高考数学难点突破-指数、对数函数和函数中的综合问题
高考学生指数与对数函数知识点小结及典型例题
高考学生指数与对数函数知识点小结及典型例题高考中经常考到指数函数和对数函数的概念和性质,下面来介绍一些基础知识。
一、指数与指数幂的运算1.根式的概念:如果 $x^n=a$,那么 $x$ 叫做 $a$ 的$n$ 次方根,其中 $n>1$,且 $n\in N$。
2.分数指数幂:规定正数的分数指数幂的意义为$a^{m/n}=n\sqrt[n]{a^m}(a>0,m,n\in N^*,n>1)$,负分数指数幂没有意义。
3.实数指数幂的运算性质:$(a^r)^s=a^{rs}(a>0,r,s\in R)$,$a^r\cdot a^s=a^{r+s}(a>0,r,s\in R)$,$(ab)^r=a^r\cdotb^r(a>0,r\in R)$。
二、指数函数及其性质1.指数函数的概念:函数 $y=ax(a>0,a\neq1)$ 叫做指数函数,其中 $x$ 是自变量,定义域为 $R$。
注意:底数不能是负数、零和 $1$。
2.指数函数的图象和性质:当 $00$,非奇非偶函数,函数图象过定点 $(0,1)$;当 $a>1$ 时,函数图象在 $R$ 上单调递增,定义域为 $R$,值域为 $y>0$,非奇非偶函数,函数图象过定点 $(0,1)$。
利用函数的单调性,结合图象,可以得到一些性质,例如在 $[a,b]$ 上,$f(x)=ax(a>0,a\neq1)$ 的值域是$[f(a),f(b)]$ 或 $[f(b),f(a)]$。
三、对数函数1.对数的概念:如果 $a^x=N(a>0,a\neq1)$,那么数 $x$ 叫做以 $a$ 为底 $N$ 的对数,记作 $x=\log_a N$。
注意底数的限制 $a>0$,且 $a\neq1$。
2.对数的运算性质:如果 $a>0$,且 $a\neq1$,$M>0$,$N>0$,那么:$\log_a MN=\log_a M+\log_a N$,$\log_a\frac{M}{N}=\log_a M-\log_a N$,$\log_a M^r=r\log_aM(a>0,M>0,r\in R)$。
2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)
指数型函数取对数问题考情分析函数与导数一直是高考中的热点与难点, 在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化对数型函数求解,特别是涉及到形如a f x 的函数取对数可以起到化繁为简的作用,此外有时取对数还可以改变式子结构,便于发现解题思路,故取对数的方法在解高考导数题中有时能大显身手.解题秘籍(一)等式两边同时取对数把乘法运算转化为对数运算,再构造函数通过两边取对数可把乘方运算转化为乘法运算,这种运算法则的改变或能简化运算,或能改变运算式子的结构,从而有利于我们寻找解题思路,因此两边取对数成为处理乘方运算时常用的一种方法.有时对数运算比指数运算来得方便,对一个等式两边取对数是解决含有指数式问题的常用的有效方法.1(2024届辽宁省大连市高三上学期期初考试)已知函数f x =ln x+1 ax.(1)讨论f x 的单调性;(2)若ex1x2=ex2x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)(二)等式或不等式两边同时取对数把乘积运算运算转化为加法运算,形如f a g b =h c f a >0,g b >0,f c >0 或f a g b >h c 的等式或不等式通过两边取对数,可以把乘积运算,转化为加法运算,使运算降级.2(2024届辽宁省名校联盟高三上学期联考)已知a >0,b ∈R ,函数f x =ax ln x 和g x =b ln x +1 的图像共有三个不同的交点,且f x 有极大值1.(1)求a 的值以及b 的取值范围;(2)若曲线y =f x 与y =g x 的交点的横坐标分别记为x 1,x 2,x 3,且x 1<x 2<x 3.证明:x 23x 1x 2<e 2b -2.(三)把比较a,b a>0,b>0转化为比较ln a,ln b的大小比较两个指数式的大小,有时可以通过取对数,利用对数函数的单调性比较大小,如比较n n+1,n+1nn∈N∗,n>2的大小,可通过取对数转化为比较n+1ln n,n ln n+1的大小,再转化为比较ln n n,ln n+1n+1的大小,然后可以构造函数f x =ln xx,利用f x 的单调性比较大小.3一天,小锤同学为了比较ln1.1与110的大小,他首先画出了y=ln x的函数图像,然后取了离1.1很近的数字1,计算出了y=ln x在x=1处的切线方程,利用函数y=ln x与切线的图像关系进行比较. (1)请利用小锤的思路比較ln1.1与110大小(2)现提供以下两种类型的曲线y=ax2+b,y=kx+t,试利用小锤同学的思路选择合适的曲线,比较πe, e3的大小.三、典例展示1(2021全国甲卷高考试题)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f x 的单调区间;(2)若曲线y=f x 与直线y=1有且仅有两个交点,求a的取值范围.2(2023届新疆高三第三次适应性检测)已知函数f(x)=ax2+(a+1)x ln x-1,g(x)=f(x) x.(1)讨论g x 的单调性;(2)若方程f(x)=x2e x+x ln x-1有两个不相等的实根x1,x2,求实数a的取值范围,并证明e x1+x2>e2x1x2.(1)求f x 的极值;(2)若f x 有两个零点a,b,且a<b,求证:e b+1b<2e m.4设函数f x =-ln x.(1)设λ1、λ2≥0且λ1+λ2=1,求证:对任意的x1、x2>0,总有xλ11xλ22≤λ1x1+λ2x2成立;(2)设x i>0,λi>0i=1,2,⋅⋅⋅,n,且ni=1λi=1,求证:xλ11xλ22⋅⋅⋅xλn n≤λ1x1+λ2x2+⋅⋅⋅+λn x n.(1)讨论g(x)的单调性;(2)若f x +2x≥g x +x a,对任意x∈(1,+∞)恒成立,求a的最大值;6已知函数f(x)=x ln x.(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且a b=b a,证明:2e <1a+1b<1.跟踪检测1已知函数f (x )=x ln x +a ,(a ∈R ).(1)求函数f x 的单调区间;(2)当0<a <1e时,证明:函数f x 有两个零点;(3)若函数g (x )=f (x )-ax 2-x 有两个不同的极值点x 1,x 2(其中x 1<x 2),证明:x 1⋅x 22>e 3.2形如y =f (x )g (x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得ln y =ln f (x )g (x )=g (x )ln f (x ),两边对x 求导数,得y y =g (x )ln f (x )+g (x )f x f x,于是y =f (x )g (x )g (x )ln f (x )+g (x )f x f x.已知f (x )=2e x ln x ,g (x )=x 2+1.(1)求曲线y =f (x )在x =1处的切线方程;(2)若h (x )=f (x ),求h (x )的单调区间;(3)求证:∀x ∈(0,+∞),f (x )≥g (x )恒成立.3已知函数f(x)=e x2ln x(x>0).(1)求f(x)的极值点.(2)若有且仅有两个不相等的实数x1,x20<x1<x2满足f x1=f x2=e k.(i)求k的取值范围(ⅱ)证明x e2-2e2≤e-e21x1.4已知f(x)=ln x-x,g(x)=mx+m.(1)记F(x)=f(x)+g(x),讨论F(x)的单调区间;(2)记G(x)=f(x)+m,若G(x)有两个零点a,b,且a<b.请在①②中选择一个完成.①求证:2e m-1>1b+b;②求证:2e m-1<1a+a5已知a∈R,f(x)=x⋅e-ax,(其中e为自然对数的底数).(1)求函数y=f(x)的单调区间;(2)若a>0,函数y=f(x)-a有两个零点x,x2,求证:x21+x22>2e.6已知函数f x =axe-x a≠0存在极大值1 e.(1)求实数a的值;(2)若函数F x =f x -m有两个零点x1,x2x1≠x2,求实数m的取值范围,并证明:x1+x2>2.7已知函数f(x)=x(e2x-a),g(x)=bx+ln x.(1)若y=2x是曲线y=f(x)的切线,求a的值;(2)若g(x)有两不同的零点,求b的取值范围;(3)若b=1,且f(x)-g(x)≥1恒成立,求a的取值范围.8已知函数f(x)=ax ln x,a∈R.(1)当a=1时,①求f(x)的极值;②若对任意的x≥e都有f(x)≥mxe m x,m>0,求m的最大值;(2)若函数g(x)=f(x)+x2有且只有两个不同的零点x1,x2,求证:x1x2>e2.9已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2x1<x2,证明:x41x2>e3.(e=2.71828⋯为自然对数的底数)10已知函数f x =e x-a ln xx-a(e为自然对数的底数)有两个零点.(1)若a=1,求f x 在x=1处的切线方程;(2)若f x 的两个零点分别为x1,x2,证明:e2-x1-x2-x1x2<0.11已知函数h x =x-a ln x a∈R.(1)若h x 有两个零点,a的取值范围;(2)若方程xe x-a ln x+x=0有两个实根x1、x2,且x1≠x2,证明:e x1+x2>e2 x1x2.12已知函数f x =e x-2t-ln x+2(1)若x=1是f x 的极值点,求t的值,并讨论f x 的单调性;(2)当t≤1时,证明:f x >2.指数型函数取对数问题考情分析函数与导数一直是高考中的热点与难点, 在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化对数型函数求解,特别是涉及到形如a f x 的函数取对数可以起到化繁为简的作用,此外有时取对数还可以改变式子结构,便于发现解题思路,故取对数的方法在解高考导数题中有时能大显身手.解题秘籍(一)等式两边同时取对数把乘法运算转化为对数运算,再构造函数通过两边取对数可把乘方运算转化为乘法运算,这种运算法则的改变或能简化运算,或能改变运算式子的结构,从而有利于我们寻找解题思路,因此两边取对数成为处理乘方运算时常用的一种方法.有时对数运算比指数运算来得方便,对一个等式两边取对数是解决含有指数式问题的常用的有效方法.1(2024届辽宁省大连市高三上学期期初考试)已知函数f x =ln x+1 ax.(1)讨论f x 的单调性;(2)若ex1x2=ex2x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.【解析】(1)函数f(x)=ln x+1ax的定义域为(0,+∞),求导得则f(x)=-ln xax2,由f (x)=0得x=1,若a<0,当0<x<1时,f (x)<0,则f(x)单调递减,当x>1时,f (x)>0,则f(x)单调递增,若a>0,当0<x<1时,f (x)>0,则f(x)单调递增,当x>1时,f (x)<0,则f(x)单调递减;所以当a<0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;当a>0时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由ex1x2=ex2x1,两边取对数得x2ln x1+1=x1ln x2+1,即ln x1+1x1=ln x2+1x2,由(1)知,当a=1时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,f(x)max=f(1)=1,而f1e=0,x>1时,f(x)>0恒成立,因此当a=1时,存在x1,x2且0<x1<1<x2,满足f x1=f x2,若x2∈[2,+∞),则x21+x22>x22≥4>2成立;若x2∈(1,2),则2-x2∈(0,1),记g(x)=f(x)-f(2-x),x∈(1,2),则g (x)=f (x)+f (2-x)=-ln xx2-ln(2-x)(2-x)2>-ln xx2-ln(2-x)x2=-ln[-(x-1)2+1]x2>0,即有函数g(x)在(1,2)上单调递增,g(x)>g(1)=0,即f(x)>f(2-x),于是f x1=f x2>f2-x2,而x2∈(1,2),2-x2∈(0,1),x1∈(0,1),函数f(x)在(0,1)上单调递增,因此x1>2-x2,即x1+x2>2,又x 21+1>2x 21=2x 1,x 22+1>2x 22=2x 2,则有x 21+1+x 22+1>2x 1+x 2 >4,则x 21+x 22>2,所以x 21+x 22>2.(二)等式或不等式两边同时取对数把乘积运算运算转化为加法运算,形如f a g b =h c f a >0,g b >0,f c >0 或f a g b >h c 的等式或不等式通过两边取对数,可以把乘积运算,转化为加法运算,使运算降级.2(2024届辽宁省名校联盟高三上学期联考)已知a >0,b ∈R ,函数f x =ax ln x 和g x =b ln x +1 的图像共有三个不同的交点,且f x 有极大值1.(1)求a 的值以及b 的取值范围;(2)若曲线y =f x 与y =g x 的交点的横坐标分别记为x 1,x 2,x 3,且x 1<x 2<x 3.证明:x 23x 1x 2<e 2b -2.【解析】(1)因为a >0,x ∈0,+∞ ,所以当x ≥1时,f x =ax ln x ,f x =a ln x +a >0,所以f x 在1,+∞ 上单调递增,无极大值;当x ∈0,1 时,f x =-ax ln x ,f x =-a ln x +1 ,所以当x ∈0,1e时,f x >0,f x 单调递增,当x ∈1e ,1时,f 'x <0,f x 单调递减,所以x =1e为极大值点,所以f 1e=-a ⋅1e ⋅ln 1e=1,解得a =e .因为f x ,g x 图像共有三个不同的交点,所以方程ex ln x =b ln x +1 有三个不等正实根.设t =ln x +1,则x =e t -1,且当x >0时,t 与x 一一对应,所以问题转化为关于t 的方程e t t -1 =b t 有三个不等实根.又0不满足方程e t t -1 =b t ,所以方程b =t -1te t有三个实根.设h t =t -1te t ,则函数h t =t -1t e t与函数y =b 的图像有三个交点,当t ≥1或t <0时,h t =t -1te t,∴h t =t 2-t +1t2e t>0,所以h t 在-∞,0 ,1,+∞ 上单调递增;当0<t <1时,h t =-t -1 ett,ht =-t 2-t +1t 2e t<0,所以h t 在0,1 上单调递减.当t ≠0,t ≠1时,h t >0,而h 1 =0;当t →-∞时,h t =1-1te t→0,无论t >0还是t <0,当t →0时,都有h t =1-1te t→+∞,当t →+∞时,h t =1-1te t→+∞.根据以上信息,画出函数h t 的大致图像如下图所示,所以当b >0时,函数h t =t -1te t与函数y =b 的图像有三个交点,故b 的取值范围为0,+∞ .(2)证明:要证x 23x 1x 2<e 2b -2,只需证2ln x 3-ln x 2+ln x 1<2b -2,只需证2ln x 3+1 -ln x 2+1 +ln x 1+1 <2b .设(1)中方程的b =t -1te t三个根分别为t 1,t 2,t 3,且t 1<t 2<t 3,t i =ln x i +1,i =1,2,3,从而只需证明2t 3-t 2+t 1<2b .又由(1)的讨论知t 1<0,0<t 2<1,t 3>1.下面先证明e x ≥x +1,设φx =e x -x -1,则φ x =e x -1.当x >0时,φ x >0,φx 在0,+∞ 上单调递增,当x <0时,φ x <0,φx 在-∞,0 上单调递增,所以φx ≥φ0 =0,所以当x ≠0时,e x >x +1,从而当t ≠0,t ≠1时,h t =t -1te t >t -1tt +1 .又由(1)知h t 在-∞,0 ,1,+∞ 上单调递增,h t 在0,1 上单调递减.所以当t>1时,h t >t2-1t=t-1t,令b=t-1t,解得t=b+b2+42,由h t3=b<hb+b2+42得t3<b+b2+42;当0<t<1时,h t >1t-t,令b=1t-t,解得t=-b+b2+42,由h t2=b<h-b+b2+42得t2>-b+b2+42;当t<0时,h t >t-1t,令b=t-1t,解得t=b-b2+42,由h t1=b<hb-b2+42得t1<b-b2+42.综上,2t3-t2+t1<b+b2+4--b+b2+42+b-b2+42=2b,得证.(三)把比较a,b a>0,b>0转化为比较ln a,ln b的大小比较两个指数式的大小,有时可以通过取对数,利用对数函数的单调性比较大小,如比较n n+1,n+1nn∈N∗,n>2的大小,可通过取对数转化为比较n+1ln n,n ln n+1的大小,再转化为比较ln n n,ln n+1n+1的大小,然后可以构造函数f x =ln xx,利用f x 的单调性比较大小.3一天,小锤同学为了比较ln1.1与110的大小,他首先画出了y=ln x的函数图像,然后取了离1.1很近的数字1,计算出了y=ln x在x=1处的切线方程,利用函数y=ln x与切线的图像关系进行比较. (1)请利用小锤的思路比較ln1.1与110大小(2)现提供以下两种类型的曲线y=ax2+b,y=kx+t,试利用小锤同学的思路选择合适的曲线,比较πe, e3的大小.