OPTISWORKS软件 TV模组光学模拟

实验2使用网络模拟器packetTracer

实用文档 实验报告正文: 一、实验名称使用网络模拟器packetTracer 二、实验目的: 1. 掌握安装和配置网络模拟器PacketTracer的方法; 2. 掌握使用PacketTracer模拟网络场景的基本方法,加深对网络环境,网络设备和网络协议交互过 程等方面的理解。 三、实验内容和要求 1. 安装和配置网络模拟器; 2. 熟悉PacketTracer模拟器; 3. 观察与IP网络接口的各种网络硬件; 4. 进行ping和traceroute。 四、实验环境 1)运行 Windows 8.1 操作系统的 PC 一台。 2)下载 CISCO 公司提供的 PacketTracer 版本 5.2.1。 五、操作方法与实验步骤 1) 安装网络模拟器 安装 CISCO 网络模拟器 PacketTracer 版本 5.2.1。双击 PacketTracer 安装程序图标,入安装过程。根据提示进行选择确认,可以顺利安装系统。 2) 使用 PacketTracer 模拟器 (1) 启动系统。点击“Cisco Packet Tracer”图标,将会出现如图 1 所示的系统界面。

图 7 PacketTracer 的主界面 菜单栏中包含新建、打开、保存等基本文件操作,其下方是一些常用的快捷操作图标。 工作区则是绘制、配置和调试网络拓扑图的地方。 操作工具位于工作区右边,自上而下有 7个按钮。这些操作工具的作用分别是:选择(Selected),用于选中配置的设备;移动(MoveLayout),用于改变拓扑布局;放置标签(Place Note),用于给网络设备添加说明;删除(Delete),用于去除拓扑图中的元素,如设备、标签等;检查(Inspect),用于查询网络设备的选路表、MAC 表、ARP 表等;增加简单的 PDU(Add Simple PDU),用于增加 IP 报文等简单操作;增加复杂的 PDU(Add Complex PDU),可以在设置 IP 报文后再设置 TTL 值等操作。使用检查工具可以查看网络设备(交换机、路由器)的 3 张表,该功能等同于在 IOS 命令行中采用相应的 show 命令,如 show arp。增加简单的 PDU 和增加复杂的 PDU 两个工具用于构造测试网络的报文时使用,前者仅能测试链路或主机之间是否路由可达,后者则具有更多的功能。 例如,要测试 PC0 到 Router0 之间的连通性,可以先用增加简单的 PDU 工具点击 PC0,再用该工具点击 Router0 就可以看出两设备之间是否连通。如图 8 所示。 图 8 用增加简单的 PDU 工具测试设备之间的连通性 结果表明两个设备之间的链接是畅通的,图9是模拟模式下捕获到的数据包信息列表

(整理)各种光学设计软件介绍-学习光学必备-peter.

光学设计软件介绍 ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential),是将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起的一套综合性的光学设计仿真软件。ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V是Optical Research Associates推出的大型光学设计软件,功能非常强大,价格相当昂贵CODE V提供了用户可能用到的各种像质分析手段。除了常用的三级像差、垂轴像差、波像差、点列图、点扩展函数、光学传递函数外,软件中还包括了五级像差系数、高斯光束追迹、衍射光束传播、能量分布曲线、部分相干照明、偏振影响分析、透过率计算、一维物体成像模拟等多种独有的分析计算功能。是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 CODE V是美国著名的Optical Research Associates(ORA?)公司研制的具有国际领先水平的大型光学工程软件。自1963年起,该公司属下数十名工程技术人员已在CODE V程序的研制中投入了40余年的心血,使其成为世界上分析功能最全、优化功能最强的光学软件,为各国政府及军方研究部门、著名大学和各大光学公司广泛采用1994年,ORA公司聘请北京理工大学光电工程系为其中国服务中心。与国际上其它商业性光学软件相比,CODE V的优越性突出地表现在以下几个方面: 1.CODE V可以分析优化各种非对称非常规复杂光学系统。这类系统可带有三维偏心或倾斜的元件;各类特殊光学面如衍射光栅、全息或二元光学面、复杂非球面、以及用户自己定义的面型;梯度折射率材料和阵列透镜等等。程序的非顺序面光线追迹功能可以方便地

