河南省郑州市2016-2017学年上学期期末考试八年级数学试卷

合集下载

【期末试卷】郑州市协作区2015-2016学年八年级上期末数学试卷

【期末试卷】郑州市协作区2015-2016学年八年级上期末数学试卷

河南省郑州市协作区2015~2016学年度八年级上学期期末数学试卷一、选择题:每小题3分,共24分.1.9的平方根是()A.3 B.±3 C.﹣3 D.±2.下列命题中,是真命题的是()A.内错角相等B.如果,那么x=4C.一个角的补角大于这个角D.同位角相等,两直线平行3.在平面直角坐标系中,点P(﹣1,1)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示的意义可以是()A.数据的个数和方差 B.平均数和数据的个数C.数据的个数和平均数D.数据组的方差和平均数5.在△ABC中,∠A﹣∠B=35°,∠C=55°,则∠B等于()A.50°B.55°C.45°D.40°6.已知是二元一次方程组的解,则a﹣b的值为()A.3 B.2 C.1 D.﹣17.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R 应运动到()A.N处 B.P处C.Q处 D.M处8.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则CD的长为()A. B. C. D.二、填空题:每小题3分,共21分.9.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第象限.10.满足﹣的最小整数是.11.已知点A在第四象限,且点A到x轴的距离是3,到y轴的距离是5,则点A的坐标是.12.如图,在Rt△OAB中,OA=2,AB=1,OA在数轴上,点O与原点重合,以原点为圆心,线段OB长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是.13.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=.14.已知|a|=5,=7,且|a+b|=a+b,则a﹣b=.15.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA1=1,则OA2015的长为.三、解答题:共55分.16.计算:(1);(2)()().17.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?18.如图,有三个论断①∠1=∠2;②∠B=∠D;③∠A=∠C,请从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.19.郑州市开展了“中学生阳光体育运动”,小明和小亮在课外活动中,报名参加了短跑训练小组.在5次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.120.某酒店客房部有三人间普通客房、双人间普通客房,收费标准为:三人间150元/间,双人间140元/间,为吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1310元.(1)该旅游团住了三人间,双人间普通客房各住了多少间?(2)若双人间共住了x人,总费用为y元,写出y与x的函数关系式.21.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.22.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车距A地的距离y(km)与甲车行驶时间x(h)的函数图象.(1)求出图中m、a的值.(2)求出甲车在MN段距A地距离y(km)与甲车行驶时间x(h)的函数解析式,并写出相应的取值范围.(3)乙车从A地出发到B地结束,乙车行驶多长时间时,两车恰好相距55km.(请直接写出答案)河南省郑州市协作区2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题:每小题3分,共24分.1.9的平方根是()A.3 B.±3 C.﹣3 D.±【考点】平方根.【分析】根据开平方的意义,可得一个数的平方根.【解答】解:9的平方根是±3,故选:B.【点评】本题考查了平方根,乘方运算是解题关键.2.下列命题中,是真命题的是()A.内错角相等B.如果,那么x=4C.一个角的补角大于这个角D.同位角相等,两直线平行【考点】命题与定理.【分析】利用平行线的性质、一元一次方程的解法、补角的定义分别判断后即可确定正确的选项.【解答】解:A、两直线平行,内错角相等,故错误,为假命题;B、如果,那么x=,故错误,为假命题;C、一个角的补角不一定大于这个角,如120°的补角为60度,故错误,为假命题;D、同位角相等,两直线平行,正确,为真命题,故选D.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、一元一次方程的解法、补角的定义,难度不大.3.在平面直角坐标系中,点P(﹣1,1)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求出点的坐标,再根据各象限内点的坐标特征解答.【解答】解:点P(﹣1,1)关于x轴的对称点为(﹣1,﹣1),在第三象限.故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.在方差的计算公式s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2]中,数字10和20分别表示的意义可以是()A.数据的个数和方差 B.平均数和数据的个数C.数据的个数和平均数D.数据组的方差和平均数【考点】方差.【分析】根据方差的计算公式:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,可以知道样本的容量和平均数.【解答】解:由于方差s2=[(x1﹣20)2+(x2﹣20)2+…+(x10﹣20)2],故可知数字10和20分别表示的意义是数据的个数和平均数.故选C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].5.在△ABC中,∠A﹣∠B=35°,∠C=55°,则∠B等于()A.50°B.55°C.45°D.40°【考点】三角形内角和定理.【专题】探究型.【分析】先根据∠C=55°,求出∠A+∠B的度数,再根据∠A﹣∠B=35°求出∠B的度数即可.【解答】解:∵△ABC中,∠C=55°,∴∠A+∠B=180°﹣∠C=180°﹣55°=125°①,∵∠A﹣∠B=35°②,∴①﹣②得,2∠B=90°,解得∠B=45°.故选C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.6.已知是二元一次方程组的解,则a﹣b的值为()A.3 B.2 C.1 D.﹣1【考点】二元一次方程组的解.【分析】把x=2.y=1代入方程组得出方程组求出方程组的解即可.【解答】解:把x=2.y=1代入方程组得:①+②得:4a=8,解得:a=2,把a=2代入①得:8+b=7,解得:b=﹣1,a﹣b=2﹣(﹣1)=3,故选A.【点评】本题考查了二元一次方程组的解,解二元一次方程组的应用,解此题的关键是能得出关于a、b的方程组,难度适中.7.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R 应运动到()A.N处 B.P处C.Q处 D.M处【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:当点R运动到PQ上时,△MNR的面积y达到最大,且保持一段时间不变;到Q点以后,面积y开始减小;故当x=9时,点R应运动到Q处.故选C.【点评】本题考查动点问题的函数图象问题,有一定难度,注意要仔细分析.8.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则CD的长为()A. B. C. D.【考点】勾股定理;三角形的面积.【分析】利用勾股定理求得相关线段的长度,然后由面积法求得BD的长度,再利用勾股定理即可求出CD的长.【解答】解:如图,由勾股定理得AC==.∵BC×2=AC•BD,即×2×2=וBD,∴BD=,∴CD==,故选:A.【点评】本题考查了勾股定理,三角形的面积.利用面积法求得线段BD的长度是解题的关键.二、填空题:每小题3分,共21分.9.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第三象限.【考点】一次函数图象与系数的关系.【分析】将A(1,0)和B(0,2)分别代入一次函数解析式y=kx+b中,得到关于k与b的二元一次方程组,求出方程组的解得到k与b的值,确定出一次函数解析式,利用一次函数的性质即可得到一次函数图象不经过第三象限.【解答】解:将A(1,0)和B(0,2)代入一次函数y=kx+b中得:,解得:,∴一次函数解析式为y=﹣2x+2不经过第三象限.故答案为:三.【点评】此题考查了利用待定系数法求一次函数解析式,以及一次函数的性质,灵活运用待定系数法是解本题的关键.10.满足﹣的最小整数是﹣1.【考点】估算无理数的大小.【分析】根据1<,可得﹣<﹣1,可得答案.【解答】解:满足﹣的最小整数是﹣1,故答案为:﹣1.【点评】本题考查了估算无理数的大小,利用1<是解题关键.11.已知点A在第四象限,且点A到x轴的距离是3,到y轴的距离是5,则点A的坐标是(5,﹣3).【考点】点的坐标.【分析】根据第四象限内的点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标,可得答案.【解答】解:点A在第四象限,且点A到x轴的距离是3,到y轴的距离是5,则点A的坐标是(5,﹣3),故答案为:(5,﹣3).【点评】本题考查了点的坐标,第四象限内的点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标.12.如图,在Rt△OAB中,OA=2,AB=1,OA在数轴上,点O与原点重合,以原点为圆心,线段OB长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是.【考点】实数与数轴;勾股定理.【分析】根据勾股定理,可得OB的长,根据圆的性质,可得答案.【解答】解:由勾股定理,得OB===,由圆的半径相等,得这个点表示的实数是.故答案为:.【点评】本题考查了实数与数轴,利用勾股定理得出圆的半径是解题关键.13.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=40°.【考点】平行线的性质;三角形内角和定理.【专题】计算题.【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠4,然后根据对顶角相等解答.【解答】解:∵l1∥l2,∴∠3=∠1=85°,∴∠4=∠3﹣45°=85°﹣45°=40°,∴∠2=∠4=40°.故答案为:40°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.14.已知|a|=5,=7,且|a+b|=a+b,则a﹣b=﹣2或﹣12.【考点】算术平方根.【专题】计算题.【分析】先根据条件求得a=5,b=7或a=﹣5,b=7,再分别求当a=5,b=7时,当a=﹣5,b=7时a ﹣b的值即可.【解答】解:∵|a|=5,=7,∴a=±5,b=±7;又∵|a+b|=a+b,∴a=5,b=7,或a=﹣5,b=7.当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7,a﹣b=﹣12.故答案为:﹣2或﹣12.【点评】本题主要考查了绝对值和二次根式的化简.我们知道,负数的绝对值等于它的相反数,非负数的绝对值等于它本身.15.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA1=1,则OA2015的长为22014.【考点】一次函数图象上点的坐标特征;等腰直角三角形.【专题】压轴题;规律型.【分析】根据规律得出OA1=1,OA2=2,OA3=4,OA4=8,所以可得OA n=2n﹣1,进而解答即可.【解答】解:因为OA1=1,∴OA2=2,OA3=4,OA4=8,由此得出OA n=2n﹣1,所以OA2015=22014,故答案为:22014.【点评】此题考查一次函数图象上点的坐标,关键是根据规律得出OA n=2n﹣1进行解答.三、解答题:共55分.16.计算:(1);(2)()().【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=﹣(6﹣3)=﹣4+6=6﹣3;(2)原式=()2﹣()2+4=2﹣3+4=4﹣1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?【考点】勾股定理的应用.【分析】(1)由题意得a=24米,c=25米,根据勾股定理a2+b2=c2,可求出梯子底端离墙有多远.(2)由题意得此时a=20米,c=25米,由勾股定理可得出此时的b,继而能和(1)的b进行比较.【解答】解:(1)由题意得此时a=24米,c=25米,根据a2+b2=c2,∴可求b=7米;(2)不是.设滑动后梯子的底端到墙的距离为b米,得方程,b2+(24﹣4)2=252,解得b=15,所以梯子向后滑动了8米.综合得:如果梯子的顶端下滑了4米,那么梯子的底部在水平方向不是滑4米.【点评】本题考查勾股定理的应用,有一定难度,注意两问线段的变化.18.如图,有三个论断①∠1=∠2;②∠B=∠D;③∠A=∠C,请从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.【考点】命题与定理.【专题】证明题;开放型.【分析】根据题意,请从中任选两个作为条件,另一个作为结论构成一个命题,根据平行线的判定和性质及对顶角相等进行证明.【解答】已知:∠B=∠D,∠A=∠C.求证:∠1=∠2.证明:∵∠A=∠C,∴AB∥CD.∴∠B=∠BFC.∵∠B=∠D,∴∠BFC=∠D.∴DE∥BF.∴∠DMN=∠BNM.∵∠1=∠DMN,∠2=∠BNM,∴∠1=∠2.【点评】证明的一般步骤:写出已知,求证,画出图形,再证明.19.郑州市开展了“中学生阳光体育运动”,小明和小亮在课外活动中,报名参加了短跑训练小组.在5次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.1【考点】折线统计图;算术平均数;极差;方差.【分析】(1)根据平均数、方差的定义及算法,即可解答;(2)根据方差的意义和各自的得分分别进行分析即可.【解答】解:(1)小明的平均数是:(13.3+13.4+13.3+13.2+13.3)=13.3;极差是:13.4﹣13.2=0.2;小亮的平均数是:(13.2+13.4+13.1+13.5+13.3)=13.3;方差是:[(13.2﹣13.3)2+(13.4﹣13.3)2+(13.1﹣13.3)2+(13.5﹣13.3)2+(13.3﹣13.3)2]=0.02;(2)小明同学的成绩较为稳定,但是他的最高成绩没有小亮高,爆发力不够,有待提高.而小亮同学爆发力还行,但是成绩不稳定,需加强.【点评】此题考查了读折线统计图的能力以及平均数,方差的意义.平均数平均数表示一组数据的平均程度;方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.20.某酒店客房部有三人间普通客房、双人间普通客房,收费标准为:三人间150元/间,双人间140元/间,为吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1310元.(1)该旅游团住了三人间,双人间普通客房各住了多少间?(2)若双人间共住了x人,总费用为y元,写出y与x的函数关系式.【考点】一次函数的应用;二元一次方程组的应用.【专题】应用题;一次函数及其应用.【分析】(1)设三人间普通房和双人间普通房分别住了a间、b间,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意确定出y与x的函数解析式即可.【解答】20.(1)设三人间普通房和双人间普通房分别住了a间、b间,根据题意得,,解得:,则三人间普通房和双人间普通房分别住了10间、8间;(2)根据题意得:y=140×0.5×+150×0.5×=10x+1150.【点评】此题考查了一次函数的应用,以及二元一次方程组的应用,弄清题意是解本题的关键.21.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.【考点】一次函数综合题.【专题】综合题.【分析】易找到点B关于第一、三象限角平分线的对称点B′的坐标为(3,5),再结合已知的点A 的坐标,我们不难猜想点C′坐标是(5,﹣2),然后找到点C′,可以发现CC′被第一、三象限角平分线垂直且平分,由此可以推想到坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(b,a),即它们纵、横坐标互换位置.【解答】解:(1)如图:B′(3,5),C′(5,﹣2);(2)(b,a);(3)由(2)得,D(1,﹣3)关于直线l的对称点D′的坐标为(﹣3,1),连接D′E交直线l于点Q,此时点Q到D、E两点的距离之和最小.设过D′(﹣3,1)、E(﹣1,﹣4)直线的解析式为y=kx+b,则∴∴直线D′E的解析式为:y=﹣x﹣由得∴所求Q点的坐标为(,).【点评】本题的解答经历了实验﹣﹣猜想﹣﹣验证﹣﹣推广的思维过程,这也是我们认识事物规律的一般方法,主要考查一次函数的性质和图象,中等难度.22.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车距A地的距离y(km)与甲车行驶时间x(h)的函数图象.(1)求出图中m、a的值.(2)求出甲车在MN段距A地距离y(km)与甲车行驶时间x(h)的函数解析式,并写出相应的取值范围.(3)乙车从A地出发到B地结束,乙车行驶多长时间时,两车恰好相距55km.(请直接写出答案)【考点】一次函数的应用.【分析】(1)根据图象和甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,可以求得相应的m、a的值;(2)根据题意可以设出甲车在MN段距A地距离y(km)与甲车行驶时间x(h)的函数解析式,由函数图象可以得到点(1.5,a),(3.5,120)在此函数图象上,从而可以求得相应的函数解析式并可以写出相应的取值范围;(3)根据函数图象可以得到乙行驶的路程对应的函数解析式,然后让两个函数解析式作差,它们的差的绝对值等于55,从而本题得以解决.【解答】解:(1)由题意,得m=1.5﹣0.5=1.∵120÷(3.5﹣0.5)=40,∴a=40×1=40.即m=1,a=40;(2)当1.5<x≤7时,设y与x之间的函数关系式为y=kx+b,由题意,得,解得.故当1.5<x≤7时,设y与x之间的函数关系式为:y=40x﹣20(1.5<x≤7);(3)设乙行驶的路程的函数表达式是:y=mx+n,由题意,得解得,则y=80x﹣160,|40x﹣20﹣(80x﹣160)|=55,解得,x=或x=∵,∴乙车从A地出发到B地结束,乙车行驶时或时时,两车恰好相距55km.【点评】本题考查一次函数的应用,解题的关键是明确题意找出所求问题需要的条件.。

