排队论(queuing theory)
运筹学第五章排队论
§2 排队论基本理论总廓
§2.1 排队论研究的基本问题
1.排队系统的统计推断:即通过对排队系统主 要参数的统计推断和对排队系统的结构分析,判 断一个给定的排队系统符合于哪种模型,以便根 据排队理论进行研究。
3. 服务机构
1)服务机构可以是单服务员和多服务员服务, 这种服务形式与队列规则联合后形成了多种不同队 列,不同形式的排队服务机构,如:
1 单队单服务台
1
2
..
..
nLeabharlann 多队多服务台(并列)1
2 。。。
n
单队多服务台(并列)
1
2
... n
单队多服务台(串列)
1
1
2
3
2
混合形式
2)服务方式分为单个顾客服务和成批顾客服务。 3)服务时间分为确定型和随机型。 4)服务时间的分布在这里我们假定是平稳的。
值得注意的是求稳态概
率Pn并不一定求t→∞的 极限,而只需求
P ’(t)=0 即可。
过渡状态
稳定状态
t
图3 排队系统状态变化示意图
3.根据排队系统对应的理论模型求出用以判断系统 运行优劣的基本数量指标的概率分布或特征数。 数量指标主要包括:
(1)平均队长(Ls):系统中的顾客数。 平均队列长(Lq):系统中排队等待服务的顾客数。 系统中顾客数Ls =系统中排队等待服务的顾客数Lq +正被
含优化设计与优化运营。
问题1 系统中顾客数=平均队列长(Lq)+1?
§2.3 排队论主要知识点
排队论问题实验报告(3篇)
第1篇一、实验背景排队论是运筹学的一个重要分支,主要研究在服务系统中顾客的等待时间和服务效率等问题。
在现实生活中,排队现象无处不在,如银行、医院、超市、餐厅等。
通过对排队问题的研究,可以帮助我们优化服务系统,提高顾客满意度,降低运营成本。
本实验旨在通过模拟排队系统,探究排队论在实际问题中的应用。
二、实验目的1. 理解排队论的基本概念和原理。
2. 掌握排队模型的建立方法。
3. 熟悉排队系统参数的估计和调整。
4. 分析排队系统的性能指标,如平均等待时间、服务效率等。
5. 培养运用排队论解决实际问题的能力。
三、实验内容1. 建立排队模型本实验以银行排队系统为例,建立M/M/1排队模型。
该模型假设顾客到达服从泊松分布,服务时间服从负指数分布,服务台数量为1。
2. 参数估计根据实际数据,估计排队系统参数。
假设顾客到达率为λ=2(人/分钟),服务时间为μ=5(分钟/人)。
3. 模拟排队系统使用计算机模拟排队系统,记录顾客到达、等待、服务、离开等过程。
4. 性能分析分析排队系统的性能指标,如平均等待时间、服务效率、顾客满意度等。
四、实验步骤1. 初始化参数设置顾客到达率λ、服务时间μ、服务台数量n。
2. 生成顾客到达序列根据泊松分布生成顾客到达序列。
3. 模拟排队过程(1)当服务台空闲时,允许顾客进入队列。
(2)当顾客进入队列后,开始计时,等待服务。
(3)当服务台服务完毕,顾客离开,开始下一个顾客的服务。
4. 统计性能指标记录顾客等待时间、服务时间、顾客满意度等数据。
5. 分析结果根据实验数据,分析排队系统的性能,并提出优化建议。
五、实验结果与分析1. 平均等待时间根据模拟结果,平均等待时间为2.5分钟。
2. 服务效率服务效率为80%,即每分钟处理0.8个顾客。
3. 顾客满意度根据模拟结果,顾客满意度为85%。
4. 优化建议(1)增加服务台数量,提高服务效率。
(2)优化顾客到达率,降低顾客等待时间。
(3)调整服务时间,缩短顾客等待时间。
排队论上课 !
(2)
与时间有关的随机变量的概率,是一个随机过程, 即泊松过程。 6
在一定的假设条件下 一个泊松过程。
顾客的到达过程就是
若设N(t)表示在时间区间[0,t)内到达的顾客数 (t>0),Pn(t1,t2) 表 示 在 时 间 区 间 [t1,t2)(t2>t1) 内 有 n(≥0)个顾客到达的概率。即:
第五章 排队论(Queuing Theory)
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。 1909年,丹麦哥本哈根电子公司电话工程师A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
k0
2
1
1 1 1 0.9197 2
∴ 破碎物品少于3件的概率为91.97 破碎物品多于3件的概率为:
p 3 1 e k!
