材料物理导论(熊兆贤着)课后习题答案第四章习题参考解答范文
材料物理导论答案

= ih ψ∇ψ ∗ −ψ ∗∇ψ 2m
=
ih 2m
ir
(−2ikr ) r3
=
hk mr 2
i r
16. 一粒子在一维势阱中运动,势阱为
U (x)
=
⎪⎧U ⎨
o
> 0,
x
>
a
求束缚态(0
<
E
<
U0)的能级所满足的方程。
⎪⎩0, x ≤ a
解:粒子满足波函数:
⎧ ⎪− ⎪
h2 2m
d
2ϕ1 (x0 dx 2
第一章 材料的力学
1. 一圆杆的直径为 2.5 mm、长度为 25cm 并受到 4500N 的轴向拉力,若直径拉细至 2.4mm,
且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,
并比较讨论这些计算结果。
解:根据题意可得下表
拉伸前后圆杆相关参数表
体积 V/mm3 直径 d/mm 圆面积 S/mm2
解:据题即求如图 E1,E2,η2 和η3 四参数。如图所示有
ε
= ε1
+ε2
+ε3
=
σ0 E1
+
σ0 E2
(1 − e−t /τ
)+
σ0 η3
t
其中ε1 立即回复,ε2 逐渐回复,ε3 不能回复。
⇒
⎪⎧ε1 ⎪ ⎪ ⎨ε 3 ⎪
= =
σ0 E1
σ0 η3
= 0.05 − (3 + e10−10 ) /100 = t = 1.0 ×104 ⋅ 36000 = (3 +
MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小
材料物理导论

《材料物理导论》习题解答第一章材料的力学1. 一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:根据题意可得下表2. 一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其杨氏模量为3.5×109 N/m2,能伸长多少厘米?3. 一材料在室温时的杨氏模量为3.5×108 N/m2,泊松比为0.35,计算其剪切模量和体积模量。
5. 一陶瓷含体积百分比为95%的Al2O3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
8. 一试样受到拉应力为1.0×103 N/m2,10秒种后试样长度为原始长度的1.15倍,移去外力后试样的长度为原始长度的1.10倍,若可用单一Maxwell模型来描述,求其松弛时间τ值。
第二章材料的热学9.一硅酸铝玻璃的性能为=2.1J/(㎡▪s▪K),α=4.6×/K,σf=N/㎡,E=N/㎡,μ=0.25.求第一和第二抗热冲击断裂因子和。
10.一热机部件由氮化硅制成,导热率为1.84J/(㎡▪s▪K),最大厚度=0.12m,表面热传导系数为500J/(㎡▪s▪K),请估算能承受热冲击的最大允许温差。
第三章材料的电学20.如果A原子的原子半径为B原子的两倍,那么在其他条件都相同的情况下,A原子的电子极化率大约是B原子的多少倍?25、画出典型铁电体的电滞回线示意图,并用有关机制解释引起非线性关系的原因。
解:铁电体晶体在整体上呈现自发极化,这意味着在正负端分别有一层正的和负的束缚电荷。
束缚电荷产生的电场在晶体内部与极化反向(称为退极化场),使静电能升高。
在受机械约束时,伴随着自发极化的应变还能使应变能增加。
材料物理导论(熊兆贤着)课后习题答案第三章习题参考解答

材料物理导论(熊兆贤着)课后习题答案第三章习题参考解答第三章 材料的电学3112319/)(/1006.4)3001038.1106.122.0exp(211211)(22.005.029.0212.1)(,12.1.1cm e N E f N n eV E E E E E E E E E E E E eV E Si kT E E D D D D F D i F D i c F D D c D g F D ⨯=⨯⨯⨯⨯+=+=⋅==-=-∴--∆--=--=∆=⊗---的查解:⎪⎩⎪⎨⎧⨯==⨯==∴〈〈⊗。
