排队论(queuing theory)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排队论
排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。
1.定义
排队论(queuing theory), 或称随机服务系统理论,是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。
1、排队模型的表示
X/Y/Z/A/B/C
X—顾客相继到达的间隔时间的分布;
Y—服务时间的分布;
M—负指数分布、D—确定型、Ek —k阶爱尔兰分布;
Z—服务台个数;
A—系统容量限制(默认为∞);
B—顾客源数目(默认为∞);
C—服务规则(默认为先到先服务FCFS)。
2、排队系统的衡量指标
队长Ls—系统中的顾客总数;
排队长Lq—队列中的顾客数;
逗留时间Ws—顾客在系统中的停留时间;
等待时间Wq—顾客在队列中的等待时间;
忙期—服务机构两次空闲的时间间隔;
服务强度ρ;
稳态—系统运行充分长时间后,初始状态的影响基本消失,系统状态不再随时间变化。
3、到达间隔时间与服务时间的分布
泊松分布;
负指数分布;
爱尔兰分布;
统计数据的分布判断。
排队系统的构成及应用前景
排队系统由输入过程与到达规则、排队规则、服务机构的结构、服务时间与服务规划组成。
一般还假设到达间隔时间序列与服务时间均为独立同分布随机变量序列,且这两个序列也相互独立。
评价一个排队系统的好坏要以顾客与服务机构两方面的利益为标准。就顾客来说总希望等待时间或逗留时间越短越好,从而希望服务台个数尽可能多些但是,就服务机构来说,增加服务台数,就意味着增加投资,增加多了会造成浪费,增加少了要引起顾客的抱怨甚至失去顾客,增加多少比较好呢?顾客与服务机构为了照顾自己的利益对排队系统中的3个指标:队长、等待时间、服务台的忙期(简称忙期)都很关心。因此这3个指标也就成了排队论的主要研究内容。
2.组成部分
排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)都是随机的。
输入过程
输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。
例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为或相继到达的顾客的间隔时间T 服从负指数分布,即
式中λ为单位时间顾客期望到达数,称为平均到达率;1/λ为平均间隔时间。
在排队论中,讨论的输入过程主要是随机型的。
排队规则
排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务(如医院接待急救病人)。如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。
服务机构
可以是一个或多个服务台。多个服务台可以是平行排列的,也可以是串连排列的。服务时间一般也分成确定型和随机型两种。例如,自动冲洗汽车的装置对每辆汽车冲洗(服务)时间是相同的,因而是确定型的。而随机型服务时间v 则服从一定的随机分布。如果服从负指数分布,则其分布函数是
式中μ为平均服务率,1/μ为平均服务时间。
3.分类
只能按主要特征进行分类。一般是以相继顾客到达系统的间隔时间分布、服务时间的分布和服务台数目为分类标志。现代常用的分类方法是英国数学家D.G.
肯德尔提出的分类方法,即用肯德尔记号X/Y/Z进行分类。
X处填写相继到达间隔时间的分布;
Y处填写服务时间分布;
Z处填写并列的服务台数目。
各种分布符号有:M-负指数分布;D-确定型; Ek-k阶埃尔朗分布;GI-一般相互独立分布;G-一般随机分布等。这里k阶埃尔朗分布是
为相互独立且服从相同指数分布的随机变量时服从自由度为2k的χ2分布。
⑥等待时间:一个顾客在系统中排队等待时间,其平均值记为Wg。M/M/1排队系统是一种最简单的排队系统。系统的各项指标可由图2中状态转移速度图推算出来(表1)。其他类型的排队系统的各种指标计算公式则复杂得多,可专门列出计算公式图表备查。现已开始应用计算机仿真来求解排队系统问题。