【解析】(1)构造函数f(x)=ln x-x+1,由f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,得f(x)≤f(1)=0,即ln x≤x-1,取x=1,得ln1.1<0.1(2)通过取对数,把比较πe,e3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小选y=ax2+b,令y=ln x与y=ax2+b公切于e则有ln e=ae2+b1e=-2ae3⇒a=-e22,b=32,∴y=-e22x2+3 2记g (x )=ln x +e 22x 2-32,g (x )=1x -e 2x 3=x 2-e 2x 3,∴g (x )在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )≥g (e )=0,∴ln x ≥-e 22x 2+32∴lnπ>-e 22π2+32,下证:32-e 22π2>3e 只需证3e +e 22π2<32∵3e +e 22π2<32.7+(2.72)22×(3.1)2=109+(2.72)22×(3.1)2只需证 2.723.1 2<79∵2.723.1<0.88,(0.88)2=0.7744而79=0.777>0.7744,∴lnπ>3e,即πe >e 3选y =kx +t ,通过取对数,把比较πe ,e 3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小,即较ln1π与-3e大小令y =ln x 与y =kx +t 切于1e,则有ln 1e =k 1e +t e =k⇒k =e ,t =-2,∴y =ex -2令g (x )=ln x -ex +2,g (x )=1x -e =1-ex x∴g (x )在0,1e上单调递增,在1e ,+∞ 上单调递减,∴g (x )≤g 1e =0,∴ln x ≤ex -2,当x =1e取等∴ln 1π≤e π-2下证e π-2<-3e ,只需证e π+3e<2∵e π+3e <2.723.1+32.7<0.88+109,∵2-109=89=0.8 >0.88,∴ln 1π<-3e ,∴lnπ>3e,∴πe >e 3.三、典例展示1(2021全国甲卷高考试题)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f x 的单调区间;(2)若曲线y =f x 与直线y =1有且仅有两个交点,求a 的取值范围.【解析】(1)当a =2时,f x =x 22x ,f x =2x ⋅2x -x 2⋅2x ln22x 2=x ⋅2x 2-x ln2 4x ,令f 'x =0得x =2ln2,当0<x <2ln2时,f x >0,当x >2ln2时,f x <0,∴函数f x 在0,2ln2上单调递增;2ln2,+∞ 上单调递减;(2)f x =x a a x=1⇔a x =x a⇔x ln a =a ln x ⇔ln x x =ln a a ,设函数g x=ln x x ,则g x =1-ln xx2,令g x =0,得x =e ,在0,e 内g x >0,g x 单调递增;在e ,+∞ 上g x <0,g x 单调递减;∴g x max =g e =1e,又g 1 =0,当x 趋近于+∞时,g x 趋近于0,所以曲线y =f x 与直线y =1有且仅有两个交点,即曲线y =g x 与直线y =aln a有两个交点的充分必要条件是0<ln a a <1e,这即是0<g a <g e ,所以a 的取值范围是1,e ∪e ,+∞ .2(2023届新疆高三第三次适应性检测)已知函数f (x )=ax 2+(a +1)x ln x -1,g (x )=f (x )x.(1)讨论g x 的单调性;(2)若方程f (x )=x 2e x +x ln x -1有两个不相等的实根x 1,x 2,求实数a 的取值范围,并证明e x 1+x 2>e 2x 1x 2.【解析】(1)因为g (x )=ax +(a +1)ln x -1x,所以g x =a +a +1x +1x 2=(x +1)(ax +1)x 2(x >0),当a ≥0时,g x >0,所以g (x )在区间(0,+∞)上单调递增,当a <0时,令g x >0,得0<x <-1a ;令g x <0,得x >-1a,所以g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减,综上当a ≥0时,g (x )在区间(0,+∞)上单调递增,当a <0时,g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减.(2)方程f (x )=x 2e x +x ln x -1,即ax +a ln x =xe x ,等价于a ln xe x =xe x ,令t =xe x >0,其中x >0,则a ln t =t ,显然t ≠1,令h t =tln t,则ht =ln t-1ln2t,所以h t 在区间0,1上单调递减,且由x→0时h t <0可得在区间0,1上h(t)<0,h t 在区间(1,e)上单调递减,在区间(e,+∞)上单调递增,所以h(t)极小值=h(e)=e,因为方程f(x)=x2e x+x ln x-1有两个实根x1,x2,所以关于t的方程a=tln t有两个实根t1,t2,且t1=x1e x1,t2=x2e x2,所以a∈(e,+∞),要证e x1+x2>e2x1x2,即证x1e x1⋅x2e x2>e2,即证t1t2>e2,只需证ln t1+ln t2>2,因为t1=a ln t1t2=a ln t2,所以t1-t2=a ln t1-ln t2t1+t2=a ln t1+ln t2,整理可得t1+t2t1-t2=ln t1+ln t2ln t1-ln t2,不妨设t1>t2>0,则只需证ln t1+ln t2=t1+t2t1-t2lnt1t2>2,即ln t1t2>2t1-t2t1+t2=2t1t2-1t1t2+1,令s=t1t2>1,p(s)=ln s-2(s-1)s+1,其中s>1,因为p s =1s-4(s+1)2=(s-1)2s(s+1)2>0,所以p s 在区间(1,+∞)上单调递增,所以h(s)>h(1)=0,故e x1+x2>e2x1x2.3已知函数,f x =ln x-x+m,m∈R.(1)求f x 的极值;(2)若f x 有两个零点a,b,且a<b,求证:e b+1b<2e m.【解析】(1)函数f x 的定义域为0,+∞,f x =1x-1.当0<x<1时,f x >0,则f x 在0,1上单调递增;当x>1时,f x <0,则f x 在1,+∞上单调递减,所以函数f x 的极大值为f1 =m-1,无极小值.(2)令f x =0,则m=x-ln x.设h x =x-ln x x>0,则h'x =1-1x=x-1x,易知函数h x 在0,1上单调递减,在1,+∞上单调递增.又h1 =1,所以h x ≥1,又f x 有两个零点,所以m >1.因为a <b ,所以0<a <1<b .要证e b +1b <2e m ,即证2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b .又f b =0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b .设t b =ln b 2+1 -b ,b >1,则t 'b =2b b 2+1-1=-b -1 2b 2+1<0,所以t b 在1,+∞ 上单调递减,所以t b <t 1 =ln2-1,故e b +1b<2e m 得证.4设函数f x =-ln x .(1)设λ1、λ2≥0且λ1+λ2=1,求证:对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立;(2)设x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,求证:x λ11x λ22⋅⋅⋅x λn n ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .【解析】(1)证明:x λ11x λ22≤λ1x 1+λ2x 2⇔ln x λ11x λ22 ≤ln λ1x 1+λ2x 2 ⇔λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ⇔f λ1x 1+λ2x 2 ≤λ1f x 1 +λ2f x 2 .不妨设0<x 1≤x 2,令g x =λ1f x +λ2f x 2 -f λ1x +λ2x 2 =ln λ1x +λ2x 2 -λ1ln x -λ2ln x 2,其中0<x ≤x 2,则g x =λ1λ1x +λ2x 2-λ1x =λ1x -λ1λ1x +λ2x 2 λ1x +λ2x 2 x =λ1x -λ1x -λ2x 2 λ1x +λ2x 2 x =λ1λ2x -x 2 λ1x +λ2x 2 x≤0,所以,函数g x 在区间0,x 2 上单调递减,因为x 1∈0,x 2 ,则g x 1 ≥g x 2 =ln x 2-ln x 2=0,所以,g x 1 =ln λ1x 1+λ2x 2 -λ1ln x 1-λ2ln x 2≥0,即λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ,所以,当λ1、λ2≥0且λ1+λ2=1,对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立.(2)证明:x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,要证x λ11x λ22⋅⋅⋅x λnn ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .即证λ1ln x 1+λ2ln x 2+⋯+λn ln x n ≤ln λx 1+λ2x 2+⋯+λn x n ,即f λ1x 1+λ2x 2+⋅⋅⋅+λn x n ≤λ1f x 1 +λ2f x 2 +⋅⋅⋅+λn f x n ,当n=2时,由(1)可知,不等式成立,假设当n=k k≥2,k∈N∗时不等式成立,即fλ1x1+λ2x2+⋅⋅⋅+λk x k≤λ1f x1+λ2f x2+⋅⋅⋅+λk f x k,则当n=k+1时,设x k=λkλk+λk+1x k+λk+1λk+λk+1x k+1,由(1)可得f x k≤λkλk+λk+1f x k+λk+1λk+λk+1f x k+1,则fλ1x1+λ2x2+⋅⋅⋅+λk x k+λk+1x k+1=fλ1x1+λ2x2+⋅⋅⋅+λk-1x k-1+λk+λk+1x k≤λ1f x1+⋅⋅⋅+λk-1f x k-1+λk+λk+1f x k≤λ1f x1+⋅⋅⋅+λk f x k+λk+1f x k+1,这说明当n=k+1时,结论也成立,故对任意的n∈N∗,fλ1x1+λ2x2+⋅⋅⋅+λk x n≤λ1f x1+λ2f x2+⋅⋅⋅+λn f x n,所以,-lnλ1x1+λ2x2+⋅⋅⋅+λn x n≤-λ1ln x1-λ2ln x2-⋯-λn ln x n,因此,λ1ln x1+λ2ln x2+⋯+λn ln x n≤lnλx1+λ2x2+⋯+λn x n,故当x i>0,λi>0i=1,2,⋅⋅⋅,n,且ni=1λi=1时,xλ11xλ22⋅⋅⋅xλn n≤λ1x1+λ2x2+⋅⋅⋅+λn x n.5已知函数f(x)=e x,g(x)=x+a ln x,a∈R(1)讨论g(x)的单调性;(2)若f x +2x≥g x +x a,对任意x∈(1,+∞)恒成立,求a的最大值;【解析】(1)g (x)=1+ax=x+ax(x>0),当a≥0时,g′(x)>0,g(x)在(0,+∞)上单调递增;当a<0时,令g′(x)>0,解得x>-a,令g′(x)<0,解得0<x<-a,∴g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;综上,当a≥0时,g(x)在(0,+∞)上单调递增;当a<0时,g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;(2)f(x)+2x≥g(x)+x a即为e x+x≥a ln x+x a,即e x+ln e x≥ln x a+x a,设h(x)=ln x+x(x>0),则h (x)=1x+1=x+1x,易知函数h(x)在(0,+∞)上单调递增,而h(e x)≥h(x a),所以e x≥x a(两边取对数),即x≥a ln x,当x>1时,即为a≤xln x,设φ(x)=xln x(x>1),则φ (x)=ln x-1ln2x,易知函数φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)≥φ(e)=e,∴a≤e,即a的最大值为e.6已知函数f (x )=x ln x .(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且a b =b a ,证明:2e <1a +1b <1.【解析】 (1)f (x )=ln x +1,定义域为(0,+∞),由f (x )=0,解得x =1e ,由f (x )>0,解得x >1e,由f (x )<0,解得0<x <1e,所以f (x )的单调递增区间为1e ,+∞,单调递减区间为0,1e.(2)∵a ,b 为两个不相等的正数,且a b =b a ,∴b ln a =a ln b ,即1a ln 1a =1b ln 1b,由(1)可知f (x )min =f 1e =-1e,且f (1)=0,x →0时,f (x )→0,则令x 1=1a ,x 2=1b,则x 1,x 2为f (x )=k 的两根,且k ∈-1e ,0 ,不妨设x 1∈0,1e ,x 2∈1e ,1 ,则2e -x 1>1e,先证2e <x 1+x 2,即证x 2>2e -x 1,即证f x 2 =f x 1 >f 2e-x 1 ,令h (x )=f (x )-f 2e -x,即证在x ∈0,1e上,h (x )>0,则h (x )=f (x )-f 2e -x =ln x +ln 2e -x +2=ln -x 2+2ex +2,h (x )在0,1e上单调递增,即h (x )<h 1e =0,∴h (x )<0在0,1e上恒成立,即h (x )在0,1e 上单调递减,h (x )>h 1e =0,∴f (x )>f 2e -x,即可得x 2>2e-x 1;再证x 1+x 2<1,即证1e<x 2<1-x 1,由(1)f (x )单调性可得证f x 2 =f x 1 <f 1-x 1 ,令φ(x )=f (x )-f (1-x ),x ∈0,1e,φ (x )=ln x +ln (1-x )+2=ln -x 2+x +2,φ (x )在0,1e上单调递增,∴φ (x)=φ 1e>0,且当x→0,φ (x)<0,所以存在x0使得φ x0=0,即当x∈0,x0时,φ (x)<0,φ(x)单调递减,当x∈x0,1 e时,φ (x)>0,φ(x)单调递增,又有x→0,φ(x)<0,且φ1e=f1e -f1-1e<0,所以φ(x)<0恒成立,∴x 1+x2<1,则2e<1a+1b<1,即可证得.四、跟踪检测1已知函数f(x)=x ln x+a,(a∈R).(1)求函数f x 的单调区间;(2)当0<a<1e时,证明:函数f x 有两个零点;(3)若函数g(x)=f(x)-ax2-x有两个不同的极值点x1,x2(其中x1<x2),证明:x1⋅x22>e3.【解析】(1)f x =ln x+1,x>0,当0<x<1e时,fx <0,当x>1e时,fx >0,所以函数f x 在0,1 e上递减,在1e,+∞上递增,所以函数f x 的单调区间为0,1 e和1e,+∞;(2)证明:由(1)知f x min=f1e=-1e+a,因为0<a<1e,所以f1e<0,又当x→0+时,f x >0,f e =e+a>0,所以函数在0,1 e上存在一个零点,在1e,e上存在一个零点,所以函数f x 有两个零点;(3)证明:g(x)=f(x)-ax2-x=x ln x--ax2-x+a,(x>0),则g x =ln x-2ax,因为函数g(x)有两个不同的极值点x1,x2(其中x1<x2),所以ln x1=2ax1,ln x2=2ax2,要证x 1⋅x 22>e 3等价于证ln x 1⋅x 22 >ln e 3,即证ln x 1+2ln x 2>3,所以3<ln x 1+2ln x 2=2ax 1+4ax 2=2a x 1+2x 2 ,因为0<x 1<x 2,所以2a >3x 1+2x 2,又ln x 1=2ax 1,ln x 2=2ax 2,作差得ln x 1x 2=a x 1-x 2 ,所以a =ln x1x 2x 1-x 2,所以原不等式等价于要证明2ln x1x 2x 1-x 2>3x 1+2x 2,即2ln x 1x 2<3x 1-x 2 x 1+2x 2,令t =x 1x 2,t ∈0,1 ,则上不等式等价于要证:2ln t <3t -1t +2,t ∈0,1 ,令h t =2ln t -3t -1t +2,t ∈0,1 ,则ht =2t -9t +2 2=2t 2-t +8t t +2 2>0,t ∈0,1 ,所以函数h t 在0,1 上递增,所以h t <h 1 =0,所以2ln t <3t -1t +2,t ∈0,1 ,所以x 1⋅x 22>e 3.2形如y =f (x )g (x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得ln y =ln f (x )g (x )=g (x )ln f (x ),两边对x 求导数,得y y =g(x )ln f (x )+g (x )f x f x,于是y =f (x )g (x )g(x )ln f (x )+g (x )f x f x.已知f (x )=2e x ln x ,g (x )=x 2+1.(1)求曲线y =f (x )在x =1处的切线方程;(2)若h (x )=f (x ),求h (x )的单调区间;(3)求证:∀x ∈(0,+∞),f (x )≥g (x )恒成立.【解析】(1)由幂指函数导数公式得f (x )=2e x ln x (ln x +1),所以f (1)=2,又f (1)=2,所以,曲线y =f (x )在x =1处的切线方程为y =2x .(2)h (x )=f (x )=2e x ln x (ln x +1),x ∈(0,+∞),则h (x )=2e x ln x (ln x +1)+2e x ln x (ln x +1) =2e x ln x (ln x +1) (ln x +1)+2e x ln x ⋅1x=2e x ln x (ln x +1)2+1x>0,所以h (x )的单调增区间为(0,+∞),无单调减区间.