少子;多子解:)(/1013.1)(/105.1.239203150cm N n p cm N n N n D i D D i ΘeV22.0J 1053.3E E cm /102N cm /100.1N N Nln kT E E P cm /1045.8102)103.1(p n n cm /102109101.1N N p T N P ,N N .320V F 315A 319V AVV F 34152102i 3151516D A A D =⨯=-⨯⨯=-⎪⎩⎪⎨⎧⨯=⨯⨯==⨯=⨯-⨯=-=⇒∴∴〈⊗-代入可得取,取型半导体,有对于杂质几乎完全电离在室温,较少且又型半导体补偿后解:ΘΘ时可保持强电离。
则有令,仅考虑杂质电离有低温区,忽略本征激发解:318D 318DD D 2/1kT /E CD DD0cm /1032.1N cm /1032.1N N 9.0n )e N N 8(1N 2n n .4D ⨯〈⨯〈⇒≥⋅+==⊗+∆+mE s q m m q n n n d s n n n n n n 181********311048.11048.110101.01048.1106.110101.926.01.0.9-------**⨯=⨯⨯⨯⨯=⋅⋅=⋅=⨯=⨯⨯⨯⨯⨯==∴=τμτυλμττμΘ解:Ω=⨯=⋅ρ=⋅Ω=⨯⨯⨯=μ=σ=ρ⊗-3.16.01781.0S l R cm 781.08000106.1101nq 11.101915nΘ解:225112251123312319193103.421023.412.4400)2(5.361065.3365.3)1010/(101.926.03001038.13106.110/33,,)1(101.926.026.0.11------------⋅=⋅⨯==⋅Ω=⋅=⋅⨯===⋅Ω=⋅⨯⨯⨯⨯⨯⨯⨯=⋅⋅=∴===⨯⨯==⊗cm A m A i m K cm A m A m kTqN E i mE m kTq N m kT V E V nq kg m m Si dnA dnA dn dn σσσμμσ时,同理,(电子有效质量),对解:Θcm 045.0)1350106.1103.10()pq (s V cm 1350cm /103.10100.1101103.1n )3(cm34.4)480106.1103.0()pq (cm /103.0100.1103.1N N p)2(cm34.4)480106.1103()pq (s V cm 480cm /103N p ,n n )1(.12119161112n 3161617161191613161616D A 119151112p315A A i ⋅Ω=⨯⨯⨯⨯=μ=ρ∴⋅⋅=μ⨯=⨯-⨯+⨯=⋅Ω=⨯⨯⨯⨯=μ=ρ∴⨯=⨯-⨯=-=⋅Ω=⨯⨯⨯⨯=μ=ρ∴⋅⋅=μ⨯=≈∴〈〈⊗-------------ΘΘ又又查得解:为最大。
材料物理导论(熊兆贤着)课后习题答案第四章习题参考解答

第四章材料的磁学 1. 垂直于板面方向磁化,则为垂直于磁场方向 J =μ0M = 1Wb/m 2 退磁场Hd = - NM大薄片材料,退磁因子Na = Nb = 0, Nc = 1所以Hd = - M = -0μJ =m H m Wb /104/172-⨯π=7.96×105A/m 2. 试证明拉莫进动频率W L = 002H m e eμ 证明:由于逆磁体中自旋磁矩相互抵消,只须考虑在磁场H 中电子轨道运动的变化,按照动量矩定理,电子轨道动量l 的变化等于作用在磁矩μl 的力矩,即:dtdl = μl ()00B H l ⨯=⨯μμ,式中B 0 = μ0H 为磁场在真空中的磁感应强度. 而 μl = - l me 2 上式改写成: l B m e dt dl ⨯=02,又因为L V dtdl ϖ==线 所以,在磁场B 0电子的轨道角动量l 和轨道磁矩均绕磁场旋转,这种旋转运动称为拉莫运动,拉莫运动的频率为00022H m e m eB W l μ==3. 答: 退磁因子,无量纲,与磁体的几何形状有关.对于旋转椭圆体的三个主轴方向退磁因子之和,存在下面简单的关系:Na + Nb +Nc = 1 (a,b,c 分别是旋转椭圆体的三个半主轴,它们分别与坐标轴x,y,z 方向一致)根据上式,很容易求得其三种极限情况下的退磁因子:1) 球形体:因为其三个等轴, Na = Nb = Nc 31=∴N 2) 细长圆柱体: 其为a,b 等轴,而c>>a,b Nb Na =∴ 而0=Nc 3) 薄圆板体: b=a>>c 0=∴Na 0=Nb 4. 何谓轨道角动量猝灭现象?