3 k k0
1 0.98 0.02
3.至少有一件破碎的概率为
P{k1}=1-(1k/k!)e-=1-(10/0!)e-1=0.632
令f(t|n+1)表示wn的概率密度,这是在系统中已有n个顾客 时的条件概率,故T的概率密度为:
f (t ) pn f (t | n 1)
n 0
15
因此wn服从爱尔朗分布
f (t | n 1)
(nt ) n e t
n!
n t
所以:
f (t ) (1 )
系统处于空闲状态的概率: P0 1
第八章排队论
7.4、排队论与生灭过程
排队过程的组成部分
3、服务机制
① 服务员的数量及构成形式
② 服务方式
指在某一时刻接受服务的顾客数,有单个服 务和成批服务两种。
7.4、排队论与生灭过程
排队过程的组成部分
3、服务机制
① 服务员的数量及构成形式
② 服务方式
③ 服务时间的分布 •定长分布(D) 指每个顾客接受服务的时间是一个确定的常数。
7.4、排队论与生灭过程
排队系统的例子
顾客 1.借书的学生 2.打电话 3.提货者 4.待降落的飞行器 5.储户 6.河水进入水库 7.购票旅客 8.十字路口的汽车 要求的服务 借书 通话 提货 降落 存款、取款 放水、调整水位 购票 通过路口 服务台 图书管理员 交换台 仓库管理员 指挥塔台 储蓄窗口、ATM取款 机 水库管理员 售票窗口 红绿灯或交警
7.4、排队论与生灭过程--(生灭过程排队论)
1. 生灭过程
生灭过程是一类非常简单具有广泛应用的一类随机过程,很多排队 模型中都假设其状态过程为生灭过程;这样的排队子系统如:M/M/C和 M/M/C/R,我们也可称之为生灭过程的排队系统。在这样的排队系统中, 一个新顾客的到达看作“生”,一个顾客服务完之后离开系统看作是 “死”,设N(t)的任意时刻t排队系统的状态(即排队子系统中的总顾客 数),则对M/M/C/K系统N(t)具有有限个状态0,1,…,k,对M/M/C来说
7.4、排队论与生灭过程
排队过程的组成部分
2、排队规则
① 排队系统
排队分为有限排队和无限排队两类。前者是指系统的空 间是有限的,当系统被占满时,后面再来的顾客将不能 进入系统;后者是指系统中的顾客数可以是无限的,队 列可以排到无限长,顾客到达后均可进入系统排队或接 受服务。具体又分为:
运筹学-排队论
(接受服务)
5
二、排队系统的组成和特征
1、输入过程
输入即指顾客到达排队系统,可能有以下不同情况。
(1)顾客源的组成
有限的 无限的
(2)顾客到来的方式
一个一个的 成批的
(3)顾客相继到达的间隔时间
确定型的 随机型的
(4)顾客的到来
相互独立的 关联的
(5)输入过程
平稳的,或称对时间是齐次的 非平稳的
6
14
9、其他常用数量指标
s —— 系统中并联服务台的数目;
—— 平均到达率;
1/
—— 平均到达间隔。
—— 平均服务率;
1/ —— 平均服务时间。
—— 服务强度,
每个服务台单位时间内的平均服务时间;
一般有 s ;当s=1时:
15
对于损失制和混合制的排队系统,顾客在到达服务系统时, 若系统容量已满,则自行消失。这就是说,到达的顾客不 一定全部进入系统,为此引入:
例如:某排队问题为
M / M / s / ∞ / ∞ /FCFS
则表示顾客到达间隔时间为负指数分布(泊松流);服务时 间为负指数分布;有s(s>1)个服务台;系统等待空间容量无 限(等待制);顾客源无限,采用先到先服务规则。 可简记为: M / M / s
12
四、排队系统的参数(分析结果)
1、队长(Ls) 指在系统中的顾客数,期望值 2、排队长(Lq) 指系统中排队等候服务的顾客数
13
5、忙期 指从顾客到达空闲服务机构起到服务机构再次空 闲止 这段时间长度,即服务机构连续繁忙的时间长度。 6、系统的状态n:指系统中的顾客数。 7、系统状态的概率Pn(t):指时刻t、系统状态为n的概率。 一般为关于t的微分方程、关于n的差分方程。 8、稳定状态:t→时,t=0时的系统不稳定状态将消失, 系统的状态概率分布不再随时间变化,即 limPn(t)→Pn。
排队论及其应用
学习要求
• 重点掌握和理解排队论的基本概念、M/M/m(n)排 队系统的模型分析方法,了解它们在网络中的实际 应用; • 掌握通信网业务量的基本概念,理解、掌握和运用 Erlang B公式和C公式;能够运用这些知识分析和 计算实际网络的性能指标; • 掌握随机接入系统的工作原理及其业务分析方法。
