到4个不同的盒中去,如果每个盒子最多放1个球,有=4种不同的方法;如果每个盒子放2个,1个盒子放1个,有先从4个盒子中选择1个盒子放入2个球,再从剩下的1个盒中选择1个盒子放入1个球,于是共有4×3=12种不同的方法;如果一个盒子放入3个球,有从4个盒子中选择1个盒子即可,有4中不同的方法;所以,共有4+12+4=20种不同的方法.11.从19,20,2l,…,93,94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?[分析与解]选择两个数,使得它们的和为偶数,则只能两个数同时是偶数或两个数同时是奇数.19~93这76数中,有38个奇数,38个偶数,于是有=38×37÷2+38×37÷2=1406种不同的选法.12.用两个3,一个1,一个2可组成若干不同的四位数,这样的四位数一共有多少个?[分析与解]一个1从四个位置任选1个,有4种选法;一个2从剩下的三个位置任选1个,有3种选法,剩下的放入2个3即可,于是有4×3=12个这样的四位数.13.有5个标签分别对应着5个药瓶,恰好贴错3个标签的可能情况共有多少种?[分析与解]先确定贴对的2个药品,于是有=5×4÷2=10种不同的取法,而3个都贴错的药瓶有231,312这两种可能,于是满足题意的有10×2=20种可能.14.有9张同样大小的圆形纸片.其中标有数码“1”的有l张;标有数码“2”的有2张;标有数码“3”的有3张;标有数码“4”的也有3张.把这9张圆形纸片如图18.1所示放置在一起,但标有相同数码的纸片不许靠在一起,问:(1) 如果M处放标有数码“3”的纸片,一共有多少种不同的放置方法?(2) 如果肘处放标有数码“2”的纸片,一共有多少种不同的放置方法?[分析与解](1)由于M位上放置标有数码“3”的纸片,为了使标有相同数码的纸片不靠在一起,另外两个标有数码“3”的纸片必须放置在右下角和左下角;标有数码“4”的纸片必须放置在与M相邻的六个位置上,并且相间放置,这样将有两种可能,如下图所示.对于每一种情况,标有数码“1”的纸片均有A、B、C三个位置可以放置,所以总共有3×2=6种不同的放置方法.(2) 由于M位上放置标有数码“2”的纸片,另一个标有数码“2”的纸片只能放置在左下角或右下角,如下图所示.对于每一种可能性,标有数码“1”、“3”、“4”的纸片放置在A、B、C 三个位置,只有6种方法,如下图所示,当A、B、C位置放好后,其他地方的放法只有一种.所以共有6×2=12种不同的放置方法.15.一台晚会上有6个演唱节目和4个舞蹈节目.问:(1) 如果4个舞蹈节目要排在一起,有多少种不同的排列顺序?(2) 如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?[分析与解](1)4个舞蹈节目排在一起,先将4个舞蹈节目排序,有种方法,再将这4个舞蹈节目捆在一起,视为1个节目,加上6个演唱节目那么就变成7个节目混排,有种方法,所以共有×=120960种排列顺序.(2)我们先把6个演唱节目排好,有种方法,于是,在6个节目的5个空隙和两端共7个位置可以选择4个位置插入舞蹈节目,所以有种方法,于是共有×=604800种排列顺序。
小学三年级上期奥数第3讲家庭作业试题及答案--排列组合
基础班1.用6根长短、粗细一样的火柴棍拼出四个等边三角形(即三边相等的三角形),如何拼?解:如右图的立体图形。
2. (1)三个小朋友三分钟削三支铅笔,九个小朋友六分钟削几支铅笔?(2)三只猫三天吃三只老鼠,六只猫几天吃18只老鼠?解:(1)18支;(2)9天。
3.大杯子能装50克水,小杯子能装30克水。
你能用这两只杯子量出70克水吗?怎样量?解:可以,先把大杯子装满水,再从这一大杯子里倒30克水进小杯子,这时,大杯子里还有50-30=20克水,然后倒掉小杯子中的水,把大杯子中的20克水倒进小杯子,最后再倒一大杯子水,这样20+50=70克水。
4.某超市出售酱油,规定每3个空瓶可以换一瓶酱油,小明妈妈买了15瓶酱油,她最多可以用多少瓶酱油?解:15+5+1+1=22(瓶),或者15+5+2=22(瓶).5.电视台要播放一部30集的动画片,如果要求每天播出的集数互不相等,该动画片最多可以播几天?解:7天. 30=1+2+3+4+5+6+9,30=1+2+3+4+5+7+8。
提高班1.用6根长短、粗细一样的火柴棍拼出四个等边三角形(即三边相等的三角形),如何拼?解:如右图的立体图形。
2. (1)三个小朋友三分钟削三支铅笔,九个小朋友六分钟削几支铅笔?(2)三只猫三天吃三只老鼠,六只猫几天吃18只老鼠?解:(1)18支;(2)9天。
3.大杯子能装50克水,小杯子能装30克水。
你能用这两只杯子量出70克水吗?怎样量?解:可以,先把大杯子装满水,再从这一大杯子里倒30克水进小杯子,这时,大杯子里还有50-30=20克水,然后倒掉小杯子中的水,把大杯子中的20克水倒进小杯子,最后再倒一大杯子水,这样20+50=70克水。