由于晶体场导致简并能级分裂,可能出现最低轨道能级单态.当单态是最低能级轨道时,总轨道角动量的绝对值L 2虽然保持不变,但轨道角动量的分量L z 不再是常量. 当L z 的平均值为0,即0=⎰*τϕϕd L z 时,称其为轨道角动量猝灭. 5. 推导居里-外斯定律cT T C -=χ,说明磁化率与温度的关系0证明: 铁磁体中作用于本征磁矩的有效磁感应场M B B eff λ+=0其中M 为磁化强度,则M λ为内场,顺磁体磁化强度表达式:⎪⎪⎭⎫ ⎝⎛=T k JB g JB Ng M B B J B 0μμ 把B 0用B eff 代替,则得到铁磁体磁化强度:()⎥⎦⎤⎢⎣⎡+=T k M B J g JB Ng M B B J B B )(00λμμ……………….(1) 当T>T c 时,自发磁化强度消失,只有在外磁场B 0作用下产生磁化强度当T>>T c 时,可令1)(0<<+T k M B J g B B λμ,则(1)式变为: )(3)1(022M B Tk J J Ng M B B λμ++=………………..(2) 又B B k J J Ng Tc 3/)1(22λμ+= 代入(2)式有 T M B T M c λλ)(0+=解得λ)(0c c T T B T M -= 令λc T C =' 则得c c cc T T C T T C H H T T C T T B C M -=-=∴=-=-='''000μχχμ当T c T ≤时,0<χ为铁磁性当T > T c 时,0>χ为顺磁性6. 自发磁化的物理本质是什么?材料具有铁磁性的充要条件是什么?答: 铁磁体自发磁化的本质是电子间的静电交换相互作用材料具有铁磁性的充要条件为:1) 必要条件:材料原子中具有未充满的电子壳层,即原子磁矩2) 充分条件:交换积分A > 07.超交换作用有哪些类型? 为什么A-B 型的作用最强?答: 具有三种超交换类型: A-A, B-B 和A-B因为金属分布在A 位和B 位,且A 位和B 位上的离子磁矩取向是反平行排列的.超交换作用的强弱取决于两个主要的因素: 1)两离子之间的距离以及金属离子之间通过氧离子所组成的键角ψi 2) 金属离子3d 电子数目及轨道组态.A-B 型ψ1=125°9’ ; ψ2=150°34’A-A 型ψ3=79°38’B-B 型ψ4=90°; ψ5=125°2’因为ψi 越大,超交换作用就越强,所以A-B 型的交换作用最强.8. 论述各类磁性χ-T 的相互关系1) 抗磁性.d χ 与温度无关,d χ<0 2) 顺磁性:c T T C -=χ,T c 为临界温度,成为顺磁居里温度,T>T c 时显顺磁性 3) 反铁磁性:当温度达到某个临界值T N 以上,服从居里-外斯定律4) 铁磁性: χf >0, T< T c ,否则将转变为顺磁性,并服从居里-外斯定律5) 亚铁磁性: 是未抵消的反铁磁性结构的铁磁性9. 比较铁磁体中五种能量的下列关系:答:铁磁材料的五种相互作用能分别为: 交换能F ex ,磁晶各向异性能F x ,磁弹性能F σ,退磁场能F d 和外磁场能F H1) 相邻原子电子自旋的单位体积内的交换能A>0时,电子自旋不平行,则会引起系统交换能的增加, F ex >0,只有当不考虑自旋轨道耦合时,交换能F ex 是各向同性的.2) 磁晶各向异性能F x ,是饱和磁化强度矢量在铁磁材料中取不同方向时随时间而改变的能量,仅与磁化强度矢量在晶体中的相对晶轴的取向有关磁晶各向异性来源于电子自旋与轨道的相互耦合作用以及晶体电场效应.这种原子或离子的自旋与轨道的耦合作用,会导致铁磁体的长度和体积的大小发生变化,出现所谓的磁致伸缩3) 铁磁体在受到应力作用时会发生相应的应变,从而引起磁弹性能F σ,包括由于自发形变而引起的磁应力能,包括外加应力和内应力4) 铁磁体在外磁场中具有位能成为外磁场能F H ,外磁场能是铁磁体磁化的动力5) 有限尺寸的铁磁体材料,受到外加磁场H 的变化,会在两端面上分别出现正负磁荷,从而产生减弱外磁场的磁场H d ,均匀磁化材料的退磁场能F d 为:10. 用能量的观点说明铁磁体内形成磁畴的原因答:根据热力学定律,稳定的磁状态一定是对应于铁磁材料内总自由能极小值的状态.磁畴的形成和稳定的结构状态,也是对应于满足总的自由能为极小值的条件.对于铁材料来说,分成磁畴后比分成磁畴前能量缩小,故铁磁材料自发磁化后必然分成小区域的磁畴,使总自由能为最低,从而满足能量最低原理.