河南省郑州市第二中学2016_2017学年八年级数学上学期期中试题新人教版(附答案)

河南省郑州市第二中学2016_2017学年八年级数学上学期期中试题新人教版(附答案)

CBA河南省郑州市第二中学2016-2017学年八年级数学上学期期中试题一、选择题(本大题共8小题,共24分) 1. 下列说法正确的是( )(A )7是49的算术平方根,即749±= (B )7是2)7(-的平方根,即7)7(2=-(C )7±是49的平方根,即749=± (D )7±是49的平方根,即749±=2. 如图,在Rt△ABC 中,∠B =90°,以AC 为直径的圆恰好过点B .若AB =8,BC =6,则阴影部分的面积是( )A .100π24-B .100π48-C .25π24-D .25π48-3.△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定△ABC 为直角三角形的是( )A .∠A +∠B =∠C B .∠A ∶∠B ∶∠C =1∶2∶3 C .222a cb =- D .a ∶b ∶c =3∶4∶64.已知直角三角形两边的长分别为5、12,则第三边的长为( ) A.13 B.60 C.17 D.131195.a 、b 在数轴上的位置如图所示,那么化简2a b a --的 结果是( )(A )b a -2 (B )b (C )b - (D )b a +-2 6.下列运算中,错误的有 ( ) ①1251144251=;②4)4(2±=-;③22222-=-=-;④214141161+=+ (A )1个 (B)2个 (C )3个 (D )4个7.一次函数b kx y +=的图象如图2所示,当y <0时, x 的取值范围是( )A.x <0B.x >0C.x <2D.x >28.关于x 的一次函数y=kx+k 2+1的图象可能正确的是( )A. B. C. D.二、填空题(本大题共7小题,共21分) 9.2)81(-的算术平方根是 ,271的立方根是 ,52绝对值是 . 10.在一次函数32+=x y 中,y 随x 的增大而(填“增大”或“减小”), 当50≤≤x 时,y 的最小值为.11.已知正比例函数x k y )1(-=,函数值y 随自变量x 的值增大而减小,那么k 的取值范围是 .12.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计) 范围为____________. 13.已知数轴上点A 表示的数是2-,点B 表示的数是1-,那么数轴上到点A的距离与到点B 的距离相等的另一点C 表示 的数是 .14.如图,1l 表示某产品一天的销售收入与销售量的关系;2l 表示该产品一天的销售成本与销售量的关系。

XXX版八年级上册数学期末考试试题及答案

XXX版八年级上册数学期末考试试题及答案

XXX版八年级上册数学期末考试试题及答案XXX版八年级上册数学期末考试试卷一、选择题(本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(4分)4的平方根是()A。

±2 B。

-2 C。

2 D。

162.(4分)在实数2.3中,最大的是()A。

2 B。

3 C。

D.3.(4分)如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A。

点A与点D B。

点B与点D C。

点B与点C D。

点C 与点D4.(4分)“I am a good student.”这句话中,字母“a”出现的频率是()A。

2 B。

C。

D.5.(4分)下列计算正确的是()A。

33 = 9 B。

(a-b)2 = a2-b2 C。

(a3)4 = a12 D。

a2·a3 = a66.(4分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A。

17 B。

16 C。

8 D。

47.(4分)因式分解x2y-4y的结果是()A。

y(x2-4) B。

y(x-2)2 C。

y(x+4)(x-4) D。

y(x+2)(x-2)8.(4分)下列说法中正确的个数有()①是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a。

b都是单项式;⑤-3x2y+4x-1是关于x。

y的三次三项式,常数项是-1.A。

2个 B。

3个 C。

4个 D。

5个9.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A。

a=3,b=3,c=4 B。

a:b:c=2:3:4 C。

∠B=50°,∠C=80°D。

∠A:∠B:∠C=1:1:210.(4分)国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时。

XXX和XXX 相约从成都坐高铁到西安旅游。

如图,XXX家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,XXX家(记作C)在XXX的方向且相距3000米,则XXX家与XXX家的距离为()A。