(3)构造F (x )=f (x )-g (x ),x ∈(0,+∞),则F (x )=f (x )-g (x )=2e x ln x (ln x +1)-2x ,令H (x )=F (x )=2e x ln x (ln x +1)-2x ,x ∈(0,+∞),所以H (x )=2e x ln x (ln x +1)2+e(x -1)ln x-1 ,因为x -1与ln x 同号,所以(x -1)ln x ≥0,所以e (x -1)ln x-1≥0,又e x ln x (ln x +1)2≥0,所以H (x )≥0,所以H (x )即F (x )为(0,+∞)上增函数,又因为F (1)=0,所以,当x ∈(0,1)时,F (x )<F (1)=0;当x ∈(1,+∞)时,F (x )>F (1)=0.所以,F (x )为(0,1)上减函数,为(1,+∞)上增函数,所以,F (x )min =F (1)=0,即F (x )=f (x )-g (x )≥0,因此,∀x ∈(0,+∞),f (x )≥g (x )恒成立,即证.3已知函数f (x )=e x 2ln x (x >0).(1)求f (x )的极值点.(2)若有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k .(i )求k 的取值范围(ⅱ)证明x e 2-2e2≤e-e 21x 1.【解析】(1)函数f (x )=e x 2ln x (x >0)的导函数为f (x )=xe x 2ln x (2ln x +1).当x ∈0,e -12时,f(x )<0,所以函数f (x )单调递减;当x ∈e -12,+∞ 时,f (x )>0,所以函数f (x )单调递增.所以x =e-12为f (x )的极值点.(2)因为有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k ,所以x 12ln x 1=x 22ln x 2=k .(i )问题转化为m (x )=x 2ln x -k 在(0,+∞)内有两个零点,则m x =x 1+2ln x .当x∈0,e-1 2时, m x <0,m(x)单调递减;当x∈e-12,+∞时, m x >0,m(x)单调递增.若m(x)有两个零点,则必有m e-1 2<0,解得:k>-12e.若k≥0,当0<x<e-12时,m x =x2ln x-k≤x2ln x<0,无法保证m(x)有两个零点;若-12e<k<0,又m e1k>0,m e-12<0,m1 =-k>0,故存在x1∈e 1 k,e-12使得m x1 =0,存在x2∈e-12,1使得m x2 =0.综上可知, k∈-12e ,0.(ⅱ)设t=x2x1则t∈(1,+∞).将t=x2x1代入x12ln x1=x22ln x2,可得ln x1=t2ln t1-t2,ln x2=ln t1-t2(*).欲证:x e2-2e2≤e-e21x1,需证ln xe2-2e2≤ln e-e2x1即证ln x1+(e2-2e)ln x2≤-e2,将(*)代入,则有(t2+e2-2e)ln t1-t2≤-e2,则只需要证明:(x+e2-2e)ln x1-x≤-e(x>1),即ln x≥e x-1x+e2-2e(x>1).构造φ(x)=x-1ln x-xe-e+2,则φ (x)=ln x-x-1xln2x-1e,φ(x)=(x+1)2(x-1)x+1-ln xx2ln3x(x>1).令ω(x)=2(x-1)x+1-ln x(x>1),则ω (x)=-(x-1)2x(x+1)2<0.所以ω(x)<ω(1)=0,则φ (x)<0,所以φ(x)在1,+∞内单减.又φ (e)=0,所以当x∈(1,e)时,有φ (x)>0,φ(x)单调递增;当x∈(e,+∞)时,有φ (x)<0,φ(x)单调递减;所以φ(x)≤φ(e)=0,因此x-1ln x-xe≤e-2,即ln x≤e x-1x+e2-2e(x>1).综上所述,命题得证.4已知f(x)=ln x-x,g(x)=mx+m.(1)记F(x)=f(x)+g(x),讨论F(x)的单调区间;(2)记G(x)=f(x)+m,若G(x)有两个零点a,b,且a<b.请在①②中选择一个完成.①求证:2e m-1>1b+b;②求证:2e m-1<1a+a【解析】(1)函数的定义域为(0,+∞),F (x)=1x+m-1,当m≥1时,F (x)>0,F(x)在(0,+∞)单调递增;当m<1时,令F (x)<0,解得x>11-m,令F(x)>0,解得0<x<11-m,∴F (x )在0,11-m单调递增,在11-m ,+∞ 单调递减; 综上,当m ≥1时,f (x )的单调递增区间为(0,+∞);当m <1时,f (x )的单调递增区间为0,11-m ,单调递减区间为11-m,+∞ (2)证明:因为G (x )=ln x -x +m ,令G (x )=0,则m =x -ln x ,设t (x )=x -ln x (x >0),则t (x )=1-1x =x -1x,函数t (x )在(0,1)单调递减,在(1,+∞)单调递增,且x →0时,t (x )→+∞,当x →+∞时,t (x )→+∞,t (x )min =t (1)=1,∴m >1,又a <b ,则0<a <1<b ,若证①所证不等式,即2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b ,又G (b )=0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b ,设h (b )=ln b 2+1 -b ,b >1,则h(b )=2b b 2+1-1=-(b -1)2b 2+1<0,∴h (b )在(1,+∞)上单调递减,∴h (b )<h (1)=ln2-1,即2e m -1>1b+b 得证;若证②所证不等式,即2em -1<a +1a ,即证ln2+m -1<ln a 2+1a,即证ln2+m -1<ln a 2+1 -ln a ,又G (a )=0,即m =a -ln a ,故即证ln2+a -ln a -1<ln a 2+1 -ln a ,即证ln2-1<ln a 2+1 -a ,设φ(a )=ln a 2+1 -a ,0<a <1,则φ(a )=2aa 2+1-1=-(a -1)2a 2+1<0,∴φ(a )在(0,1)单调递减,故φa >φ1 =ln2-1,即2e m -1<1a+a 得证.5已知a ∈R ,f (x )=x ⋅e -ax ,(其中e 为自然对数的底数).(1)求函数y =f (x )的单调区间;(2)若a >0,函数y =f (x )-a 有两个零点x ,x 2,求证:x 21+x 22>2e .【解析】(1)解:f ′(x )=e -ax -ax ⋅e -ax =e -ax (1-ax )∵a ∈R ,∴a <0时,f ′(x )=e -ax (1-ax )>0⇒x >1a ,f ′(x )=e -ax (1-ax )<0⇒x <1a∴a <0时,增区间为:1a ,+∞,减区间为:-∞,1a;a =0时,f ′(x )=e -ax (1-ax )=1>0,∴a =0时,增区间为:(-∞,+∞);a >0时,f ′(x )=e -ax (1-ax )>0⇒x <1a ,f ′(x )=e -ax (1-ax )<0⇒x >1a,∴a >0时,增区间为:-∞,1a ,减区间为:1a,+∞ ;(2)因为a >0时,函数y =f (x )-a 有两个零点x 1,x 2,则两个零点必为正实数,f (x )-a =0⇔xe -ax =a 两边取对数ln x -ax =ln a故问题转化为ln x -ax =ln a 有两个正实数解;令g (x )=ln x -ax -ln a (x >0)则g ′(x )=1x -a (x >0),g (x )在0,1a 单调递增,在1a ,+∞ 单调递减,且0<x 1<1a<x 2令G (x )=g (x )-g 2a -x ,x ∈1a,+∞ ,则G ′(x )=1x -a +12a -x -a =2x (2-ax )-2a >21a-2a =0所以G (x )在1a ,+∞ 单调递增,G (x )>G 1a=0又x 2>1a ,故g x 2 >g 2a -x 2 ,x 2∈1a,+∞ 又g x 1 =g x 2 ,所以g x 1 >g 2a-x 2 ,又0<x 1<1a <x 2,所以x 1,2a -x 2∈0,1a ,又g (x )在0,1a 单调递增,所以x 1+x 2>2a所以x 21+x 22>x 1+x 222>2a 2>2e .6已知函数f x =axe -x a ≠0 存在极大值1e.(1)求实数a 的值;(2)若函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,求实数m 的取值范围,并证明:x 1+x 2>2.【解析】(1)f x =a ⋅xe xx ∈R ,f x =a 1-x ex,令f x =0⇒x =1,f 1 =a e =1e ⇒a =1,此时f x =1-xex ,f x 在-∞,1 上f x >0,f x 递增;在1,+∞ 上f x <0,f x 递减,所以当x =1时,f x 取得极大值为f 1 =1e符合题意,所以a =1.(2)由(1)知:f x 在-∞,1 上递增,在1,+∞ 上递减,极大值为f 1 =1e.f x =x e x,f 0 =0,当x <0时,f x <0;当x >0时,f x >0;当x →+∞时,f x →0.由于函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,所以0<m <1e.因为x 1,x 2x 1≠x 2 是F x 的两个零点,则x 1>0,x 2>0.所以F x 1 =F x 2 ,x 1e x 1=x 2ex 2,e x 2e x 1=x 2x 1,e x 2-x 1=x 2x 1,两边取对数得x 2-x 1=ln x 2x 1,要证x 1+x 2>2,只需证明x 2-x 1x 2+x 1<12ln x2x 1,即证x 2x 1-1x 2x 1+1<12ln x 2x 1,不妨设x 1<x 2,令x 2x 1=t ,则t ∈1,+∞ ,即证t -1t +1<12ln t 对t ∈1,+∞ 恒成立.令g t =12ln t -t -1t +1,g t =12t -2t +12=t -1 22t t +1 2>0,所以g t 在1,+∞ 上递增,所以g t >g 1 =0,即12ln t -t -1t +1>0,所以t -1t +1<12ln t .从而x 1+x 2>2成立.7已知函数f (x )=x (e 2x -a ),g (x )=bx +ln x .(1)若y =2x 是曲线y =f (x )的切线,求a 的值;(2)若g (x )有两不同的零点,求b 的取值范围;(3)若b =1,且f (x )-g (x )≥1恒成立,求a 的取值范围.【解析】(1)依题意,设切点为(x 0,2x 0),则2x 0=x 0(e 2x 0-a ),f (x )=e 2x -a +x ⋅2e 2x ,于是得e 2x 0(2x 0+1)-a =2,则有x 0=0且a =-1,x 0≠0时,e 2x 0=a +2,(a +2)(2x 0+1)=a +2无解,所以a =-1;(2)由g (x )=0得-b =ln x x ,令h (x )=ln xx,x >0,则有h (x )=1-ln xx2,0<x <e 时h (x )>0,x >e 时h (x )<0,h (x )在(0,e )上递增,在(e ,+∞)上递减,h (x )max =h (e )=1e,又x >e 时,h (x )>0恒成立,于是得g (x )有两个不同的零点,等价于直线y =-b 与函数h (x )=ln xx,x >0图象有两个不同的公共点,即0<-b <1e ,-1e <b <0,所以g (x )有两不同的零点,b 的取值范围是-1e<b <0;(3)b =1,g (x )=x +ln x ,x >0,∀x >0,f (x )-g (x )≥1⇔x (e 2x -a )≥1+x +ln x ⇔a +1≤e 2x -1+ln xx,令φ(x )=e 2x-1+ln x x (x >0),φ (x )=2e 2x+ln x x 2=2x 2e 2x +ln x x 2,令F (x )=2x 2e 2x +ln x ,F (x )=(4x 2+4x )e 2x +1x>0,即F (x )在(0,+∞)上递增,而F 14=e 8-ln4<0,F (1)=2e 2>0,即∃t ∈(0,1),使得F (t )=0,0<x <t 时F (x )<0,φ (x )<0,x >t 时,F (x )>0,φ (x )>0,φ(x )在(0,t )上递减,在(t ,+∞)上递增,从而有φ(x )min =e 2t -1+ln tt,而F (t )=0,即2t 2e 2t +ln t =0,令t 2e 2t =p ,两边取对数得2t +2ln t =ln p ,则2p +ln t =0=2t +2ln t -ln p ,即有2p +ln p =2t +ln t ,显然函数y =2x +ln x 在(0,+∞)上单调递增,从而得p =t ,于是得t 2e 2t =t ⇔e 2t =1t 两边取对数 2t =-ln t ⇔ln t t=-2,φ(x )min =e 2t -1+ln t t =1t -1t -ln t t=2,所以a +1≤2,a ≤1.8已知函数f (x )=ax ln x ,a ∈R .(1)当a =1时,①求f (x )的极值;②若对任意的x ≥e 都有f (x )≥m xe mx ,m >0,求m 的最大值;(2)若函数g (x )=f (x )+x 2有且只有两个不同的零点x 1,x 2,求证:x 1x 2>e 2.【解析】(1)①a =1时,f (x )=x ln x ,则f ′(x )=ln x +1(x >0),令f ′(x )>0,解得:x >1e ,令f ′(x )<0,解得:0<x <1e,∴f (x )在0,1e递减,在1e ,+∞ 递增,故f (x )的极小值是f 1e =-1e ,没有极大值;②对任意x ≥e 都有f (x )≥m x e m x =e m x ln e m x,即f (x )≥f e mx 恒成立,由m >0,有mx>0,故e mx >1,由①知,f (x )在1e ,+∞ 单调递增,故x ≥e mx ,可得ln x ≥mx,即x ln x ≥m ,当x ≥e 时,f (x )的最小值是f (e )=e ,故m 的最大值是e ;(2)证明:要证x 1x 2>e 2,只需证明ln (x 1x 2)>2即可,由题意,x 1、x 2是方程ax ln x +x 2=0的两个不相等的实数根,又x >1,∴a ln x1+x1=0a ln x2+x2=0,消去a,整理得:ln(x1x2)=x1x2+1x1x 2-1⋅lnx1x2,不妨设x1>x2,令t=x1x2,则t>1,故只需证明当t>1时,t+1t-1⋅ln t>2,即证明ln t>2(t-1)t+1,设h(t)=ln t-2(t-1)t+1,则h′(t)=1t-2⋅t+1-(t-1)(t+1)2=(t-1)2t(t+1)2>0,∴h(t)在(1,+∞)单调递增,从而h(t)>h(1)=0,故ln t>2(t-1)t+1,即x1x2>e2得证.9已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2x1<x2,证明:x41x2>e3.(e=2.71828⋯为自然对数的底数)【解析】(1)g(x)=f(x)x=ln x-ax-1,g (x)=1x-a,①当a≤0时,g (x)>0,g(x)在(0,+∞)单调递增;②当a>0时,令g (x)=0解得x=1a,x∈0,1a时,g (x)>0,g(x)单调递增;x∈1a ,+∞时,g (x)<0,f(x)单调递减.综上,当a≤0时,g(x)在(0,+∞)单调递增;当a>0时,g(x)在0,1 a上单调递增,在1a,+∞上单调递减,(2)由题意知,f (x)=ln x-2ax,x1,x2是f (x)的两根,即ln x1-2ax1=0,ln x2-2ax2=0,解得2a=ln x1-ln x2x1-x2(*),要证x41x2>e3,即证4ln x1+ln x2>3,即4⋅2ax1+2ax2>3,把(*)式代入得ln x1-ln x2x1-x24x1+x2>3x1<x2,所以应证ln x1x2<3x1-x24x1+x2=3x1x2-14x1x2+1,令t=x1x2,0<t<1,即证h(t)=ln t-3(t-1)4t+1<0(0<t<1)成立,而h (t)=1t-15(4t+1)2=16t2-7t+1t(4t+1)2=16t-7322+1564t(4t+1)2>0,所以h(t)在(0,1)上单调递增,所以h(t)<h(1)=0,所以命题得证.10已知函数f x =e x -a ln xx-a (e 为自然对数的底数)有两个零点.(1)若a =1,求f x 在x =1处的切线方程;(2)若f x 的两个零点分别为x 1,x 2,证明:e 2-x 1-x 2-x 1x 2<0.【解析】(1)当a =1时,f x =e x -ln x x -1,f x =e x -1-ln xx 2,又f 1 =e -1,所以切点坐标为1,e -1 ,切线的斜率为k =f 1 =e -1.所以切线方程为y -e -1 =e -1 x -1 ,即y =e -1 x (2)由已知得f x =xe x -a ln x +xx=0有两个不等的正实跟.所以方程xe x -a ln x +x =0有两个不等的正实根,即xe x -a ln xe x =0有两个不等的正实根,a ln xe x =xe x ①要证x 1x 2>e 2ex 1+x 2,只需证x 1e x 1 ⋅x 2e x 2 >e 2,即证ln x 1e x 1 +ln x 2e x 2>2,令t 1=x 1e x 1,t 2=x 2e x 2,所以只需证ln t 1+ln t 2>2,由①得a ln t 1=t 1,a ln t 2=t 2,所以a ln t 2-ln t 1 =t 2-t 1,a ln t 2+ln t 1 =t 2+t 1,消去a 得ln t 2+ln t 1=t 2+t 1t 2-t 1ln t 2-ln t 1 =t 2t 1+1ln t2t 1t 2t 1-1,只需证t 2t 1+1ln t2t 1t 2t 1-1>2,设0<t 1<t 2,令t =t 2t 1,则t >1,则t +1 ln tt -1>2,即证ln t +4t +1-2>0构建h t =ln t +4t +1-2>0则h t =1t -4t +12=t -1 2t t +1 2>0,所以h t 在1,+∞ 上单调递增,则h t >h 1 =0,即当t >1时,ln t +4t +1-2>0成立,所以ln t 1+ln t 2>2,即x 1e x 1⋅x 2e x 2>e 2,即x 1x 2>e 2ex 1+x 2,所以e2-x 1-x 2-x 1x 2<0,证毕.11已知函数h x =x -a ln x a ∈R .(1)若h x 有两个零点,a 的取值范围;(2)若方程xe x-a ln x +x =0有两个实根x 1、x 2,且x 1≠x 2,证明:e x 1+x 2>e 2x 1x 2.【解析】(1)函数h x 的定义域为0,+∞ .。