OptiSystem仿真在光纤通信实验教学中的应用_王秋光_解析

ISSN1672-4305CN12-1352/N实验室科学 LABORATORYSCIENCE 第18卷第 1期 2015年 2月 Vol. 18No. 1Feb. 2015 OptiSystem 仿真在光纤通信实验教学中的应用 王秋光 , 张亚林 , 胡彩云 , 赵莹琦 (广州大学松田学院电气与汽车工程系 , 广东广州 511370 摘 要 :介绍了光纤通信实验教学中的光纤色散实验、激光器调制频率特性实验、掺铒光纤放大器实验、光 接收机实验与 WDM 系统实验 5个 OptiSystem 仿真实验 , 给出了每个实验项目的仿真模型及模型中的参数设置 , 简要分析了仿真实验结果。 OptiSystem 仿真实验可以反复观察练习 , 节省较高的实验费用 , 有利于学生对光纤通信课程教学中抽象的理论知识的理解 , 在光纤通信实验教学中取得了较好效果。关键 词 :OptiSystem ; 光纤通信 ; 仿真 ; 实验教学中图分类号 :TN929.11; TP391.9 文献标识码 :A doi :10.3969/j.issn.1672-4305.2015.01.008 Application of OptiSystem simulation in experiment teaching of optical fiber communication WANG Qiu -guang , ZHANG Ya -lin , HU Cai -yun , ZHAO Ying -qi (Department of Electrical &Automotive Engineering , Guangzhou University Sontian College , Guang-zhou 511370, China

matlab光学仿真

MATLAB光学仿真实验报告

目录 一、实验目的 (3) 二、实验内容 (3) 三、实验原理 (3) 四.实验结果(各种干涉图样,) (4) 1.平面波与球面波之间的相互干涉 (4) (1)平面波与平面波方向相对的干涉 (4) (2)球面波与球面波 (5) (3)球面波与平面波 (6) 2.双缝干涉 (7) (1)经典杨氏双缝干涉 (7) (2)接收屏在侧面,且二者连线与干涉面垂直 (7) 3.多孔干涉 (8) (1)三孔干涉 (8) (2)四个孔干涉 (9) 4.多个不同方向的平面波 (10) 5.牛顿环与电磁波传播 (10) (1)牛顿环 (10) (2)模拟电磁波动画 (11) 五,实验总结与感想 (11)

一、实验目的 通过对光学现象的仿真,加深对各种光学现象本质的理解,同时,学会利用MATLAB,这种有效工具研究物理光学。 二、实验内容 这次由于时间关系,只研究了光的干涉现象,不过干涉内容很多,按照老师给的实验的提示内容,我每个都做了。并且自己还加了一些内容。按先后顺序非别如下: 1.平面波与球面波之间的相互干涉 (1)平面波与平面波方向相对的干涉,并且调整角度,方向相对干涉。 (2)球面波与球面波,这个研究的比较多,我分别研究了两个光源,三个,四个以及六个光源在与之共面的平面上的干涉,得到许多精美的图案。 (3)球面波与平面波 2.经典的杨氏双缝干涉 由于杨氏干涉比较重要,所以研究的时间相对较长,这个我为了更好的调整参数,采用了先输入数据的方法,之后才运行得到结果,我还增加了研究非单色光的研究。 另外,我还研究了与两个点光源连线相垂直的屏上的干涉,虽然这个不属于杨氏干涉,但是原理其实差不多。 3.多孔干涉 这部分其实原理差不多,只需要设置对参数。这部分分别研究了三孔和四孔的干涉,并且干涉屏的位置也不一样,分为与孔面平行和与孔面平行,总共四中情况,从中自己也找到了规律。 4.多个不同方向的平面波 这部分研究了三个不同方向的片面波与四个方向的平面波,从中得到一些图案,找到了规律。 5.模拟电磁波传播动画(代码借鉴一本参考书的)与牛顿环 为了加深对电磁波传播的理解,做了个模拟电磁波传播的动画,另外,还做了个牛顿环干涉。 三、实验原理 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括

光电软件集合

光电软件集合(转载). 1.APSS.v 2.1.Winall.Cracked 光子学设计,可用于光材料、器件、波导和光路等的设计 2.ASAP.v7.14/7.5/8.0.Winall.cracked/Full 世界各地的光学工程师都公认ASAPTM(Advanced Systems Analysis Program,高级系统分析程序)为光学系统定量分析的业界标准。 3.Pics3d.v200 4.1.28.winall.cracked 电子.光学激光2D/3D有限元分析及模形化装置软件 stip.v2004.1.28.winall.cracked 半导体激光装置2D模拟软件 5.Apsys.2D/3D.v2004.1.28.winall.cracked 激光二极管3D模拟器 6.PROCOM.v2004.1.2.winall.cracked 化合物半导体模拟软件 7.Zemax.v2003.winall.cracked/EE ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表集成在一起。 8.ZEBASE Zemax镜头数据库 9.OSLO.v6.24.winall.licensed/Premium OSLO 是一套处理光学系统的布局和优化的代表性光学设计软件。最主要的,它是用来决定光学系统中最佳的组件大小和外型,例如照相机、客户产品、通讯系统、军事/外太空应用以及科学仪器等。除此之外,它也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具 10.TracePro.v324.winall.licensed/Expert TracePro 是一套能进行常规光学分析、设计照明系统、分析辐射度和亮度的软件。它是第一套以符合工业标准的ACIS(固体模型绘图软件)为核心所发展出来的光学软件,是一个结合真实固体模型、强大光学分析功能、信息转换能力强及易上手的使用界面的仿真软件,它可将真实立体模型及光学分析紧紧结合起来,其绘图界面非常地简单易学。 11.Lensview.UPS.winall.cracked LensVIEW 为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过18,000个多样化的光学设计实例,支持Zemax,OSLO,Code V等光学设计软件。 12.Code V.v940.winall.licensed CODE V是美国著名的Optical Research Associates公司研制的具有国际领先水平的大型光学工程软件。 13.LightTools.v4.0/sr1.winall.cracked LightTools是一个全新的具有光学精度的交互式三维实体建模软件体系,提供最现代化的手段直接描述光学系统中的光源、透镜、反射镜、分束器、衍射光学元件、棱镜、扫描转鼓、机械结构以及光路。 14.OptiSystem.v3.0.winall.cracked 光通信系统模拟软件,此软件可以设计、测试,与最佳化几乎任何一种在光网路系统的宽谱中的物理层次光连结