2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版

2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版

2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。

1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。

5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。

6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。

7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。

8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。

10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。

11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。

在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。

河南省郑州市2020-2021学年八年级上学期期末数学试卷含答案

河南省郑州市2020-2021学年八年级上学期期末数学试卷含答案

2020-2021学年河南省郑州市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1下列各数中,是无理数的是()A.0B.πC.D.3.14159262如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC 修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了()A.2米B.4米C.6米D.8米3下列说法正确的是()A.若点A(3,﹣1),则点A到x轴的距离为3B.平行于y轴的直线上所有点的纵坐标都相同C.(﹣2,2)与(2,﹣2)表示两个不同的点D.若点Q(a,b)在x轴上,则a=04列方程组解古算题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”题目大意是:几个人共同购买一件物品,每人出8钱,余3钱;每人出7钱,缺4钱.设参与共同购物的有x个人,物品价值y钱,可列方程组为()A.B.C.D.5下列问题中,两个变量之间是正比例函数关系的是()A.汽车以80km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系B.圆的面积y(cm2)与它的半径x(cm)之间的关系C.某水池有水15m3,我打开进水管进水,进水速度5m3/h,xh后水池有水ym3D.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系6在下列各图象中,y不是x的函数的是()A.B.C.D.7如图,在同一直角坐标系中作出一次函数y=k1x与y=k2x+b的图象,则二元一次方程组的解是()A.B.C.D.8如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是()A.6B.8C.9D.159如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)10结合学习函数的经验,小红在平面直角坐标系中画出了函数y=的图象,如图所示根据图象,小红得到了该函数四条结论,其中正确的是()A.y随x的增大而减小B.当x=﹣1时,y有最大值C.当x=2与x=﹣2时,函数值相等D.当x>0时,0<y<1二.填空题(共5小题,每小题3分,共15分)11“你喜欢数学吗?”这句话命题.(填“是”或者“不是”)12请写出一个大于且小于的整数:.13如图,所有的四边形都是正方形,所有的三角形都是直角三角形.则下列关于面积的等式:①S A=S B+S C;②S A=S F+S G+S B;③S B+S C=S D+S E+S F+S G,其中成立的有(写出序号即可).14已知m、n满足方程组,则m+n的值是.15如图所示,把长方形AOBC放在直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点C的坐标为(2,1),将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD交x轴于点E,则点D的坐标为.三、解答题(本大题共7小题,共75分)16计算:+(﹣2)2﹣÷.17为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:平均分中位数方差合格率优秀率甲 6.86 3.7690%30%乙7.27.5 1.9680%20%如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.18小明说,在一次函数y=kx+b中,x每增加1,kx增加了k,b没变,因此,y也增加了k.而如图所示的一次函数图象中从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k的值是2.(1)小明这种确定k的方法有道理吗?说说你的认识;(2)已知一次函数的图象经过(0,3)、(1,1)两点,下面运用两种方法求了这个一次函数的表达式,请你将过程补充完整.方法一:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,∴b=.∵x从0变成1时,增加了1,函数值从3变为1,增加了﹣2,∴k=.∴该一次函数的表达式为.方法二:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,把(0,3)、(1,1)代入y=kx+b得,解得.∴该一次函数的表达式为.(3)像(2)中的方法二,先设出函数的表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做.19.古埃及人曾用下面的方法得到直角,如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)伤照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)20在平面直角坐标系中.(1)如何确定一个给定的点的坐标?请你举例说明.(2)某个图形上各点的纵坐标不变,而横坐标变为原来的相反数,此图形却未发生任何改变,你认为可能吗?请举例说明.21. 2021年郑州市中招体育考试统考项目为:长跑、立定跳远、足球运球,选考项目(50米跑或1分钟跳绳).为了备考练习,很多同学准备重新购买足球、跳绳.(1)某校九(1)班有部分同学准备统一购买新的足球和跳绳.经班长统计共需要购买足球的有12名同学,需要购买跳绳的有10名同学.请你根据如图中班长和售货员阿姨的对话信息,分别求出足球和跳绳的单价.(2)由于足球和跳绳的需求量增大,该体育用品商店老板计划再次购进足球a个和跳绳b根(其中a>15),恰好用了1800元,其中足球每个进价为80元,跳绳每根的进价为15元,则有哪几种购进方案?(3)假如(2)中所购进的足球和跳绳全部售出,且单价与(1)中的售价相同,为了使销售获利最多,应选择哪种购进方案?22一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.2020-2021学年河南省郑州市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1下列各数中,是无理数的是()A.0B.πC.D.3.1415926【考点】无理数.【专题】实数;数感.【答案】B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,属于有理数,选项不合题意;B、π是无理数,选项符合题意;C、是分数,属于有理数,选项不合题意;D、3.1415926是有限小数,属于有理数,选项不合题意.故选:B.2如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC 修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了()A.2米B.4米C.6米D.8米【考点】勾股定理的应用.【专题】等腰三角形与直角三角形;应用意识.【答案】B【分析】根据勾股定理可得答案.【解答】解:由勾股定理,得捷径AC==10(m),多走了8+6﹣10=4(m).故选:B.3下列说法正确的是()A.若点A(3,﹣1),则点A到x轴的距离为3B.平行于y轴的直线上所有点的纵坐标都相同C.(﹣2,2)与(2,﹣2)表示两个不同的点D.若点Q(a,b)在x轴上,则a=0【考点】坐标与图形性质.【专题】平面直角坐标系;应用意识.【答案】C【分析】根据坐标系中点的位置特征一一判断即可.【解答】解:A、若点A(3,﹣1),则点A到x轴的距离应该是1,本选项错误,不符合题意.B、平行于y轴的直线上所有点的纵坐标都相同,错误,应该是横坐标相同,本选项不符合题意.C、(﹣2,2)与(2,﹣2)表示两个不同的点,正确,本选项符合题意.D、若点Q(a,b)在x轴上,应该是b=0,本选项错误,不符合题意.故选:C.4列方程组解古算题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”题目大意是:几个人共同购买一件物品,每人出8钱,余3钱;每人出7钱,缺4钱.设参与共同购物的有x个人,物品价值y钱,可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【答案】A【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解:设参与共同购物的有x个人,物品价值y钱,可列方程组为,故选:A.5下列问题中,两个变量之间是正比例函数关系的是()A.汽车以80km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系B.圆的面积y(cm2)与它的半径x(cm)之间的关系C.某水池有水15m3,我打开进水管进水,进水速度5m3/h,xh后水池有水ym3D.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系【考点】正比例函数的定义.【专题】一次函数及其应用;应用意识.【答案】见试题解答内容【分析】根据正比例函数的定义逐个判断即可求解.【解答】解:选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:y=πx2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A.6在下列各图象中,y不是x的函数的是()A.B.C.D.【考点】函数的概念.【专题】常规题型;数据分析观念.【答案】C【分析】由函数的概念可知,在变化过程两个变量x、y,如果给x一个值,y都有唯一确定的值与其对应,那么y是x的函数;接下来对题目中给出的四个选项的图象进行判断,即可得到y不是x的函数的图象.【解答】解:选项A、B、D,对于每一个x,都有唯一的y值与其对应,故选项A、B、D是函数图象,选项C,对于一个x有多个y与之对应,故y不是x的函数的图象.故选:C.7如图,在同一直角坐标系中作出一次函数y=k1x与y=k2x+b的图象,则二元一次方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】一次函数及其应用;模型思想.【答案】B【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【解答】解:∵一次函数y1=k1x与y=k2x+b的图象的交点坐标为(1,3),∴二元一次方程组的解为.故选:B.8如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是()A.6B.8C.9D.15【考点】平面展开﹣最短路径问题.【专题】等腰三角形与直角三角形;运算能力.【答案】D【分析】此类题目只需要将其展开便可直观的得出解题思路.将台阶展开得到的是一个矩形,蚂蚁要从B点到A点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.【解答】解:将台阶展开,如图,因为AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以蚂蚁爬行的最短线路为15.答:蚂蚁爬行的最短线路为15.故选:D.9如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【考点】规律型:点的坐标;坐标与图形变化﹣对称.【专题】平面直角坐标系;平移、旋转与对称;几何直观.【答案】C【分析】观察图形可知每四次对称为一个循环组依次循环,用2021除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.【解答】解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.10结合学习函数的经验,小红在平面直角坐标系中画出了函数y=的图象,如图所示根据图象,小红得到了该函数四条结论,其中正确的是()A.y随x的增大而减小B.当x=﹣1时,y有最大值C.当x=2与x=﹣2时,函数值相等D.当x>0时,0<y<1【考点】函数值;函数的图象.【专题】函数及其图象;几何直观;运算能力.【答案】D【分析】根据函数的图象以及函数的解析式逐一判断即可.【解答】解:A.由图象可知,当x>﹣1时,y随x的增大而减小,故本选项不合题意;B.函数的自变量的取值范围为x≠﹣1,故本选项不合题意;C.当x=2时,函数值为;当x=﹣2时,函数值为1,故本选项不合题意;D.由图象可知,当x>0时,0<y<1,故本选项符合题意.故选:D.二.填空题(共5小题,每小题3分,共15分)11“你喜欢数学吗?”这句话命题.(填“是”或者“不是”)【考点】命题与定理.【专题】线段、角、相交线与平行线;数据分析观念.【答案】不是.【分析】根据命题的定义确定答案即可.【解答】解:“你喜欢数学吗?”这句话没有对事件作出判断,是疑问句,不是命题,故答案为:不是.12请写出一个大于且小于的整数:.【考点】估算无理数的大小.【专题】实数;数感.【答案】见试题解答内容【分析】根据无理数的估算,找出在与的整数,任选一个即可.【解答】解:因为,,所以大于且小于的整数有2,3.故答案为:2(或3).13如图,所有的四边形都是正方形,所有的三角形都是直角三角形.则下列关于面积的等式:①S A=S B+S C;②S A=S F+S G+S B;③S B+S C=S D+S E+S F+S G,其中成立的有(写出序号即可).【考点】勾股定理.【专题】等腰三角形与直角三角形;矩形菱形正方形;推理能力.【答案】见试题解答内容【分析】由勾股定理和正方形的性质得S A=S B+S C,S B=S D+S E,S C=S F+S G,即可得出结论.【解答】解:由勾股定理和正方形的性质可知:S A=S B+S C,S B=S D+S E,S C=S F+S G,∴S A=S B+S C=S F+S G+S B,S B+S C=S D+S E+S F+S G,故答案为:①②③.14已知m、n满足方程组,则m+n的值是.【考点】二元一次方程组的解;解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【答案】4.【分析】把方程组中的两个方程相加可得4m+4n=16,进而得出m+n的值.【解答】解:,①+②,得4m+4n=16,即4(m+n)=16,所以m+n=4.故答案为:4.15如图所示,把长方形AOBC放在直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点C的坐标为(2,1),将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD交x轴于点E,则点D的坐标为.【考点】矩形的性质;坐标与图形变化﹣对称;翻折变换(折叠问题).【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】由“AAS”可证△AOE≌△BDE,可得AE=BE,OE=ED,由勾股定理可求BF的长,由面积法可求DH,即可求解.【解答】解:如图,过点D作DH⊥OB于H,∵四边形AOBC是矩形,点C的坐标为(2,1),∴OA=BC=1,AC=OB=2,∵将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,∴AD=AC=2,BD=BC=1,在△AOE和△BDE中,,∴△AOE≌△BDE(AAS),∴AE=BE,OE=ED,设AE=BE=x,则OE=2﹣x,∵OA2+OE2=AE2,∴12+(2﹣x)2=x2,解得x=,∴BE=,DE=OE=,∵S△DEB=×DE×BD=×BE×DH,∴DH=,∴BH===,∴OH=,∴点D(,﹣),故答案为:(,﹣).三、解答题(本大题共7小题,共75分)16计算:+(﹣2)2﹣÷.【考点】分母有理化;二次根式的混合运算.【专题】二次根式;运算能力.【答案】12.【分析】先把除法运算化为乘法运算,再利用二次根式的性质和乘法法则运算,然后合并即可.【解答】解:原式=+12﹣×=+12﹣=+12﹣=12.17为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:平均分中位数方差合格率优秀率甲 6.86 3.7690%30%乙7.27.5 1.9680%20%如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.【考点】折线统计图;中位数;方差.【专题】统计的应用;应用意识.【答案】见试题解答内容【分析】根据平均分,中位数,方差,合格率,优秀率分析即可.答案不唯一.【解答】解:从合格率以及优秀率来看应该选甲.从平均分,中位数,方差来看应该选乙.18小明说,在一次函数y=kx+b中,x每增加1,kx增加了k,b没变,因此,y也增加了k.而如图所示的一次函数图象中从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k的值是2.(1)小明这种确定k的方法有道理吗?说说你的认识;(2)已知一次函数的图象经过(0,3)、(1,1)两点,下面运用两种方法求了这个一次函数的表达式,请你将过程补充完整.方法一:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,∴b=.∵x从0变成1时,增加了1,函数值从3变为1,增加了﹣2,∴k=.∴该一次函数的表达式为.方法二:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,把(0,3)、(1,1)代入y=kx+b得,解得.∴该一次函数的表达式为.(3)像(2)中的方法二,先设出函数的表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做.【考点】一次函数的图象;一次函数的性质;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.【专题】一次函数及其应用;运算能力;应用意识.【答案】(1)见解答;(2)3,﹣2,y=﹣2x+3.,.y=﹣2x+3.(3)待定系数法.【分析】(1)利用待定系数法即可证得;(2)利用待定系数法和题目所述的方法求解即可.(3)待定系数法.【解答】解:(1)有道理,将x+1代入得:y2=k(x+1)+b,∴y2﹣y=k(x+1)+b﹣kx﹣b=k,∵y2﹣y=2,∴k=2;故小明这种确定k的方法有道理的;(2)方法一:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,∴b=3.∵x从0变成1时,增加了1,函数值从3变为1,增加了﹣2,∴k=﹣2.∴该一次函数的表达式为y=﹣2x+3.方法二:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,把(0,3)、(1,1)代入y=kx+b得,解得.∴该一次函数的表达式为y=﹣2x+3.故答案为3,﹣2,y=﹣2x+3.,.y=﹣2x+3.(3)先设出函数的表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法.故答案为待定系数法.19.古埃及人曾用下面的方法得到直角,如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)伤照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)【考点】勾股定理的逆定理.【专题】等腰三角形与直角三角形;应用意识.【答案】(1)理由见解答;(2)答图见解答.【分析】(1)根据勾股定理的逆定理进行证明即可;(2)根据勾股定理的逆定理,可用31个等距的结把一根绳子分成等长的30段,一个工匠同时握住绳子的第1个结和第31个结,两个助手分别握住第6个结和第18个结,拉紧绳子,就会得到一个直角三角形,其直角在第6个结处.【解答】解:(1)设相邻两个结点之间的距离为a,则此三角形三边的长分别为3a、4a、5a,∵(3a)2+(4a)2=(5a)2,∴以3a、4a、5a为边长的三角形是直角三角形;(2)如图所示:20在平面直角坐标系中.(1)如何确定一个给定的点的坐标?请你举例说明.(2)某个图形上各点的纵坐标不变,而横坐标变为原来的相反数,此图形却未发生任何改变,你认为可能吗?请举例说明.【考点】点的坐标.【专题】常规题型;几何直观.【答案】(1)在数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.(2)可能.例如本身关于y轴或轴对称图形.【分析】(1)根据在数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标即可确定.(2)由题意可知满足条件的有关于y轴对称的图形或轴对称图形.【解答】解:(1)在数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,如下图点A,横坐标对应5,中坐标对应3.故点A(5,3).由此确定一个点在直角坐标系上的坐标.(2)可能.例如,当图形关于y轴对称时,图形上各点纵坐标不变,横坐标变为原来的相反数,此时图形未改变,如上图△BCD.故答案为可能,例如本身关于y轴或轴对称图形.21. 2021年郑州市中招体育考试统考项目为:长跑、立定跳远、足球运球,选考项目(50米跑或1分钟跳绳).为了备考练习,很多同学准备重新购买足球、跳绳.(1)某校九(1)班有部分同学准备统一购买新的足球和跳绳.经班长统计共需要购买足球的有12名同学,需要购买跳绳的有10名同学.请你根据如图中班长和售货员阿姨的对话信息,分别求出足球和跳绳的单价.(2)由于足球和跳绳的需求量增大,该体育用品商店老板计划再次购进足球a个和跳绳b根(其中a>15),恰好用了1800元,其中足球每个进价为80元,跳绳每根的进价为15元,则有哪几种购进方案?(3)假如(2)中所购进的足球和跳绳全部售出,且单价与(1)中的售价相同,为了使销售获利最多,应选择哪种购进方案?【考点】列代数式;一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;运算能力;推理能力.【答案】见试题解答内容【分析】(1)设足球和跳绳的单价分别为x元、y元,由题意列出方程组,解方程组解可;(2)由题意得80a+15b=1800(a>15),当全买足球时,可买足球的数量为22.5,对a、b的值进行讨论得两种方案即可;(3)求出方案一利润和方案二利润,即可得出结论.【解答】解:(1)设足球和跳绳的单价分别为x元、y元,由题意得:,解得:,∴足球和跳绳的单价分别为100元、20元,答:足球和跳绳的单价分别为100元、20元;(2)由题意得:80a+15b=1800,(a>15),当全买足球时,可买足球的数量为:=22.5,∴15<a<22.5,当a=16时,b=(舍去);当a=17时,b=(舍去);当a=18时,b=24;当a=19时,b=(舍去);当a=20时,b=(舍去);当a=21时,b=8;当a=22时,b=(舍去);∴有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;答:有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;(3)方案一利润:(100﹣80)×18+(20﹣15)×24=480(元),方案二利润:(100﹣80)×21+(20﹣15)×8=460(元),∵480元>460元,∴选方案一,购进足球18个,跳绳24根.22一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.【考点】平行线的判定与性质.【专题】线段、角、相交线与平行线;等腰三角形与直角三角形;推理能力.【答案】见试题解答内容【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:当AC∥DE时,如图所示:则∠CAE=∠E=90°;当BC∥AD时,如图所示:则∠CAE=180°﹣∠C﹣∠DAE=180°﹣30°﹣45°=105°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠CAE=∠CAB+∠EAB=90°+60°=150°;综上所述:∠CAE的度数为90°或105°或150°.。