【高考数学考点预测】指数函数对数函数幂函数二次函数思维方法总结及15类常考题型归纳(新高考)原卷版
1.指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.4.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.5.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.6.比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.7.指数方程(不等式)的求解主要利用指数函数的单调性进行转化.8.涉及指数函数的综合问题,首先要掌握指数函数相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.9.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.10.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.11.a b=N⇔b=log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.12.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.13.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.14.比较对数值的大小与解形如log a f(x)>log a g(x)的不等式,主要是应用函数的单调性求解,如果a的取值不确定,需要分a>1与0<a<1两种情况讨论.15.与对数函数有关的复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.16.对于幂函数图象的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.17.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.18.在区间(0,1)上,幂函数中指数越大,函数图象越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x轴.19.求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:20.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是图象上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.21.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.22.闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解.23.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图象的对称轴与区间的位置关系,当含有参数时,要依据图象的对称轴与区间的位置关系进行分类讨论.24.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a≥f(x)恒成立⇔a≥f(x)max,a≤f(x)恒成立⇔a≤f(x)min.【查缺补漏】【考点一】指数幂的运算【典例1】已知f(x)=2x+2-x,若f(a)=3,则f(2a)=________.【典例2】已知常数a>0,函数f(x)=2x2x+ax的图象经过点P⎝⎛⎭⎪⎫p,65,Q⎝⎛⎭⎪⎫q,-15.若2p+q=36pq,则a=________.【典例3】[(0.06415)-2.5]23-3338-π0=________.【考点二】指数函数的图象及应用【典例1】(多选题)已知实数a ,b 满足等式2 020a =2 021b ,则下列关系式成立的是( ) A.0<b <a B.a <b <0 C.0<a <bD.a =b【典例2】已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A.a <0,b <0,c <0 B.a <0,b ≥0,c >0 C.2-a <2cD.2a +2c <2【典例3】函数y =a x -1a (a >0,且a ≠1)的图象可能是( )【考点三】比较指数式的大小 【典例1】设a =30.7,b =⎝ ⎛⎭⎪⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b【典例2】已知f (x )=2x-2-x ,a =⎝ ⎛⎭⎪⎫79-14,b =⎝ ⎛⎭⎪⎫9715,则f (a ),f (b )的大小关系是________.【典例3】已知函数f (x )=4x -12x ,a =f (20.3),b =f (0.20.3),c =f (log 0.32),则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <c C.b <c <aD.c <a <b【考点四】解简单的指数方程或不等式【典例1】已知实数a ≠1,函数f (x )=⎩⎨⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为______.【典例2】设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是________.【典例3】已知a =log 20.2,b =20.2,c =0.20.3,则( ) A.a <b <c B.a <c <b C.c <a <bD.b <c <a【考点五】指数函数性质的综合应用【典例1】函数y =⎝ ⎛⎭⎪⎫14x-⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.【典例2】已知定义域为R 的函数f (x )=-12+12x +1,则关于t 的不等式f (t 2-2t )+f (2t 2-1)<0的解集为________. 【典例3】若函数f (x )=⎝ ⎛⎭⎪⎫13ax 2+2x +3的值域是⎝ ⎛⎦⎥⎤0,19,则f (x )的单调递增区间是________.【考点六】对数的运算【典例1】若a =log 43,则2a +2-a = .【典例2】2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1= . 【典例3】计算:(1-log 63)2+log 62·log 618log 64= .【考点七】对数函数的图象及应用【典例1】已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1【典例2】当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(0,22) B .(22,1) C .(1,2)D .(2,2)【典例3】若函数y =log a x (a >0且a ≠1)的图象如图所示,则下列函数图象正确的是( )【考点八】比较对数值大小【典例1】已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a【典例2】若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b cD .c a >c b【典例3】若a =20.3,b =log π3,c =log 4cos 100,则( ) A .b >c >a B .b >a >c C .a >b >cD .c >a >b【考点九】解简单的对数不等式【典例1】若log a 23<1,则a 的取值范围是 .【典例2】设函数212log ()()log ()(0),x x f x x x ⎧⎪⎨-⎪⎩>0,<若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【典例3】设函数f (x )=⎩⎨⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)【考点十】对数型函数性质的综合应用 【典例1】已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.【典例2】已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A.a =b <cB.a =b >cC.a <b <cD.a >b >c【典例3】已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________. 【考点十一】幂函数的图象和性质【典例1】若幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的大致图象是( )【典例2】若幂函数f (x )=(2b -1)x a2-10a +23(a ,b ∈Z )为偶函数,且f (x )在(0,+∞)上是减函数,则a ,b 的值分别为( )A.2,1B.4,1C.5,1D.6,1【典例3】如图是①y=x a;②y=x b;③y=x c在第一象限的图象,则a,b,c的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.a<c<b【考点十二】二次函数的解析式【典例1】已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)=________.【典例2】已知二次函数f(x)的图象经过点(4,3),在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.【典例3】已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定该二次函数的解析式.【考点十三】二次函数的图象【典例1】二次函数y=ax2+bx+c的图象如图所示.则下列结论正确的是______(填序号).①b2>4ac;②c>0;③ac>0;④b<0;⑤a-b+c<0.【典例2】设函数f(x)=x2+x+a(a>0),若f(m)<0,则()A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0【考点十四】二次函数的单调性与最值【典例1】函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a 的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]【典例2】已知f(x)=ax2-2x(0≤x≤1),求f(x)的最小值.【考点十五】二次函数中的恒成立问题【典例1】已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,则实数a的取值范围是________.【典例2】函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则实数a的最大值为________.【典例3】已知二次函数f(x)满足f(3+x)=f(3-x),若f(x)在区间[3,+∞)上单调递减,且f(m)≥f(0)恒成立,则实数m的取值范围是()A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)【真题训练】1.(2021•上海)以下哪个函数既是奇函数,又是减函数()A .y =﹣3xB .y =x 3C .y =log 3xD .y =3x2. (2021•天津)设a =log 20.3,b =0.4,c =0.40.3,则三者大小关系为( ) A .a <b <cB .c <a <bC .b <c <aD .a <c <b3. (2021•新高考Ⅱ)已知a =log 52,b =log 83,c =,则下列判断正确的是( ) A .c <b <aB .b <a <cC .a <c <bD .a <b <c4. (2021•甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( )(≈1.259) A .1.5B .1.2C .0.8D .0.65. (2022•上海)下列函数定义域为R 的是( ) A .y =B .y =x ﹣1C .y =D .y =6. (2022•浙江)已知2a =5,log 83=b ,则4a ﹣3b =( ) A .25B .5C .D .7. (2022•甲卷)已知9m =10,a =10m ﹣11,b =8m ﹣9,则( ) A .a >0>bB .a >b >0C .b >a >0D .b >0>a8. (2022•新高考Ⅰ)设a =0.1e 0.1,b =,c =﹣ln 0.9,则( ) A .a <b <c B .c <b <a C .c <a <b D .a <c <b【热点预测】 【单选题】1. 函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( ) A .-3 B .13 C .7 D .52. 幂函数24m m y x -=(m ∈Z )的图象如图所示,则m 的值为( )A .0B .1C .2D .33. 若函数f (x )=a x(a >0,且a ≠1)的图象经过⎝ ⎛⎭⎪⎫2,13,则f (-1)=( ) A.1 B.2 C. 3 D.34. 已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( )A .[0,+∞)B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞)5. 不论a 为何值,函数y =(a -1)2x -a 2恒过定点,则这个定点的坐标是( )A.⎝ ⎛⎭⎪⎫1,-12 B.⎝ ⎛⎭⎪⎫1,12 C.⎝ ⎛⎭⎪⎫-1,-12 D.⎝ ⎛⎭⎪⎫-1,12 6. 设a =log 0.20.3,b =log 20.3,则( )A.a +b <ab <0B.ab <a +b <0C.a +b <0<abD.ab <0<a +b7. 若函数y =x 2-3x -4的定义域为[0,m ],值域为[-254,-4],则m 的取值范围是( )A .[0,4]B .[32,4]C .[32,+∞)D .[32,3]8. 函数y =a x -1a (a >0,且a ≠1)的图象可能是( )9. 已知函数f (x )=lg ⎝ ⎛⎭⎪⎫3x +43x +m 的值域是全体实数,则实数m 的取值范围是( )A.(-4,+∞)B.[-4,+∞)C.(-∞,-4)D.(-∞,-4]10. 若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( )A .-1B .1C .2D .-2 11. 设a =30.7,b =⎝ ⎛⎭⎪⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( ) A.a <b <cB.b <a <cC.b <c <aD.c <a <b12. (多选题)已知函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有下列说法,其中正确的说法为( )A.h (x )的图象关于原点对称B.h (x )的图象关于y 轴对称C.h (x )的最大值为0D.h (x )在区间(-1,1)上单调递增13. (多选题)若10a =4,10b =25,则( )A.a +b =2B.b -a =1C.ab >8lg 22D.b -a >lg 614.已知二次函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与a 值有关15. 当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( )A.(-2,1)B.(-4,3)C.(-3,4)D.(-1,2)16. 基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天17. (多选题)函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论成立的是( )A.a >1B.0<c <1C.0<a <1D.c >118. (多选题)已知0<a <b <1,下列不等式成立的是( ) A.⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫13bB.a 12>b 13C.log 12a >log 13bD.log a 12>log b 13 19. (多选题)关于函数f (x )=ln(1+x )-ln(3-x ),下列结论正确的是( )A.f (x )在(-1,3)上单调递增B.f (x )的图象关于直线x =1对称C.f (x )的图象关于点(1,0)对称D.f (x )的值域为R20. 当0<x <1时,函数f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________________.21. 已知函数f (x )=⎩⎨⎧-⎝ ⎛⎭⎪⎫12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.22. 已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)若a >1时,求使f (x )>0的x 的解集.。
高考数学难点突破_难点09__指数对数函数
高考数学难点突破_难点09__指数对数函数指数对数函数是高考数学中的一个重要的难点,也是学生普遍认为比较难理解和掌握的内容之一、本文将从基本概念、性质、解题技巧等方面进行详细介绍,帮助学生突破这一难点。
