集合概念、表示方法、分类以及集合之间的关系
数学人教三年级上册第九单元《第1课时数学广角——集合》教学设计
数学人教三年级上册第九单元《第1课时数学广角——集合》教学设计一. 教材分析人教三年级上册第九单元《数学广角——集合》的内容主要包括集合的概念、集合的表示方法以及集合之间的关系。
这部分内容是小学数学中的一个新的知识点,通过学习使学生初步理解集合的概念,能够用集合的表示方法来表示一些物体,同时了解集合之间的关系。
二. 学情分析三年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们已经能够理解一些简单的概念和关系,但是对于集合的概念和表示方法可能还有一些陌生。
因此,在教学过程中,教师需要通过生动形象的例子和具体的活动,帮助学生理解和掌握集合的概念和表示方法。
三. 教学目标1.让学生初步理解集合的概念,能够用集合的表示方法来表示一些物体。
2.让学生了解集合之间的关系,能够通过集合的表示方法来判断集合之间的关系。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.集合的概念和表示方法。
2.集合之间的关系。
五. 教学方法1.采用情境教学法,通过生动形象的例子和生活情境,帮助学生理解和掌握集合的概念和表示方法。
2.采用小组合作学习的方式,让学生在小组内通过讨论、探究的方式,共同完成任务,培养学生的合作意识和团队精神。
3.采用实践教学法,让学生通过动手操作,实际操作集合的表示方法,加深对集合概念的理解。
六. 教学准备1.准备一些生活情境的图片,用于引导学生理解和掌握集合的概念和表示方法。
2.准备一些集合的卡片,用于让学生实际操作集合的表示方法。
七. 教学过程1.导入(5分钟)通过向学生展示一些生活情境的图片,引导学生理解和掌握集合的概念和表示方法。
例如,展示一些水果的图片,让学生找出所有的苹果,并用集合的表示方法来表示。
2.呈现(10分钟)向学生介绍集合的概念和表示方法,让学生了解集合之间的关系。
通过具体的例子,让学生学会用集合的表示方法来表示一些物体。
3.操练(10分钟)让学生通过实际操作集合的表示方法,加深对集合概念的理解。
集合的含义与表示及集合间的关系
课题1.1.1-2集合的含义与表示及集合间的关系【新课讲授】一.试一试(15分钟)阅读教材p1~p4,并完成下列知识要点填空和练习。
1.知识要点填空:(1)集合 :一般地,称为集合(简称为集).叫作这个集合的元素.(2) 元素与集合的关系:a 是集合A 的元素就说,记作,如果a 不是集合A 的元素就说,记作a A ∉ (注意:元素和集合的关系只能是属于或者不属于)(3)常见数集及记法:自然数集记作,Q 表示集,整数集记作 ,正整数集记作,R 表示.(4)集合的表示:i,集合通常用字母表示,如A,B,C 等.元素通常用小写字母表示,如a,b,c 等.ii,列举法:把表示集合的方法,如方程方程2560x x -+=的解集可表示为.正奇数组成的集合可表示为 . iii,描述法:用 表示集合的方法.如不等式30x ->的所有解组成的集合可表示为:注意:你在表示集合时怎样去选择合适的方法?(4)集合的分类:叫有限集,叫无限集.叫空集,空集记作.二.问题1:元素与集合有“属于”、“不属于”的关系;数与数之间有“相等”、“不相等”的关系;那么集合与集合之间有什么样的关系呢?2、概念的形成问题1的探究:具体实例1:看下面各组中两个集合之间有什么关系(1)A ={1,2,3}, B ={1,2,3,4,5}(2)A={菱形}, B ={平行四边形}(3)A={x|x>2}, B={x|x>1}具有这样关系的两个集合如何准确的用数学语言表述呢?(1)子集的定义:文字语言:一般地,对于两个集合A ,B ,如果集合A 中的任何一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集。
符号语言:B A ⊆或A B ⊇。
练习1、用适当的符号填空:0{0}, {正方形}{矩形},三角形{等边三角形}{梯形}{平行四边形},{x|-1<x<5}{x|2<x<4}3、概念的深化问题2、如果集合A 是集合B 的子集,那么对于任意的A x ∈,有B x ∈;那么对于集合B 中的任何一个元素,它与集合A 之间又可能是什么关系呢?问题2探究:具体实例2:(1)、A ={x|x<-4或x>2},B={x|x<0或x>1}(2)、A ={x|-1<x<3},B={x|-3<2x-1<5}(2)相等关系:如果集合A B ⊆,且A B ⊆,则A=B 。
9数学广角——集合(教案)-三年级上册数学人教版
9 数学广角——集合(教案)三年级上册数学人教版我今天要为大家带来的是三年级上册数学人教版的教案,主题是数学广角——集合。
一、教学内容我们今天的学习内容是教材的第五章第二节,主要内容是集合的概念和表示方法。
学生将学习集合的定义、集合的表示方法,以及集合之间的关系。
二、教学目标通过本节课的学习,我希望学生能够理解集合的概念,掌握集合的表示方法,以及能够识别和表示简单的集合关系。
三、教学难点与重点教学难点是集合的概念和集合之间的关系,教学重点是集合的表示方法。
四、教具与学具准备为了帮助学生更好地理解集合的概念,我准备了一些图片和实物,如苹果、球等,以及一些集合的表示方法,如Venn图等。
五、教学过程1. 实践情景引入:我会向学生展示一些苹果,然后让学生分组,每组选择一些苹果,用集合的表示方法来表示这些苹果。
2. 例题讲解:我会用Venn图来讲解集合的表示方法,以及集合之间的关系。
3. 随堂练习:我会给出一些练习题,让学生用集合的表示方法来表示题目中的集合。
4. 作业布置:我会布置一些关于集合的作业,让学生巩固今天学到的知识。
六、板书设计板书设计如下:集合的概念和表示方法集合:一组确定的对象集合的表示方法:Venn图集合的符号表示集合之间的关系:包含关系不包含关系交叉关系七、作业设计作业题目:A:苹果B:橙子C:水果答案:1. 略八、课后反思及拓展延伸通过本节课的学习,我发现学生对集合的概念和表示方法有一定的理解,但在表示集合关系方面还需要加强。
在今后的教学中,我会更多地运用实例来帮助学生理解和掌握集合的关系。
同时,我也会鼓励学生在课后多进行集合的相关练习,以巩固所学知识。
对于拓展延伸,我建议学生可以尝试自己设计一些集合的题目,并用Venn图或其他方法来表示,以此来提高自己的集合知识。