16
1.1.1 基本概念 • 服务方式及排队方式
服务方式 是指在某一时刻系统内接受相同服务的顾客数,即是单个 顾客接受服务(串列服务方式)还是成批顾客同时接受服 务(并列服务方式)。 串列服务方式:即m个窗口的串列排队系统。此时,m个 窗口服务的内容互不相同,某一时刻只能有一个顾客接受 其中一个窗口的单项服务,每个顾客要依次经过这m个窗 口接受全部的服务。 并列服务方式:即m个窗口的并列排队系统。此时,m个 窗口服务的内容相同,系统一次可以同时服务m个顾客。
排队论的起源: 排队论起源于20世纪初。当时,美国贝尔(Bell)电话公 司发明了自动电话以后,如何合理配臵电话线路的数量, 以尽可能地减少用户重复呼叫次数问题出现了。 1909年,丹麦工程师爱尔兰(A.K.Erlang)发表了具有重 要历史地位的论文“概率论和电话交换”,从而求解了上 述问题。 1917年,A.K.Erlang又提出了有关通信业务的拥塞理论, 用统计平衡概念分析了通信业务量问题,形成了概率论的 一个新分支。 后经C.Palm等人的发展,由近代概率论观点出发进行研 究,奠定了话务量理论的数学基础。
e ( N Ls )0
k状态(系统中有k个顾客时)的系统到达率为
(1.2)
k ( N k )0
(1.3)
23
1.1.1 基本概念
参数
运筹学排队论2
换为 t ,得到
pn
(t)
(t)n
n!
et
,
t
0,
n
0,1,2,.
表示长为t的时间区间内到达n个顾客的概率为 pn (t) ,且服从泊松分布.这称为泊松流或泊松过 程或简单流. 设t时间内到达的顾客数为随机变量N(t),则有
E[N(t)] t, D[N(t)] t.
服务台
2.C个服务台,一个公共队伍
服务台1 服务台2 服务台C
3.C个服务台,C个队伍
服务台1 服务台2 服务台C
二.排队系统的三个组成部分
1.输入过程:指顾客按怎样的规律到达. ⑴顾客的总体数或顾客源:指可能到达服务机
构的顾客总数.顾客总体数可以是有限的,也可 以是无限的; ⑵顾客到达的类型:顾客是单个到达还是成批 到达; ⑶顾客相继到达时间间隔的分布,如按泊松 分布,定长分布还是负指数分布.
排队论的创始人是丹麦哥本哈根市电话局的 工程师爱尔朗(A.K.Erlang),他早期研究电话 理论,特别是电话的占线问题,就是早期排队 论的内容.
§2 排队论的基本概念
一.排队现象的共同特征:为了获得某种服务而 到达的顾客,如不能立即得到服务而又允许排 队等候,则加入等待的队伍,获得服务后离开.我 们把包含这些特征的系统称为排队系统. 排队系统的几种情况: 1.单服务台排队系统
例9.1 某仓库全天都可以进行发料业务,假设 顾客到达的时间间隔服从均值为1的负指数分 布现在有一位顾客正好中午12:00到达领料, 试求:
(1)下一个顾客将在下午1:00前到达的概率; (2)在下午1:00与2:00之间到达的概率: (3)在下午2:00以后到达的概率。
排队论
泊松输入中的顾客到达间隔时间 T 相互独立且服从同参数 λ 的负指数分 布,其密度函数为
其平均到达间隔时间为
λ 称为到达率。
三. 排队系统的主要特征
1. 输入过程 ⑴ 定长输入( D, Deterministic ) ⑵泊松输入 (最简单流, M ) ⑶ 一般独立输入( G,General Independent ) —— 指顾客到达间隔时间 T 为相互独立且同分布的随机变量。最简单 流是它的一个特例。 此外,在本章所讨论的排队系统中,总假定输入过程是平稳的,或 称对时间是齐次的。 平稳的输入过程 —— 指顾客到达间隔时间的分布与时间无关。否则就称 为非平稳的。
服务台m
服务台 1
⑸
服务台 2
服务台 1 服务台 2
···
···
服务台 m
服务台 m
三. 排队系统的主要特征
1. 输入过程 2. 服务时间 τ 的分布 3. 服务机构(服务台) 4. 服务规则
⑴ 先到先服务(FCFS) ⑵ 后到先服务(LCFS)
如信息处理、仓库中堆积的货物等。 ⑶ 随机服务(SIRO) ⑷ 优先权服务(PR) ⑸ 一般服务规则(GD)
1909年,由丹麦工程师爱尔朗(A.K.Erlang)在研究电话系统时初创的。
§l 排队论的基本概念及研究的问题
一.排队论中有两个基本概念:
顾客:把提出需求的对象称为顾客(或需求); 服务:把实现服务的设施称为服务机构(或服务台)。