20162017学年度上学期期末八年级数学试题含答案

20162017学年度上学期期末八年级数学试题含答案

2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。

2016-2017东城区八年级上学期数学期末考试卷

2016-2017东城区八年级上学期数学期末考试卷

东城区2016—2017学年第一学期期末统一测试初二数学2017.1学校班级姓名考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1。

的相反数是A.B.C.D.2.用科学记数法表示0。

000 567正确的是A.B.C.D.3. 在下列图形中,对称轴最多的图形是A。

等腰直角三角形B。

等边三角形 C. 长方形D。

正方形4。

以下各式一定成立的是A.B.C.D.5 。

下列各式中,成立的是A.B.C.D.6. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B.C。

D.7. 若分式的值为正,则x的取值范围是A.B.C.D.且8. 如图,是等边三角形,,分别是,上的点,且,,相交于点,则∠BOE的度数为A。

30° B. 45°C。

60° D. 75°9。

某公司准备铺设一条长的道路,由于采用新技术,实际每天铺路的速度比原计划快10%,结果提前天完成任务.设原计划每天铺设道路,根据题意可列方程为A. B.C. D。

10.关于的方程的解为非负数,则的取值范围是A。

B。

C。

且D。

且二、填空题(本题共24分,每小题3分)11。

当有意义时,实数的取值范围是.12。

计算的结果是。

13。

当x= 时,式子的值为0。

14。

如图,在平面直角坐标系中,已知点A(0,,1),B(6,2)。

在x轴上找一点P,使得P A+PB最小,则点P的坐标是,此时△P AB的面积是.15。

方程的解为.16。

若等腰三角形的一个角是30°,则其它两个角的度数分别是.17. 如图,∠AOB=60°,点P在∠AOB的平分线上,PC⊥OA于点C,点D在边OB上,且OD=DP=4.则线段OC的长度为.18. 在△ABC中,∠ABC<20°,三边长分别为a,b,c。

2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷(含答案)

2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。

2018----2019年河南省郑州市八年级数学上学期期末考试题

2018----2019年河南省郑州市八年级数学上学期期末考试题

2018-2019学年上期期末考试八年级数学试题卷注意:本试卷分试题卷和答题卡两部分。

考试时间90分钟,满分100分。

考生应首先读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无败。

交卷时只交答题卡一、选择题(共10小题,每小题3分,共30分)1在下列实数中无理数的个数有()A.2个 B.3个 C.4个 D.5个2.下面四组数,其中是勾股数组的是()A.3,4,5B.0.3,0.4,0.5,C.32,42,52,D.6,7,83.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上则∠1的度数是()A.30°B.20°C.15°D.14°4.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0)B.(1,2)C.(2,1)D.(1,1)5.已知点(x1,3),(x2,7)都在直线y= -2x+1上,则x1,x2的大小关系为()A. x1>x2B. x1<x2C. x1=x2D.不能比较6.某校教师招聘考试分笔试和面试两个环节进行.其中笔试按60%、面试按40%计算加权平均数作为最终的总成绩.吴老师笔试成绩为90分,面试成绩为85分,那么吴老师的总成绩为( )A.85分B.86分C.87分D.88分7.如图,函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()8.下列四个命题中,真命题的个数有()①数轴上的点和有理数是一一对应的;②R△ABC中,已知两边长分别是3和4,则第三条边长为5;③在平面直角坐标系中点(2,-3)关于y轴对称的点的坐标是(-2,-3);④两条直线被第三条直线所截,内错角相等;A.1个B.2个C.3个D.4个9.如图,四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为(8,6),将△OAB沿OB翻折,A的对应点为E,OE 交BC于点D,则D点的坐标为()10.如图,已知直线y=x+4与x轴、y轴分别交于A、B两点,C点在x轴正半轴上且OC=OB,点D位于x轴上点C的右侧,∠BAO和∠BCD的角平分线AP、CP相交于点P,连接BC、BP则∠PBC的度数为()A.43°B.44°C.45°D.46°二、填空题(共5小题,每小题3分,共15分)11.计算:12.请你写出一个图象不经过第三象限的一次函数的表达式13.已知关于x,y的二元一次方程组的解满足x-y=3,则m的值为14.棱长分别为5cm,4cm两个正方体如图放置,点P在E1F1上,且E1P=E1F1,一只蚂蚁如果要沿着长方体的表面从点A 爬到点P,需要爬行的最短距离是当15.腰长为4的等腰直角△ABC放在如图所示的平面直角坐标系中,点A,C均在y轴上,C(0,2),∠ACB=90°,AC=BC=4,平行于y轴的直线x= -2交线段AB于点D,点P是直线x= -2上动点,且在点D的上方当S△ABP=4时,以PB为直角边作等腰直角△BPM,则所有符合条件的点M的坐标为三、解答题(本大题共7小题,共55分)16.(6分)阅读下列解方程组的部分过程,回答下列问题解方程组现有两位同学的解法如下:解法一;由①,得x=2y+5,③把③代入②,得3(2y+5)-2y=3.……解法二:①-②,得-2x=2. ……(1)解法一使用的具体方法是,解法二使用的具体方法是以上两种方法的共同点是(2)请你任选一种解法,把完整的解题过程写出来17.(6分)某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)(1)以上成绩统计分析表中a= 分,b= 分,c= 分;(2)小亮同学说:“这次竞赛我得了70分,在我们小组中排名属中游略偏上!”观察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由(3)如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会选择哪一组?并说明理由18.(6分)勾股定理是初中数学学习的重要定理之一,这个定理的验证方法有很多,你能验证它吗?请你根据所给图形选择一种方法画出验证勾股定理的方法并写出验证过程19.(8分)如图,在△ABC中,AD平分∠BAC(1)若P为线段AD上的一个点,过点P作PE⊥AD交线段BC的延长线于点E①若∠B=34,∠ACB=86°,则∠E=②猜想∠E与∠B、∠ACB之间的数量关系,并给出证明。

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。

6B。

8C。

7D。

92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。

2B。

$-1$C。

1D。

$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。

$f(x)=x,g(x)=|x|$B。

$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。

$f(x)=1,g(x)=x$D。

$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。

$y=-\frac{1}{2}$B。

$y=x^2$C。

$y=x+1$D。

$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。

$a<c<b$B。

$a<b<c$C。

$b<a<c$D。

$b<c<a$6.下列叙述中错误的是()A。

若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。

三点$A,B,C$能确定一个平面C。

若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。

若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题 (含答案)

2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。

数学2016-2017学年度第一学期期末考试试题

数学2016-2017学年度第一学期期末考试试题

2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。

河南省郑州市2013-2014上期期末八年级数学试题(含答案)(高清扫描版)

河南省郑州市2013-2014上期期末八年级数学试题(含答案)(高清扫描版)

③当 3 x 5 时. S 60 x .--------------------------9 分 (3)由题意得: S 100 ,
八年级数学 第 6 页(共 7 页)
①若 160x 300 100 ,则 x
5 5 ,此时 y 60 75 千米. 4 4 5 150 千米. 2
此时 A 加油站距离甲地 75 千米-.--------------------10 分 ②若 160 x 300 100 ,则 x
5 , 2
此时 y 60
此时 A 加油站距离甲地 150 千米-.--------------------11 分
八年级数学 第 7 页(共 7 页)
所以:①当 0 x
15 时, S 100x 300 60x 160x 300. --------------------------7 分 8
②当
15 x 3 时. S 60 x (100x 300) 160x 300. --------------------------8 分 8

13. 3 ; 14.
x 1, y 1;
15. (
Hale Waihona Puke 10 , 0) . 3----------------4 分 面积为 2 的正方形
大正方形的边长为 2,
1 的正方形 2 1 1 2 , 可得 . -----------------------6 分 小正方形的边长为 2 2 2
解得
k2 100, b2 300.
即 y2 100 x 300 .--------------------------4 分
k1 的值表示客车的速度, k2 的绝对值表示出租车的速度.--------------------------5 分

八年级上学期期末数学试卷(含解析) (18)

八年级上学期期末数学试卷(含解析)  (18)

八年级上学期期末数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A.4 B.8 C.16 D.642.(3分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC 是直角三角形的是()A.∠A=∠C﹣∠B B.a:b:c=2:3:4C.a2=b2﹣c2D.a=,b=,c=13.(3分)下列计算,正确的是()A.;B.; C.D.4.(3分)如图,一个圆桶,底面直径为16cm,高为18cm,则一只小虫从下底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.50cm B.40cm C.30cm D.20cm5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣47.(3分)图中两条直线l1和l2的交点坐标可以看作下列方程组中()的解.A.B.C.D.8.(3分)为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数9.(3分)在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为()A.90°B.58°C.54°D.32°10.(3分)下列命题中,是真命题的是()A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形D.是最简二次根式11.(3分)如图,在△P AB中,P A=PB,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°12.(3分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B.C.D.二、填空题(本题共6小题,每小题填对得4分,共分)13.(4分)若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是14.(4分)五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是16cm,则小长方形的面积是cm2.15.(4分)已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是.16.(4分)写出“全等三角形的面积相等”的逆命题.17.(4分)如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90°,∠A1OA2=30°,以OA2为直角边向外作Rt△OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4,Rt△OA4A5,…,Rt△OA2016A2017,若点A0(1,0),则点A2017的横坐标为.18.(4分)如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是.三、解答题(本题共7小题,满分60分)19.(8分)小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?20.(8分)解方程组:21.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲83 79 90乙85 80 75丙80 90 73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.22.(8分)如图,一条直线分别与直线BE、直线CE、直线CF、直线BF相交于点A,G,D,H且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.23.(8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?24.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB 于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.25.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.(3分)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A.4 B.8 C.16 D.64【解答】解:由勾股定理得,正方形A的面积=289﹣225=64,∴字母A所代表的正方形的边长为=8,故选:B.2.(3分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC 是直角三角形的是()A.∠A=∠C﹣∠B B.a:b:c=2:3:4C.a2=b2﹣c2 D.a=,b=,c=1【解答】解:A、由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC为直角三角形;B、不妨设a=2,b=3,c=4,此时a2+b2=13,而c2=16,即a2+b2≠c2,故△ABC不是直角三角形;C、由条件可得到a2+c2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;D、由条件有a2+c2=()2+12==()2=b2,满足勾股定理的逆定理,故△ABC是直角三角形;故选B.3.(3分)下列计算,正确的是()A.B.C.D.【解答】解:∵=2,∴选项A不正确;∵=2,∴选项B正确;∵3﹣=2,∴选项C不正确;∵+=3≠,∴选项D不正确.故选:B.4.(3分)如图,一个圆桶,底面直径为16cm,高为18cm,则一只小虫从下底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.50cm B.40cm C.30cm D.20cm【解答】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得AB==30cm.故选C5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A7.(3分)图中两条直线l1和l2的交点坐标可以看作下列方程组中()的解.A.B.C.D.【解答】解:设直线l2的解析式为y=kx+b,把(2,1),(0,﹣5)代入得,解得,所以直线l2的解析式为y=3x﹣5,设直线l1的解析式为y=mx+n,把(2,1),(0,3)代入得,解得,所以直线l2的解析式为y=﹣x+3,所以两条直线l1和l2的交点坐标(2,1)可看作方程组的解.故选D.8.(3分)为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数【解答】解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选D.9.(3分)在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为()A.90°B.58°C.54°D.32°【解答】解:∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°﹣∠C,∵∠B=2∠C﹣6°,∴90°﹣∠C=2∠C﹣6°,∴∠C=32°.故选D.10.(3分)下列命题中,是真命题的是()A.算术平方根等于自身的数只有1B.斜边和一条直角边分别相等的两个直角三角形全等C.只有一个角等于60°的三角形是等边三角形D.是最简二次根式【解答】解:A、算术平均数等于自身的数为1和0,故错误,为假命题;B、斜边和一条直角边分别相等的两个直角三角形全等,故正确,为真命题;C、有一个角等于60°的等腰三角形是等边三角形,故错误,为假命题;D、不是最简二次根式,错误,为假命题,故选B.11.(3分)如图,在△P AB中,P A=PB,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵P A=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.12.(3分)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B. C. D.【解答】解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD==4.故选:D.二、填空题(本题共6小题,每小题填对得4分,共分)13.(4分)若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是﹣3【解答】解:∵点M(a,﹣1)与点N(2,b)关于y轴对称,∴a=﹣2,b=﹣1,∴a+b=(﹣2)+(﹣1)=﹣3.故答案为:﹣3.14.(4分)五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是16cm,则小长方形的面积是3cm2.【解答】解:设小长方形的长为xcm,宽为ycm,根据题意得:,解得:,∴小长方形的面积为3×1=3(cm2).故答案为:3.15.(4分)已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是2.【解答】解:由平均数的公式得:(1+x+3+2+5)÷5=3,解得x=4;∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(5﹣3)2+(4﹣3)2]÷5=2.故答案为:2.16.(4分)写出“全等三角形的面积相等”的逆命题面积相等的三角形全等.【解答】解:“全等三角形的面积相等”的题设是:两个三角形全等,结论是:面积相等,因而逆命题是:面积相等的三角形全等.故答案是:面积相等的三角形全等.17.(4分)如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90°,∠A1OA2=30°,以OA2为直角边向外作Rt△OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4,Rt△OA4A5,…,Rt△OA2016A2017,若点A0(1,0),则点A2017的横坐标为()2016.【解答】解:∵∠OA0A1=90°,OA1=,∠A2OA1=30°,同理:OA2=()2,…,OA n=()n,∴OA2017的长度为()2017;∵2017×30°÷360=168…1,∴OA2017与OA1重合,∴点A2017的横坐标为()2017×=()2016=()故答案为:()2016.18.(4分)如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是13cm.【解答】解:∵DE∥AB,BD平分∠ABC,∴∠EBD=∠ABD=∠EDB,∴DE=BE=5cm,∵AB=AC,DE∥AB,∴∠C=∠ABE=∠DEC,∴DC=DE=5cm,且CE=3cm,∴DE+EC+CD=5cm+3cm+5cm=13cm,即△CDE的周长为13cm,故答案为:13cm.三、解答题(本题共7小题,满分60分)19.(8分)小明和小华做游戏,游戏规则如下:(1)每人每次抽取四张卡片,如果抽到白色卡片,那么加上卡片上的数或算式;如果抽到底板带点的卡片,那么减去卡片上的数或算式.(2)比较两人所抽的4张卡片的计算结果,结果大者为胜者.请你通过计算判断谁为胜者?【解答】解:(1)小明抽到卡片的计算结果:﹣﹣+=3﹣﹣2+=;小华抽到卡片的计算结果:﹣3+﹣=2﹣+3﹣=,(2)∵<,∴小华获胜.20.(8分)解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.21.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲83 79 90乙85 80 75丙80 90 73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.【解答】解:(1)甲=(83+79+90)÷3=84,乙=(85+80+75)÷3=80,丙=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.22.(8分)如图,一条直线分别与直线BE、直线CE、直线CF、直线BF相交于点A,G,D,H且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.【解答】解:(1)CE∥BF,AB∥C D.理由:∵∠1=∠2,∴CE∥FB,∴∠C=∠BFD,∵∠B=∠C,∴∠B=∠BFD,∴AB∥CD;(2)由(1)可得AB∥CD,∴∠A=∠D.23.(8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【解答】解:(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得.答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5﹣1)+10×(2﹣1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.24.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB 于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中,∴Rt△ACD≌Rt△AED(HL);(2)∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=225.(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).。