一、基本概念1.指数函数:指数函数是以指数为自变量,以底数为底的函数。
比如y=2^x就是一个指数函数,其中2是底数,x是指数。
2. 对数函数:对数函数是指数函数的逆运算,也就是说,指数函数和对数函数互为反函数。
比如 y = log2(x) 就是一个对数函数,其中 2 是底数,y 是对数。
二、性质1.指数函数的性质:(1)底数为正数且不等于1;(2)指数为任意实数;(3)当底数小于1时,指数函数是递减函数;(4)当底数大于1时,指数函数是递增函数。
2.对数函数的性质:(1)底数为正数且不等于1;(2)对数为任意正数;(3)对数函数的定义域是正数集合,值域是实数集合;(4)对数函数图象是一条过点(1,0)的上凸曲线。
三、解题技巧1.指数函数的解题技巧:(1)利用指数函数的性质进行函数图象的绘制;(2)将指数转化为对数的形式,利用对数的性质简化计算;(3)注意指数函数的定义域和值域,避免出现无解的情况;(4)利用指数函数的性质解决等式、不等式,注意正确应用换底公式。
2.对数函数的解题技巧:(1)利用对数函数的性质进行函数图象的绘制;(2)利用对数函数的反函数性质化简等式、不等式的解;(3)根据定义域和值域限制,判断函数是否有解;(4)注意合理利用换底公式,化简对数运算。
四、经典题型1. 解对数方程:如 log2(x+3) + log2(x-2) = 3,将对数方程转化为指数方程求解。
2.判断函数性质:如f(x)=5^(x-3),要求判断指数函数f(x)的增减性和定义域。
3.运用指数对数函数求最值:如y=3^x-3^(1-x),通过化简求函数的最值。
4. 判断指数函数与对数函数的关系:如 f(x) = 2^x 和 g(x) = log2(x),要求判断两个函数的值域和定义域。
高考数学复习点拨 剖析对数函数中的三大难点
剖析对数函数中的三大难点对数函数是高中数学中的一个重要函数,也是高考的热点知识之一.学习对数函数时会遇到一些难点,使解题思维陷入困境,究其原因主要有三大难点.难点一:底数不统一对数的运算性质及相关的知识都是建立在底数相同的基础上的,但在实际问题中,对数的运算、变形却经常要遇到底数不相同的情况,出现这种情形,该如何来突破呢?主要有三种处理方法:① 化指数式.对数函数与指数函数互为反函数,所以它们之间有着密切的关系:log a N b =即为b a N =,因此在处理有关对数中遇到的问题时,经常将对数式化为指数式来帮助解决. ②利用换底公式统一底数.换底公式的主要功能就是将底数不相同的对数通过换底把底数统一起来,然后再运用相关的性质与法则进行求解. ③ 利用函数图象.函数的图象是函数的另一重要方面,它可以将函数的有关性质直观显现,因此,当对数的底数不相同时,可以借助对数函数的图象的直观性来加以理解和寻求解题的思路.例1 若1100a b a b ≠≠>>,,,,且满足关系式2log 2log 4log 3a a b ==,求a b,的值.分析:已知关系式中包含三个别底数不相同的对数式, 因此可设2log 2log 4log 3a a b m ===,转化为指数式来解决.解:设2log 2log 4log 3a a b m ===,则2m a =,42ma ⎛⎫= ⎪⎝⎭, 22mm a a ⎛⎫∴= ⎪⎝⎭,即22m m m a a =. 由于0m a >,122m ∴=,1m ∴=-. log 2log 31a b ∴==-,1123a b ∴==,. 例2 设2log 3a =,3log 7b =,求42log 56的值.分析:两个已知对数式的底数不相同,无法直接进行计算,所以应该首先考虑统一底数,从条件看应该把底数统一为3.解:由2log 3a =,可得31log 2a =, 所以,33342333log 56log 73log 23log 56log 42log 2log 711ab ab a ++===++++. 例3 若log 2log 20a b <<,则a b ,满足的关系是( )A.1a b << B.1b a << C.01a b <<< D.01b a <<< 分析:此题由于两个对数式底数不同,但是真数相同,所以可以把两个对数式看成是两个对数函数在自变量取同一个值时的两个不同的函数值,可通过图象来分析.解:log 2log 2a b ,可以看成是对数函数log a y x =,log b y x =在2x =时的两个函数值,画出它们的大致图象(如右图),显然a b ,均小于1,根据对数函数的底数和图象的关系可得:01b a <<<,故选(D).难点二:真数是和差的形式 对数的运算性质的主要功能是将运算级别较高的降低为级别较低的运算,而和与差是运算中的最低级别,所以在处理真数是和差形式的对数问题时,难度就较大,主要有两种处理方法:①整体考虑;②对真数因式分解.例4 若实数x 满足222log (21)log (24)3x x +--=,求x 的值.分析:已知关系式既有对数的相乘,又有真数的差,要将此式进行转化,可以把2log (21)x -看成整体,再对22log (24)x +-的真数因式分解.解:由222log (21)log (24)3x x +--=,得22log (21)log 4(21)3x x ⎡⎤--=⎣⎦,所以22log (21)2log (21)3x x ⎡⎤-+-=⎣⎦,所以222log (21)2log (21)30x x -+--=,解得2log (21)1x -=,或2log (21)3x -=-,故有2log 3x =,或29log 8x =. 难点三:对数与对数相乘对于对数与对数相乘,运用对数的运算性质是很难解决的.因此,在解决此类问题时,要根据所给的关系式认真分析其结构特点.其求解主要有三种方法:①利用换底公式;②整体考虑;③化各对数为和差的形式.例5 设23456783log 3log 4log 5log 6log 7log 8log log 27m =,求m 的值. 分析:已知等式是七个对数之积,其特点是:从第二个对数开始的每一个对数的底数是前一个对数的真数,因此,我们可以采用换底公式将各对数换成以2为底的两个对数的商,然后约分达到目的.解:2345678log 3log 4log 5log 6log 7log 8log m22222222222222log 4log 5log 6log 7log 8log log 3log log 3log 4log 5log 6log 7log 8m m ==. 23log log 273m ∴==,8m ∴=.例6 已知2222(log )7log 30x x -+≤,求函数22log log 24x x y ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的值域. 分析:所求函数的解析式是两个对数的积的形式,可利用对数的运算性质将其化为两个差的积.解:由2222(log )7log 30x x -+≤,得21log 32x ≤≤. 函数22222231log log (log 1)(log 2)log 2424x x y x x x ⎛⎫⎛⎫⎛⎫==--=-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. 当23log 2x =,即x =min 14y =-; 当2log 3x =,即8x =时,max 2y =.所以函数的值域为124⎡⎤-⎢⎥⎣⎦,.。
第12讲 对数与对数函数(课件)高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)
3
2
所以( ) m 与( ) n 均为方程 t 2+ t -1=0的实数根,由 t 2+ t -1=0,解得 t =
3
2
3
2
3
2
3
2
因为( ) m >0,( ) n >0,所以( ) m =( ) n =
所以 m = n , =
6
4
3
2
=( ) m =
−1+ 5
2
−1+ 5
2
,故选B.
3
2
−1+ 5
∴ f ( x )是偶函数,∴由 f (ln x )+ f (-ln x )<2可得2 f (ln x )<2,即 f (ln x )<1.
当 x >0时, f ( x )=log2 x + x 2.∵ y =log2 x 和 y = x 2在(0,+∞)上都是单调递增的,
1
∴ f ( x )在(0,+∞)上单调递增,又 f (1)=1,∴|ln x |<1且ln x ≠0,∴ < x <e且 x ≠1,
<1时相反.
(2)研究 y = f (log ax )型的复合函数的单调性,一般用换元法,即令 t =log
ax ,则只需研究
注意
t =log ax 及 y = f ( t )的单调性即可.
研究对数型复合函数的单调性,一定要坚持“定义域优先”原则,
否则所得范围易出错.
角度1
例3
比较大小
1
(1)[2021新高考卷Ⅱ]若 a =log52, b =log83, c = ,则( C
f (-ln x )<2的解集为(
1
D
1
A. ( ,1)
高考数学考纲解读与热点难点突破专题02函数的图象与性质教学案(理)
专题02 函数的图象与性质【2019年高考考纲解读】(1)函数的概念和函数的基本性质是B级要求,是重要题型;(2)指数与对数的运算、指数函数与对数函数的图象和性质都是考查热点,要求都是B级;(3)幂函数是A级要求,不是热点题型,但要了解幂函数的概念以及简单幂函数的性质。
【重点、难点剖析】1.函数及其图象(1)定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题时务必须“定义域优先”.(2)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性;(3)周期性:周期性也是函数在定义域上的整体性质.若函数满足f(a+x)=f(x)(a不等于0),则其周期T =ka(k∈Z)的绝对值.3.求函数最值(值域)常用的方法(1)单调性法:适合于已知或能判断单调性的函数;(2)图象法:适合于已知或易作出图象的函数;(3)基本不等式法:特别适合于分式结构或两元的函数;(4)导数法:适合于可求导数的函数.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)的图象和性质,分0<a<1和a>1两种情况,着重关注两函数图象中的两种情况的公共性质;(2)幂函数y=xα的图象和性质,分幂指数α>0和α<0两种情况.5.函数图象的应用函数的图象和解析式是函数关系的主要表现形式,它们的实质是相同的,在解题时经常要互相转化.在解决函数问题时,尤其是较为繁琐的(如分类讨论,求参数的取值范围等)问题时,要注意充分发挥图象的直观作用. 【题型示例】题型一、函数的性质及其应用【例1】 (2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( ) A .-50 B .0 C .2 D .50 答案 C解析 ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ), ∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数且定义域为R 得f (0)=0, 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50)=f (1)+f (2)=2+0=2. 故选C.【2017北京,理5】已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xxx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以该函数是奇函数,并且3x y =是增函数, 13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数,故选A. 【举一反三】【2016年高考四川理数】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+= .【答案】-2【举一反三】(1)(2015·重庆卷)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A .[-3,1] B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)(2)已知函数f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +3,x ≤0.若f (a )+f (1)=0,则实数a 的值为( )A .-3B .-1或3C .1D .-3或1 (1)答案:D解析:要使函数有意义,只需x 2+2x -3>0,即(x +3)(x -1)>0,解得x <-3或x >1.故函数的定义域为(-∞,-3)∪(1,+∞). (2)答案:D解析:f (1)=lg 1=0,所以f (a )=0.当a >0时,则lg a =0,a =1;当a ≤0时,则a +3=0,a =-3.所以a =-3或1.【变式探究】 (1)(2014·江西)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞)(2)(2014·浙江)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.【命题意图】(1)本题主要考查函数的定义域求法以及不等式的解法.通过定义域的求法考查考生的运算求解能力及转化意识.(2)本题主要考查分段函数和不等式恒成立问题,可结合函数图象进行分析求解. 【答案】(1)C (2)(-∞,2]【解析】(1)将求函数的定义域问题转化为解不等式问题. 要使f (x )=ln(x 2-x )有意义,只需x 2-x >0, 解得x >1或x <0.∴函数f (x )=ln(x 2-x )的定义域为(-∞,0)∪(1,+∞). (2)结合图形,由f (f (a ))≤2可得f (a )≥-2,解得a ≤ 2. 【方法技巧】1.已知函数解析式,求解函数定义域的主要依据有:(1)分式中分母不为零;(2)偶次方根下的被开方数大于或等于零;(3)对数函数y =log a x (a >0,a ≠1)的真数x >0;(4)零次幂的底数不为零;(5)正切函数y =tan x 中,x ≠k π+π2(k ∈Z ).如果f (x )是由几部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的自变量的集合.根据函数求定义域时:(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.2.函数的值域是由函数的对应关系和函数的定义域所唯一确定的,具有相同对应关系的函数如果定义域不同,函数的值域也可能不相同.函数的值域是在函数的定义域上求出的,求解函数的值域时一定要与函数的定义域联系起来,从函数的对应关系和定义域的整体上处理函数的值域. 题型二、函数的图象及其应用【例2】(2018·全国Ⅱ)函数f (x )=e x-e-xx2的图象大致为( )答案 B【方法技巧】(1)根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是判断函数图象问题的基本方法.(2)判断复杂函数的图象,常借助导数这一工具,先对原函数进行求导,再利用导数判断函数的单调性、极值或最值,从而对选项进行筛选.要注意函数求导之后,导函数发生了变化,故导函数和原函数定义域会有所不同,我们必须在原函数的定义域内研究函数的极值和最值. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D【解析】函数f(x)=2x 2–e |x|在[–2,2]上是偶函数,其图像关于y 轴对称,因为22(2)8e ,08e 1f =-<-<,所以排除A 、B选项;当[]0,2x ∈时,()=4e xf x x '-有一零点,设为0x ,当0(0,)x x ∈时,()f x 为减函数,当0(2)x x ,∈时,()f x 为增函数.故选D 。
如何应对高考数学中的指数与对数运算题目
如何应对高考数学中的指数与对数运算题目随着高考的临近,数学科目中的指数与对数运算题目成为了考生们备战的重点之一。
这类题目既考验了学生对基本概念的理解,又要求他们具备灵活的运算能力。
为了帮助考生们更好地应对高考数学中的指数与对数运算题目,下面将从知识梳理、解题技巧和练习方法三个方面进行讲解。
一、知识梳理指数与对数是数学中重要的概念,对应于实际生活中的很多现象和应用。
在应对高考数学中的指数与对数运算题目时,考生首先要对相关概念进行梳理和理解。
指数运算是将一个数与自己连乘若干次的运算,用表达式表示为a^n。
在指数运算中,考生需要了解指数的性质,例如指数相等时底数相等,指数相加时底数相乘等。
此外,考生还要熟悉指数运算的基本法则,如乘方法则、幂函数的运算等。
对数运算是指数运算的逆运算,用表达式表示为loga(x)。
在对数运算中,考生需要了解对数的性质,例如对数的底数应为正数且不等于1,对数的定义域和值域等。
同时,考生还需掌握对数运算的基本法则,如对数的乘法法则、除法法则、换底公式等。
这些知识对于高考数学中的指数与对数运算题目至关重要。
二、解题技巧在应对高考数学中的指数与对数运算题目时,考生可以采用以下解题技巧,帮助他们更好地理解和解决问题。
1. 灵活运用变换法考生可以通过变换法来处理指数与对数运算题目。
例如,在化简指数表达式时,可以将指数转化为相同底数的乘方形式,以便进行运算。
在解对数方程时,可以通过变换底数的方法,将方程转化为相同底数的对数方程,从而简化计算过程。
2. 利用指数和对数的性质指数和对数具有一些重要的性质,考生可以充分利用这些性质来解题。
例如,在求指数和的数值时,可以利用指数加法性质将指数相加,从而得到最终结果。
在解决对数运算题目时,可以应用对数乘法法则或对数换底公式将复杂的运算转化为简单的形式。
3. 注意问题中的限制条件在解答数学题目时,考生需要仔细阅读问题并注意其中的限制条件。
指数与对数运算题目中常常会给出一些条件,这些条件对于解题过程以及最终结果的求取都具有重要的指导作用。
高考数学难点突破-指数、对数函数和函数中的综合问题
2
2
2
即 1 [ f(x1)+f(x2)]≤f( x1 x2 )(当且仅当 x1=x2 时取“=”号)
2
2
当 0<a<1 时,有 logax1x2≥loga( x1 x2 )2, 2
∴ 1 (logax1+logax2)≥loga x1 x2 ,即 1 [f(x1)+f(x2)]≥f( x1 x2 )(当且仅当 x1=x2 时取“=”号).