4.某超市出售酱油,规定每3个空瓶可以换一瓶酱油,小明妈妈买了15瓶酱油,她最多可以用多少瓶酱油?解:15+5+1+1=22(瓶),或者15+5+2=22(瓶).5.电视台要播放一部30集的动画片,如果要求每天播出的集数互不相等,该动画片最多可以播几天?解:7天. 30=1+2+3+4+5+6+9,30=1+2+3+4+5+7+8。
奥数讲义计数专题:排列组合(含答案)
华杯赛计数专题:2排列组合基础知识:1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。
2.排列数的计算:约定:0!=1排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。
3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。
4.排列与组合的关系:。
5.组合数的计算:6.排列数与组合数的一些性质:例题:例1.4名男生和3名女生站成一排:(1)一共有多少种不同的站法?(2)甲,乙二人必须站在两端的排法有多少种?(3)甲,乙二人不能站在两端的排法有多少种?(4)甲不排头,也不排尾,有多少种排法?(5)甲只能排头或排尾,有多少种排法?【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略【解答】例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种?【答案】4186种【解答】至少有3件是次品,分两种情况第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中,,然后,从46件正常品中抽2件,总共种。
其中,所以,3件是次品的抽法共种。
第二种情况:4件是次品的抽法共:种。
任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起,所以,总共是4×23×45+46=23×182=4186种。
总结:有序是排列,无序是组合。
例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?【答案】540种【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为=3×2×1=6。
用乘法原理表示为3!=6。
六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。
所以,不同的分配方法共有种。
例4.有多少个五位数,满足其数位上的每个数字均至少出现两次?【答案】819【解答】方法一:(1)出现一个数字的情况是9种;(2)出现两个数字,首位不能是0,共有9种情况,(i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。
奥数拓展第十讲:排列组合问题-数学五年级上册人教版及参考答案
奥数拓展第十讲:排列组合问题-数学五年级上册一、选择题1.用7、8、9、0四张数字卡片,可以组成()个不同的四位数。
A.24 B.18 C.122.学校组织春游活动因故提前了,张老师要尽快通知到每一位学生,如果用打电话的方式,每分钟通知1人,每人接到电话后立即通知其他不知道这一信息的同学,全班40位同学,最快()分钟才能通知到全班同学。
A.4 B.5 C.6 D.73.如图,小蚂蚁从点A爬到点B,走最短的路线,共有()种不同的路线。
A.6 B.8 C.10 D.124.有1元、2元、5元和10元人民币各1张,任意取2张,可以有()种不同的取法。
5.将7个点连成线段,任意三点不在同一条直线上,最多可以连成()。
A.7条B.12条C.21条D.28条6.四对情侣排成一队买演唱会门票,已知每对情侣必须排在一起,问共有多少种不同的排队顺序()。
A.24种B.96种C.384种D.40320种二、填空题7.小巧与同学们聚会,参加聚会的每两个人都合影一张。
聚会结束时,统计出一共拍照45张,参加这次聚会的同学共有( )人。
8.从下面三枚硬币中取硬币,一共可以取出( )种不同的钱数。
9.明明、红红、强强在平时的50m短跑训练比赛中,成绩相当。
他们要进行一场50m短跑比赛,你能算出比赛可能一共有( )种结果。
(不并列)。
10.从沈阳站始发的火车,途经辽中、锦州南站、唐山北站后到达终点北京站。
这趟列车单程需要准备( )种不同的车票。
11.要在人民公园大门的上方挂6只大灯笼(如图),如果把形状相同的灯笼挨在一起,可以有( )种不同的挂法。
12.小明从一楼到二楼,共要上9级台阶,他每次最多跨两级,那么他从一楼到二楼,一共有( )种走法。
13.5名象棋爱好者进行比赛,规定每两人比赛一局,经过一段时间后统计,甲已赛了4局,乙已赛了3局,丙已赛了2局,丁已赛了1局,则此时戊已赛了( )局。
14.2018年世界杯足球赛在俄罗斯举行。
四年级奥数-排列组合(1)
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
四年级奥数排列组合练习试题
====Word行业资料分享--可编辑版本--双击可删====
四年级奥数排列组合练习试题
1.由数字0、1、2、3、4可以组成多少个①没有重复数字的三位数?