重点和难点解析在上述教案中,有几个重要的细节需要重点关注。
集合的概念和表示方法是本节课的核心内容,学生需要理解集合的定义以及如何用不同的方式表示集合。
集合的表示与分类
集合的表示与分类一、引言集合是数学中的基本概念之一,它在各个学科和日常生活中都有着广泛的应用。
准确地表示和分类集合是我们研究和理解集合的重要基础。
本文将介绍集合的表示方法和分类方式。
二、集合的表示方法1. 列举法列举法是最直观、最简单的表示集合的方法。
通过将集合中的元素逐个罗列出来,用花括号{}括起来表示集合。
例如,集合A={1,2,3,4,5}表示A是包含元素1、2、3、4、5的集合。
2. 描述法描述法是通过给出集合中的元素满足的特定条件来表示集合。
一般形式为{元素 | 元素满足的条件}。
例如,集合B={x | x是正整数且x<10}表示B是包含所有小于10的正整数的集合。
3. 通用集合符号除了列举法和描述法外,通用集合符号也是表示集合的常用方法。
常见的通用集合符号有:- 空集符号:∅,表示一个不包含任何元素的集合。
- 元素属于符号:∈,表示一个元素属于某个集合。
- 元素不属于符号:∉,表示一个元素不属于某个集合。
- 子集符号:⊆,表示一个集合是另一个集合的子集。
- 真子集符号:⊂,表示一个集合是另一个集合的真子集。
三、集合的分类方式1. 有限集与无限集根据元素的个数,集合可以分为有限集和无限集。
有限集是元素个数有限的集合,例如{1,2,3,4,5};无限集是元素个数无限的集合,例如正整数集合。
2. 空集与非空集根据元素的存在情况,集合可以分为空集和非空集。
空集是不包含任何元素的集合,用符号∅表示;非空集是至少包含一个元素的集合。
3. 包含集与被包含集根据集合之间的包含关系,集合可以分为包含集和被包含集。
如果集合A中的每个元素都是集合B中的元素,则可以称集合B是集合A 的包含集,集合A是集合B的被包含集。
4. 相等集与不相等集根据集合之间的相等关系,集合可以分为相等集和不相等集。
如果两个集合中的元素完全相同,则这两个集合相等;否则,这两个集合不相等。
四、结论本文介绍了集合的表示方法和分类方式。
小学数学:集合思想
集合思想1. 集合的概念。
把指定的具有某种性质的事物看作一个整体,就是一个集合(简称集),其中每个事物叫做该集合的元素(简称元)。
给定的集合,它的元素必须是确定的,即任何一个事物是否属于这个集合,是明确的。
如“学习成绩好的同学”不能构成一个集合,因为构成它的元素是不确定的;而“语文和数学的平均成绩在90分及以上的同学”就是一个集合。
一个给定集合中的元素是互不相同的,即集合中的元素不重复出现。
只要两个集合的元素完全相同,就说这两个集合相等。
集合的表示法一般用列举法和描述法。
列举法就是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法。
描述法就是在花括号内写出规定这个集合元素的特定性质来表示集合的方法。
列举法的局限性在于当集合的元素过多或者有无限多个时,很难把所有的元素一一列举出来,这时描述法便体现出了优越性。
此外,有时也可以用封闭的曲线(文恩图)来直观地表示集合及集合间的关系,曲线的内部表示集合的所有元素。
一一对应是两个集合之间元素(这种元素不一定是数)的一对一的对应,也就是说集合A中的任一元素a,在集合B中都有唯一的元素b与之对应;并且在集合B中的任一元素b,在集合A中也有唯一的元素a与之对应。
数集之间可以建立一一对应,如正奇数集合和正偶数集合之间的元素可以建立一一对应。
其他集合之间也可以建立一一对应,如五(1)班有25个男生,25个女生,如果把男生和女生各自看成一个集合,那么这两个集合之间可以建立一一对应;再如,中国、美国、俄罗斯、英国、法国、德国作为一个集合,北京、华盛顿、莫斯科、伦敦、巴黎、柏林作为一个集合,这两个集合之间也可以建立一一对应。
2. 集合思想的重要意义。
集合理论是数学的理论基础,从集合论的角度研究数学,便于从整体和部分及二者的关系上研究数学各个领域的知识。
如数系的扩展,从小学的自然数到整数,再到中学的有理数、无理数和实数,都可以从集合的角度来描述。
有时用集合语言来表述有关概念更为简洁,如全体偶数的集合可表示为{x|x=2k,k∈Z}。
20180709高一第一讲集合概念和表示方法
第1讲集合的概念和关系一.集合的概念集合没有确切定义,是一个基本概念。
对其描述:某些具有共同属性的对象集在一起就成为一个集合。
符号表示为{},表示的意思为全体。
这些对象我们称之为元素。
集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,集合的元素常用小写的拉丁字母来表示。
如a、b、c、p、q…… 例如A={1,3,a,c,a+b}注意:(1)集合是数学中原始的、不定义的概念,只作描述。
(2)集合是一个“整体。
(3)构成集合的对象必须是“确定的”且“不同”的。
例如:指出下列对象是否构成集合,如果是,指出该集合的元素。
(1)我国的直辖市;(2)五中高一(1)班全体学生;(3)较大的数;(4)young 中的字母;(5)大于100的数;(6)小于0的正数。
【典例分析】1.下列各组对象中,不能组成集合的是()A 所有的正六边形B《数学》必修1中的所有习题C 所有的数学容易题D 所有的有理数2.由下列对象组成的集体属于集合的是()(1)不超过π的正整数;(2)高一数学课本中所有的难题;(3)中国的大城市(4)平方后等于自身的数;(5)某校高一(2)班中考成绩在500分以上的学生.A.(1)(2)(3)B.(3)(4)(5)C.(1)(4)(5)D. (1)(2)(4)二.元素的特性a、确定性(有一个确定的衡量标准)b、互异性(集合里的元素都不一样)c、无序性(没有顺序)(确定性)例题1:下列各组对象能否构成一个集合(1)著名的数学家(2)某校2006年在校的所有高个子同学(3)不超过10的非负数(4)方程240x-=在实数范围内的解(5)2的近似值的全体例题2:下列各对象不能够成集合的是()A 某校大于50岁的教师B 某校30岁的教师C 某校的年轻教师D 某校的女教师(互异性)例题3:已知集合S 中的元素是a,b,c,其中a,b,c 为△ABC 的三边长,则△ABC 一定不是( )A. 锐角三角形B.直角三角形C.钝角三角形D.等腰三角形例题4:若-3∈{a-3,2a-1,a 2+4},求实数a 的值,并求此时的实数集。
四川高中数学知识点全总结