顾客和服务机构组成一个排队系统,称为随机服务系统。 因此也称排队论为随机服务系统理论
⑴ 定长输入( D, Deterministic ) —— 每隔一定时间 α 到达一个顾客,顾客到达间隔时间 T 的分布函数为
三. 排队系统的主要特征
排队论简述
0.9 1 2 3 0.3(人 / min) 3
八、M/M/S等待制排队模型
• 下表给出了M/M/3/∞和3个M/M/1/∞的比较:
项目 空闲的概率 顾客必须等待的概率 平均队长 平均排队长 M/M/3/∞ 0.0748 0.57 3.95 1.70 3个M/M/1/∞ 0.25(每个子系统) 0.75 9(整个系统) 2.25(每个子系统)
二、排队系统模型的基本组成部分
• 排队现象是由两个方面构成,一方要求得到服务,另 一方设法给予服务。我们把要求得到服务的人或物( 设备)统称为顾客,给予服务的服务人员或服务机构 统称为服务员或服务台。顾客与服务台就构成一个排 队系统,或称为随机服务系统。显然缺少顾客或服务 台任何一方都不会形成排队系统。 • 对于任何一个排队服务系统,每一名顾客通过排队服 务系统总要经过如下过程:顾客到达、排队等待、接 受服务和离去,其过程如下图所示: 顾客总体 输入 队 伍 服务台 输出 服务系统
五、描述排队系统的主要数量指标
4.根据排队系统对应的理论模型求用以判断系统运 行优劣的基本数量指标的概率分布或特征数。 平均队长(Ls):指系统内顾客数(包括正被服务的顾 客与排队等待服务的顾客)的数学期望。 平均队列长(Lq):指系统内等待服务的顾客数的数学 期望。 平均逗留时间(Ws):顾客在系统内逗留时间(包括排 队等待的时间和接受服务的时间)的数学期望 平均等待时间(Wq):指一个顾客在排队系统中排队等 待时间的数学期望间 忙期(Tb):指服务机构连续繁忙时间(顾客到达空 闲服务机构起,到服务机构再次空闲止的时间)长度 的数学期望
Ls Lq ,
Lq
,
Ws Wq
1
排队论
第八章排队论8.1 前言排队论(Queuing Theory),又称随机服务系统理论(Random Service System Theory),是一门研究拥挤现象(排队、等待)的科学。
具体地说,它是在研究各种排队系统概率规律性的基础上,解决相应排队系统的最优设计和最优控制问题。
排队是我们在日常生活和生产中经常遇到的现象。
例如,上、下班搭乘公共汽车;顾客到商店购买物品;病员到医院看病;旅客到售票处购买车票;学生去食堂就餐等就常常出现排队和等待现象。
除了上述有形的排队之外,还有大量的所谓“无形”排队现象,如几个顾客打电话到出租汽车站要求派车,如果出租汽车站无足够车辆、则部分顾客只得在各自的要车处等待,他们分散在不同地方,却形成了一个无形队列在等待派车。
排队的不一定是人,也可以是物:例如,通讯卫星与地面若干待传递的信息;生产线上的原料、半成品等待加工;因故障停止运转的机器等待工人修理;码头的船只等待装卸货物;要降落的飞机因跑道不空而在空中盘旋等等。
显然,上述各种问题虽互不相同,但却都有要求得到某种服务的人或物和提供服务的人或机构。
排队论里把要求服务的对象统称为“顾客”,而把提供服务的人或机构称为“服务台”或“服务员”。
不同的顾客与服务组成了各式各样的服务系统。
顾客为了得到某种服务而到达系统、若不能立即获得服务而又允许排队等待,则加入等待队伍,待获得服务后不同的顾客与服务组成了各式各样的服务系统。
顾客为了得到某种服务而到达系统、若不能立即获得服务而又允许排队等待,则加入等待队伍,不同的顾客与服务组成了各式各样的服务系统。
顾客为了得到某种服务而到达系统、若不能立即获得服务而又允许排队等待,则加入等待队伍,图8-1 单服务台排队系统图8-2 单队列——S个服务台并联的排队系统图8-3 S个队列——S个服务台的并联排队系统图8-4 单队——多个服务台的串联排队系统图8-5 多队——多服务台混联网络系统一般的排队系统,都可由下面图8-6加以描述图8-6 随机服务系统面对拥挤现象,人们总是希望尽量设法减少排队,通常的做法是增加服务设施。
第六章 排队论模型
上述事例中的各种问题虽互不相同,但却都 有要求得到某种服务的人或物和提供服务的人或 机构。排队论里把要求服务的对象统称为“顾 客”,而把提供服务的人或机构称为“服务台”或 “服务员”。不同的顾客与服务组成了各式各样 的服务系统。顾客为了得到某种服务而到达系统、 若不能立即获得服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