②没有重复数字的三位偶数?③小于1000的自然数?
2、七个同学照相,分别求出在下列条件下有多少种站法?
①七个人排成一排;
②七个人排成一排,某人必须站在中间;
③七个人排成一排,某两人必须站在两头;
④七个人排成一排,某人不能站在两头;
3、有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?
4、8名同学争夺3项冠军,获得冠军的可能性有几种?
6、用0、1、2、3、4、5、6、
7、
8、9这十个数字能够组成多少个没有重复数字的三位数。
7、一条铁路线上有14各位不同的站点,要准备多少种不同的车票?
8、甲、乙、丙、丁四个同学排成一排,从左到右数,如果甲不排在第一个位置上,那么共有多少种不同的排法?
源-于-网-络-收-集。
(完整版)排列组合练习题及答案
(完整版)排列组合练习题及答案《排列组合》一、排列与组合1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12个B.13个C.14个D.15个5.用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?二、注意附加条件1.6人排成一列(1)甲乙必须站两端,有多少种不同排法?(2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由1、2、3、4、5、6六个数字可组成多少个无重复数字且是6的倍数的五位数?3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379个数是A.3761B.4175C.5132D.61574. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有 A.30种 B.31种 C.32种 D.36种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球又有编号为奇数的球,且它们的编号之和为奇数,其取法总数是 A.230种 B.236种 C.455种 D.2640种6.从6双不同颜色的手套中任取4只,其中恰好有1双同色的取法有 A.240种 B.180种 C.120种 D.60种7. 用0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从小到大排列起来,第71个数是。
排列与组合典型问题及方法(含答案)
排列与组合典型问题及方法(含答案)排列与组合——四类典型问题一、摸球问题1、袋中装有6只黑球,4只白球,现从中任取4只球(1)正好2只黑球,2只白球的不同取法共多少种?90(2)至少有3只黑球的不同取法共有多少种?95(3)至多有1只黑球的不同取法共有多少种?252、从0,1,2,…,9这十个数字中任取五个不同数字(1)正好两个奇数,三个偶数的不同取法有多少种?100(2)至多有两个奇数的取法有多少种?126(3)取出的数中含5但不含3的取法有多少种?70二、排队问题1、某排共有七个座位,安排甲乙丙三人就坐(1)共有多少种不同就坐方法?210(2)三人相邻(即三个座位相连)的就坐方法有多少种?30(3)三人不相邻(任意两人中间都有空位)的就坐方法共多少种?602、袋中装有5只白球,6只黑球,依次取4只(1)每次取1只(取后不放回)则共有多少种不同取法?7920(2)每次取1只(取后放回)则共有多少种不同取法?14641(3)每次取1只(取后不放回)则第二次取到白球的取法共有多少种?3600(4)每次取1只(取后放回)则第二次取到白球的取法共有多少种?66553、由0,1,2,3,4,5,(1)可组成多少个无重复数字的不同三位偶数?52(2)可组成多少个不同的三位偶数(允许有重复数字)?90(3)可组成多少个能被5整除的三位数(允许有重复数字)?60三、分房问题(n个人生日问题、投信问题)1、10个人进入8个房间,共有多少种不同的进入方法?8102、从4名候选人中,评选出1名三好学生,1名优秀干部,1名先进团员,若允许1人同时得几个称号,则不同的评选方案共有多少种?43四、分组问题1、分配9个人去完成甲、乙、丙三项任务(1)甲任务需2人,乙任务需3人,丙任务需4人,则不同的选派方法共有多少种?C C C (2)甲任务需2人,乙任务需2人,丙任务需5人,则不同的选派方法共有多少种?225975(3)甲、乙、丙三项任务各需3人,则不同的选派方法共有多少种?2、将9个人以下列三种方式分为三个小组,则不同的分组方法各为多少种?(1)将9个人以2,3,4分为三组.(2)将9个人以2,2,5分为三组. 2259752!C C C (3)将9个人以3,3,3分为三组.3、将将9个人以下列三种方式分为三个小组,去完成三项不同的任务,则不同的分组方法各为多少种?(1)将9个人以2,3,4分为三组.(2)将9个人以2,2,5分为三组. 2259753!2!C C C ? (3)将9个人以3,3,3分为三组.解题方法一、正难则反,等价转化在解决某些排列组合问题,当从正面入手情况复杂、分类较多时,可考虑从反面入手,将其等价转化为一个较简单的问题来处理,即先求总的排列组合数,再减去不符合要求的排列组合数,从而使问题获得解决办法。