四川高中数学知识点全总结一、集合与函数概念1. 集合的含义、表示方法以及集合与集合之间的关系;2. 集合的运算,包括交集、并集、补集;3. 函数的概念、表示方法、函数的性质;4. 函数的运算,如复合函数、反函数、增减性、奇偶性;5. 常见初等函数,包括幂函数、指数函数、对数函数、三角函数等。
二、数列与数学归纳法1. 数列的概念、表示和分类;2. 等差数列和等比数列的通项公式、求和公式;3. 数列的极限概念及其计算;4. 数学归纳法的原理和应用;5. 递推数列的解法。
三、排列组合与概率1. 分类计数原理和分步计数原理;2. 排列、组合的公式及其应用;3. 二项式定理及其应用;4. 概率的基本概念和计算;5. 条件概率、独立事件的概率;6. 随机事件的概率分布,如二项分布、正态分布等。
四、三角函数与解三角形1. 三角函数的基本关系、三角恒等变换;2. 三角函数的图像和性质;3. 解三角形的定理和方法,包括正弦定理、余弦定理;4. 三角形的面积公式;5. 反三角函数及其应用。
五、平面向量与解析几何1. 向量的基本概念、线性运算、数量积;2. 向量的几何应用,如平行、垂直、夹角;3. 直线的方程及其与圆的位置关系;4. 圆的方程及其性质;5. 圆锥曲线(椭圆、双曲线、抛物线)的标准方程和性质。
六、立体几何1. 空间几何体的基本概念和性质;2. 空间直线与平面的位置关系;3. 立体角的概念及其计算;4. 棱柱、棱锥、圆柱、圆锥、球的体积和表面积公式;5. 空间向量在立体几何中的应用。
七、导数与微分1. 导数的定义、几何意义和物理意义;2. 常见函数的导数公式;3. 函数的极值、最值问题;4. 微分的概念、微分运算法则;5. 链式法则、隐函数求导、参数方程求导。
八、积分1. 不定积分的概念、性质和基本积分表;2. 换元积分法、分部积分法;3. 定积分的概念、性质和计算;4. 定积分的应用,如计算面积、体积;5. 微积分基本定理。
第1讲 集合的概念,集合的表示方法集合之间的关系(学生版)
第1讲集合的概念,集合的表示方法集合之间的关系【基础知识】一、集合的意义1.集合:某些指定的对象集在一起就形成一个集合(简称集)。
2.元素:集合中每个对象叫做这个集合的元素。
3.属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉4.不属于:如果a不是集合A的元素,就说a不属于A,记作A5.有限集:含有有限个元素的集合。
6.无限集:含有无限个元素的集合。
7.集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
8.数学上,常常需要用到数的集合.数的集合简称数集9.空集:我们把不含任何元素的集合,记作φ。
二、集合的表示方法1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
通常元素个数较少时用列举法。
2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
区间:在数学上,常常需要表示满足一些不等式的全部实数所组成的集合.为了方便起见,我们引入区间(interval)的概念.闭区间在数轴上表示开区间在数轴上表示半开半闭区间在数轴上表示这里的实数a,b统称为这些区间的端点.三、集合之间的关系1、子集:定义:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,此时我们称A 是B 的子集。
即:B A B x A x ⊆∈⇒∈,则若任意 记作:A B B A ⊇⊆或;读作:A 包含于B 或B 包含A ;注意:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合 2、真子集:【考点剖析】考点一:集合的意义例1.下列所给对象不能构成集合的是________. (1)高一数学课本中所有的难题; (2)某一班级16岁以下的学生; (3)某中学的大个子;(4)某学校身高超过1.80米的学生; (5)1,2,3,1.例2.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .B .C .M ∉-4D .M ∈4 例3.用“∈”或“∉”填空(1)-3______N ; (2)3.14______Q ; (3)13______Z ;(4)-12______R ; (5)1______N *; (6)0________N .例4.已知集合},012{2R x x ax x A ∈=++=,且A 中只有一个元素,求x 的值.例5.已知},0,1{2x x ∈,求实数x 的值.例6.已知集合S 的三个元素a .、b 、c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 例7.设A 为实数集,且满足条件:若a .∈A ,则a-11∈A (a .≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集. 证明.例8.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?考点二:集合的表示方法例1.写出下列集合中的元素(并用列举法表示):(1)既是质数又是偶数的整数组成的集合 (2)大于10而小于20的合数组成的集合例2.用描述法表示下列集合:(1)被5除余1的正整数所构成的集合(2)平面直角坐标系中第一、第三象限的点构成的集合 (3)函数122+-=x x y 的图像上所有的点 (4)例3.用列举法表示下列集合:(1)},,5),{(N y N x y x y x ∈∈=+(2)},032{2R x x x x ∈=--(3)},032{2R x x x x ∈=+-(4)},512{Z x N xx ∈∈-例4.用适当的方法表示下列集合(1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C例5.下列表示同一个集合的是( )A .)}3,2{()},2,3{(==N MB .}3,2{},2,3{==N MC .)}3,2{(},2,3{==N MD .φ==N M },0{ 例6.已知集合,用列举法分别表示集合B A 、例7.设∇是R 上的一个运算,A 是R 的非空子集,若对任意A b a ∈,,有A b a ∈∇,则称A 对运算∇封闭,下列数集对加法、减法、乘法和除法(除法不等于零)四则运算都封闭的是()A .