12
③随机服务 (RAND) 。即当服务台空闲 时,不按照排队序列而随意指定某个顾客去 接受服务,如电话交换台接通呼叫电话就是 一例。 ④优先权服务 (PR)。如老人、儿童先进 车站;危重病员先就诊;遇到重要数据需要 处理计算机立即中断其他数据的处理等,均 属于此种服务规则。
13
(3)混合制.这是等待制与损失制相结合的一种 服务规则,一般是指允许排队,但又不允许队列无 限长下去。具体说来,大致有三种:
16
3、服务台
服务台可以从以下3方面来描述: (1) 服务台数量及构成形式。从数量上说,服务台有 单服务台和多服务台之分。从构成形式上看,服务台 有:①单队——单服务台式; ②单队——多服务台并联式; ③多队——多服务台并联式; ④单队——多服务台串联式; ⑤单队——多服务台并串联混合式,以及多队列多 服务台并串联混合式等等。 如之前的分类模型图所示。
2
排队论历史:
起源于1909年在丹麦哥本哈根电子公司工作的电话工程 师A. K. Erlang(A.K.爱尔朗)对电话通话拥挤问题的研究工作, 其开创性论文---概率论和电话通讯理论则标志此理论的诞生。 表明了排队论的发展最早是与电话,通信中的问题相联系的, 并到现在也还是排队论的传统的应用领域。近年来在计算机通 讯网络系统、交通运输、医疗卫生系统、各类生产服务、库存 管理等等各领域中均得到广泛的应用。 排队论具体事例:
排队理论(queueing theory)
[编辑]
排队系统模型的基本组成部分
排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时 刻和对他服务的时间(即占用服务系统的时间)都是随机的。图 1 为一最简单的排队系统模型。 排队系统包括三个组成部分:输入过程、排队规则和服务机构。
[编辑]
输入过程
输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾 客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按 规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入 是指在时间 t 内顾客到达数 n(t)服从一定的随机分布。如服从泊松分布,则在时间 t 内到达 n 个顾客的概率为
在单队单服务台的情况下:
, 多队多服务台可看作是多个单队单服务台。在单队 k 个服务台的情况下:
,
三、超市收银台的优化设计
作为顾客来说,超市收银台越多越好越方便,而就超市经营者来说,增加收银台就要增加投 资。所以应该合理的规划收银台的数量,使得既不会因为收银台的数量过多而造成资源闲置浪
费,也不会因为收银台的数量过少而造成严重的排队现象。因此可对超市收银台进行管理和优化 设计。
Ls = Ls(C)
化简得:
(5)
通过计算机模拟依次算出 LS(1),LS(2),LS(3)…相邻两项之差,看常数落在哪两者之间,从而确 定使顾客损失费用和公司服务成本之和达到最优化服务台个数 C 的最优解 C * 。
1.对超市布局进行合理规划,为顾客营造出温馨,简便的购物环境。让顾客在尽量短的时间 内买到自己想买的商品,提高单位时间内进出超市的客流量,这样既节省了顾客的时间,也使超 市增加了顾客的流量,从而使超市的经营效率得到了提高。对于大型的超市在恰当的位置增加导 购员使一种很好的方法。对于第一次来消费的顾客,导购员的指导就会大量的减少他们的漫无目 的的逗留时间。收银台前的管理也是非常重要的,尽量让等待的顾客按顺序排队,避免过分的拥 挤和混乱。
排队论的基本原理
排队论的基本原理:
排队论(Queuing Theory)是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,其基本原理主要包括以下几个方面:
1.排队系统的组成:排队系统通常由输入过程、排队规则和服务机构三个部分组成。
输入过程是指顾客到达服务系统的随机方式,排队规则是指顾客到达后按照怎样的规则排队等待服务,服务机构则是指服务的提供方式。
2.概率论和随机过程:排队论中需要用到概率论和随机过程的数学知识,如概率分布、
期望、方差等。
这些知识用于描述顾客到达和服务时间的统计规律。