2016-2017学年第一学期期中质量检测八年级数学试题

2016-2017学年第一学期期中质量检测八年级数学试题

2016-2017学年度第一学期期中考试八年级数学试题分值:120 考试时间:90分钟一、选择题(本大题共12小题,共36分)1.下列运算中,计算正确的是()A.2a•3a=6aB.(3a2)3=27a6C.a4÷a2=2aD.(a+b)2=a2+ab+b22.下列各式的计算中,正确的是()A. B.C. D.3.下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2 B.5m2-20mn C.-x2-y2 D.-x2+9 4. 已知a m=9,a m-2n=3,则a n的值是()C. D.5.若4x2-2(k-1)x+9是完全平方式,则k的值为()A.± 2B.± 5C.7或-5D.-7或56.若(x-5)(x+3)=x2+mx-15,则()计算的结果是A. B. C.a-b D.a+b9.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的张数分别为()A.2,3,7B.3,7,2C.2,5,3D.2,5,7 10.计算22)3()2(-+-xx的结果是()A.1B.-1C.2x-5D.5-2x11. 已知a=+2,b=-2,则的值为( )A.3B.4C.5D.612.观察下列等式:a1=n,a2=1-,a3=1-,…;根据其蕴含的规律可得()A.a2016=n B.a2016= C.a2016= D.a2016=二、填空题(本大题共7小题,共21分)13. 已知m<0,那么|-2m|值为.14. 计算:()2015×()2016=______ ..15. 一个长方形的面积为a2-4b2,若一边长为2a+4b,则周长为.16. 已知2x+y–3=0,则2y•4x 的值是17.已知a+b=-4,ab ______ .18.若关于x的方程2222=-++-xmxx有增根,则m的值是 ______ .19.已知与的和等于,则= ______ .三、计算题(本大题共5小题,16+16+6+4+6=共48分)20. 计算化简(1) (2)(3)(2x3y)2•(-2xy)+(-2x3y)3÷(2x2) (4)21.因式分解:(1)9(m+n)2-16(m-n)2;(2)(x+y)2–10(x+y)+25;(3)-12x2y+x3+36xy2(4) (x2y2+3) (x2y2-7)+25(实数范围内)22. 先化简,再求值:[(x -2y )2–(–x -2y )(–x +2y )]÷(–4y ),其中x 和y 的取值满足0)4(12222=++++-y xy x x x .23.某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用两数和乘以这两数差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1=255. 请借鉴该同学的经验,计算:.24. 若关于xm 的值。

河南省郑州市2023-2024学年八年级上学期期末数学试题(含解析)

河南省郑州市2023-2024学年八年级上学期期末数学试题(含解析)

,则下列不等式中正确的是(A .B .5.在平面直角坐标系中,若A .0B .16.下列命题中,真命题是( )A .1的平方根是它本身B .两条直线被第三条直线所截,同位角相等C .三角形的外角大于任何一个内角54︒36︒(3,1A m +-A .9.如图,是正方体的一个顶点,一只蚂蚁在正方体的表面上爬行,从点A .57︒A 9cmA .20B .C .40二.填空题(每小题3分,共15分)11.的立方根是.12.请写出一个图象平行于直线,且过第一、二、四象限的一次函数的表达式.15.如图,在直角三角形(不与B 、C 重合),连接,将三.解答题(本大题共16.(1)计算:2058-5y x =-ABC AD 273-(1)用直尺和圆规作(2)判断点O 在的垂直平分线上吗?说明理由;(3)结合(1)(2),你还有何发现(证明过程中出现的结论除外)?请写出一条新的结论.18.已知,如图,方格纸中每个小方格都是边长为(1)请根据点A ,B 的坐标在方格纸中建立平面直角坐标系,并直接写出点(2)依次连接A ,B ,C ,得到,请判断(3)在y 轴上找一点F ,使的面积等于19.综合与实践【问题情境】数学活动课,老师带领同学们开展动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各(单位:cm ),宽(单位:cm )的数据后,分别计算长宽比,整理数据如下:BC AC ABC ABF △x(1)证明:;(2)21.随着自媒体的盛行,网购及直播带货成为一种趋势,水果做营销宣传,采用线上及线下两种销售方式,总收入如下表(总收入=销售重量BAC DEF ∠=∠70,50BAC DFE ∠=︒∠=(1)若点A 与点关于x 轴对称,直接写出点(2)运用一次函数的知识,求出C 点坐标;(3)设桌边上有三个球袋,位置分别在点反弹出的白球撞击后,能否落入球袋中(假定名称并说明理由.(1)如图1,连接,当时,的形状是 .(2)当点G 落在正方形内部时,过G 作,分别交于E 于点M ,连接交于点N (如图2).判断的形状,并说明理由.A 'RQ R 、DG 15BCH ∠=︒CDG EF AD ∥AB DC 、CM EF MGN【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.故选:C .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.8.D【分析】本题主要考查了平行线的性质,解题时注意:两直线平行时,同位角相等,内错角相等,同旁内角互补.根据光在水中是平行的线,由平行线的性质即可求解.【详解】解:如图,,,,,,∵,,,,,,故选∶D .9.B【分析】本题考查了勾股定理,平面展开最短路线问题,将正方体的左侧面与前面展开,1122y k x b y k x b -=⎧⎨-=⎩21x y ⎧⎨⎩==,3102AC BD ∠=︒ ∥3102MAC ∴∠=∠=︒∥ AB CD 2180MAC ∴∠+∠=︒∴278∠=︒12129∠∠︒+=∴151∠=︒∴AE BF ∥∴151FBM ∠=∠=︒EF AB ∥∴451FBM ∠=∠=︒-∵正方体的棱长为,∴,,∴,故选:B .【点睛】本题考查动点问题的函数图象,条件,利用数形结合的思想解答.6cm 639cm AC =+=3cm BC =22310cm AB AC BC =+=11.-2【分析】根据立方根的定义进行求解即可得.【详解】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2,故答案为﹣2.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.12.(答案不唯一)【分析】设一次函数表达式为:,由图象平行于直线可得,由图象经过第一、二、四象限,可得,由此即可得到答案.【详解】解:设一次函数表达式为:,图象平行于直线,,图象经过第一、二、四象限,,,故答案为:(答案不唯一).【点睛】本题考查了一次函数的性质,一次函数(为常数,)是一条直线,当时,图象经过一、三象限,随的增大而增大,当时,图象经过二、四象限,随的增大而减小,当时,图象交于轴的正半轴,当时,图象过原点,当时,图象交于轴的负半轴.13.11【分析】此题考查了加减消元法,把a 看作已知数表示出方程组的解,代入求出a 的值即可,利用了消元的思想,消元的方法有:代入消元法与加减消元法,掌握加减消元法是解题的关键.【详解】解:,①+③得:,解得:,∵,∴,51y x =-+y kx b =+5y x =-5k =-0b >y kx b =+ 5y x =-5k ∴=- ∴0b >51y x ∴=-+51y x =-+y kx b =+k b 、0k ≠0k >y x 0k <y x 0b >y 0b =0b <y 9x y +=26252x y a x y a -=-⎧⎨+=⎩①②3336x y a +=-2x y a +=-9x y +=29a -=,,,6AE AC ∴==BE AB =CD DE ∴=222DE BE BD +=(2)解:点O 在如图,连接,∵是线段的垂直平分线,∴,∵AC OC OD BC OB OC =CD BD =90ACB ODB ∠=∠=(3)解:设点,根据题意得:,解得:或,∴点F 的坐标为或.故答案为:或.【点睛】本题主要考查了坐标与图形,勾股定理与网格问题,勾股定理的逆定理,三角形面积的计算,解题的关键是数形结合,熟练掌握勾股定理和逆定理.19.(1)3.7,1.92,2.0()0,F m 11515222m ⨯⨯-=⨯⨯3m =1m =-()03,()0,1-()0,3()0,1-10片荔枝树叶的长宽比中出现次数最多的是2.0,10片荔枝树叶的长宽比的众数为2.0,故答案为:3.7,1.92,2.0;(2)解:,芒果树叶的形状差别小,故甲同学的说法不合理,荔枝树叶的长宽比的平均数是1.92,中位数是1.95,众数是2.0,乙同学的说法合理,故答案为:乙;(3)解:一片长,宽的树叶,长宽比接近2,这片树叶更可能来自荔枝树.【点睛】本题考查了统计图中中位数、众数、平均数、方差的意义,看懂统计图表,正确的计算是解决问题的关键.20.(1)见解析;(2)【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和得出∠3+∠CAE=∠DEF ,再根据∠1=∠3整理即可得证;(2)根据三角形的一个外角等于与它不相邻的两个内角的和得出∠2+∠BCF=∠DFE ,再根据∠2=∠3即可得∠ACB=∠DFE ,然后利用三角形的内角和等于180°求解即可.【详解】(1)证明:在△ACE 中,∠DEF=∠3+∠CAE ,∵∠1=∠3,∴∠DEF=∠1+∠CAE=∠BAC ,即∠BAC=∠DEF ;(2)解:在△BCF 中,∠DFE=∠2+∠BCF ,∵∠2=∠3,∴∠DFE=∠3+∠BCF ,即∠DFE=∠ACB ,∵∠BAC=70°,∠DFE=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠ACB=180°-70°-50°=60°.【点睛】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质,并准确识图,找出图中各角度之间的关系是解题的关键.∴0.03560.0556< ∴ ∴ 10cm 5.1cm ∴60︒【详解】(1)解:关于x 轴的对称点坐标为,故答案为:;(2)解:设直线的解析式为,将,代入,得:,解得,∴直线的解析式为,当时,,∴点C 的坐标为;(3)解:能落入球袋S 中,理由如下:把代入直线的解析式得:,解得,∴在直线上,∴能落入球袋S 中.23.(1)等边三角形(2)等腰三角形,理由见解析(3)3或【分析】本题考查了正方形的性质和翻折的性质、全等三角形的判定和性质,正确理解题意和灵活运用所学的知识是解题的关键.(1)根据翻折可得:, 得到,,即可求解;(2)先证明,得到,再根据平行证明,即可求解;(3)分两种情况讨论:当点H 在线段上时或当点H 在线段的延长线上时分别进行讨论求解即可.()40,60A A '()40,60-()40,60-BA 'y kx b =+A '()40,60-()70,30B 40607030k b k b +=-⎧⎨+=⎩3180k b =⎧⎨=-⎩BA '3180y x =-0y =60x =()60,0120y =BA '3180120x -=100x =()100120S ,BA '7.5BCH GCH ≌30BCG ∠=︒GC DC =()Rt Rt HL CGM CDM ≌GMC DMC ∠=∠MNG DMC ∠=∠BA BA【详解】(1)解:∵把沿着翻折,得到,∴,∴,,∴,∴,∵,∴,∴是等边三角形.故答案为:等边三角形;(2)解:的形状是等腰三角形,理由:∵把沿着翻折,得到,∴,∴,∵,∴,在和中,,∴,∴,∵,∴,∴.∴,∴的形状是等腰三角形;(3)解:设,①当点H 在线段上时,连接,如图,BC H V CH GCH △BCH GCH ≌15BCH GCH ∠=∠=︒BC GC =30BCG ∠=︒9060GCD GCB ∠=︒-∠=︒BC DC =GC DC =CDG MGN BC H V CH GCH △BCH GCH ≌BC GC =BC DC =GC DC =Rt CGM △Rt CDM △GC DC CM CM =⎧⎨=⎩()Rt Rt HL CGM CDM ≌GMC DMC ∠=∠EF AD ∥MNG DMC ∠=∠MNG GMC ∠=∠GM GN =MGN AM x =BA DM由(2)知:,,∴,∵正方形的边长为6,∴,∵,∴,∴,∴.∵,∴,解得:,∴;②当点H 在线段的延长线上时,连接,如图,由(2)知:,,∴,∵正方形的边长为6,∴,∵,∴,Rt Rt CGM CDM ≌BCH GCH ≌MG MD BH HG ==,ABCD 6MG MD x ==-4AH =2BH =2HG BH ==628HM x x =-+=-222AH AM HM +=()22248x x +=-3x =3AM =BA DM Rt Rt CGM CDM ≌BCH GCH ≌MG MD BH HG ==,ABCD 6MG MD x ==-4AH =10BH =∴,∴.∵,∴,解得:.∴.综上,的长为3或.10HG BH ==()10616HM HG MG x x ===--=-222AH AM HM +=()222416x x +-=7.5x =7.5AM =AM 7.5。