自然数集B .整数集C .有理数集D .无理数集例8.(2021·上海曹杨二中高一期末)已知集合{}{}2230,M x x x N x x a =--<=>,若M N ⊆,则实数a 的取值范围是__________. 考点三:集合之间的关系例1.已知A ={0,1},B ={x |x ⊆A },则A 与B 的关系正确的是( )A .A ⊆B B .A B =C .B A ⊆D .A ∈B例2.已知集合}2,,{b a b a a A ++=,集合},,{2ac ac a B =,若B A =,求实数c 的值例3.已知集合}01{},06{2=+==-+=ax x B x x x A 且A ≠⊂B ,求a 的值.例4.定义A *B ={x |x ∈A ,且x ∉B },若A ={1,3,4,6},B ={2,4,5,6},则A *B 的子集个数为例5.设}2,1{B }4,3,2,1{A ==,,试求集合C ,使A C ≠⊂且C B ⊆例6.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +2a -1=0},若B ⊆A ,求实数a 的取值范围.例7.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.例8.若集合M ={x |x 2+x -6=0},N ={x |(x -2)(x -a )=0},且N ⊆M ,求实数a 的值.例9.已知,则A 与B 之间的包含关系为 ;【难度】★★ 【答案】B ≠⊂A例10.已知集合}3{>=x x A ,集合}1{m x x B >+=,若A B ≠⊂,实数m 的取值范围是,若A B ⊆,实数m 的取值范围是【过关检测】一、单选题1.(2021·上海市实验学校高一期末)设Q 是有理数,集合{|,,0}X x x a a b x ==+∈≠Q ,在下列集合中;(1){|2,}y y x x X =∈;(2){|}y y x X =∈;(3)1{|,}y y x X x =∈;(4)2{|,}y y x x X =∈;与X 相同的集合有( ) A .4个B .3个C .2个D .1个2.(2021·上海高一期末)已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题: ①M 的元素不都是P 的元素;②M 的元素都不是P 的元素; ③存在x P ∈且x M ∈;④存在x M ∈且x P ∉; 这四个命题中,真命题的个数为( ). A .1个 B .2个C .3个D .4个3.(2020·上海高一专题练习)下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .某校2015-2016学年度笫一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数4.(2020·上海高一专题练习)下面每一组的两个集合,相等的是( ) A .{(1,2)}M =,{(2,1)}N = B .{1,2}M =,{(1,2)}N =C .M =∅,{}N =∅D .{}2|210M x x x =-+=,{1}N =5.(2020·上海高一专题练习)方程组的解构成的集合是 A .{1}B .(1,1)C .{(1,1)}D .{1,1}6.(2020·上海高一专题练习)下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对7.(2020·上海高一课时练习)已知非零实数,,a b c ,则代数式a b ca b c++表示的所有的值的集合是( ) A .{3} B .{3}- C .{3,3}-D .{3,3,1,1}--8.(2020·上海高一课时练习)集合是指( ) A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点9.(2020·上海高一专题练习)如果{}1A x x =>-,那么错误的结论是( ) A .0A ∈B .C .A φ∈D .A φ⊆10.(2020·上海高一专题练习)以下六个关系式:{}00∈,{}0⊇∅,0.3Q ∉, , ,是空集,错误的个数是( ) A .4 B .3C .2D .1二、填空题11.(2021·上海高一期末)10的所有正因数组成的集合用列举法表示为__________. 12.(2021·上海市实验学校高一期末)集合6{|3P x x =∈-Z 且}x ∈Z ,用列举法表示集合P =________ 13.(2021·上海市西南位育中学高一期末)已知集合(){}21320A x m x x =-+-=有且仅有两个子集,则实数m =______.14.(2021·上海市南洋模范中学高一期末)已知集合(){}lg 4A x y x =∈=-N ,则A 的子集个数为______. 15.(2021·上海市西南位育中学高一期末)设,,则A ___________B .(填“⊂”、“”、“”或“”) 16.(2020·上海高一课时练习)已知集合A ={1,2,a 2-2a },若3∈A ,则实数a =______. 17.(2020·上海高一专题练习)用符号“∈”或“∉”填空(1)0______N ,N ,N (2)12-_____,Q π______Q(3)________{}|,,x x a a Q b Q =+∈∈18.(2020·上海高一专题练习)集合2{|(6)20}A x ax a x =+-+=是单元素集合,则实数a =________ 19.(2020·上海高一专题练习)1∈{a 2−a −1,a ,−1},则a 的值是_________.20.(2020·上海高一专题练习)已知集合{}2|320M x x x =-+=,集合{}2|220,N x x x k k R=++=∈非空,若M N ⋂=∅,则k 的取值范围是___; 21.(2020·上海高一专题练习)定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合AB 所有元素之和为________22.(2020·上海高一专题练习)集合{1,4,9,16,25}用描述法来表示为________.23.