3.状态分析:排队论中的状态分析主要是指对排队系统的状态进行描述和分类,如空
闲状态、忙状态等。
通过对状态的分析,可以确定系统的各种性能指标,如等待时间、队长等。
4.最优化原理:排队论中的最优化原理是指通过调整系统参数,如服务时间、服务速
率等,使得系统的性能指标达到最优。
最优化原理的目的是在满足一定约束条件下,使系统的某种性能指标达到最优。
5.可靠性理论:可靠性理论是排队论中的一个重要组成部分,它研究的是系统可靠性
的概念、指标和计算方法。
可靠性理论可以帮助我们分析系统的可靠性、故障率和可用性等方面的问题,为系统的设计和优化提供依据。
排队论(QueuingTheory)
称为稳态(steady state)解,或称统计平衡状态 (Statistical Equilibrium State)的解。 pn 稳态的物理意义见右图,系
统的稳态一般很快都能达到, 但实际中达不到稳态的现象 也存在。值得注意的是求稳 态概率Pn并不一定求t→∞ 的极限,而只需求Pn’(t)=0 即可。
Hale Waihona Puke P (t , t t ) o(t )
n2 n
P0+P1+P≥2=1
由此知,在(t,t+Δ t)区间内没有顾客到达的概率为:
P 0 (t , t t ) 1 t o(t )
令t1=0,t2=t,则P(t1,t2)=Pn(0,t)=Pn(t)
过渡状态
稳定状态
t
14
图3 排队系统状态变化示意图
2019/2/7 管理运筹学课程组 ftp://211.71.69.239
排队论主要知识点
排队系统的组成与特征 排队系统的模型分类 顾客到达间隔时间和服务时间的经验分布与 理论分布 稳态概率Pn的计算 标准的M/M/1模型([M/M/1]:[∞/∞/FCFS]) 系统容量有限制的模型 [M/M/1]:[N/∞/FCFS] 顾客源有限模型[M/M/1][∞/M/ FCFS] 标准的[M/M/C]模型[M/M/C]:[∞/∞/FCFS]
10
(3) 逗留时间,指一个顾客在系统中的停留时 间,它的期望值记作Ws; (4) 等待时间,指一个顾客在系统中排队等待的 时间,它的期望值记作Wq; 等待时间 服务时间
逗留时间
=
+
2019/2/7
管理运筹学课程组 ftp://211.71.69.239
排队论方法
2.到达时间的间隔分布和服务时间分布
到达时间的间隔分布和服务时间分布一般分为 泊松分布,负指数分布和爱尔朗分布. 2.1 泊松分布 设N(t)表示在时间段[0,t)内的到达的顾客 数,Pn(t1,t2)表示在时间段[t1,t2)(t2>t1)内有n(n≥0) 个顾客达到的概率,即Pn(t1,t2)=P{N(t2)-N(t1)=n}, 当Pn(t1,t2)满足如下三个条件时,则称顾客到达形 成泊松流;
(3)普通性:对于充分小的△t,在[t,t+△t]内 有2个或2个以上顾客到达的概率极小,即
P (t, t t ) (t )
n2 n
下面研究系统状态概率n的分布. 如果取时间段的 初始时间为t=0,则可记为 Pn(0,t)=Pn(t),在[t,t+△t)内,由于
P (t,t+t) P (t,t+t)+P (t,t+t)
Pn (t t ) {N (t t ) N (0) n} P{N (t t ) N (t ) k}
k 0 n
P{N (t ) N (0) n k} Pn k (t ) Pk (t , t t )
k 0 n
Pn (t )(1 t ) Pn 1 (t )t ( t ),
当顾客流为泊松分布时,用T表示两个相继到达的时间间隔, 是一个随机变量,其分布函数
FT (t ) P{T t} 1 P{T t} 1 P0 (t )
由上可知P0 (t) e 1 e
t
t
, 于是FT (t) 1
, t4系统状态的概率
系统状态是求运行指标的基础,所谓系统状态是指系统中顾 客的数量.如果系统中有n个顾客,则说系统的状态为n,即可 能取值为: (1) 当队长无限制时,则n=0,1,2,…..; (2) 当队长有限制,且最大值为N时,则n=0,1,2,….N; (3) 当服务台个数为c,且服务为即时制时,则 n=0,1,2,…c 一般来说状态取值与时间t有关,因此在时刻t系统状态 取值为n的概率记为Pn(t) ,若Pn(t) →Pn 则称为稳态(或统 计平衡状态)解.实际中多数平衡问题都是属于稳态的情况, 并不是真正的t→∞,即过一段时间以后就有Pn(t) →Pn.