光纤实验报告--数字光纤通信线路编译码CPLD仿真实验

光纤实验报告--数字光纤通信线路编译码CPLD仿真实验

数字光纤通信线路编译码 CMI实验

班级: 姓名: 一、实验目的: 1.熟悉m序列NRZ码、任意周期码产生原理以及光纤线路CMI编译码原理。 2.初步熟练Altera公司Maxplus II仿真平台的使用。 3.进一步熟悉数字电路设计技巧。 4.基本掌握如何进行CPLD的电路设计与仿真。 5.深入理解光纤线路编译码在光纤通信系统中的实际运用方法。 二、实验内容: 1.学习使用Altera公司Maxplus II仿真平台进行CPLD数字电路的设计与仿真。

2.设计m序列NRZ码产生电路以及光纤线路CMI编译码电路。 m序列: 伪随机序列; NRZ: 不归零码; CMI编码规则: 0码:01; 1码::00/11 交替; 3.通过CPLD仿真确保上述电路的正确设计。 4.总结光纤线路编译码在光纤通信系统中的实际运用。 三、实验要求: 在MAX+plus II软件仿真环境中, 1.用绘制原理图的方法建立新工程,设计CPLD内部下述电路:15位m序列NRZ码的生成电路; CMI编码电路; CMI编码输入的选择电路:周期15位m序列与由周期15位二进制码表示本组内某学号最后四位(前面可补零)分别选择作为CMI编码输入; CMI译码电路(在实验室条件下使用统一系统时钟,输入为CMI编码输出)。 2.对所做设计完成正确编译。 3.使用仿真环境完成信号波形仿真。CPLD电路仿真的输入输出信号即各测试点数 信号要求如下: 输入:电路的总复位信号:1路(位); 系统时钟信号(2Mbps):1路; CMI编码输入的选择信号:1路; 输出:周期15位m序列NRZ码:1路; 周期15位二进制后四位学号:1路; CMI编码输出信号:1路; CMI译码输出信号:1路;

实验四:使用模拟软件配置网络路由

《计算机网络实验指导书》 目录 实验一:Windows网络工具 实验二:理解子网掩码、网关和ARP协议的作用 实验三:使用网络监视器捕捉和分析协议数据包 实验四:使用模拟软件配置网络路由 实验五:网络程序设计

实验四:使用模拟软件配置网络路由 1、相关知识点 1.1 路由器的一般知识: 路由器是局域网与广域网之间进行互联的关键设备。通过它不仅可以互联不同协议、不同物理接口的网络,还能选择数据传送的路经,并能阻隔非法访问。它在异构网互联能力、拥塞控制能力和网段的隔离能力等方面都强于网桥。另外路由器能够隔离广播信息,从而可以将广播风暴的破坏性隔离在局部的某个网段之内。 从本质上说,路由器也是1台计算机,它的硬件基础是接口、CPU和存在器,软件基础是网络互联操作系统IOS。 A、路由器接口(interface) 路由器接口用作将路由器连接到网络,可以分为局域网接口和广域网接口两种。由于路由器型号的不同,接口数目和类型也不尽一样。常见的接口主要有以下几种:同步/异步串行口(Synchronous/ Serials),可连接DDN,帧中继(Frame Relay),X.25,PSTN(模拟电话线路)。以太网口(Ethernet)。AUI端口,即粗缆口。AUX端口,该端口为异步端口,主要用于远程配置,也可用于拔号备份,可与MODEM连接。支持硬件流控制(Hardware Flow Ctrol)。Console端口,该端口为异步端口,主要连接终端或运行终端仿真程序的计算机,在本地配置路由器。不支持硬件流控制。 B、路由器的CPU CPU是路由器的处理中心,用于计算路由和运行路由器的操作系统。 C、路由器的内存组件 内存是路由器存储信息和数据的地方,CISCO路由器有以下几种内存组件: ?ROM(Read Only Memory):ROM中存储了启动诊断程序和操作系统软件。路由器中的ROM是可擦写的,所以操作系统IOS是可以升级的。 ?NVRAM(Nonvolatile Random Access Memory):非易失RAM,存储路由器的启动配置文件,使路由器在掉电时仍可保存该文件。NVRAM也是可擦写的。 ?FLASH:闪存,可擦写可编程的ROM,存储了CISCO IOS的其它版本,用于对路由器的IOS进行升级。 ?RAM(Random Access Memory):RAM与PC机上的随机存储器相似,提供临时信息的存储,同时保存着当前的路由表和配置信息。