(2020·上海高一专题练习)已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a =___________.24.(2020·上海高一课时练习)定义“×”的运算法则为:集合{(,)|,}A B x y x A y B ⨯=∈∈,设集合{1,23}P =,,{2,4,6,8}Q =,则集合P Q ⨯中的元素个数为________.25.(2020·上海高一课时练习)已知集合{}2|1,||2,A y y x x x Z ==+∈,用列举法表示为________. 26.(2020·上海高一专题练习)满足的集合A 的个数为____________个. 27.(2020·上海高一专题练习)已知A ,B 是两个集合,下列四个命题: ①A 不包含于B ⇔对任意x ∈A ,有x ∉B ②A 不包含于B ⇔AB =∅③A 不包含于B ⇔A 不包含B ④A 不包含于B ⇔存在x ∈A ,x ∉B 其中真命题的序号是______28.(2020·上海高一专题练习)集合A={x |ax −6=0},B={x |3x 2−2x=0},且A ⊆B ,则实数a =____ 29.(2020·上海高一专题练习)满足的集合M 共有___________个.30.(2020·上海高一专题练习)已知集合A 中有n 个元素,则集合A 的子集个数有_____个,真子集有_____个,非空真子集_______个. 三、解答题31.(2020·上海高一课时练习)已知2{1,0,}x x ∈,求实数x 的值.32.(2020·上海高一课时练习)含有3个实数的集合可表示为,也可表示为{}2,,0a a b +,求20092010a b +的值.33.(2020·上海高一课时练习)用适当的方法表示下列集合,并判断它是有限集还是无限集. (1)第三象限内所有点组成的集合; (2)由大于-3而小于9的偶数组成的集合; (3)所有被5除余2的奇数组成的集合.34.(2020·上海高一课时练习)选择适当的方法表示下列集合. (1)Welcome 中的所有字母组成的集合; (2)所有正偶数组成的集合; (3)二元二次方程组的解集; (4)所有正三角形组成的集合.35.(2020·上海高一课时练习)用适当的方法表示下列集合 (1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C36.(2020·上海高一课时练习)用适当的方法表示下列集合. (1)由所有小于20的既是奇数又是质数的正整数组成的集合; (2)由所有非负偶数组成的集合;(3)直角坐标系内第三象限的点组成的集合.37.(2020·上海高一专题练习)A ={x |x <2或x >10},B ={x |x <1-m 或x >1+m }且BA ,求m 的范围.38.(2020·上海高一专题练习)已知A ={x |},B ={x |25x -≤≤},若AB ,求实数m 的取值范围.。
集合的基本概念元素集合之间的关系
第一章集合第一节集合的概念一、要点透析(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:一些元素集在一起就形成一个集合(简称集)2、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A∉3、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)例1.下列各组对象能确定一个集合吗?(1)所有很大的实数()(2)好心的人()(3)1,2,2,3,4,5.()4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a A ∈颠倒过来写5、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作∅注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成*Z例2.用适当的符号(∈∉,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程210x -=的所有解组成的集合,可以表示为{1,1}-注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表示一个元素,{}a 表示一个集合,该集合只有一个元素例3、设a,b 是非零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{|()}x A P x ∈含义:在集合A 中满足条件()P x 的x 的集合例如,不等式32x ->的解集可以表示为:{|32}x R x ∈->或{|32}x x ->所有直角三角形的集合可以表示为:{|}x x 是直角三角形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?(三)有限集与无限集有限集:含有有限个元素的集合无限集:含有无限个元素的集合空集:不含任何元素的集合,记作∅,如:2{|10}x R x ∈+=二、题型解析(一)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10cm 的三角形2方程组23211x y x y -=⎧⎨+=⎩的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表示同一集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为(二)集合的表示方法1用列举法表示下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2用描述法表示下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017⎧⎫±±±±⎨⎬⎩⎭(三)集合的分类1关于x 的方程0ax b +=,当a ,b 满足条件_____时,解集是有限集;当a ,b 满足条件_____时,解集是无限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭且③12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-⋅-++≠其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯一实施解},试用列举法表示集合A。