第7章 排队论
(3)忙期和闲期 • 忙期是指从顾客到达空闲着的服务机构起,到服 务再次成为空闲止的这段时间,服务机构连续忙 的时间。这是个随机变量。 • 与忙期相对的是闲期,即服务机构连续保持空闲 的时间。 显然,在排队系统中忙期与闲期,是交替出现的。
2. 记号 N(t) : t 时刻系统中的顾客数(又称为系统的状态), 即队长; Nq(t): t 时刻系统中排队的顾客数,即排队长; w(t) : t 时刻到达系统的顾客在系统中的逗留时间; wq(t): t 时刻到达系统的顾客在系统中的等待时间 这些数量指标一般都和系统运行时间有关,其瞬时分 布的求解一般很困难。
(2)顾客到达的形式。这是描述顾客是怎样来到系统 的,是单个到达,还是成批到达。 如货品成批进入仓库。
(3)顾客流的概率分布,或称顾客相继到达的时间间 隔分布。这是首先需要确定的指标。 令T0=0,Tn表示第n个顾客到达的时间,则有 T0≤T1≤…≤ Tn ≤…,记Xn = Tn - Tn-1,n=1,2,…,则 ≤… X n=1,2,… Xn是第n个顾客与第n-1个顾客到达的时间间隔。一 般地,假设{Xn}是独立同分布的。 关于{Xn}的分布(顾客流的概率分布),在排队论 中经常用到的有定长分布、负指数分布、爱尔朗分 布等等。
3.服务台(也称为服务机构) 服务台可以从以下三个方面来描述: (1)服务台数量及构成形式 从数量上说,服务台有单台和多台之分。从构成形 式上看,有单队单服务台式、单队多服务台并联式、 单队多服务台串联式\多队多服务台并联式等等;
顾客到达
进入队列
服务台 顾客离去 接受服务 服务台
…
顾客到达
…
服务台 服务台
指标之间的关系: (1)Little公式: L= λW, Lq= λWq 其中,λ为顾客到达的平均到达率,即单位时间内平 均到达的顾客数; W为平均逗留时间,即系统处于平稳状态时顾客逗 留时间的期望值; (2) W= Wq +1/µ 其中,1/µ为平均服务时间
排队论
后到先服务LCFS,
有优先权服务PS, 随机服务RF。
(c)混合制排队
队长有限 等待时间有限 逗留时间(等待时间与服务时间之和)有限
排队系统的三大要素描述 三、服务机制 主要包括服务设施的数量、连接形式、服务方式及服务时间 分布等. 服务设施的数量:一个或多个,分别称为单服务台与多服 务台排队系统; 连接形式:串联、并联、混联和网络等; 服务方式:单个或成批服务; 服务时间的分布:其中服务时间分布是最重要因素, 记服务台服务时间为V, 其分布函数为B(t), 密度函数为b(t), 常见的分布有: (1) 定长分布(D)
特别的,当t 1, 有E ( N (1)) , 可看成单位时间内到达顾客的平均数.