可见,退磁场能是形成磁畴的原因11. 解:单位面积的畴壁能量231/1098.32m J aA k S -⨯==πγ S 为自旋量子数=1 磁畴宽度m L M D s 641095.80.1710-⨯==γ L=10-2m 12 解:此题通过内应力分布为l x πσσ2sin0=,可见为90°畴壁位移,其为位移磁方程为σλμs s H M 230=,当外磁场变化H ∆,畴壁位移x ∆平衡时 H x M x x xH M s s s s ∆∂∂=∆∴∆∂∂=∇σλμσλμ232300 此时沿外磁场方向上磁矩将增加⊥∆=∆⊥S x S M s H (μ为单位体积90°畴壁的面积) 设磁畴宽度2l D =,在单位体积内将有2/D 个畴和畴壁数目,因而单位体积内畴壁面积应为)3....(....................442)11(l S l D =∴=⨯⨯⊥ 将(2)(3)代入(1),可得:0209034σλμπχs s i M =- 13. 证明: 用单弛豫来描述,磁场为交变磁场强度t i m e H H ω=作用下磁感应强度为)(c t i m e B B δω-=由t i m e H i H B ωμμμμμ)'''(00-==所以为半圆形14.15.讨论动态磁化过程中,磁损耗与频率的关系。
材料物理性能课后答案

材料物理性能课后答案【篇一:《材料物理性能》王振廷版课后答案106页】磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。
a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度mc、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度m或磁感强度b开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。
ms成为饱和磁化强度,bs成为饱和磁感应强度。
e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。
h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用ek表示。
磁晶各向异性能是磁化矢量方向的函数。
2、计算gd3+和cr3+的自由离子磁矩?gd3+的离子磁矩比cr3+离子磁矩高的原因是什么?gd3+有7个未成对电子, cr3+ 3个未成对电子.3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子磁矩低的原因是什么?4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场b=0的磁行为。
5、分析物质的抗磁性、顺磁性、反铁磁性及亚铁磁性与温度之间的关系?答:(1) 抗磁性是由外磁场作用下电子循轨运动产生的附加磁矩所造成的,与温度无关,或随温度变化很小。
(2) 根据顺磁磁化率与温度的关系,可以把顺磁体分为三类,一是正常顺磁体,其原子磁化率与温度成反比;二是磁化率与温度无关的顺磁体;三是存在反铁磁体转变的顺磁体,当温度高于一定的转变温度tn时,它们和正常顺磁体一样服从局里-外斯定律,当温度低于tn时,它们的原子磁化率随着温度下降而减小,当t→0k时,磁化率趋于常数。
(3) 反铁磁性物质的原子磁化率在温度很高时很小,随着温度逐渐降低,磁化率逐渐增大,温度降至某一温度tn时,磁化率升至最大值;再降低温度,磁化率又减小。
(4 ) 亚铁磁性物质的原子磁化率随温度的升高而逐渐降低。
6、什么是自发磁化?铁磁体形成的条件是什么?有人说“铁磁性金属没有抗磁性”,对吗?为什么?a、组成铁磁性材料的原子或离子有未满壳层的电子,因此有固有原子磁矩。
材料物理课后答案+第二版+(熊兆贤+著)+科学出版社

l1
ε1
ε1
1-5 一陶瓷含体积百分比为 95%的 Al2O3 (E = 380 GPa)和 5%的玻璃相(E = 84
GPa),试计算其上限和下限弹性模量。若该陶瓷含有 5 %的气孔,再估算其上限
和下限弹性模量。
解:令 E1=380GPa,E2=84GPa,V1=0.95,V2=0.05。则有