小学奥数思维训练-排列组合(经典透析)(通用,含答案)
保密★启用前小学奥数思维训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。
他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。
小学奥数排列和组合试题及答案
小学奥数排列和组合试题及答案第一篇:小学奥数排列和组合试题及答案小学四年级奥数排列组合练习1.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.3.如右图,两条相交直线上共有9个点,问:一共可以组成多少个不同的三角形?-------------------4.如下图,计算①下左图中有多少个梯形?②下右图中有多少个长方体?5.七个同学照相,分别求出在下列条件下有多少种站法?①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.-------------------答案:1.①100;②48;③30;④124.2.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.3.C15·C23+C26·C13=60;或C39-C36-C34=60.4.①C26×C26=225;②C25×C26×C25=1500.5.①P77=5040;②2P66=1440;③2P55=240;④5×4×P55=2400;⑤2×3×4×P55=2880.-------------------第二篇:小学奥数经典专题点拨:排列与组合排列与组合【有条件排列组合】例1 用0、1、2、3、4、5、6、7、8、9这十个数字能够组成______个没有重复数字的三位数。
(哈尔滨市第七届小学数学竞赛试题)讲析:用这十个数字排列成一个不重复数字的三位数时,百位上不能为0,故共有9种不同的取法。
学而思奥数网奥数专题 排列组合
学而思奥数网奥数专题排列组合
1、五年级排列组合问题:
难度:中难度
用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数答:
2、五年级排列组合问题:
难度:中难度
甲、乙、丙、丁、戊、己六个人站队,要求:甲乙两人之间最多有两个人,问一共有多少种站法?
答:
3、五年级排列组合问题:
难度:中难度
从19、20、21……93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?
答:
4、五年级排列组合问题:
难度:高难度
已知在由甲、乙、丙、丁、戊共5名同学进行的手工制作比赛中,决出了第一至第五名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名次排列共有多少种不同的情况?
答:
5、五年级排列组合问题:
难度:高难度
平面内有12个点,其中6点共线,此外再无三点共线.
答:
学而思奥数网奥数专题(排列组合)
1、五年级排列组合问题答案:
2、五年级排列组合问题答案:
3、五年级排列组合问题答案:
两数之和为偶数时,必须是同奇或同偶,且加法可交换,故不必考虑顺序.因此只须分两类讨论即可.19、20……93、94共有38个奇数,38个偶数.从38个数中任选2个数的方法有
238C 3837(21)703=⨯÷⨯=种.
即 奇加奇、偶加偶各有703种,所以选法共有1406种.
4、五年级排列组合问题答案:
五年级排列组合问题答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数排列和组合试
题及答案
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
小学四年级奥数排列组合练习
1.由数字0、1、2、3、4可以组成多少个
①三位数②没有重复数字的三位数
③没有重复数字的三位偶数④小于1000的自然数
2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种
①某两人必须入选;
②某两人中至少有一人入选;
③某三人中恰入选一人;
④某三人不能同时都入选.
3.如右图,两条相交直线上共有9个点,问:
一共可以组成多少个不同的三角形?
4.如下图,计算
①下左图中有多少个梯形
②下右图中有多少个长方体?
5.七个同学照相,分别求出在下列条件下有多少种站法
①七个人排成一排;
②七个人排成一排,某两人必须有一人站在中间;
③七个人排成一排,某两人必须站在两头;
④七个人排成一排,某两人不能站在两头;
⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.?答案:
1.①100;②48;③30;④124.
2.①C313=286;②C515-C513=1716;
③C13·C412=1485;④C515-C212=2937. ·C23+C26·C13=60;或C39-C36-C34=60.
4.①C26×C26=225;②C25×C26×C25=1500.
5.①P77=5040;②2P66=1440;
③2P55=240;④5×4×P55=2400;
⑤2×3×4×P55=2880.。