《集合的概念》参考教案
《集合的概念》参考教案一、教学目标1. 让学生理解集合的概念,掌握集合的表示方法。
2. 培养学生运用集合语言描述现实生活中的数学问题。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 集合的定义2. 集合的表示方法3. 集合之间的关系4. 集合的运算5. 集合在生活中的应用三、教学重点与难点1. 重点:集合的概念、表示方法及集合之间的关系和运算。
2. 难点:理解集合的表示方法,熟练运用集合语言描述问题。
四、教学方法1. 采用讲授法,讲解集合的概念、表示方法及集合之间的关系和运算。
2. 运用案例分析法,让学生在实际问题中运用集合的知识。
3. 开展小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入:通过生活中的实例,引导学生思考集合的概念。
2. 讲解:详细讲解集合的定义、表示方法及集合之间的关系和运算。
3. 案例分析:分析实际问题,让学生运用集合的知识解决问题。
4. 小组讨论:让学生分组讨论,分享各自的想法和成果。
5. 总结:对本节课的内容进行总结,强调集合的概念及运用。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评价1. 评价内容:学生对集合概念的理解、表示方法的掌握以及集合运算的应用能力。
2. 评价方法:课堂问答、练习题、小组讨论、课后作业等。
3. 评价标准:能正确理解并运用集合语言描述问题,掌握集合的基本运算,能解决实际生活中的集合问题。
七、教学资源1. 教材:高中数学教材相关章节。
2. 辅助材料:集合相关的图片、案例、练习题等。
3. 教学工具:黑板、多媒体设备等。
八、教学进度安排1. 第1周:讲解集合的概念和表示方法。
2. 第2周:讲解集合之间的关系和运算。
3. 第3周:案例分析,运用集合知识解决实际问题。
4. 第4周:小组讨论,分享成果,巩固所学知识。
5. 第5周:总结集合的概念和运用,布置课后作业。
九、教学反思1. 反思内容:教学方法的适用性、学生的学习效果、教学目标的达成情况等。
集合的基本概念元素集合之间的关系
第一章 集合第一节 集合的概念一、要点透析(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。
我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。
集合中的每个对象叫做这个集合的元素。
1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:一些元素集在一起就形成一个集合(简称集)2、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A ∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A ∉3、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)例1. 下列各组对象能确定一个集合吗?(1)所有很大的实数 ( )(2)好心的人( )(3)1,2,2,3,4,5.( )4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a A ∈颠倒过来写5、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±±,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作∅注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成*Z例2. 用适当的符号(∈∉, )填空:(1)3_____N; (2)0_____{Φ}; (3)32____Z, 0.5Q Q ,;2(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程210x -=的所有解组成的集合,可以表示为{1,1}-注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100};所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表示一个元素,{}a 表示一个集合,该集合只有一个元素例3、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含( )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{|()}x A P x ∈ 含义:在集合A 中满足条件()P x 的x 的集合例如,不等式32x ->的解集可以表示为:{|32}x R x ∈->或{|32}x x ->所有直角三角形的集合可以表示为:{|}x x 是直角三角形例4、 已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?(三)有限集与无限集有限集:含有有限个元素的集合无限集:含有无限个元素的集合空集:不含任何元素的集合,记作∅,如:2{|10}x R x ∈+=二、题型解析(一)集合的基本概念1 以下元素的全体不能够构成集合的是( )A .中国古代四大发明B .地球上的小河流C .方程210x -=的实数解D .周长为10cm 的三角形 2 方程组23211x y x y -=⎧⎨+=⎩的解集是( ) A .{5,1} B .{1,5} C .{(5,1)} D .{(1,5)}3 给出下列关系:①12R ∈; Q ;③3N +∈;④0Z ∈,其中正确的个数是( ) A .1 B .2 C .3 D .44 下列各组中的两个集合M 和N ,表示同一集合的是( )A .{}M π=,{3.14159}N =B .{2,3}M =,{(2,3)}N =C .{|11,}M x x x N =-<≤∈,{1}N =D .