【推荐下载】新一代光学设计仿真软件FRED Optimum

新一代光学设计仿真软件FRED Optimum 设计光学元件,用于通过Luxeon® III Lambertian LED 光源在目标区域提供所需要的均匀性和高透过率分布. ?问题: 设计光学元件,用于通过Luxeon® III Lambertian LED 光源在目标区域提供所需要的均匀性和高透过率分布. 解决: 利用FRED Optimum的混合优化定义两个优化函数,包含多个变量(在这里例子中为10个)来创建两个不同的光学元件,第一个为高透过率而第二个为高透过率并且均匀. ?谁应该用我们的FRED Optimum版本呢?任何人在他们的光学工程工作中都需要优化。这包括照明工程师,需要优化拥有10万条光线的LED系统、导光管的耦合效率,背光系统:并且光学设计师需要进行非序列性优化,特别在他们系统模型中还需要形状不常见的光学元件时。 ?FRED Optimum是FRED最新版本.它包含了内置的混合优化模块,并且拥有利用当今高性能多CPU系统来加速光线追迹的能力。 ?为什么FRED Optimum的混合优化不同于透镜设计软件的优化?FRED的新混合全面优化运算是非序列性的。允许多重目标,拥有fractional weighting性能以连接变量和利用多种内置优化函数,加上用户自定义scripted优化函数可以应对非常任务。混合运算拥有对在FRED中直接建的(如上图)或者从CAD软件中导入的NURBS表面进行全面优化的能力。优化方案给了用户完全控制变量,优化函数和优化运算(1D or Downhill Simplex)以解决艰苦的照明设计问题。 ?FRED Optimum的菜单用看起来非常简单:用于优化时定义参数的内置标签电子数

光发送机仿真

光发送机的仿真实验 ㈠实验目的: ①学会使用仿真软件进行仿真模信号 ②了解光发机的组成与仿真实验图的构建 ③熟悉光发射机工作原理 ㈡实验原理及结果: 光发送机是一个非常重要组成部分,它的作用是将电信号转化成光信号,并有效地将光信号传入光纤,其核心是光源和其驱动电路。现在广泛应用的有两种半导体光源:发光二极管(LED)、激光二极管(LD)。其中LED输出的是非相干光,频谱宽,入纤功率小,调制速率低:而LD是相干光则与之相反。前者适宜于短距离低速系统,后者适宜于长距离高速系统。 光发送机一般都是由光源、脉冲驱动电路、光调制器组成,图1如下: (图1)

①构建一个外调制激光发射机:光源为频率193.1THZ的激光二极管,同时用仿真软件模拟所需数字信号序列,经过NRZ 脉冲发生器转化成所需电脉冲信号,让该信号通过调制器加载到光波上,成为载有“信息”的光信号。构建图2如下: (图2) ②设计实例,对铌酸型Mach-Zehnder调制的啁啾分析,外调制器由于激光光源处于窄带稳频模式,消除降低系统啁啾量。典型的外调器是由铌酸锂(LiNo3)晶体构成。通过对其外加电压的分析调整而减少其啁啾量,设计图3如下: (图3)

③在图3中,驱动电路1电压改变量▽V1和驱动电路2电压改变量▽V2相同,图4为MZ调制器参数设定窗口,MZ以正交模式工作,其参数调制如下图4: (图4) 其中V1、V2分别为两个驱动电路的的电压,α为啁啾系数:α=(V1+V2)/(V1—V2) 图5为一系列信号脉冲输入时,在2、3口的电压V1=-V2=2.0V 时的波形,根据公式可得图6的结果:

常用光学设计软件介绍

ZEMAX ZEMAX是美国焦点软件公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Sequential及Non-Sequential的软件。版本等级有SE:标准版,XE:完整版,EE:专业版(可运算Non-Sequential)。 ZEMAX的主要特色:分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt;优化:表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预设Tolerance 参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 CODE V CODE V是世界上应用的最广泛的光学设计和分析软件,近三十多年来,Code V进行了一系列的改进和创新,包括:变焦结构优化和分析;环境热量分析;MTF和RMS波阵面基础公差分析;用户自定义优化;干涉和光学校正、准直;非连续建模;矢量衍射计算包括了偏振;全球综合优化光学设计方法。 OSLO oslo是一套标准建构系统及最佳化的光学软件。最主要地,他是用来决定光学系统中最佳组件的大小和外型,如照相机、客户产品、通讯系统、军事/外层空间应用以及科学仪器等。除此之外、他也常用于仿真光学系统性能以及发展出一套对光学设计、测试和制造的专门软件工具。 LENSVIEW LensVIEW为搜集在美国以及日本专利局申请有案的光学设计的数据库,囊括超过18,000个多样化的光学设计实例,并且每一实例都显示它的空间位置。它搜集从1800年起至目前的光学设计数据,这个广博的LensVIEW数据库不仅囊括光学描述数据,而且拥有设计者完整的信息,摘要,专利权状样本,参考文件,美国和国际分类数据,和许多其它的功能。LensVIEW 并能产生各式各样像差图,做透镜的快速诊断,和绘出这个设计的剖面图。 ASAP ASAP是功能强大的光学分析软件,是专为仿真成像或光照明的应用而设计,让您的光学工程工作更加正确且迅速。ASAP让您在制作原型系统或大量生产前可以预先做光学系统的仿真以便加快产品上市的时间。 传统描光程序的速度是非常烦琐秏时的。ASAP对于整个非序列性描光工具都经过速度的优化处理,让您可以在短时间内就可做数百万条几何描光的计算。光线可不计顺序及次数的经过表面,还可向前,向后追踪。此外ASAP具有强大的指令集可以让您进行特性光线以及物体的

光纤通信仿真知识分享

光纤通信仿真

光纤通信仿真实验 光纤模型实验:自相位效应姓名:万方力 学号:2013115030305 班级:1303班 指导老师:胡白燕 院系:计算机科学与技术学院

光纤模型实验:自相位效应 一、实验目的 1、通过进行本次实验,加深光纤结构以及特性的理解,通过实验现象的分析,结合理论知识获得进一步的认识。 2、本次实验是对自相位调制在脉冲传播上的模型进行模拟和验证,是基于光纤性质上的实验,通过本次实验,了解自相位效应的产生及影响,加深光纤相关知识的理解。 二、实验原理 1、光纤的色散特性 色散(Dispersion)是在光纤中传输的光信号,由于不同成分的光的传输时间不同而产生的一种物理效应。色散一般包括模式色散、材料色散和波导色散。 1)模式色散 光纤的模式色散只存在于多模光纤中。每一种模式到达光纤终端的时间先后不同,造成了脉冲的展宽,从而出现色散现象。 2)材料色散

含有不同波长的光脉冲通过光纤传输时,不同波长的电磁波会导致玻璃折射率不相同,传输速度不同就会引起脉冲展宽,导致色散。 3)波导色散 由光纤的几何结构决定的色散,其中光纤的横截面积尺寸起主要作用。光在光纤中通过芯与包层界面时,受全反射作用,被限制在纤芯中传播。但是,如果横向尺寸沿光纤轴发生波动,除导致模式间的模式变换外,还有可能引起一少部分高频率的光线进入包层,在包层中传输,而包层的折射率低、传播速度大,这就会引起光脉冲展宽,从而导致色散。 2、自相位调制 信号光强的瞬时变化引起其自身的相位调制,即自相位调制。 在单波长系统中光强变化导致相位变化时,自相位调制效应使信号频 谱逐渐展宽。这种展宽与信号的脉冲形状和光纤的色散有关。在光纤的正常色散区中,由于色散效应,一旦自相位调制引起频谱展宽,沿着光纤传输 的信号将经历暂时的较大展宽。但在异常色散区,光纤的色散效应和自相 位调制效应可能会相互补偿,从而使信号的展宽小一些。 在一般情况下,SPM效应只在高累积色散或超长系统中比较明显。受色散限制的系统可能不会容忍自相位调制效应。在信道很窄的多通道系统中,由自相位调制引起的频谱展宽可能在相邻信道间产生干扰。 在G.652光纤中的低啁啾强度调制信号的自相位调制效应将引起脉冲的压缩,但同时使传输光谱展宽。采用G.652光纤时,把信道设置在零色散波长附近将有利于减少自相位调制效应的影响。在长距离系统中,这种光 纤可采用以适当间隔作色散补偿的方法来控制自相位调制效应的影响,当然,也可通过减少输入光功率的方法来减少自相位调制效应的影响。

LED灯具设计之透镜认识

LED灯具设计之透镜认识 对于非专业人士认知的配光而言,大都会问的一个问题就是:反射器和透镜都有啥区别有个比较形象的比喻就是: 反光杯是把光源发出的光反射出去,这种情况多少都会有漏网之鱼没通过反射就直接跑出去了; 而透镜就是把光源发出的光都吞进去,消化了之后再吐出来。孰 优孰劣看需求定。闲话少扯,下面来个揭秘。 标准的透镜最经典的就是圆锥形透镜,这些透镜很大一部分依赖于全内透反射所以称之为TIR(Total Internal Reflection)透镜。 通常TIR 透镜是轴对称设计提供一个漂亮的圆形光斑,既可以组合成多颗LED 成为阵列透镜也可以单颗加支架以方便安装和控光。 TIR透镜VS 反光杯