上限弹性模量EH = E1V1 + E2V2 = 380 × 0.95 + 84 × 0.05 = 365.2(GPa)
5
《材料物理性能》 习题解答
解:⎪⎧C1
Q
⎪ ⎨
⎪⎪⎩C2
= =
B 2.303 fg = Bf
= 17.44(B是常数, fg 51.6(B f 是自由体积在
f g是Tg时的自由体积百分数 Tg以上的热膨胀系数 )
)
101.6 又有f = f g + B f (T − Tg ) ⇒ f g+50 = f g + 50B f = 51.6 f g
∴
ε
2=1.0E×210
4
(1-e
−10
)
=
0.01,∴ E2
= 1.0 ×106 Pa,η2
=
E2τ
=
3.6 ×109 Pa ⋅ s
1-10 当取 Tg 为参考温度时 logαT
=
− c2
c1 +
(T (T
− Ts ) − Ts )
中的
C1=17.44,C2=51.6,求以
Tg+50℃为参考温度时 WLF 方程中的常数 C1 和 C2。
3
×
4 ×10−3 6.02 ×1023
材料科学导论习题解答

材料科学导论习题解答材料科学导论习题解答材料科学导论作业第一章材料科学概论1. 氧化铝既牢固又坚硬而且耐磨,为什么不用来制造榔头?[答] 因为Al2O3的耐震性不佳,且脆性较高,不适合做榔头的材料。
2. 将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜、氯化钠、环氧树脂、混凝土、镁合金、玻璃钢、沥青、碳化硅、铅-锡焊料、橡胶、纸杯[答] 金属有黄铜、铅-锡焊料、镁合金。
陶瓷有氯化钠、碳化硅。
聚合物有环氧树脂、橡胶、沥青、纸杯。
复合材料有混凝土、玻璃钢。
3. 下列用品选材时,哪些力学性能和物理性能具有特别重要性:汽车曲柄轴、电灯泡灯丝、剪刀、汽车挡风玻璃、电视机荧光屏[答] 汽车曲柄轴的疲劳寿命最为重要。
电灯泡灯丝的熔点需高,其发光性能要强。
剪刀的刀刃的硬度要强。
汽车挡风玻璃的光的穿透性要强。
电视机荧光屏光学的颜色及其他穿透性各种光学特性极重要。
4. 什么是纳米材料?纳米材料有哪些效应?请举例说明。
[答] 通常把粒子尺寸小于0.1μm(10nm)的颗粒称为纳米材料纳米材料有以下效应:⑴ 小尺寸效应⑵ 表面效应⑶ 量子尺寸效应⑷ 宏观量子隧道效应举例略第二章原子结构1. 原子序数为12的Mg有三个同位素:78.70%的Mg原子有12个中子,10.13%的Mg原子有13个中子,11.17%的Mg原子有14个中子,计算Mg的原子量。
[答] M = 0.7870×(12+12)+0.1013×(12+13)+0.1117×(12+14) = 24.3247 g/m ol2. 试计算原子N壳层内的最大电子数,若K、L、M和N壳层中所有的能级都被填满,试确定该原子的原子序数。
[答] N壳层内最大电子数为2×42 = 32。
但考虑能级交错:N壳层内刚刚达到最大电子数时的电子排布为:1s22s22p63s23p64s23d104p65s24d105p66s24f14,该原子的原子数为70。
《热力学与统计物理》第四版 汪志诚 课后题答案

若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。
问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。
如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在图中两条绝热线交于点,如图所示。
设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章材料的磁学1. 垂直于板面方向磁化,则为垂直于磁场方向J =μ0M = 1Wb/m 2退磁场Hd = - NM大薄片材料,退磁因子Na = Nb = 0, Nc = 1所以Hd = - M = -0μJ=mH m Wb /104/172-⨯π=7.96×105A/m 2.试证明拉莫进动频率W L =002H m e eμ 证明:由于逆磁体中自旋磁矩相互抵消,只须考虑在磁场H 中电子轨道运动的变化,按照动量矩定理,电子轨道动量l 的变化等于作用在磁矩μl 的力矩,即:dtdl= μl ()00B H l ⨯=⨯μμ,式中B 0 = μ0H 为磁场在真空中的磁感应强度. 