{}M π=,{,1,|N π= 5 已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6 用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17 A ; 5- A ; 17 B7 已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为(二)集合的表示方法1 用列举法表示下列集合①{|15}x N x ∈是的约数 ②{(,)|{1,2},{1,2}}x y x y ∈∈ ③2(,)24x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭④{|(1),}n x x n N =-∈ ⑤{(,)|3216,,}x y x y x N y N +=∈∈ ⑥{(,)|,4}x y x y 分别是的正整数约数 2 用描述法表示下列集合①{1,4,7,10,13} ②{2,4,6,8,10}-----③{1,5,25,125,625} ④12340,,,,,251017⎧⎫±±±±⎨⎬⎩⎭(三)集合的分类1 关于x 的方程0ax b +=,当a ,b 满足条件_____时,解集是有限集;当a ,b 满足条件_____时,解集是无限集2 下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是( )A .只有(1)和(4)B .只有(2)和(3)C .只有(2)D .以上四种说法都不对2、试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合4、给出下列集合: ①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭且 ③12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭或 ; ④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-⋅-++≠ 其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯一实施解},试用列举法表示集合A。
集合的含义与表示知识点总结
集合的含义与表示知识点总结一、课标要求《课程标准》对本课内容的要求是:能够了解集合的含义,知道常用数集的表示方法,了解集合元素的三个性质,会用适当的方法表示集合.集合知识是整个高中学习的基础,使学生掌握和使用数学语言表述数学问题的基础.通过学习集合知识,可以使学生更好的理解数学中的集合语言,可以使学生逐步运用集合的观点和思想分析数学问题.二、本节知识要点(1)集合的含义与表示;(2)元素与集合之间的关系与表示;(3)集合元素的三个基本性质;(4)常用数集的表示;(5)集合的两种表示方法(列举法和描述法);(6)集合的分类.三、集合的含义与表示一般地,指定的某些对象的全体称为集合.集合中的每个对象叫做这个集合的元素.集合用大写字母来表示,集合的元素与小写字母来来表示.四、元素与集合之间的关系与表示a a元素与集合之间是从属关系:若元素在集合A中,就说元素属于集合A,记作;若元素不在集合A中,则称元素不属于集合A,记作.a∈a a Aa∉A要求会判断元素与集合之间的从属关系.五、集合元素的三个基本性质集合中的元素具有确定性、互异性和无序性.确定性给定一个集合,它的的元素必须是确定的.也就是说,给定一个集合,任何一个元素属于或不属于这个集合,也就确定了.互异性给定一个集合,它的元素是互不相同的.即同一个集合中的元素不能重复出现.在用列举法表示集合时,相同的元素算作集合的一个元素.无序性 集合中的元素是没有顺序的.如果构成两个集合的元素是相同的,那么就称这两个集合相等.六、常用数集的表示自然数集N ; 正整数集N +或N *; 整数集Z ; 有理数集Q ; 实数集R .七、集合的两种表示方法集合有两种常用表示方法,即列举法和描述法.此外还有韦恩图法(Venn 图法).列举法把集合的元素一一列举出来,并用大括号“”括起来表示集合的方法叫做列举{}法.用列举法表示集合时要注意以下几点:(1)元素之间必须用逗号隔开;(2)元素不能重复(即集合的元素要满足互异性);(3)元素之间无先后顺序(集合的元素具有无序性);(4)表示有规律的无限集时,必须把元素间的规律表示清楚后才可以使用省略号,如﹛1 , 2 , 3 , … ﹜;(5)注意与的表示是有区别的:表示的是一个元素,表示的是只有一个a {}a a {}a 元素的集合.二者具有从属关系,及.a a A ∈ 列举法常用来表示有限集或有规律的无限集.描述法定义 用集合所含元素的共同特征表示集合的方法叫做描述法.记作,(){}x P I x ∈其中为集合的代表元素,I 表示元素的取值范围,表示集合的元素所具有x x ()x P 的共同特征.第二定义 用确定的条件表示某些对象属于一个集合的方法,称为描述法.注意:“共同特征”或“确定的条件”可以说是方程,也可以是不等式(组)等.如集合,集合.{}0322=--=x x x A {}062<-=x x B 用描述法表示集合时要注意以下几点:(1)写清集合中的代表元素,如实数或有序实数对,从而正确表示数集和点集;(2)用简洁准确的语言表示集合中元素的共同特征;(3)不能出现未被说明的字母,如集合中的未被说明,应正确表示{}n x Z x 2=∈n 为或;{}Z n n x Z x ∈=∈,2{}Z x n x x ∈=,2(4)元素的取值范围,从上、下文来看,如果是明确的,可以省略.如集合,也可以写作.{}02=+∈x x R x {}02=+x x x (5)出现多层描述时,应正确使用“或”、“且”、“非”等逻辑联结词;(6)所有描述的内容都要写在大括号内;(7)识别描述法表示的集合时,要看清代表元素,正确区分数集和点集.当集合所含元素较多或元素的共同特征不明显时,适合用描述法来表示集合.例1. 用两种方法表示二元一次方程组的解. ⎩⎨⎧=-=+152y x y x 注意:二元一次方程组的解是有序实数对,所以在表示二元一次方程组的解时,要表示为点集的形式.解:解二元一次方程组得: ⎩⎨⎧=-=+152y x y x ⎩⎨⎧==12y x 用列举法表示为,用描述法表示为. (){}1,2()⎭⎬⎫⎩⎨⎧⎩⎨⎧==12,y x y x 提示:与表示的是两个不同的集合.(){}1,2(){}2,1例2. 指出集合与集合的区别.{}12-=x y x (){}12,-=x y y x 注意:区分数集和点集的关键在于代表元素.