其实两者的基本工作原理都是相同的,但是TIR 透镜相比而言具有更大的控制权,因为TIR 透镜的每条光线都经过控制利用,而反光杯的很大一部分光是不接触反射面不受控制的,这个在小角度光学里面很容易看出来,反光杯的光型是没有TIR 透镜出来的光型那么锐利的(简而言之也就是反光杯的副光斑更大)。

透镜的类型: 图:从左到右: 1、真正聚光(-RS), 2、柔和聚光(-SS), 3、扩散聚光(-D), 4、中角度(-M/-M2), 5、椭圆角度(-O), 6、大角度(-W/-WW/-WWW)。

不同的光学性能使用不同的TIR透镜,而透镜的尺寸和LEDs 灯珠直接影响光学性能的,所以没有明确先提条件而谈角度、光强和效率都是不准确的,良好的光学设计必须跟LEDs 灯珠的光分布完美的配合才能得到良好的光学效果。 在专业的光学设计里不存在万能的产品,有的是针对性配合光学和针对性的应用。 下面我们再TIR 透镜家族里面好好分析下每种不同的光学: 真正的聚光透镜(-RS) 在透镜家族里面这类透镜是最聚光的,目的是取得高的cd/lm(峰值光强)但也会导致缺失部分混光性能,这类透镜很容易辨认,一般都是表面晶莹通透透,部分还可能是中空。 应用这一类透镜的主要方向包括:投光灯、聚光灯、远距离洗墙灯等。 案例比如桥梁照明、高层楼宇照明、室内射灯等。 柔和的聚光透镜-SS

LED(Tracepro官方LED建模光学仿真设计教程)

Requirements Models: None Properties: None Editions: TracePro LC, Standard and Expert Introduction In this example you will build a source model for a Siemens LWT676 surface mount LED based on the manufacturer’s data sheet. The dimensions will be used to build a solid model and the source output will be defined to match the LED photometric curve. Copyright ? 2013 Lambda Research Corporation.

Create a Thin Sheet First analyze the package to determine the best method of constructing the geometry in TracePro. The symmetry of the package suggests starting from a Thin Sheet and extruding the top and bottom halves with a small draft angle. Construct Thin Sheet in the XY plane. 1. Start TracePro 2. Select View|Profiles|XY or click the View XY button on the toolbar, and switch to silhouette mode, View|Silhouette. 3. Select Insert|Primitive Solid and select the Thin Sheet tab. 4. Enter the four corners of the Thin Sheet in mm in the dialog box, as shown below, and click Insert. 5. Click the Zoom All button or select View|Zoom|All to see the new object.

光纤通信实验指导书3

光纤通信实验指导书 南昌工程学院通信工程专业 2014年12月

实验一光发射机的仿真验证与设计 实验目的 1.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。 2.利用Optisystem的优化功能仿真计算光纤通信系统的各项性能参数,并进行分析。 3. 分析LED和LD的谱宽及P/I特性。 实验原理 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,而成为一系列广泛使用的工具。 OptiSystem允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它的广泛应用包括:物理层的器件级到系统级的光通讯系统设计;CA TV或者TDM∕WDM网络设计;SONET∕SDH的环形设计;传输器、信道、放大器和接收器的设计;色散图设计;不同接受模式下误码率(BER)和系统代价(penalty)的评估;放大的系统BER和连接预算计算。 Optisystem环境是一种为利用元件库组建光纤通信系统,利用优化功能仿真计算系统的各项性能参数,通过数据分析和图形显示来获得最佳的光纤通信系统。Optisystem通过3部分来实现光纤通信系统仿真,即:器件库、光学方案图编辑器、图形演示。 1、器件库 (1) 发射器 发射器件库包括了所有与光信号产生和编码相关的器件,例如半导体激光器、调制器、编码器和比特序列发生器等。半导体激光器由于它在发射器中的重要角色而成为了最重要的发射器部件。使用OptiSystem,用户可以输入测量过的数据来评估速率方程所需的那些参数。

模拟仿真软件介绍

模拟仿真软件介绍 模拟仿真技术发展至今,用于不同领域、不同对象的模拟仿真软件林林总总,不可胜数,仅对机械产品设计开发而言,就有机构运动仿真软件,结构仿真软件,动力学仿真软件,加工过程仿真软件(如:切削加工过程仿真软件、装配过程仿真软件、铸造模腔充填过程仿真软件、压力成型过程仿真软件等),操作训练仿真软件,以及生产管理过程仿真软件,企业经营过程仿真软件等等。这里仅以一种微机平台上的三维机构动态仿真软件为例,介绍模拟仿真软件的结构和功能。 DDM(Dynamic Designer Motion)是DTI(Design Technology International)公司推出的、工作于AutoCAD和MDT平台上的微机全功能三维机构动态仿真软件,包含全部运动学和动力学分析的功能,主要由建模器、求解器和仿真结果演示器三大模块组成(见图1)。 1.DDM建模器的功能 1)设定单位制。 2)定义重力加速度的大小和方向。 3)可以AutoCAD三维实体或普通图素(如直线、圆、圆弧)定义运动零件。 4)可以定义零件质量特性:

图1 DDM仿真软件模块结 ①如果将三维实体定义为零件,可以自动获得其质量特性。 ②如果用其他图素定义零件,则可人工设定质量特性。 5)可以定义各种铰链铰链用于连接发生装配关系的各个零件,系统提供六种基本铰链和两种特殊铰链。 基本铰链: ①旋转铰——沿一根轴旋转。 ②平移铰——沿一根轴移动。 ③旋转滑动铰——沿一根轴旋转和移动。 ④平面铰——在一个平面内移动并可沿平面法线旋转。 ⑤球铰——以一点为球心旋转。 ⑥十字铰——沿两根垂直轴旋转。 特殊铰链:

光纤通信实验报告

OptiSystem实验 一、OptiSystem简介 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。全面的图形用户界面提供光子器件设计、器件模型和演示。丰富的有源和无源器件库,包括实际的、波长相关的参数。参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。 OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。它可广泛应用下列场合: 1.物理层的器件级到系统级的光通讯系统设计; 2.CATV或者TDM?WDM网络设计; 3.SONET?SDH的环形设计; 4.传输装置、信道、放大器和接收器的设计; 5.色散图设计; 6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估; 7.放大系统的BER和连接预算计算。 实验1 OptiSystem快速入门:以“激光外调制”为例 一、实验目的 1、掌握软件的简单操作 2、了解软件的元件库 3、掌握建立新的project(新的工作界面) 4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统 5、掌握设置参数 6、掌握软件的运行、观察结果、导出数据 二、实验过程 1.建立一个新文件。(File>New) 2.将光学器件从数据库里拖入主窗口进行布局. 3.光标移至有锁链图标出现时,进行连线。(如图1所示) 4.设置连续波激光器参数。 (1)点击frequency>mode, 出现下拉菜单,选中script。 (2)在value中输入数据并作评估。 (3)点击单位,选择“THZ”,点击OK 回主窗口。(如图2所示)

几款网络模拟器软件在计算机网络实验课程中的应用

几款网络模拟器软件在计算机网络实验课程中的应用 计算机网络实验课程是计算机网络专业最重要的实验课程,由于计算机网络实验涉及的内容比较多,受实验室条件的限制,在缺乏计算机网络实验硬件设备的条件下,如何开展计算机网络实验教学是值得研究的问题。通过在计算机网络实验教学中的实践,发现可以借助几款网络模拟器软件建立模拟实验环境,开展计算机网络的实验教学,进行网络仿真实验。 网络模拟器是专业研究机构和公司开发的网络仿真工具软件,是为网络初学者设计的用于提供计算机网络设计、配置和网络故障排除模拟环境的学习平台,它支持用户进行仿真、虚拟和活动的网络模型。网络模拟器能够模拟出各种网络硬件设备,使用者可以在单机环境下设计拓扑结构,组建网络进行仿真实验。学生可以在网络模拟器的网络环境中,进行反复练习,不仅提高自己的实践动手能力和解决实际问题的能力,而且提高了计算机网络实验效率,降低实验成本。同时,培养学生组建、维护和管理网络的能力,增强学生对计算机网络理论和概念的掌握和理解。 目前,网络模拟器种类繁多,一些网络设备公司都积极开发与之相配套的网络模拟软件,思科、华为、AT&T等

网络设备供应商都相继推出网络模拟器。广受网络、通信等专业的教学部门和培训机构青睐的网络模拟器主要有BosonNetSim、PacketTracer、Dynamips等模拟软件,现就这几款网络模拟器软件在计算机网络实验中的应用进行分析。 一、BosonNetsim网络模拟器软件及应用实例 BosonNetsim是Boson公司开发的一款网络模拟软件,它最先提出自定义网络拓扑的功能,大多数人都使用它来练习CCNA和CCNP的实验。它由BosonNetworkDesigner(网络拓扑图设计)和BosonNetsim(实验模拟器)两部分组成。BosonNetSim能够实现交换机基本实验、路由器基本实验、远程访问基本实验以及进阶实验。路由实验可以实现静态路由,动态路由实验如RIP,IGRP,0SPF等,还可以实现ISDN、PPP、CHAP、NAT地址转换等实验,可以组建基于核心层、汇聚层、接入层三层交换的高级网络实验,使用交换机实现虚拟局域网VLAN划分的,生成树、VTP、TRUNK等交换实验。打开用BosonNetworkDesigner设计好的网络拓扑结构图(??}.top文件),对拓扑图里的路由器、交换机、用户机等网络设备进行配置实验。用户可