二、3.解析:容易求得
f-
-1(x)=
log2
2
x
x
(x 1)
,从而:
(x 1)
f-1(x-1)=
log2 (x
2
x 1
,
1),
(x (x
2) 2).
log2 (x 1),(x 2)
答案:
2
x 1
,
(x 2)
4.解析:由题意,5 分钟后,y1=ae-nt,y2=a-ae-nt,y1=y2.∴n= 1 ln2.设再过 t 分钟桶 1 中的水只有 a ,则
∵x1,x2∈(0,+∞),x1x2≤( x1 x2 )2(当且仅当 x1=x2 时取“=”号), 2
当 a>1 时,有 logax1x2≤loga( x1 x2 )2, 2
∴ 1 logax1x2≤loga( x1 x2 ), 1 (logax1+logax2)≤loga x1 x2 ,
2
2
10
a
(2)∵函数 y=2000( )x(0<a<10)递减,∴对每个自然数 n,有 bn>bn+1>bn+2.则以 bn,bn+1,bn+2 为边长能构成
高考数学复习知识点归类与解题方法讲解3---指数函数与对数函数
C.必要不充分条件
D.既不充分也不必要条件
【答案】C
【解析】由“
log a
2
<
logb
2
”,得
1 log2
a
<
1 log 2
b
,
所以
log2 log2
a b
< >
0 0
或
log
2
a>log
2
b>0
或
0>log
2
a>log
2
b
,
0 < a < 1
即
b
>
1
或 a>b>1或 0<b<a<1 ,
由 2a>2b>2 ,得 a>b>1, 故“ loga 2 < logb 2 ”是“ 2a>2b>2 ”的必要不充分条件, 故选 C.
本题正确选项为 B.
【名师点睛】本题考查利用指数函数、对数函数的单调性比较大小的问题,关键是
能够通过临界值来进行区分.求解本题时,根据指数函数、对数函数的单调性分别 求得 x, y, z 的范围,利用临界值可比较出大小关系.
4.【山东省实验中学等四校 2019 届高三联合考试数学试题】已知正实数 a , b , c 满
2 / 12
先将它们与零比较,分出正负;正数通常再与 1 比较分出大于 1 还是小于 1,然后在
各类中间两两相比较,另外若题中既有对数式又有指数式,也常用中间量比较大小.
(三)解指数、对数方程或不等式: (1)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性, 要特别注意底数 a 的取值范围,并在必要时进行分类讨论. (2)①形如 loga x > logab 的不等式,借助 y = loga x 的单调性求解,如果 a 的取值不确 定,需分 a > 1与 0 < a < 1两种情况讨论; ②形如 loga x > b 的不等式,需先将 b 化为以 a 为底的对数式的形式,再借助 y=loga x
高考数学重难点第11讲-指数函数、对数函数与幂函数10大题型(原卷版学生专用)(全国通用)(新高考)
重难点第11讲指数函数、对数函数与幂函数10大题型——每天30分钟7天掌握指数函数、对数函数与幂函数10大题型【命题趋势】指数函数、对数函数与幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位,从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推论,能运用它们的性质解决具体的问题。
考生在复习过程中要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。
第1天认真研究满分技巧及思考热点题型【满分技巧】一、指数幂运算的一般原则1、指数幂的运算首先将根式统一为分数指数幂,以便利用法则计算;2、先乘除后加减,负指数幂化成正指数幂的倒数;3、底数为负数,先确定符号;底数为小数,先化成分数;底数是带分数的,先化成假分数;4、运算结果不能同时包含根号和分数指数,也不能既有分母又含有负指数。
二、对数运算常用方法技巧1、对数混合运算的一般原则(1)将真数和底数化成指数幂形式,使真数和底数最简,用公式log log m n a a nM b m=化简合并; (2)利用换底公式将不同底的对数式转化为同底的对数式;(3)将同底对数的和、差、倍运算转化为同底对数真数的积、商、幂; (4)如果对数的真数可以写成几个因数或因式的相乘除的形式,一般改写成几个对数相加减的形式,然后进行化简合并;(5)对数真数中的小数一般要化成分数,分数一般写成对数相减的形式。
2、对数运算中的几个运算技巧(1)lg 2lg51+=的应用技巧:在对数运算中如果出现lg 2和lg 5,则一般利用提公因式、平方差公式、完全平方公式等使之出现lg 2lg5+,再应用公式lg 2lg51+=进行化简;(2)log log 1a b b a ⋅=的应用技巧:对数运算过程中如果出现两个对数相乘且两个对数的底数与真数位置颠倒,则可用公式log log 1a b b a ⋅=化简;(3)指对互化的转化技巧:对于将指数恒等式x y z a b c ==作为已知条件,求函数(),,f x y z 的值的问题,通常设(0)x y z a b c k k ===>,则log a x k =,log b y k =,log c z k =,将,,x y z 值带入函数(),,f x y z 求解。
高考专项:指数函数对数函数的四类题型,基础夯实必备(含详细解析)
专项5 指数函数、对数函数相关的4种题型1.比较大小一般来说,指数、对数比较大小我们采取的思路是:首先,尽量将不同底数的指数、对数或幂函数,通过公式化成同一底数的,底数相同的根据单调性比较大小;其次,对于确实不能化成同一底数的,我们尽量将真数或指数化成相同的,然后我们做出图像,根据指数函数在第一象限内底数越大图像越高的特征、对数函数在第一象限内水平向右底数增大的特征判断大小; 最后,如果全都不相同,我们一般先做出图像,观察图像,判断大小,如果图像仍然不能解决问题,那么我们就应该考虑找中间值进行比较,中间值一般取0,-1,1,比如能否确定所要进行比较的数的正负、与1或-1的大小关系。
通过上述方式一般能解决所有比较大小问题。
1.设0.90.48 1.514,8,()2a b c -===,则( ) .A c a b >>.B b a c >>.C a b c >>.D a c b >>2.三个数0.32、log 20.3、20.3的大小关系为( )A .0.32<20.3<log 20.3B .0.32<log 20.3<20.3C .log 20.3<0.32<20.3D .log 20.3<20.3<0.323. a log a,log a,log 1,a 0530.5三者的大小关系是则<<若( )a log a log a log D.a log a log a log C.a log a log a log B.a log a log a log A.530.50.5530.535350.5>>>>>>>>4.设a >1,且2log (1)log (1),log (2)a a a m a n a p a =+=-=,,则p n m ,,的大小关系为( )(A) n >m >p (B) m >p >n (C) m >n >p (D) p >m >n5.以下四个数中的最大者是( )(A) (ln2)2(B) ln(ln2) (C) ln (D) ln26.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( ) A .a b c << B .c b a << C .c a b <<D .b a c <<7.设a b c ,,均为正数,且122log a a =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2c c ⎛⎫= ⎪⎝⎭.则( ) A.a b c << B.c b a << C.c a b << D.b a c <<28.下列大小关系正确的是( )A .20.440.43log 0.3<<;B .20.440.4log 0.33<<;C .20.44log 0.30.43<<;D .0.424log 0.330.4<<9.设2log 3P =,3log 2Q =,23log (log 2)R =,则( )A.R Q P << B.P R Q << C.Q R P << D.R P Q <<10. 下列不等式成立的是( )A .2lg (lg )e e <<B .2lg (lg )e e <<C .2(lg )lg e e <<D .2(lg )lg e e <<11.已知324log 0.3log 3.4log 3.615,5,()5a b c ===,则( ) .A a b c >>.B b a c >>.C a c b >>.D c a b >>12.若13(,1),ln ,2ln ,ln x e a x b x c x -∈===,则( ) .A a b c <<.B c a b <<.C b a c <<.D b c a <<13.设2554log 4,(log 3),log 5,a b c ===则( ) .A a c b <<.B b c a <<.C a b c <<.D b a c <<2.恒过定点问题指数函数恒过定点(0,1),是指指数函数的指数位置的表达式为0的时候,函数值恒为1;对数函数恒过(1,0),是指对数函数的真数位置的表达式为1的时候,函数值恒为0;对于指数位置或真数位置表达式中含有参数的,应考虑使用公式分离参数。
高一数学必修一难点微专题——指数型与对数型函数综合问题(学生版)
微专题5:指数型与对数型函数综合问题1.常见的几类指数型函数模型:假设a >0且a ≠1.(1).f (x )=pa 2x +qa x +r ,p ≠0(2).f (x )=a x +a −x(3).f (x )=a x −a −x(4).f (x )=11+a x −12(5).f (x )=1a x −1+12(6).f (x )=a x +1a x −12.常见的几类对数型函数模型:假设a >0且a ≠1.(1)f (x )=p log 2ax +q log a x +r ,p ≠0(2)f (x )=log a 1−x 1+x ,g (x )=log a 1+x 1−x ,(a >0,a ≠1)都是奇函数.(3)f (x )=log a (bx +1+b 2x 2),(a >0,a ≠1)是奇函数.(4)f (x )=log a (a bx +1)−b 2x (a >0且a ≠1)是偶函数.二.典型例题分析1已知奇函数f x =2x +a2x ,x ∈(-1,1).(1)求实数a 的值;(2)判断f x 在(-1,1)上的单调性并进行证明;(3)若函数f x 满足f (1-m )+f (1-2m )<0,求实数m 的取值范围.2已知定义域为R 的函数f x =-2x +b2x +1+a 是奇函数.(1)求实数a ,b 的取值范围;(2)若对任意t ∈1,3 ,不等式f t 2-2kt +f 2t 2-1 <0恒成立,求实数k 的取值范围.3设a ∈R ,函数f (x )=2x +a2x -a .(1)已知a =1,求证:函数f (x )为定义域上的奇函数;(2)已知a <0.(i )判断并证明函数f (x )的单调性;(ii )函数f (x )在区间[m ,n ](m <n )上的值域是k 2m ,k2n (k ∈R ),求k a 的取值范围.4已知函数f x =log 4x 2-a log 4x +3,其中a 为常数.(1)当a =2时,求函数f x 的值域;(2)若对∀x ∈414,44 ,1≤f x ≤27恒成立,求实数a 的取值范围.5已知函数f (x )=log 9(9x +1)+kx 是偶函数.(1).并求实数k 的值;(2).若方程f (x )=12x +b 有实数根,求b 的取值范围;(3).设h(x)=log9a⋅3x−43a,若函数f(x)与h(x)的图象有且仅有一个公共点,求实数a的取值范围.。
湖北黄岗中学高考数学二轮复习考点解析指数对数函数性质及其综合考查
湖北黄岗中学高考数学二轮复习考点解析1:指数、对数函数性质及其综合考查一.指数、对数函数的图象与性质:(学生画出函数图象,写出函数性质) 二.高考题热身1.(05江苏卷)函数123()x y x R -=+∈的反函数的解析表达式为( )(A )22log 3y x =- (B )23log 2x y -= (C )23log 2xy -= (D )22log 3y x =- 2. (05全国卷Ⅰ)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( ) (A ))0,(-∞(B )),0(+∞(C ))3log ,(a -∞ (D )),3(log +∞a3. (05 全国卷III)若ln 2ln 3ln 5,,235a b c ===,则( ) (A)a<b<c (B)c<b<a (C )c<a<b (D)b<a<c4. (07福建卷)函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( ) A .0,1<>b a B .0,1>>b a C .0,10><<b a D .0,10<<<b a5. (05湖北卷)函数|1|||ln --=x e y x 的图象大致是( )6.(05江西卷)函数)34(log 1)(22-+-=x x x f 的定义域为( )A .(1,2)∪(2,3)B .),3()1,(+∞⋃-∞C .(1,3)D .[1,3]7.(06广东卷)函数2()lg(31)1f x x x=++-的定义域是A.1(,)3-+∞ B .1(,1)3- C.11(,)33- D.1(,)3-∞-8.(06湖北卷)设2()lg 2x f x x+=-,则2()()2x f f x+的定义域为A .(4,0)(0,4)-UB .(4,1)(1,4)--UC .(2,1)(1,2)--UD .(4,2)(2,4)--U9.(06湖南卷)函数2log 2y x =-的定义域是( ) A.(3,+∞) B.[3, +∞)C.(4, +∞) D .[4, +∞)10. (06陕西卷)设函数f(x)=log a (x+b)(a>0,a ≠1)的图象过点(2,1),其反函数的图像过点(2,8),则a+b 等于( )A.6B.5 C .4 D.311 . 34.(天津卷)设2log 3P =,3log 2Q =,23log (log 2)R =,则( ) A.R Q P <<B.P R Q << C.Q R P <<D.R P Q << 12.(浙江卷))已知0log log ,10<<<<n m a a a ,则 (A )1<n <m (B) 1<m <n (C)m <n <1 (D) n <m <1三.典型例题例1.(07天津卷)已知函数)(x f y =的图象与函数x a y =(0>a 且1≠a )的图象关于直线x y =对称,记]1)2()()[()(-+=f x f x f x g .若)(x g y =在区间]2,21[上是增函数,则实数a 的取值范围是( )A .),2[+∞B .)2,1()1,0(YC .)1,21[D .]21,0(例2.(06天津卷)如果函数2()(31)(01)x x f x a a a a a =-->≠且在区间[)0+,∞上是增函数,那么实数a的取值范围是() A.203⎛⎤⎥⎝⎦, B.⎫⎪⎪⎣⎭C.( D.32⎡⎫+⎪⎢⎣⎭,∞ 例3.(06上海卷)方程233log (10)1log x x -=+的解是_____.5例4.(07重庆卷)设0,1a a >≠,函数2()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的解集为 。
(精选试题附答案)高中数学第四章指数函数与对数函数重难点归纳
(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数重难点归纳单选题1、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375= 0.0625<0.1,所以满足精确度0.1;所以方程x3+x2−2x−2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B .故选:B2、已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.3、已知f (x )是定义在R 上的奇函数,当x ≥0时,f(x)=log 2(x +2)+t ,f (−6)=( ) A .−2B .2C .−4D .4 答案:A分析:因f (x )是定义在R 上的奇函数,所以f (0)=0,从而可求t ,再由奇函数的定义即可求出f (−6)的值. 解:∵f (x )是定义在R 上的奇函数,又当x ≥0时,f(x)=log 2(x +2)+t , ∴ f (0)=log 2(0+2)+t =0, ∴t =−1,∴当x ≥0时,f(x)=log 2(x +2)−1,∴f (−6)=−f (6)=−[log 2(6+2)−1]=−(log 223−1)=−2, 故选:A.4、已知函数f(x)=9+x 2x,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可. 当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a , 所以254≥3+a ,可得a ≤134.故选:A5、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为( )A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x是增函数,y 1=(13)x与y 3=10−x=(110)x是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A . 故选:A6、设a =30.7, b =(13)−0.8, c =log 0.70.8,则a,b,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案:D分析:利用指数函数与对数函数的性质,即可得出a,b,c 的大小关系. 因为a =30.7>1, b =(13)−0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1, 所以c <1<a <b . 故选:D.