河南省郑州市金水区2023-2024学年八年级上学期期末考试数学试题(含答案)

河南省郑州市金水区2023-2024学年八年级上学期期末考试数学试题(含答案)

2023-2024学年上期学情监测八年级数学注意:本试卷分试题卷和答题卡两部分。

考试时间90分钟,满分120分。

考生应首先阅读试题卷及答题卡上的相关信息,然后在答题卡上作答,在试题卷上作答无效。

交卷时只交答题卡。

一、选择题(每小题3分,共30分) 下列各小题均有四个选项,其中只有一个是正确的.1. 下列四个实数中是无理数的是( )A. B. 0 C. 0.001 D.2. 八(1) 班要举行主题为“青春启航,畅想未来”的2024年新年联欢会,小明想做一个直角三角形道具,下面三种尺寸的木条,能够直接作为直角三角形三边的是( )A. 10cm 20cm 30cmB. 20cm 30cm 40cmC. 30cm 40cm 50cmD. 40cm 50cm 60cm3.生活中我们经常需要准确描述物体的位置,下列条件不能确定物体位置的是( )A. 东经113°北纬34°B. 距离二七纪念堂10kmC. 中原福塔北偏东20°, 距离500mD. 物理第一实验室3排1座4. 当光从一种介质射向另一种介质时,光线会发生折射,不同介质的折射率不同. 如图,水平放置的水槽中装有适量水,空气中两条平行光线射入水中,两条折射光线也互相平行.若∠1=110° , 则∠2的度数为( )A. 70°B. 60°C. 50°D. 40°5. 下列命题是真命题的是( )A. 面积相等的两个三角形全等B. 相等的角是对顶角C. 两直线平行,内错角相等D. 若则a≠c6.《义务教育课程方案(2022年版) 》在改进教育评价部分强调:要强化素养导向,注重对正确价值观、必备品格和关键能力的考查,开展综合素质评价. 某校积极响应号召,期末从德、智、体、美、劳五方面对学生进行综合素质评价,将德、智、体、类、劳五项得分按2:3:2:2:1的比例确定综合成绩. 小亮本学期五项得分如图所示,则他期末综合素质评价成绩为( )A. 7分B. 8分C. 9分D. 10分7. 如图, 平面直角坐标系中有A, B, C, D四个点, 一次函数y= kx+1(0<k<1)的图象可能经过( )A. 点AB. 点BC. 点CD. 点D8.小明用5 张正方形纸片摆成了如图所示的图形,图中空白处的三角形均为直角三角形, 若正方形A, C, D 的面积依次为36, 64, 144, 则正方形B 的面积为( )A. 172B. 100C. 80D. 449.《九章算术》是中国古代数学专著,共有九卷,收录246个问题. 在卷八“方程”中记载:“今有五雀六燕,集称之衡,雀俱重,燕俱轻. 一雀一燕交而处,衡适平. 并雀、燕重一斤. 问雀、燕一枚各重几何? ”译文:“现在有5只雀、6只燕,分别集中放在天平上称重,聚在一起的雀重燕轻. 将一只雀一只燕交换位置而放,天平恰好平衡. 5 只雀、6只燕重量共一斤. 问雀和燕各重多少? ”中国古代的1斤为16两,设1只雀重x两,一只燕重y两,則符合题意的方程组是( )10.小明在公园半圆形步道上练习长跑,如图,AB是半圆的直径,O 是半圆的圆心,C是半圆上一点. 他沿着O-A-C-B-O 的路径匀速跑步,从他离开点O 开始计时,则他到点O的距离s与跑步时间t之间的关系基本符合( )二、填空题(每小题3分,共15分)11. 如图,标准魔方是魔方比赛中最常见的类型.标准魔方的一个面的面积约为若它的棱长为acm,a在两个连续的整数之间,则这两个连续整数中,较小的整数是.12. 窗花是我国民间传统剪纸艺术,如图,蝴蝶窗花可以看作轴对称图形,将其放置在平面直角坐标系中,对称轴是y轴,A,B是一对对应点,若点A的坐标为(3,1) ,则点B的坐标为.13. 举一个反例就可以说明一个命题是假命题. 要说明命题“如果a是无理数,b是无理数,那么a与b之积仍是无理数”是假命题,可以举反例:.14. 如图, 长方形ABCD 的边AB在数轴上, 点A, B对应的数分别为-1, 2, 边AD的长为1,以点B为圆心,对角线BD的长为半径画弧,交数轴于点P,则点P 表示的数是.15. 如图, Rt△ACB 中,∠ACB=90° , AB=10, BC=8, 点D为线段CB 上一个动点,将△ADB 沿直线AD 翻折得到△ADE, 线段AE交直线CB 于点 F. 若为直角三角形, 则BD的长是.三、解答题(本大题共7小题,共75分)16. (每小题6分, 共12分) 计算:17.(10分)在《二元一次方程组》单元回顾与整理时,刘老师给出方程组请同学们用自己喜欢的方法解这个方程组,小明和小颖解方程组的部分过程如下:小明: ①-②, 得3x=1.小颖: 由②, 得3x+(2x-y)=2. ③把①代入③, 得3x+(-1)=2.(1) ①小明和小颖解方程组的过程是否正确(在横线处填写“正确”或“不正确”):小明的过程小颖的过程②小明和小颖解二元一次方程组的方法虽然不同,但基本思路相同,都是.(2) 请你用喜欢的方法解二元一次方程组18.(10 分)郑州市气象台2023 年12月11日3时40分发布暴雪红色预警信号:过去6小时,郑州站降雪量已达14.2毫米,积雪深度10厘米. 当天,郑州市教育局下发了关于极端恶劣天气条件下临时停课的通知. 某校学生积极参加社区组织的扫雪除冰工作,小明同学为了解七、八年级学生的参与时间(分钟),从两个年级各随机抽取60名学生进行调查,并对数据(时间) 进行整理、表示和分析.① 八年级学生参与时间的频数直方图如图(数据分成6 组: 20≤x<30, 30≤x<40,40≤x<50, 50≤x<60, 60≤x<70, 70≤x<80).② 八年级学生参与时间在50≤x<60这一组的是: 50, 50.5, 50.5, 51, 56, 57, 57,58, 58.5, 58.5, 59, 59, 59, 59.5.③学生参与时间的平均数、中位数、众数如下表.年级平均数中位数众数七年55.6 57 68级八年56.8 m 67级根据以上信息,回答下列问题:(1) 表格中m= .(2) 你认为哪个年级学生参与扫雪除冰工作更积极? 请说明理由.(3) 七年级共有学生1200名,七(4) 班学生小亮说:“我参与扫雪除冰56分钟,高于七年级学生扫雪除冰时间的平均数55.6分钟,所以七年级至少有600名学生比我参与的时间少.”小亮的说法是否正确? 请说明理由.19.(10分) “农场小达人”社团计划在春天到来之前整修教学楼顶层的平台,用于建设菜园和花圃. 如图,A处是顶层平台自来水管的位置,B, C 两处分别计划修建菜园和花圃, B, C两处相距20m, A, B两处相距16m,A,C两处相距12m. 为了便于用水,小华在图纸上帮助设计了两种水管铺设方案。