而 μl = - l me 2 上式改写成:l B m e dt dl ⨯=02,又因为L V dtdlϖ==线 所以,在磁场B 0电子的轨道角动量l 和轨道磁矩均绕磁场旋转,这种旋转运动称为拉莫运动,拉莫运动的频率为00022H mem eB W l μ==3.答: 退磁因子,无量纲,与磁体的几何形状有关.对于旋转椭圆体的三个主轴方向退磁因子之和,存在下面简单的关系:Na + Nb +Nc = 1 (a,b,c 分别是旋转椭圆体的三个半主轴,它们分别与坐标轴x,y,z 方向一致)根据上式,很容易求得其三种极限情况下的退磁因子: 1) 球形体:因为其三个等轴, Na = Nb = Nc 31=∴N 2) 细长圆柱体: 其为a,b 等轴,而c>>a,b Nb Na =∴ 而0=Nc211==∴=++Nb Na Nc Nb Na 3) 薄圆板体: b=a>>c 0=∴Na 0=Nb11=∴=++Nc Nc Nb Na4.何谓轨道角动量猝灭现象?由于晶体场导致简并能级分裂,可能出现最低轨道能级单态.当单态是最低能级轨道时,总轨道角动量的绝对值L 2虽然保持不变,但轨道角动量的分量L z 不再是常量. 当L z 的平均值为0,即0=⎰*τϕϕd L z 时,称其为轨道角动量猝灭.5.推导居里-外斯定律cT T C-=χ,说明磁化率与温度的关系0证明: 铁磁体中作用于本征磁矩的有效磁感应场M B B eff λ+=0其中M 为磁化强度,则M λ为内场,顺磁体磁化强度表达式:⎪⎪⎭⎫⎝⎛=T k JB g JB Ng M B B J B 0μμ 把B 0用B eff 代替,则得到铁磁体磁化强度:()⎥⎦⎤⎢⎣⎡+=T k M B J g JB Ng M B BJ B B )(00λμμ……………….(1) 当T>T c 时,自发磁化强度消失,只有在外磁场B 0作用下产生磁化强度 当T>>T c 时,可令1)(0<<+Tk M B J g B B λμ,则(1)式变为:)(3)1(022M B Tk J J Ng M B B λμ++= (2)又B B k J J Ng Tc 3/)1(22λμ+= 代入(2)式 有 TM B T M c λλ)(0+=解得λ)(0c c T T B T M -=令λc T C ='则得cccc T T C T T C H H T T C T T B C M -=-=∴=-=-='''000μχχμ当T c T ≤时,0<χ为铁磁性 当T > T c 时,0>χ为顺磁性6.自发磁化的物理本质是什么?材料具有铁磁性的充要条件是什么? 答: 铁磁体自发磁化的本质是电子间的静电交换相互作用材料具有铁磁性的充要条件为:1) 必要条件:材料原子中具有未充满的电子壳层,即原子磁矩 2) 充分条件:交换积分A > 0 7.超交换作用有哪些类型? 为什么A-B 型的作用最强? 答: 具有三种超交换类型: A-A, B-B 和A-B因为金属分布在A 位和B 位,且A 位和B 位上的离子磁矩取向是反平行排列的. 超交换作用的强弱取决于两个主要的因素: 1)两离子之间的距离以及金属离子之间通过氧离子所组成的键角ψi 2) 金属离子3d 电子数目及轨道组态.A-B 型ψ1=125°9’ ; ψ2=150°34’ A-A 型ψ3=79°38’B-B 型ψ4=90°; ψ5=125°2’因为ψi 越大,超交换作用就越强,所以A-B 型的交换作用最强.8.论述各类磁性χ-T 的相互关系 1) 抗磁性.d χ 与温度无关,d χ<02) 顺磁性:cT T C-=χ,T c 为临界温度,成为顺磁居里温度,T>T c 时显顺磁性3) 反铁磁性:当温度达到某个临界值T N 以上,服从居里-外斯定律4) 铁磁性: χf >0, T< T c ,否则将转变为顺磁性,并服从居里-外斯定律5) 亚铁磁性: 是未抵消的反铁磁性结构的铁磁性9.比较铁磁体中五种能量的下列关系:答:铁磁材料的五种相互作用能分别为: 交换能F ex ,磁晶各向异性能F x ,磁弹性能F σ,退磁场能F d 和外磁场能F H1) 相邻原子电子自旋的单位体积内的交换能[]2322212)()()(αααε∇+∇+∇==aAS V E F ex exA>0时,电子自旋不平行,则会引起系统交换能的增加, F ex >0,只有当不考虑自旋轨道耦合时,交换能F ex 是各向同性的.2) 磁晶各向异性能F x ,是饱和磁化强度矢量在铁磁材料中取不同方向时随时间而改变的能量,仅与磁化强度矢量在晶体中的相对晶轴的取向有关[][]⎪⎭⎫ ⎝⎛-=⎰⎰ss M M x HdM HdM V F 111010001 磁晶各向异性来源于电子自旋与轨道的相互耦合作用以及晶体电场效应.