小提示:本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:y =a x ,当a >1时,函数递增;当0<a <1时,函数递减;(2)利用对数函数的单调性:y =log a x ,当a >1时,函数递增;当0<a <1时,函数递减; (3)借助于中间值,例如:0或1等.7、若32是函数f (x )=2x 2−ax +3的一个零点,则f (x )的另一个零点为( )A .1B .2C .(1,0)D .(2,0) 答案:A分析:由32是函数f (x )=2x 2−ax +3的一个零点,可得a 值,再利用韦达定理列方程解出f (x )的另一个零点. 因为32是函数f (x )=2x 2−ax +3的一个零点,所以f (32)=2×(32)2−a ×32+3=0,解得a =5.设另一个零点为x 0,则x 0+32=52,解得x 0=1,所以f (x )的另一个零点为1. 故选:A .8、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项. 因为0<a <1,故y =a x 的图象经过第一象限和第二象限, 且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限. 故选:A .9、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( ) A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增 C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0,得x ≠±12.又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ), ∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增, 又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增, 在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .10、设f(x)={e x−1,x <3log 3(x −2),x ≥3,则f(f (11))的值是( )A .1B .eC .e 2D .e −1分析:根据自变量的取值,代入分段函数解析式,运算即可得解. 由题意得f(11)=log 3(11−2)=log 39=2, 则f(f (11))=f (2)=e 2−1=e . 故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题. 填空题11、已知log a 13>1,则实数a 的取值范围为______.答案:(13,1).分析:分0<a <1和a >1两种情况求解即可.解:当0<a <1时,由log a13>1,可得log a13>log aa,解得13<a <1;当a >1时,log a 13>1,可得log a13>log aa,得a <13,不满足a >1,故无解.综上所述a 的取值范围为:(13,1). 所以答案是:(13,1).12、已知a ,b 为正数,化简√a 5b 2⋅(a 2b )−1⋅√b 3=_______.答案:a 12b 12分析:根据根式与分数指数幂的互化以及指数幂的运算公式即可求出结果.原式=a 52b 2⋅a −2b −1⋅b 32=a 12b 12. 所以答案是:a 12b 12.13、已知√(a −1)44+1=a ,化简(√a −1)2+√(1−a)2+√(1−a)33=_________. 答案:a −1分析:根据已知条件判断a 的范围,再结合根式的运算性质,即可求得结果. 由已知√(a −1)44+1=a ,即|a −1|=a −1,即a ⩾1,所以(√a −1)2+√(1−a)2+√(1−a)33=(a −1)+(a −1)+(1−a)=a −1, 所以答案是:a −1小提示:本题考查根式的运算性质,属简单题;注意公式的熟练应用即可. 14、函数f (x )=3x −3−x 3x +3−x+2,若有f (a )+f (a -2)>4,则a 的取值范围是________.答案:(1,+∞)分析:构造函数F (x )=f (x )-2,则f (a )+f (a -2)>4等价于F (a )+F (a -2)>0,分析F(x)奇偶性和单调性即可求解.设F (x )=f (x )-2,则F (x )=3x −3−x3x +3−x ,易知F (x )是奇函数,F (x )=3x −3−x3x +3−x =32x −132x +1=1-232x +1在R 上是增函数,由f (a )+f (a -2)>4得F (a )+F (a -2)>0, 于是可得F (a )>F (2-a ),即a >2-a ,解得a >1. (1,+∞)15、已知函数f (x )={x 2+4x x ≥22|x−a | x <2 ,若对任意的x 1∈[2,+∞),都存在唯一的x 2∈(−∞,2),满足f (x 2)=f (x 1),则实数a 的取值范围是______. 答案:0≤a <4分析:由题意可得函数f (x )在[2,+∞)时的值域包含于函数f (x )在(−∞,2)时的值域,利用基本不等式先求出函数f (x )在x ∈[2,+∞)时的值域,当x ∈(−∞,2)时,对a 分情况讨论,分别利用函数的单调性求出值域,从而求出a 的取值范围. 解:设函数g (x )=x 2+4x , x ≥2的值域为A ,函数ℎ(x )=2|x−a | , x <2的值域为B ,因为对任意的x 1∈[2,+∞),都存在唯一的x 2∈(−∞,2),满足f (x 2)=f (x 1), 则A ⊆B ,且B 中若有元素与A 中元素对应,则只有一个.当x1∈[2,+∞)时,g(x)=x2+4x =x+4x,因为x+4x ≥2√x⋅4x=4,当且仅当x=4x,即x=2时,等号成立,所以A=[4,+∞),当x2∈(−∞,2)时,ℎ(x)=2|x−a| , x<2①当a≥2时,ℎ(x)=2a−x , x<2,此时B=(2a−2,+∞),∴2a−2<4,解得2≤a<4,②当a<2时,ℎ(x)={2a−x,x<a2x−a,a≤x<2,此时ℎ(x)在(−∞,a)上是减函数,取值范围是(1,+∞),ℎ(x)在[a,2)上是增函数,取值范围是[1,22−a),∴22−a≤4,解得0≤a<2,综合得0≤a<4.所以答案是:0≤a<4小提示:关键点点睛:本题即有恒成立问题,又有存在性问题,最后可转化为函数值域之间的包含关系问题,最终转化为最值问题,体现了转化与化归的思想.解答题16、已知函数ℎ(x)=|log12x|.(1)求ℎ(x)在[12,a](a>12)上的最大值;(2)设函数f(x)的定义域为I,若存在区间A⊆I,满足:对任意x1∈A,都存在x2∈A(其中A表示A在I上的补集)使得f(x1)=f(x2),则称区间A为f(x)的“Γ区间”.已知ℎ(x)=|log12x|(x∈[12,2]),若A=[12,a)为函数ℎ(x)的“Γ区间”,求a的最大值.答案:(1)答案见解析;(2)1.解析:(1)作出函数ℎ(x)=|log12x|的图象,分12<a≤2,a>2,利用数形结合法求解.(2)根据对任意x1∈A,都存在x2∈A使得f(x1)=f(x2),分12<a≤1,1<a≤2,分别求得ℎ(x)在[12,a)和[a,2]上的值域,利用集合法求解.(1)函数ℎ(x)=|log12x|的图象如图所示:当12<a≤2时,ℎ(x)的最大值为ℎ(12)=1,当a>2时,ℎ(x)的最大值为ℎ(a)=−log12a.(2) 当12<a≤1时,ℎ(x)在[12,a)上的值域为(log12a,1],ℎ(x)在[a,2]上的值域为[0,1],因为满足:对任意x1∈A,都存在x2∈A使得f(x1)=f(x2),所以(log12a,1)[0,1],成立;此时A=[12,a)为函数ℎ(x)的“Γ区间”,当1<a≤2时,ℎ(x)在[12,a)上的值域为[0,1],ℎ(x)在[a,2]上的值域为[−log12a,1],当1≤x1<a时,ℎ(x1)<ℎ(a)=−log12a,所以∃x1∈[1,a),ℎ(x1)∉[−log12a,1],即存在x1∈A,对任意x2∈A使得f(x1)≠f(x2),所以A=[12,a)不为函数ℎ(x)的“Γ区间”,所以a的最大值是1.小提示:方法点睛:双变量存在与恒成立问题:若∀x 1∈D 1,∀x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )min >g (x )max ;若∃x 1∈D 1,∃x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )max >g (x )min ;若∃x 1∈D 1,∀x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )max >g (x )max ;若∀x 1∈D 1,∃x 2∈D 2, f (x 1)>g (x 2)成立,则 f (x )miax >g (x )min ;若∀x 1∈D 1,∃x 2∈D 2, f (x 1)=g (x 2)成立,则 f (x )的值域是g (x )的子集;17、(1)计算:(279)12+(lg5)0+(2764)−13; (2)设4a =5b =100,求2(1a +2b )的值.答案:(1)4;(2)2.分析:(1)根据指数的运算性质直接计算即可;(2)通过换底公式可得1a=1log 4100=log 1004,1b =1log 5100=log 1005,进而可得解. (1)原式=(259)12+(lg5)0+[(34)3]−13=53+1+43=4. (2)∵4a =100, ∴a =log 4100.同理可得,b =log 5100,则1a =1log4100=log 1004,1b =1log 5100=log 1005, ∴1a +2b=log 1004+2log 1005=log 100(4×52)=log 100100=1. ∴2(1a +2b )=2.18、已知函数f (x )=log 12x +12x −172.(1)用单调性的定义证明:f (x )在定义域上是减函数;(2)证明:f (x )有零点;(3)设f (x )的零点在区间(1n+1,1n )内,求正整数n .答案:(1)证明见解析(2)证明见解析(3)10分析:(1)设0<x 1<x 2,则结合对数的运算法则可证得f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2)>0,则f (x 1)>f (x 2),由此可得证.(2)结合函数的解析式有f (1)=−8<0,f (116)=72>0,且f (x )在区间(116 , 1)上连续不断,由零点存在定理可得证.(3)结合函数的解析式可得f (110)f (111)<0,由此可得答案.(1)因为f (x )的定义域为(0,+∞),设x 1,x 2是(0,+∞)内的任意两个不相等的实数,且x 1<x 2,则f (x 1)−f (x 2)=(log 12x 1−log 12x 2)+(12x 1−12x 2), 因为x 2−x 1>0,x 1x 2>0,所以log 12x 1−log 12x 2>0,12x 1−12x 2=x 2−x 12x 1x 2>0,所以f (x 1)>f (x 2),故f (x )在定义域(0,+∞)上是减函数.(2)因为f (1)=0+12−172=−8<0,f (116)=4+8−172=72>0, 所以f (1)⋅f (116)<0,所以f (x )有零点.(3)f (111)=log 12111+112−172=log 211−3>log 28−3=0,f (110)=log 12110+5−172=log 210−72=log 25−52=log 2√25−log 2√32<0,所以f (110)f (111)<0,又f (x )在(0,+∞)上为减函数,所以f (x )的零点在区间(111,110)内,故n =10. 19、某校手工爱好者社团出售自制的工艺品,每件的售价在20元到40元之间时,其销售量y (件)与售价x (元/件)之间满足一次函数关系,部分对应数据如下表所示.(1)求此一次函数的解析式;(2)若每件工艺品的成本是20元,在不考虑其他因素的情况下,每件工艺品的售价是多少时,利润最大?最大利润是多少?答案:(1)y =−20x +840(20⩽x ⩽40)(2)每件工艺品的售价为31元时,利润最大,最大利润为2420元分析:(1)设y =ax +b ,任取两级数据代入求得参数值得解析式;(2)由(1)中关系式得出利润与x 的关系,由二次函数的性质得最大值.(1)设y =ax +b ,不妨选择两组数据(20,440),(22,400)代入,可得{440=20a +b,400=22a +b,解得{a =−20,b =840, ∴一次函数的解析式为y =−20x +840(20⩽x ⩽40).(2)设利润为S 元,由题意可得S =(−20x +840)(x −20)=−20x 2+1240x −16800=−20(x −31)2+2420,∴当x =31时,S max =2420,∴每件工艺品的售价为31元时,利润最大,最大利润为2420元.。
指对幂函数及函数与方程(5知识点+4重难点+7技巧+4易错)(原卷版)2025高考数学一轮知识清单
专题04指对幂函数及函数与方程(思维构建+知识盘点+重点突破+方法技巧+易混易错)知识点1指数幂与对数1、根式与分数指数幂(1)根式的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中1n >,且*n ∈N 。
n 叫做根指数,a 叫做被开方数.(2)根式的性质(1n >,且n *∈N ):n a =;,,,.na n a n ⎧⎪=⎨⎪⎩为奇数为偶数(3)分数指数幂的表示正分数指数幂:规定:mn a =()0,,,1a m n n *>∈>N 负分数指数幂:规定:1m nmnaa-==()0,,,1a m n n *>∈>N 性质:0的正分数指数幂等于0,0的负分数指数幂没有意义2、指数幂的运算性质(1)无理数指数幂:一般地,无理数指数幂a α(0a >,α为无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(2)指数幂的运算性质①(0,,)+=>∈r s r s a a a a r s R .②()=sra rs a (0,,)a r s >∈R .③()=r ab r r a b (0,0,)a b r >>∈R .3、对数与对数运算(1)对数的概念:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底数N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数,log a N 叫做对数式。
(2)对数的性质对数式与指数式的互化:a x =N ⇔x =log a N (a >0,且a ≠1);①log a 1=0,②log a a =1,③a log a N =N ,④log a a N =N (a >0,且a ≠1).指数式与对数式的关系(3)对数的的运算法则与换底公式:如果a >0,且a ≠1,M >0,N >0运算法则:①log a (M ·N )=log a M +log a N ②log a MN=log a M -log a N③log a M n =n log a M (n ∈R )换底公式:①log a b =log c blog c a(a >0,且a ≠1,c >0,且c ≠1,b >0),选用换底公式时,一般选用e 或10作为底数。
高考数学复习点拨 解指数函数和对数函数综合题的方法和策略
解指数函数和对数函数 综合题的方法和策略一、定义域问题和值域问题: Ⅰ〕定义域和值域例1 函数21()log (1)4a f x mx m x ⎡⎤=+-+⎢⎥⎣⎦〔1〕定义域是R ,求m 的取值范围. 〔2〕值域是R ,求m 的取值范围。
分析:在对数函数的定义域是R 与值域是R ,求其中参数的取值范围时,要注意它们是有明显区别的。
解:〔1〕因为函数21()log (1)4a f x mx m x ⎡⎤=+-+⎢⎥⎣⎦的定义域是R ,故而对任意x R∈有 21(1)04mx m x +-+>恒成立。
01、0m =时,左边=104>恒成立;02、0m ≠时,由二次函数的性质可得:〔2〕因为函数21()log (1)4a f x mx m x ⎡⎤=+-+⎢⎥⎣⎦的值域是R ,故而有2〕定义域和有意义例2 函数()f x =(1)假设此函数在(-∞,1)上有意义,求m 的取值范围. (2)假设此函数的定义域为(-∞,1),求m 的取值范围. 分析:注意定义域和有意义是有区别的。
(1)因为函数()f x =在(-∞,1)上有意义,即()f x =在(-∞,1)上有意义,所以有: 01、0m =时,()f x (-∞,1)上有意义;02、0m ≠时,由二次函数的性质可得:1220(1)0m m f >>≥-⎧⎨⎩且或{140m m >∆=-≤解得:14m ≥综上所述:此函数在(-∞,1)上有意义, m 的取值范围为0m =或14m ≥。
(2)假设函数()f x =的定义域为(-∞,1),那么1240xxm ++≥在(,1)x ∈-∞内恒成立。
从而有212111()()4224x x xm +≥-=-++ 因为(,1)x ∈-∞时,11(,)22x ∈+∞,所以21113()(,)2244x-++∈-∞-,从而m 的取值范围是34m ≥-。
二、单调性问题 对于复合函数的单调性问题,要分两步进行:第一先考虑定义域;第二再考虑单调性,在这一步中,要注意复合函数的单调性的判定法那么〔同向为增,异向为减。
高中数学重点、难点突破(4)指数、对数函数-副本