2016_2017学年河南省郑州市九年级(上)期末数学试卷

2016_2017学年河南省郑州市九年级(上)期末数学试卷

2016-2017学年河南省郑州市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)在﹣2017、0、﹣3、2017这四个数中,最小的数是()A.﹣2017B.0C.﹣3D.20172.(3分)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥3.(3分)我国一次性建成最长的万吨重载铁路﹣﹣晋豫鲁重载铁路,铁路全线长1260公里,横跨山西、河南、山东三省,总投资941亿元,941亿用科学记数法表示为()A.941×l09B.9.41×l010C.94.1×1011D.9.41×1012 4.(3分)如图所示,一艘船在海上从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东20°方向行至点C,则∠ABC的度数是()A.45°B.65°C.75°D.90°5.(3分)下列说法中,正确的是()A.为检测市场上正在销售的酸奶质量,应该采用全面调查的方式B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.小强班上有3个同学都是16岁,因此小强认为他们班学生年龄的众数是16岁D.给定一组数据,则这组数据的中位数一定只有一个6.(3分)如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10B.20C.12D.247.(3分)如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A.B.C.D.8.(3分)从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名学生担任升旗手,则抽取的两名学生刚好一个班的概率为()A.B.C.D.9.(3分)某校团委准备举办学生绘画展览,为美化画面,在长8dm、宽为5dm 的矩形内画面四周镶上宽度相等的彩纸,并使彩纸的面积等于22dm2(如图),若设彩纸的宽度为x分米,则可得方程为()A.40﹣10x﹣16x=18B.(8﹣x)(5﹣x)=18C.(8﹣2x)(5﹣2x)=18D.40﹣5x﹣8x+4x2=2210.(3分)如图,矩形ABCD中,AB=2AD=4cm,动点P从点A出发,以lcm/s的速度沿线段AB向点B运动,动点Q同时从点A出发,以2cm/s的速度沿折线AD→DC→CB向点B运动,当一个点停止时另一个点也随之停止.设点P的运动时间是x(s)时,△APQ的面积是y(cm2),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算30= .12.(3分)如图,在△ABC中,D、E分别是AB和AC上的点,且DE∥BC,如果AB=12cm,AD=9cm,AC=8cm,那么AE的长是.13.(3分)当k= 时,双曲线y=当过点(,4).14.(3分)如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣8,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.15.(3分)如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:÷(x﹣),其中x为方程(x﹣6)(x﹣3)=0的实数根.17.(9分)如图,在菱形ABCD中,AB=20,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.18.(9分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次抽样调查了个家庭;(2)将图①中的条形图补充完整;(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;(4)若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?19.(9分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根.(1)求m的取值范围;(2)若方程有一个根为x=1,求m的值及另一个根.20.(9分)郑州市农业路高架桥二层的开通,较大程度缓解了市内交通的压力,最初设计南阳路口上桥匝道时,其坡角为15°,后来从安全角度考虑将匝道坡角改为5°(见示意图),如果高架桥高CD=6米,匝道BD和AD每米造价均为4000元,那么设计优化后修建匝道AD的投资将增加多少元?(参考数据:sin5°≈0.08,sin15°≈0.25,tan5°≈0.09.tan15°≈0.27,结果保留整数)21.(10分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:甲型口罩乙型口罩品名价格进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?22.(10分)如图,长方形ABCD中,P是AD上一动点,连接BP,过点A作BP 的垂线,垂足为F,交BD于点E,交CD于点G.(1)当AB=AD,且P是AD的中点时,求证:AG=BP;(2)在(1)的条件下,求的值;(3)类比探究:若AB=3AD,AD=2AP ,的值为.(直接填答案)23.(11分)如图①,若直线l:y=﹣2x+4交x轴于点A、交y轴于点B,将△AOB绕点O逆时针旋转90°得到△COD.过点A,B,D的抛物线h:y=ax2+bx+4.(1)求抛物线h的表达式;(2)若与y轴平行的直线m以1秒钟一个单位长的速度从y轴向左平移,交线段CD于点M、交抛物线h于点N,求线段MN的最大值;(3)如图②,点E为抛物线h的顶点,点P是抛物线h在第二象限的上一动点(不与点D、B重合),连接PE,以PE为边作图示一侧的正方形PEFG.随着点P的运动,正方形的大小、位置也随之改变,当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.2016-2017学年河南省郑州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)在﹣2017、0、﹣3、2017这四个数中,最小的数是()A.﹣2017B.0C.﹣3D.2017【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2017<﹣3<0<2017,∴在﹣2017、0、﹣3、2017这四个数中,最小的数是﹣2017.故选:A.2.(3分)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥【分析】根据一个空间几何体的主视图和左视图都是长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断是三棱柱,得到答案.【解答】解:∵几何体的主视图和左视图都是长方形,故该几何体是一个柱体,又∵俯视图是一个三角形,故该几何体是一个三棱柱,故选:C.3.(3分)我国一次性建成最长的万吨重载铁路﹣﹣晋豫鲁重载铁路,铁路全线长1260公里,横跨山西、河南、山东三省,总投资941亿元,941亿用科学记数法表示为()A.941×l09B.9.41×l010C.94.1×1011D.9.41×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:941亿=941 0000 0000=9.41×l010,故选:B.4.(3分)如图所示,一艘船在海上从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东20°方向行至点C,则∠ABC的度数是()A.45°B.65°C.75°D.90°【分析】首先根据方位角的定义得出∠EAB=45°,∠CBF=20°,再根据南北方向是平行的得出∠ABF=45°,然后和∠CBF相加即可得出答案.【解答】解:如图,由题意,可得∠EAB=45°,∠CBF=20°.∵AE∥BF,∴∠ABF=∠EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+20°=65°,故选:B.5.(3分)下列说法中,正确的是()A.为检测市场上正在销售的酸奶质量,应该采用全面调查的方式B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.小强班上有3个同学都是16岁,因此小强认为他们班学生年龄的众数是16岁D.给定一组数据,则这组数据的中位数一定只有一个【分析】根据全面调查与抽样调查的区别,方差、中位数和众数的定义对各选项依次进行判断即可解答.【解答】解:A、调查市场上酸奶的质量情况,破坏性较强,应该用抽样调查,故此选项错误;B、在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩不稳定,故本选项错误;C、虽然小强班上有3个同学都是16岁,但不一定是班里学生人数最多的,所以不一定是众数,故本选项错误;D、给定一组数据,则这组数据的中位数一定只有一个,故本选项正确;故选:D.6.(3分)如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10B.20C.12D.24【分析】由根据题意得:MN是AC的垂直平分线,即可得AD=CD,AE=CE,然后由CE∥AB,可证得CD∥AE,继而证得四边形ADCE是菱形,再根据勾股定理求出AD,进而求出菱形ADCE的周长.【解答】解:∵分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N,∴MN是AC的垂直平分线,∴AD=CD,AE=CE,∴∠CAD=∠ACD,∠CAE=∠ACE,∵CE∥AB,∴∠CAD=∠ACE,∴∠ACD=∠CAE,∴CD∥AE,∴四边形ADCE是平行四边形,∴四边形ADCE是菱形;∴OA=OC=AC=2,OD=OE,AC⊥DE,∵∠ACB=90°,∴DE∥BC,∴OD是△ABC的中位线,∴OD=BC=×3=1.5,∴AD==2.5,∴菱形ADCE的周长=4AD=10.故选:A.7.(3分)如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A.B.C.D.【分析】设甲的体重为x,根据跷跷板的示意图表示出x的范围,即可作出判断.【解答】解:设甲的体重为x,根据题意得:35<x<45,表示在数轴上,如图所示:,故选:D.8.(3分)从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名学生担任升旗手,则抽取的两名学生刚好一个班的概率为()A.B.C.D.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有20种情况,抽取的两名学生刚好一个班的有8种,∴抽取的两名学生刚好一个班的概率为=.故选:B.9.(3分)某校团委准备举办学生绘画展览,为美化画面,在长8dm、宽为5dm 的矩形内画面四周镶上宽度相等的彩纸,并使彩纸的面积等于22dm2(如图),若设彩纸的宽度为x分米,则可得方程为()A.40﹣10x﹣16x=18B.(8﹣x)(5﹣x)=18C.(8﹣2x)(5﹣2x)=18D.40﹣5x﹣8x+4x2=22【分析】根据“中间图画面积=图画的长×图画的宽”可列方程.【解答】解:若设彩纸的宽度为x分米,则(8﹣2x)(5﹣2x)=18,故选:C.10.(3分)如图,矩形ABCD中,AB=2AD=4cm,动点P从点A出发,以lcm/s的速度沿线段AB向点B运动,动点Q同时从点A出发,以2cm/s的速度沿折线AD→DC→CB向点B运动,当一个点停止时另一个点也随之停止.设点P的运动时间是x(s)时,△APQ的面积是y(cm2),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.【分析】分Q在AD上运动、Q在CD上运动和Q在CB上运动三种情况分别列出函数解析式,据此可得.【解答】解:当点Q在AD上运动时,0≤x≤1,y=•AP•AQ=•(2x)•x=x2;当点Q在CD上运动时,1<x≤3,y=•AP•AD=•x•2=x;当点Q在CB上运动时,3<x≤4,y=•AP•CB=•x•(8﹣2x)=﹣x2+4x,故选:A.二、填空题(每小题3分,共15分)11.(3分)计算30= 1 .【分析】根据零指数幂:a0=1(a≠0)进行运算即可.【解答】解:30=1.故答案为:1.12.(3分)如图,在△ABC中,D、E分别是AB和AC上的点,且DE∥BC,如果AB=12cm,AD=9cm,AC=8cm,那么AE的长是6cm .【分析】根据平行线分线段成比例,可以求得AE的长.【解答】解:∵DE∥BC,∴,∵AB=12cm,AD=9cm,AC=8cm,∴,∴AE=6cm,故答案为:6cm13.(3分)当k= 12 时,双曲线y=当过点(,4).【分析】直接把点(,4)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=当过点(,4),∴k=×4=12.故答案为:12.14.(3分)如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣8,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为32 .【分析】连结OQ、OP,如图,先利用交点时写出平移后的抛物线m的解析式,再用配方得到顶点式y=(x+4)2﹣8,则P点坐标为(﹣4,﹣8),抛物线m 的对称轴为直线x=﹣4,于是可计算出Q点的坐标为(﹣4,8),所以点Q与P点关于x轴对称,于是得到图中阴影部分的面积,然后根据三角形面积公式计算.【解答】解:连结OQ、OP,如图,平移后的抛物线解析式为y=(x+8)•x=x2+4x=(x+4)2﹣8,所以P点坐标为(﹣4,﹣8),抛物线m的对称轴为直线x=﹣4,当x=﹣4时,y=x2=8,则Q点的坐标为(﹣4,8),由于抛物线y=x2向左平移4个单位,再向下平移8个单位得到抛物线y=(x+4)2﹣8,=×4×(8+8)=32.所以图中阴影部分的面积=S△OPQ故答案为32.15.(3分)如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为或.【分析】先根据AD=BC=4,DF=CD=AB=6,得出AD<DF,再分两种情况进行讨论:①当FA=FD时,过F作GH⊥AD与G,交BC于H,根据△DGF∽△PHF,得出=,即=,进而解得PF=﹣6,进而得出DP的长;②当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,根据勾股定理求得FG=,FH=6﹣,再根据△DFG∽△PFH,得出=,即=,进而解得PF=﹣6,即可得出PD的长.【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD<DF,故分两种情况:①如图所示,当FA=FD时,过F作GH⊥AD与G,交BC于H,则HG⊥BC,DG=AD=2,∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:÷(x﹣),其中x为方程(x﹣6)(x﹣3)=0的实数根.【分析】首先把括号内的分式通分相加,然后把出发转化为乘法,分子和分母分解因式,然后计算乘法即可化简,然后解方程求得x的值代入求解.【解答】解:原式=÷=÷=•=.∵(x﹣6)(x﹣3)=0,∴x=6或3.当x=3时,原式无意义.当x=6时,原式==.17.(9分)如图,在菱形ABCD中,AB=20,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为10 时,四边形AMDN是矩形;②当AM的值为20 时,四边形AMDN是菱形.【分析】(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=10时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.【解答】(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)解:①当AM的值为10时,四边形AMDN是矩形.理由如下:∵AM=10=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;故答案为:10;②当AM的值为20时,四边形AMDN是菱形.理由如下:∵AM=20,∴AM=AD=20,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形;故答案为:20.18.(9分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次抽样调查了200 个家庭;(2)将图①中的条形图补充完整;(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是36 度;(4)若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?【分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5﹣1小时的家庭所占的百分比求出学习0.5﹣1小时的家庭数,再用总人数减去其它家庭数,求出学习2﹣2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【解答】解:(1)本次抽样调查的家庭数是:30÷=200(个);故答案为:200;(2)学习0.5﹣1小时的家庭数有:200×=60(个),学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×=36°;故答案为:36;(4)根据题意得:3000×=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个.19.(9分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根.(1)求m的取值范围;(2)若方程有一个根为x=1,求m的值及另一个根.【分析】(1)由方程有实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)将x=1代入原方程求出m值,再将m的值代入原方程利用十字相乘法解一元二次不等式即可得出方程的另一个根.【解答】解:(1)∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]=4m﹣4≥0,解得:m≥1.(2)将x=1代入原方程,1+2﹣(m﹣2)=0,解得:m=5,∴原方程为x2+2x﹣3=(x﹣1)(x+3)=0,解得:x1=1,x2=﹣3.∴m的值为5,方程的另一个根为x=﹣3.20.(9分)郑州市农业路高架桥二层的开通,较大程度缓解了市内交通的压力,最初设计南阳路口上桥匝道时,其坡角为15°,后来从安全角度考虑将匝道坡角改为5°(见示意图),如果高架桥高CD=6米,匝道BD和AD每米造价均为4000元,那么设计优化后修建匝道AD的投资将增加多少元?(参考数据:sin5°≈0.08,sin15°≈0.25,tan5°≈0.09.tan15°≈0.27,结果保留整数)【分析】根据锐角三角函数可以分别表示出AD和BD的长,从而可以求得设计优化后修建匝道AD的投资将增加多少元.【解答】解:由题意可得,∵∠DCA=90°,CD=6米,∴在RtACD中,∠CAD=5°,∴AD=,在RtBCD中,∠CBD=15°,∴BD=,∴设计优化后修建匝道AD的投资将增加:()×4000≈204000(元),即设计优化后修建匝道AD的投资将增加204000元.21.(10分)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:甲型口罩乙型口罩品名价格进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?【分析】(1)分别根据用12000元购进甲、乙两种口罩,销售完后共获利2700元,得出等式组成方程求出即可;(2)根据购进乙种型号口罩袋数是第一次的2倍,要使第二次销售活动获利不少于2460元,得出不等式求出即可.【解答】解:(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y 袋,则,解得:,答:该商店购进甲种型号口罩300袋,乙种型号口罩200袋;(2)设每袋乙种型号的口罩打m折,则300×5+400(0.1m×36﹣30)≥2460,解得:m≥9,答:每袋乙种型号的口罩最多打9折.22.(10分)如图,长方形ABCD中,P是AD上一动点,连接BP,过点A作BP 的垂线,垂足为F,交BD于点E,交CD于点G.(1)当AB=AD,且P是AD的中点时,求证:AG=BP;(2)在(1)的条件下,求的值;(3)类比探究:若AB=3AD,AD=2AP,的值为.(直接填答案)【分析】(1)根据BP⊥AG,AB=AD,四边形ABCD是矩形,运用AAS判定△ABP≌△DAG,即可得出AG=BP;(2)根据△ABP≌△DAG,得出AP=DG,再根据AP=AD,即可得到DG=AD=AB,再根据AB∥CD,判定△DGE∽△BAE,最后根据相似三角形的性质,得出==;(3)设AP=a,则AD=2AP=2a,AB=3AD=6a,根据△ABP∽△DAG,即可求得=,得出DG=a,再根据△DGE∽△BAE,运用相似三角形的性质,得出===即可.【解答】解:(1)如图,∵BP⊥AG,∠BAD=90°,∴∠ABF+∠BAF=90°,∠BAF+∠DAG=90°,∴∠ABF=∠DAG,在△ABP和△DAG中,,∴△ABP≌△DAG(AAS),∴AG=BP;(2)∵△ABP≌△DAG,∴AP=DG,∵AP=AD,∴DG=AD=AB,∵AB∥CD,∴△DGE∽△BAE,∴==;(3)设AP=a,则AD=2AP=2a,AB=3AD=6a,∵BP⊥AG,∠BAD=90°,∴∠ABF+∠BAF=90°,∠BAF+∠DAG=90°,∴∠ABF=∠DAG,又∵∠BAP=∠ADG,∴△ABP∽△DAG,∴=,即==3,∴DG=a,∵AB∥GD,∴△DGE∽△BAE,∴===.故答案为:.23.(11分)如图①,若直线l:y=﹣2x+4交x轴于点A、交y轴于点B,将△AOB绕点O逆时针旋转90°得到△COD.过点A,B,D的抛物线h:y=ax2+bx+4.(1)求抛物线h的表达式;(2)若与y轴平行的直线m以1秒钟一个单位长的速度从y轴向左平移,交线段CD于点M、交抛物线h于点N,求线段MN的最大值;(3)如图②,点E为抛物线h的顶点,点P是抛物线h在第二象限的上一动点(不与点D、B重合),连接PE,以PE为边作图示一侧的正方形PEFG.随着点P的运动,正方形的大小、位置也随之改变,当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.【分析】(1)先由直线l的解析式得出A、B的坐标,再根据旋转的性质得出D点坐标,然后用待定系数法求出抛物线解析式;(2)设出N点横坐标,纵坐标用横坐示表示,同时表示出M点坐标,而MN的长度为N点与M点的纵坐标之差,得出MN的长度是N点横坐标的二次函数,利用配方法求出最值;(3)显然分G点在y轴上和F点在y轴上两大情况,根据每种情况列方程进行求解.【解答】解:(1)∵直线l:y=﹣2x+4交x轴于点A、交y轴于点B,∴A(2,0),B(0,4),∵将△AOB绕点O逆时针旋转90°得到△COD,∴D(﹣4,0),C(0,2),设过点A,B,D的抛物线h的解析式为:y=a(x+4)(x﹣2),将B点坐标代入可得:4=a(0+4)(0﹣2),∴a=﹣,∴抛物线h的解析式为y=﹣x2﹣x+4;(2)∵D(﹣4,0),C(0,2),∴直线CD的解析式为y=x+2,设N点坐标为(n,﹣n2﹣n+4),则M点坐标为(n,),∴MN=yN ﹣yM=﹣=﹣(n+)2+,∴当n=﹣时,MN最大,最大值为;(3)若G点在y轴上,如图,作PH⊥y轴于H,交抛物线对称轴于K,在△PKE和△GHP中,,∴△PKE≌△GHP,∴PK=GH,EK=PH,∵y=﹣x2﹣x+4=﹣(x+1)2+,∴E(﹣1,),设P(m,﹣),则:EK=yE ﹣yP=+=,PH=﹣m,∴,∴,∴P点的坐标为(﹣2﹣,)(﹣2+,);若F点在y轴上,如图,作PR⊥抛物线对称轴于R,FQ⊥抛物线对称轴于Q,则△PER≌△EFQ,∴ER=FQ,∴yE ﹣yP=﹣xE,∴=1,∴m=﹣1﹣或m=﹣1+(舍),∴P点的坐标为(﹣1﹣,),综上所述,满足要求的P点坐标有三个,分别为:(﹣2﹣,)、(﹣2+,、(﹣1﹣,).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省郑州市2016-2017学年上学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、直角三角形的两条直角边长分别是3,4,则该直角三角形的斜边长是( ) A 、2 B 、3 C 、4 D 、52、在实数41.1,5,,0,72π-中,无理数有( ) A 、4个 B 、3个 C 、2个 D 、1个3、如图,下列条件中,不能判断直线a ∥b 的是( )A 、∠1=∠4B 、∠3=∠5C 、∠2+∠5=180°D 、∠2+∠4=180°4、在某校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛。