这种原子或离子的自旋与轨道的耦合作用,会导致铁磁体的长度和体积的大小发生变化,出现所谓的磁致伸缩3) 铁磁体在受到应力作用时会发生相应的应变,从而引起磁弹性能F σ,包括由于自发形变而引起的磁应力能,包括外加应力和内应力4) 铁磁体在外磁场中具有位能成为外磁场能F H ,外磁场能是铁磁体磁化的动力θμμcos 00H M HM F s s H -=-=5) 有限尺寸的铁磁体材料,受到外加磁场H 的变化,会在两端面上分别出现正负磁荷,从而产生减弱外磁场的磁场H d ,均匀磁化材料的退磁场能F d 为: 20000021NM NMdM dM H F MMd d μμμ==-=⎰⎰10. 用能量的观点说明铁磁体内形成磁畴的原因答:根据热力学定律,稳定的磁状态一定是对应于铁磁材料内总自由能极小值的状态.磁畴的形成和稳定的结构状态,也是对应于满足总的自由能为极小值的条件.对于铁材料来说,分成磁畴后比分成磁畴前能量缩小,故铁磁材料自发磁化后必然分成小区域的磁畴,使总自由能为最低,从而满足能量最低原理.可见,退磁场能是形成磁畴的原因11. 解:单位面积的畴壁能量231/1098.32m J aAk S-⨯==πγ S 为自旋量子数=1 磁畴宽度m LM D s 641095.80.1710-⨯==γ L=10-2m12 解:此题通过内应力分布为lxπσσ2sin0=,可见为90°畴壁位移,其为位移磁方程为σλμs s H M 230=,当外磁场变化H ∆,畴壁位移x ∆ 平衡时 HxMx x xH M s s s s ∆∂∂=∆∴∆∂∂=∇σλμσλμ232300 此时沿外磁场方向上磁矩将增加⊥∆=∆⊥S x S M s H (μ为单位体积90°畴壁的面积))1........(. (2)32090⊥-∂∂=S xM ss i σλμχ)2(....................2)(2cos 22sin0000)(l x xll x lx x x πσσππσσπσσ=∂∂=∂∂∴== 设磁畴宽度2lD =,在单位体积内将有2/D 个畴和畴壁数目,因而单位体积内畴壁面积应为)3....(.. (4)42)11(lS lD =∴=⨯⨯⊥将(2)(3)代入(1),可得:0209034σλμπχs si M =- 0022000209090334/13411σπλσλπμμμμμσλμπχμμχs s s s si r r i M M +=∴=+=+=∴-=∴--13. 证明: 用单弛豫来描述,磁场为交变磁场强度t i m e H H ω=作用下 磁感应强度为)(c t i m e B B δω-=20000)(1)1(1)1()(1ωτωτμμωτμμμμμμττωωτωωω+-=+====+∴=-=∴ti m i t i m i ti m i i m m m e H i i e H B e H H B B B i B i B B dt dB由ti m e H i H B ωμμμμμ)'''(00-==0 '')(1''')(1)()(1''1)(1'22222222>+=+∴+=+=⎪⎪⎭⎫⎝⎛+=+=∴μωωμμμωωωωμωτμμωωμωτμμrirriirii所以为半圆形14. 静态磁化与动态磁化特点比较15.讨论动态磁化过程中,磁损耗与频率的关系。
1)低频区域(f < 104Hz)'μ和''μ随频率f的变化较小,引起损耗''μ的机理主要是由于不可逆磁化过程产生的磁滞和磁化状态滞后于磁场变化的磁后效;2)中频区域(f = 104---106Hz),损耗''μ会出现峰值;3)高频区域(f = 106—108Hz), 'μ急剧下降,损耗''μ迅速增加。
交变磁场的频率与畴壁振动的本征频率或弛豫频率相同时,发生畴壁共振或畴壁弛豫而吸收大量引起损耗增大4)超高频区域(f = 108—1010Hz)'μ继续下降,'μ-1可能出现负值,而''μ出现自然共振引起的峰值,这是由于外加磁场频率与磁矩进动固有频率相等时产生共振现象引起的;5)极高频区域(f > 1010Hz)对应为自然交换共振区域。