Poisson过程有如下性质:
(1) 在[t, t+△t] 时间内没有顾客到达的概率为
P0 (t ) e t (1 t ) o(t ) 1 t
(1) 在[t, t+△t] 时间内恰好有一个顾客到达的概率为 P (t ) 1 P0 (t ) (t ) t 1
无限状态生灭过程 定义:设{N(t),t ≥0 }是一个随机过程(其中N(t)表示时刻 t 系统中的顾客数)。若N(t)的概率分布具有如下性质: 1. 假设N(t) = n ,则从时刻 t 起到下一个顾客到达时刻止的 时间服从参数为 n 的负指数分布,n = 0,1,2,…。 2. 假设N(t) = n ,则从时刻 t 起到下一个顾客离去时刻止的 时间服从参数为 n 的负指数分布,n = 1,2,…。 3. 同一时刻只有一个顾客到达或离去。 则称{N(t),t ≥0 }是一个生灭过程。
Erlang输入(Ek) 顾客相继到达时间间隔{Xn}相互独立,具有相同的Erlang分布密度 函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排队论
排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。
1.定义
排队论(queuing theory), 或称随机服务系统理论,是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。
1、排队模型的表示
X/Y/Z/A/B/C
X—顾客相继到达的间隔时间的分布;
Y—服务时间的分布;
M—负指数分布、D—确定型、Ek —k阶爱尔兰分布;
Z—服务台个数;
A—系统容量限制(默认为∞);
B—顾客源数目(默认为∞);
C—服务规则(默认为先到先服务FCFS)。
2、排队系统的衡量指标
队长Ls—系统中的顾客总数;
排队长Lq—队列中的顾客数;
逗留时间Ws—顾客在系统中的停留时间;
等待时间Wq—顾客在队列中的等待时间;
忙期—服务机构两次空闲的时间间隔;
服务强度ρ;
稳态—系统运行充分长时间后,初始状态的影响基本消失,系统状态不再随时间变化。
3、到达间隔时间与服务时间的分布
泊松分布;
负指数分布;
爱尔兰分布;
统计数据的分布判断。
排队系统的构成及应用前景
排队系统由输入过程与到达规则、排队规则、服务机构的结构、服务时间与服务规划组成。
一般还假设到达间隔时间序列与服务时间均为独立同分布随机变量序列,且这两个序列也相互独立。
评价一个排队系统的好坏要以顾客与服务机构两方面的利益为标准。
就顾客来说总希望等待时间或逗留时间越短越好,从而希望服务台个数尽可能多些但是,就服务机构来说,增加服务台数,就意味着增加投资,增加多了会造成浪费,增加少了要引起顾客的抱怨甚至失去顾客,增加多少比较好呢?顾客与服务机构为了照顾自己的利益对排队系统中的3个指标:队长、等待时间、服务台的忙期(简称忙期)都很关心。
因此这3个指标也就成了排队论的主要研究内容。
2.组成部分
排队系统又称服务系统。
服务系统由服务机构和服务对象(顾客)构成。
服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)都是随机的。
输入过程
输入过程考察的是顾客到达服务系统的规律。
它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。
例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。
随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。
如服从泊松分布,则在时间t内到达n个顾客的概率为或相继到达的顾客的间隔时间T 服从负指数分布,即
式中λ为单位时间顾客期望到达数,称为平均到达率;1/λ为平均间隔时间。
在排队论中,讨论的输入过程主要是随机型的。
排队规则
排队规则分为等待制、损失制和混合制三种。
当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。
在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务(如医院接待急救病人)。
如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。
有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。
服务机构
可以是一个或多个服务台。
多个服务台可以是平行排列的,也可以是串连排列的。
服务时间一般也分成确定型和随机型两种。
例如,自动冲洗汽车的装置对每辆汽车冲洗(服务)时间是相同的,因而是确定型的。
而随机型服务时间v 则服从一定的随机分布。
如果服从负指数分布,则其分布函数是
式中μ为平均服务率,1/μ为平均服务时间。
3.分类
只能按主要特征进行分类。
一般是以相继顾客到达系统的间隔时间分布、服务时间的分布和服务台数目为分类标志。
现代常用的分类方法是英国数学家D.G.
肯德尔提出的分类方法,即用肯德尔记号X/Y/Z进行分类。
X处填写相继到达间隔时间的分布;
Y处填写服务时间分布;
Z处填写并列的服务台数目。
各种分布符号有:M-负指数分布;D-确定型; Ek-k阶埃尔朗分布;GI-一般相互独立分布;G-一般随机分布等。
这里k阶埃尔朗分布是
为相互独立且服从相同指数分布的随机变量时服从自由度为2k的χ2分布。
⑥等待时间:一个顾客在系统中排队等待时间,其平均值记为Wg。
M/M/1排队系统是一种最简单的排队系统。
系统的各项指标可由图2中状态转移速度图推算出来(表1)。
其他类型的排队系统的各种指标计算公式则复杂得多,可专门列出计算公式图表备查。
现已开始应用计算机仿真来求解排队系统问题。