已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,除了知道自己的成绩外,还需要了解全部成绩的( ) A 、平均数 B 、中位数 C 、众数 D 、方差5、如果所示,若点E 的坐标为(-2,1),点F 的坐标为(1,-1),则点G 的坐标为( ) A 、(1,2) B 、(2,2) C 、(2,1) D 、(1,1)第3题图 第5题图 第7题图 6、下列命题中,真命题有( )①两条平行直线被第三条直线所截,内错角相等;②两边分别相等且其中一组等边的对角也相等的两个三角形全等;③三角形对的一个外角大于任何一个内角;④如果a 2=b 2,那么a=b 。

A 、1个 B 、2个 C 、3个 D 、4个7、如图,在平面直角坐标系中,点A (2,m )在第一象限,若点A 关于x 轴的对称点B 在直线y=-x+1上,则m 的值为( )A 、-1B 、1C 、2D 、38、八年级1班生活委员小华去为班级购买两种单价分别为8元和10元的盆栽,共有100元,若小华将100元恰好用完,共有几种购买方案( ) A 、2 B 、3 C 、4 D 、59、如图,正方形ABCD 的边长为2,动点P 从C 出发,在正方形的边上沿着C →B →A 的方向运动(点P 与A 不重合)。

设P 运动的路程为x ,则下列图象中符合△ADP 的面积y 关于x 的函数关系式的是( )A B C D10、如图,把长方形纸片ABCD 折叠,使其对角顶点C 与A 重合。

若长方形的长BC 为8,宽AB 为4,则折痕EF 的长度为( )A 、5B 、53C 、52D 、23二、填空题(每小题3分,共15分)。

11、计算:9=_________。

12、如图,AB ∥CD ,EF 与AB ,CD 分别相交于点E ,F ,EP ⊥EF ,与∠EFD 的角平分线FP 相交于点P 。

若∠BEP=46°,则∠EPF=________度。

13、若x ,y 满足0)1332(5322=-+++-y x y x ,则2x -y 的值为_________。

14、平面直角坐标系内的一条直线同时满足下列两个条件:①不经过第四象限;②与两条坐标轴所围成的三角形的面积为2,这条直线的解析式可以是__________(写出一个解析式即可)。

第12题图 第15题图15、如图,在平面直角坐标系xOy 中,三角板的直角顶点P 的坐标为(2,2),一条直角边与x 轴的正半轴交于点A ,另一直角边与y 轴交于点B ,三角板绕点P 在坐标平面内转动的过程中,当△POA 为等腰三角形时,请写出所有满足条件的点B的坐标_____________________________。

三、解答题(共55分)16、(6分)如图,小正方形的边长为1,△ABC的三个顶点都在小正方形的顶点处,判断△ABC的形状,并求出△ABC的面积。

17、(6分)(1)请写出一个二元一次方程组,使该方程组无解;(2)利用一次函数图象分析(1)中方程组无解的原因。

18、(6分)建立一个平面直角坐标系。

在坐标系中描出与x轴的距离等于3与y轴的距离等于4的所有点,并写出这些点之间的对称关系。

19、(7分)为了迎接郑州市第二届“市长杯”青少年校园足球超级联赛,某学校组织了一次体育知识竞赛。

每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级得分依次记为100分、90分、80分、70分。

学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示。

(1)把一班竞赛成绩统计图补充完整;(2)写出下表中a、b、c的值:平均数(分)中位数(分)众数(分)方差一班 a b 90 106.24二班87.6 80 c 138.24(3)根据(2)的结果,请你对这次竞赛成绩的结果进行分析。

20、(8分)如图已知直线CB∥OA,∠C=∠OAB=100°,点E、点F在线段BC上,满足∠FOB=∠AOB=α,OE 平分∠COF。

(1)用含有α的代数式表示∠COE的度数;(2)若沿水平方向向右平行移动AB,则∠OBC:∠OFC的值是否发生变化?若变化找出变化规律;若不变,求其比值.21、(10分)在一条笔直的公路旁依次有A,B,C三个村庄,甲,乙两人同时分别从A,B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村。

设甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:(1)A、C两村间的距离为km,a= ;(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义;(3)乙在行驶过程中,何时距甲10km?22、(12分)正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C 两点。

(1)若点P是直线l上的一点,当△OPA的面积是3时,请求出点P的坐标;(2)如图2,坐标系xOy内有一点D(-1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标。

(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE-DE|的最大值,并写出此时点E的坐标。

图1 图22016—2017学年度郑州市上期期末考试八年级数学参考答案一、选择题1.D2.C3.D4.B5.A6.A7.B8.A9. C 10.C二、填空题11.3; 12. 68°; 13. 1; 14. y=x+2(答案不唯一,只要满足,,b=2即可);15.(0,0),(0,2)或(0,).三、解答题16.(1)直角三角形;………3分(2)=2. ……….6分17.(1)如:答案不唯一,只要对就给分;………3分(2)两条直线没有交点等. ……….6分18.建立平面直角坐标系(按照建系的要求合理即可)………2分该点在第一象限时,其坐标为A(4,3);该点在第二象限时,其坐标为B(-4,3);该点在第一象限时,其坐标为C(-4,-3);该点在第一象限时,其坐标为D(4,-3);4分A与B关于y轴对称,A与C关于原点对称,A与D关于x轴对称,B与C关于x轴对称,B与D关于原点轴对称,C 与D关于y轴对称. ………6分19.解:(1)一班中C级的有25-6-12-5=2人.………2分故统计图为:………3分(2)a=(6×100+12×90+2×80+70×5)÷25=87.6;b=90 ;c=100;………5分(3)①从平均数和中位数的角度,一班和二班平均数相等,一班的中位数大于二班的中位数,故一班成绩好于二班.②从平均数和众数的角度,一班和二班平均数相等,一班的众数小于二班的众数,故二班成绩好于一班.③从B级以上(包括B级)的人数的角度,一班有18人,二班有12人,故一班成绩好于二班.只要合理就给分………7分20.(1)∵CB∥OA,∴∠C+∠AOC=180°.∵∠C =100°,∴∠AOC =80°.∴∠EOB =∠EOF +∠FOB =21∠COF +21∠FOA=21(∠COF +∠FOA )=21∠AOC =40°.………4分(2)∠OBC ∶∠OFC 的值不发生改变.∵BC ∥OA ,∴∠FBO =∠AOB ,又∵∠BOF =∠AOB ,∴∠FBO =∠BOF , ∵∠OFC =∠FBO +∠FOB ,∴∠OFC =2∠OBC , 即∠OBC ∶∠OFC =∠OBC ∶2∠OBC =1∶2. ………8分 21. (1)A ,C 两村间的距离为120 km ,a =120÷[(120-90)÷0.5]=2. ………3分 (2)设y 1=k 1x +120,代入(2,0)解得k 1=-60, ∴y 1=-60x +120.设y 2=k 2x +90,代入(3,0)解得k 2=-30, ∴y 2=-30x +90.由-60x +120=-30x +90,解得x =1,则y 1=y 2=60,所以点P 的坐标为(1,60),表示经过1 h 甲与乙相遇且距C 村60 km. ………7分(3)当y 1-y 2=10,即-60x +120-(-30x +90)=10,解得x =32; 当y 2-y 1=10, 即-30x +90-(-60x +120)=10,解得x =34; 当甲走到C 村,而乙距离C 村10 km 时,-30x +90=10,解得x =38. 综上可知当x =32 h 或x =34h 或x =38h 时乙距甲10km. ………10分 22.(1)由题意知点A 、点C 的坐标分别为(-2,0)和(0,2)设直线l 的函数表达式y =kx +b (k ≠0),经过点A (-2,0)和点C (0,2),得解之得∴直线l 的解析式为y=x +2. ………2分设点P的坐标为(m,m+2),由题意得×2×=3,∴m=1或m=-5.∴P1(1,3), P2(-5,-3). ………4分(2)∵O与B关于直线对称,∴BE=OE,∴|BE-DE|=|OE-DE|.由两边之差小于第三边知,当点O,D,E三点共线时,|OE-DE|最小. ………6分∴连接OD交直线于点E,则点E为所求,此时|BE+DE|=|OE+DE|=OD,OD即为最大值. ………6分设OD所在直线为y=k1x(k1≠0),经过点D∴=,∴k1=∴直线OD为联立得:解得∴点E的坐标为().………8分又∵点D的坐标为,∴由勾股定理可得OD=. 即|BE-DE|的最小值为.………10分(3)的最大值为此时点E的坐标为.………12分。

相关文档
最新文档