高中数学重点、难点突破(4)指数函数与对数函数(培优)1.指数函数的定义、图象与性质 定义 函数叫做指数函数a >1 0<a <1图 象定义域值域性质在R 上是 在R 上是2.对数函数的定义、图象与性质定义 函数 叫做指数函数a >1 0<a <1图 象定义域值域性质在R 上是 在R 上是 3.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线 对称.1.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )等于( )A.12x B .2x -2 C .log 12x D .log 2x 2.如果0log log 2121<<y x 那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x3.已知函数f (x )=⎩⎪⎨⎪⎧|lg x | 0<x ≤10,-12x +6 x >10,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)4.已知函数f (x )=ln x ,g (x )=lg x ,h (x )=log 3x ,直线y =a (a <0)与这三个函数的交点的横坐标分别是x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 2<x 3<x 1B .x 1<x 3<x 2C .x 1<x 2<x 3D .x 3<x 2<x 15.设函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,log 12(-x ), x <0,若f (a )>f (-a ),则实数a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )=log 12(x 2-ax +3a )在区间[2,+∞)上是减函数,则实数a 的取值范围是( ) A .(-∞,4] B .(-∞,4) C .(-4,4] D .[-4,4]7.函数f (x )=2|x -1|的图象是( ) 8.当0<x ≤12时,4x <log a x ,则a 的取值范围是( ) A .(0,22) B .(22,1) C .(1,2) D .(2,2) 9.化简416x 8y 4(x <0,y <0)得( )10.方程4x -2x +1-3=0的解是________.11.计算(log 32+log 92)·(log 43+log 83)=12.函数y =log 2|x +1|的单调递减区间为________,单调递增区间为________.13.指数函数y =(a 2-1)x 在定义域内是减函数,则a 的取值范围是________.14.函数f (x )=(13)-x 2-4x +3的单调递减区间为________,值域为________. 15.已知f (x )=|2x -1|,(1)求f (x )的单调区间;(2)比较f (x +1)与f (x )的大小;16.若直线y=2a与函数y=|a x-1|(a>0,a≠1)的图象有两个公共点,求实数a的取值范围.17.已知函数f(x)=log a(2-ax),是否存在实数a,使函数f(x)在[0,1]上是关于x的减函数,若存在,求a的取值范围.18.已知函数f(x)=log a(8-ax)(a>0,a≠1),若f(x)>1在区间[1,2]上恒成立,求实数a的取值范围.。
高考数学易错点第6讲:指数函数、对数函数、幂函数、二次函数
高考数学易错点第6讲:指数函数、对数函数、幂函数、二次函数易错知识1.对数函数、指数函数中容易忽略底数的取值范围;2.在对数式中,要注意真数是大于零的;3.函数的单调区间与在区间上单调是两个不同的概念;4.对于最高项系数含有参数的函数,要注意对参数的讨论;易错分析一、对数函数中忽视对底数的讨论致错1.已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是__________.【错解】已知f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (2)=log a (8-2a )>1,且8-2a >0,解得1<a <83.故实数a【错因】没有对底数a 进行分情况讨论,【正解】二、忽视对数式中真数大于零致错2.函数y =log 5(x 2+2x -3)的单调递增区间是______.【错解】令g (x )=x 2+2x -3,则函数g (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,再根据复合函数的单调性,可得函数y =log 5(x 2+2x -3)的单调递增区间是(-1,+∞).【错因】没有保证对数式中真数大于零,【正解】3.已知函数f (x )=log a (ax 2-2x +5)(a >0,且a≠1)a 的取值范围为()忽视对高次项系数的讨论致错使用换元法忽视新变量范围致错A.310(,∪[2,+∞)B.13,(1,2]C.19,13∪[2,+∞)D .19,13∪(1,2]【错解】选A当0<a <1时,由复合函数单调性知函数u =ax 2-2x +5且u >0恒成立,所以⎪⎩⎪⎨⎧≥<<3110aa ,解得0<a ≤13;当a >1时,由复合函数单调性知函数u =ax 2-2x +5u >0恒成立,所以⎪⎩⎪⎨⎧≤>2111a a ,解得a ≥2.综上,a 的取值范围为]310(,∪[2,+∞).【错因】没有保证对数式中真数大于零,【正解】三、忽视高次项系数的讨论致错4.函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为()A .-14B .0 C.14D .0或-14【错解】选A若f (x )=ax 2-x -1有且仅有一个零点,则方程ax 2-x -1=0有且仅有一个根,则Δ=1+4a =0,解得a =-14.【错因】没有对二次项系数a 分情况讨论,【正解】5.若函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是()-14,+∞ B.-14,+∞C.-14,D .-14,0【错解】选C函数f (x )的对称轴为直线x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.故选C.【错因】没有对二次项系数a 分情况讨论,【正解】四、指数函数中忽视对底数的讨论致错6.若函数f (x )=a22-+1x ax (a >0且a ≠1)在区间(1,3)上单调递增,则实数a 的取值范围为()A .(1,2)B .(0,1)C .(1,4]D .(-∞,4]【错解】选D221y x ax =-+∞根据复合函数的单调性可知,f (x )∞f (x )在(1,3)上单调递增,所以14≤a,解得a ≤4.所以a 的取值范围为(-∞,4].【错因】没有对底数a 进行分情况讨论,【正解】五、幂函数中忽视定义域致错7.已知幂函数f (x )=x-12,若f (a +1)<f (10-2a ),则a 的取值范围为________.【错解】∵f (x )=x -12=1x(x >0),且在(0,+∞)上是减函数,∴aa 2101->+,解得3<a .答案:(3,+∞).【错因】没有考虑函数的定义域,【正解】六、使用换元法时没有注意注意新元的取值范围致错8.(注意新元的取值范围)已知函数y =4x -3·2x +3,若其值域为[1,7],则x 可能的取值范围是()A .[2,4]B .(-∞,0]C .(0,1]∪[2,4]D .(-∞,0]∪[1,2]【错解】选D令t =2x ,则y =t 2-3t +3+34,其图象的对称轴为直线t =32.当x ∈[2,4]时,t ∈[4,16],此时y ∈[7,211],不满足题意;当x ∈(-∞,0]时,t ∈(-∞,1],此时y ∈[1,3),不满足题意;当x ∈(0,1]∪[2,4]时,t ∈(-∞,2]∪[4,16],此时y ∈34,1∪[7,211],不满足题意;当x ∈(-∞,0]∪[1,2]时,t ∈(-∞,1]∪[2,4],此时y ∈[1,7],满足题意.故选D.【错因】没有考虑新元t 的取值范围,因为2x >0,所以t >0。
高中数学解题方法系列④——指数函数与对数函数的综合应用问题
解题方法系列④——指数函数与对数函数的综合应用问题 素养解读:1.指数、对数函数关系(反函数)的应用利用互为反函数的两个函数的性质转化问题求解,常用性质有: (1)互为反函数的两个函数的图象关于直线y =x 对称. (2)反函数的定义域和值域分别是原函数的值域和定义域.(3)若函数y =f (x )图象上有一点(a ,b ),则(b ,a )必在其反函数的图象上;反之也成立.2.与指数、对数函数有关的恒成立问题与对数型函数有关的恒成立问题多与其定义域和值域有关.对于函数y =log a f (x ),若定义域为R (即对任意x 都有意义),则f (x )>0在R 上恒成立;若函数y =log a f (x )的值域为R ,则函数f (x )能取所有正实数.【典例1】 (2020·成都七中月考)设点P 在曲线y =12e x 上,点Q 在曲线y =ln(2x )上,则|PQ |的最小值为( )A .1-ln2B .2(1-ln2)C .1+ln2D .2(1+ln2)[切入点] 确定函数y =12e x 与y =ln(2x )的内在联系. [关键点] 两函数互为反函数,其图象关于直线y =x 对称.[规范解答] 根据函数y =12e x 和函数y =ln(2x )的图象可知两函数图象关于直线y =x 对称,故要求|PQ |的最小值可转化为求与直线y =x 平行且与两曲线相切的直线间的距离,设曲线y =12e x 上的切点为A (m ,n ),则A 到直线y =x 的距离的2倍即所求最小值.因为y ′=⎝ ⎛⎭⎪⎫12e x ′=12e x ,则12e m =1,所以m =ln2,所以切点A 的坐标为(ln2,1),切点到直线y =x 的距离为d =|ln2-1|2=1-ln22,所以2d =2(1-ln2).故选B.[答案] B利用互为反函数的两图象关于直线y =x 对称,转化为某一函数的问题,可以进行求值计算,要注意灵活应用.【典例2】 已知∀x ∈⎝ ⎛⎭⎪⎫0,13,8x ≤log a x +1恒成立,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,23 B .⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎭⎪⎫13,1 D .⎣⎢⎡⎭⎪⎫12,1[切入点] 转化为函数y =8x 与y =log a x +1的图象问题.[关键点] 准确作出函数图象,根据图象的位置变化确定a 的范围. [规范解答] 令f (x )=8x ,g (x )=log a x +1,由x ∈⎝ ⎛⎭⎪⎫0,13时,f (x )≤g (x )恒成立知,x ∈⎝ ⎛⎭⎪⎫0,13时,f (x )的图象一定在g (x )的图象的下方,作出函数y =f (x )和y =g (x )的大致图象,如图所示.由图可知⎩⎨⎧0<a <1,log a 13+1≥813,解得13≤a <1.故选C.[答案] C指数函数与对数函数的定义域和值域是解决这类问题的基础.指数函数的图象经过定点(0,1),且图象总在x 轴的上方;对数函数的图象经过定点(1,0),且图象总在y 轴的右侧.与其相关的恒成立问题多转化为最值问题或函数的图象问题.1.(2019·河南新乡第二次模拟)已知函数f (x )=log 3(9x +1)+mx 是偶函数,则不等式f (x )+4x <log 32的解集为( )A .(0,+∞)B .(1,+∞)C .(-∞,0)D .(-∞,1)[解析] 若f (x )是偶函数,则f (-x )=f (x )恒成立,即log 3(9-x +1)-mx =log 3(9x +1)+mx ,于是2mx =log 3(9-x+1)-log 3(9x+1)=log 3⎝ ⎛⎭⎪⎫9x +19x -log 3(9x +1)=-2x ,即2mx =-2x 对x ∈R 恒成立,故m =-1.令g (x )=f (x )+4x =log 3(9x +1)+3x ,易知g (x )在R 上单调递增,g (0)=log 32,所以不等式f (x )+4x <log 32的解集为(-∞,0).故选C.[答案] C2.(2019·山东济南模拟)若log 2x =log 3y =log 5z <-1,则( ) A .2x <3y <5z B .5z <3y <2x C .3y <2x <5zD .5z <2x <3y[解析] ∵log 2x =log 3y =log 5z <-1,∴设k =log 2x =log 3y =log 5z ,则k <-1,x =2k ,y =3k ,z =5k ,则2x =2k +1,3y =3k +1,5z =5k +1.设函数f (t )=t k +1,∵k <-1,∴k +1<0,∴f (t )在t ∈(0,+∞)上单调递减,∴f (5)<f (3)<f (2),即5k +1<3k +1<2k +1,∴5z <3y <2x .故选B.[答案] B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●歼灭难点训练
一、选择题
1.(★★★★)定义在(-∞,+∞)上的任意函数 f(x)都可以表示成一个奇函数 g(x)和一个偶函数 h(x)之和,
如果 f(x)=lg(10x+1),其中 x∈(-∞,+∞),那么( ) A.g(x)=x,h(x)=lg(10x+10-x+2)
1
1
B.g(x)= [lg(10x+1)+x],h(x)= [lg(10x+1)-x]
难点 9 指数函数、对数函数问题
指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性
质并会用它们去解决某些简单的实际问题.
●难点磁场
1 x
1
(★★★★★)设 f(x)=log2
,F(x)=
+f(x).
1 x
2x
(1)试判断函数 f(x)的单调性,并用函数单调性定义,给出证明;
2
10
a
(2)∵函数 y=2000( )x(0<a<10)递减,∴对每个自然数 n,有 bn>bn+1>bn+2.则以 bn,bn+1,bn+2 为边长能构成
10 aa
一个三角形的充要条件是 bn+2+bn+1>bn,即( )2+( )-1>0,解得 a<-5(1+ 2 )或 a>5( 5 -1).∴5( 5 10 10
3log8 x1
x1
,
OD 的斜率:k2= log2 x2 3log8 x2 ,由此可知:k1=k2,即 O、C、D 在同一条直线上.
x2
x2
1
(2) 解 : 由 BC 平 行 于 x 轴 知 : log2x1=log8x2 即 : log2x1= log2x2, 代 入 x2log8x1=x1log8x2 得 :
因为 A、B 在过点 O 的直线上,所以 log8 x1 log8 x2 ,点 C、D 坐标分别为(x1,log2x1),(x2,log2x2),由于
x1
x2
log2x1= log8 x1 log8 2
= 3log8 x1,log2x2log8 x2 log8 2
3log8x2,所以 OC 的斜率:k1= log2 x1 x2
行线与函数 y=log2x 的图象交于 C、D 两点.
(1)证明:点 C、D 和原点 O 在同一条直线上;
(2)当 BC 平行于 x 轴时,求点 A 的坐标.
命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生
的分析能力和运算能力.属★★★★级题目.
知识依托:(1)证明三点共线的方法:kOC=kOD.
2
2
x
x
C.g(x)= ,h(x)=lg(10x+1)-
2
2
x
x
D.g(x)=- ,h(x)=lg(10x+1)+
2
2
2.(★★★★)当 a>1 时,函数 y=logax 和 y=(1-a)x 的图象只可能是( )
二、填空题
2 x
(x 0)
3.(★★★★★)已知函数 f(x)=
.则 f-
log2 (x) (2 x 0)
题目. 知识依托:指数函数、对数函数及数列、最值等知识. 错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口. 技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识
点去解决问题.
1
解:(1)由题意知:an=n+ ,∴bn=2000(
a
n1
) 2.
(2)若 f(x)的反函数为 f-1(x),证明:对任意的自然数 n(n≥3),都有 f-1(n)> n ; n 1
(3)若 F(x)的反函数 F-1(x),证明:方程 F-1(x)=0 有惟一解.
●案例探究
[例 1]已知过原点 O 的一条直线与函数 y=log8x 的图象交于 A、B 两点,分别过点 A、B 作 y 轴的平
bn=2000(
7
n1
) 2 ≥1 得:n≤20.8.∴n=20.
10
●锦囊妙计
本难点所涉及的问题以及解决的方法有:
(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵
活应用.
(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力.
(3)应用题目.此类题目要求考生具有较强的建模能力.
-1)<a<10.
(3)∵5( 5 -1)<a<10,∴a=7
∴bn=2000(
7
n1
) 2 .数列{bn}是一个递减的正数数列,对每个自然数 n≥2,Bn=bnBn-1.于是当 bn≥1 时,
10
Bn<Bn - 1, 当 bn<1 时 , Bn ≤ Bn - 1, 因 此 数 列 {Bn} 的 最 大 项 的 项 数 n 满 足 不 等 式 bn ≥ 1 且 bn+1<1, 由
(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得 A 点坐标.
错解分析:不易考虑运用方程思想去解决实际问题.
技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点 A 的坐标.
(1)证明:设点 A、B 的横坐标分别为 x1、x2,由题意知:x1>1,x2>1,则 A、B 纵坐标分别为 log8x1,log8x2.
3
x13log8x1=3x1log8x1,由于 x1>1 知 log8x1≠0,∴x13=3x1.又 x1>1,∴x1= 3 ,则点 A 的坐标为( 3 ,log8 3 ).
[例 2]在 xOy 平面上有一点列 P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,对每个自然数 n 点 Pn 位于函数
-1(x-1)=_________. 4.(★★★★★)如图,开始时,桶 1 中有 a L 水,t 分钟后剩余
a
y=2000( )x(0<a<1)的图象上,且点 Pn,点(n,0)与点(n+1,0)构成一个以 Pn 为顶点的等腰三角形.
10
(1)求点 Pn 的纵坐标 bn 的表达式; (2)若对于每个自然数 n,以 bn,bn+1,bn+2 为边长能构成一个三角形,求 a 的取值范围; (3)设 Cn=lg(bn)(n∈N*),若 a 取(2)中确定的范围内的最小整数,问数列{Cn}前多少项的和最大?试说明 理由. 命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的 综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级