LED照明灯具与光学系统设计

LED照明技术陕西科技大学 电气与信息工程学院 王进军

第七章LED照明光学系统设计 7.1 LED照明光学系统设计CAD软件 7.2 LED照明光学系统的设计原理 7.3 LED照明数据与计算 7.2 LED照明光学系统的选择 7.3 LED矿灯设计 7.4 应用于博物馆文物展示的白光LED照明系统设计 7.5 白光LED射灯设计

第七章LED照明光学系统设计 LED光学系统设计包括LED发光管内的光学设计和LED 发光管外的光学设计,前者通常称为一次光学设计,而后者则称为二次光学设计。 LED内通常由芯片、反射杯和透明环氧树脂制成的光学透镜组成。LDE芯片、反射杯和透镜的几何形状决定了LED出光后的空间光强分布。

第七章LED照明光学系统设计 LED发光管外的二次光学设计主要是根据不同的实际应用需求使LED出光后的空间光强分布发生改变,即光能量的分布发生变化,从而更有效、更合理地利用有限的光能量。 因此,LED照明光学系统设计主要指的是LED发光外的二次光学设计。

§7.1 LED照明光学系统设计CAD软件 计算机辅助设计(CAD)技术的飞速发展,使得照明光学系统的研究方法发生了巨大的变化,这主要表现在光学机构仿真软件在照明产业中的普及。 目前,国际上采用的照明光学系统的设计软件主要下面有三种:

§7.1 LED照明光学系统设计CAD软件 ?TarcePro光学机构仿真软件、 ?AASP高级系统分析程序、 ?Lighttoo1s照明系统设计软件。 在我国大陆用的较多的是TarcePro ,而台湾地区则以AASP较为流行。

光纤通信仿真

光纤通信仿真实验 光纤模型实验:自相位效应姓名:万方力 学号:2013115030305 班级:1303班 指导老师:胡白燕 院系:计算机科学与技术学院

光纤模型实验:自相位效应 一、实验目的 1、通过进行本次实验,加深光纤结构以及特性的理解,通过实验现象的分析,结合理论知识获得进一步的认识。 2、本次实验是对自相位调制在脉冲传播上的模型进行模拟和验证,是基于光纤性质上的实验,通过本次实验,了解自相位效应的产生及影响,加深光纤相关知识的理解。 二、实验原理 1、光纤的色散特性 色散(Dispersion)是在光纤中传输的光信号,由于不同成分的光的传输时间不同而产生的一种物理效应。色散一般包括模式色散、材料色散和波导色散。 1)模式色散 光纤的模式色散只存在于多模光纤中。每一种模式到达光纤终端的时间先后不同,造成了脉冲的展宽,从而出现色散现象。 2)材料色散 含有不同波长的光脉冲通过光纤传输时,不同波长的电磁波会导致玻璃折射率不相同,传输速度不同就会引起脉冲展宽,导致色散。 3)波导色散 由光纤的几何结构决定的色散,其中光纤的横截面积尺寸起主要作用。光在光纤中通过芯与包层界面时,受全反射作用,被限制在纤芯中传播。

但是,如果横向尺寸沿光纤轴发生波动,除导致模式间的模式变换外,还有可能引起一少部分高频率的光线进入包层,在包层中传输,而包层的折射率低、传播速度大,这就会引起光脉冲展宽,从而导致色散。 2、自相位调制 信号光强的瞬时变化引起其自身的相位调制,即自相位调制。 在单波长系统中光强变化导致相位变化时,自相位调制效应使信号频谱逐渐展宽。这种展宽与信号的脉冲形状和光纤的色散有关。在光纤的正常色散区中,由于色散效应,一旦自相位调制引起频谱展宽,沿着光纤传输的信号将经历暂时的较大展宽。但在异常色散区,光纤的色散效应和自相位调制效应可能会相互补偿,从而使信号的展宽小一些。 在一般情况下,SPM 效应只在高累积色散或超长系统中比较明显。受色散限制的系统可能不会容忍自相位调制效应。在信道很窄的多通道系统中,由自相位调制引起的频谱展宽可能在相邻信道间产生干扰。 在G.652光纤中的低啁啾强度调制信号的自相位调制效应将引起脉冲的压缩,但同时使传输光谱展宽。采用G.652光纤时,把信道设置在零色散波长附近将有利于减少自相位调制效应的影响。在长距离系统中,这种光纤可采用以适当间隔作色散补偿的方法来控制自相位调制效应的影响,当然,也可通过减少输入光功率的方法来减少自相位调制效应的影响。 经过自相位调制后,脉冲的波形(即:|E(z,t)|2=|E(z=0,t)|2)不受影响。而相位变化项ΦNL =|E(z=0,t)|2表明经过自相位调制后,脉冲的瞬时 频率相对原先载波的频率ω0已有所改变。频率改变量δω(t)由式子给出: (3.3) )(t t NL ?=δφδω 该频率的改变和时间的关系导致了啁啾声的产生。

相关文档
最新文档