用描述法表示集合时记作,其(){}x P I x ∈中表示的就是代表元素,它可以是一个数字(数集),也可以是有序实数对(点x 集).解:集合表示的是一个数集,它表示函数解析式中自变量的{}12-=x y x 12-=x y 取值范围,所以R ;{}=-=12x y x 集合表示的是一个点集,它表示函数的图象上所有(){}12,-=x y y x 12-=x y 点的坐标.例3. 用合适的方法表示下列集合:(1)文房四宝;(2)2019年9月3日,新乡市平原示范区所辖乡镇;(3)平面直角坐标系中,第二象限的点构成的集合.注意:在用描述法表示集合时,元素之间必须用逗号隔开,不要用错标点符号.点集的代表元素为有序实数对.解:(1);{}砚纸墨笔,,,(2);{}师寨镇桥北乡原武镇韩董庄乡祝楼乡,,,,(3).(){}0,0,><y x y x 且例4. 分别用列举法和描述法表示下列集合:(1)方程的所有实数根组成的集合;022=-x (2)由大于10小于15的所有整数组成的集合.注意:在用描述法表示集合时,代表元素的取值范围,如果从上、下文来看是明确的,可以省略.解:(1)列举法:;{}2,2-描述法:或.{}022=-∈x R x {}022=-x x (2)列举法:﹛11 , 12 , 13 , 14﹜;描述法:.{}1511<<∈x Z x 八、集合的分类集合按所含元素个数的多少可以分为有限集、无限集和空集含有有限个元素的集合叫做有限集.含无限个元素的集合叫做无限集. 不含任何元素的集合叫做空集,记作.∅ 如方程的实数根组成的集合就是一个空集,即012=+x {}012=+∈x R x .{}∅==+∈012x R x 九、重要结论:判断形如的方程的实数根的个数的方法是:02=++c bx ax (1)当时,方程可化为的形式:0=a 0=+c bx①当时,方程有唯一一个实数根; 0≠b bc x -=②当时,方程有无数个实数根;0,0==c b ③当时,方程没有实数根;0,0≠=c b (2)当时,原方程为关于的一元二次方程:0≠a x ①若,则方程有两个不相等的实数根;042>-=∆ac b ②若,则方程有两个相等的实数根(此种情况下表示方程的实数042=-=∆ac b 根组成的集合时,集合只有一个元素);③若,则方程没有实数根.042<-=∆ac b 提示:在讨论集合元素的个数时,一定要注意分类讨论.例4. 已知集合.{}R a x ax R x A ∈=++∈=,0122(1)若A 中只有一个元素,求的值;a (2)若A 中至多有一个元素,求的取值范围.a 分析:先弄清楚集合A 的本质.集合A 是由方程的实数根组成的集0122=++x ax 合,该方程中含有参数,为含参方程.a (1)集合A 中只有一个元素,指的是方程只有一个实数根,该方0122=++x ax 程可以说一次方程,也可以是二次方程,注意分类讨论;()0=a ()0≠a (2)集合A 中至多有一个元素,指的是方程只有一个实数根或没0122=++x ax 有实数根.解:(1)当时,原方程可化为:,解之得:,集合,符合0=a 012=+x 21-=x ⎭⎬⎫⎩⎨⎧-=21A 题意;当时,∵只有一个实数根0≠a 0122=++x ax ∴,解之得:044=-=∆a 1=a 综上,当或时, A 中只有一个元素;0=a 1=a (2)当A 中只有一个元素时,由(1)可知:或;0=a 1=a 当A 中没有元素时,即方程没有实数根0122=++x ax ∴,解之得:044<-=∆a 1>a 综上,当或≥1时,A 中至多有一个元素.0=a a例5. 实数集A 满足条件:,若,则. A ∉1A a ∈A a∈-11(1)若,求A ; A ∈2(2)集合A 能否为单元素集合?若能,求出A ;若不能,请说明理由;(3)求证:. A a∈-11分析:本题重点考查集合元素的三个基本性质:确定性、互异性和无序性. (1)解:∵, ∴ A ∈212≠A ∈-=-1211∵ ∴ 11,1≠-∈-A ()A ∈=--21111∵ ∴ 121,21≠∈A A ∈=-22111∴﹛2 , , ﹜; =A 1-21(2)解:A 不能为单元素集合.理由如下:若A 为单元素集合,则有,整理得: aa -=11012=+-a a ∵ ()031412<-=⨯--=∆∴方程没有实数根012=+-a a ∴A 不能为单元素集合;(3)证明:若,则 A a ∈A a ∈-11∴. A aa a a ∈-=-=--1111111习题1. 已知集合.{{}0232=+-=x ax x A (1)若A 为空集,求的取值范围;a (2)若A 中只有一个元素,求的值;a (3)若A 中至多有一个元素,求的取值范围.a。
集合的含义与表示教案
集合的含义与表示教案教学目标:1. 理解集合的含义和特点;2. 学会使用集合的表示方法;3. 能够运用集合的概念解决实际问题。
教学内容:第一章:集合的概念1.1 集合的定义1.2 集合的元素1.3 集合的特点第二章:集合的表示方法2.1 列举法2.2 描述法2.3 图像法第三章:集合之间的关系3.1 子集的概念3.2 真子集与非真子集3.3 集合的相等第四章:集合的运算4.1 并集的定义及运算4.2 交集的定义及运算4.3 补集的定义及运算第五章:集合的实际应用5.1 集合在数学中的应用5.2 集合在生活中的应用5.3 集合在其他学科中的应用教学方法:1. 采用讲授法,系统地介绍集合的概念、特点、表示方法、关系和运算;2. 利用例题和练习题,让学生巩固集合的基本知识;3. 结合生活实例,让学生了解集合在实际中的应用。
教学步骤:第一章:集合的概念1.1 集合的定义1. 引入集合的概念,讲解集合的定义;2. 通过实例让学生理解集合的元素和特点。
1.2 集合的元素1. 讲解集合元素的特点;2. 分析集合元素的属性。
1.3 集合的特点1. 总结集合的特点;2. 通过练习题让学生巩固集合的特点。
第二章:集合的表示方法2.1 列举法1. 讲解列举法的概念和用法;2. 让学生通过练习题学会使用列举法表示集合。
2.2 描述法1. 讲解描述法的概念和用法;2. 让学生通过练习题学会使用描述法表示集合。
2.3 图像法1. 讲解图像法的概念和用法;2. 让学生通过练习题学会使用图像法表示集合。
第三章:集合之间的关系3.1 子集的概念1. 讲解子集的概念;2. 让学生通过练习题学会判断子集关系。
3.2 真子集与非真子集1. 讲解真子集与非真子集的概念;2. 让学生通过练习题学会判断真子集与非真子集关系。
3.3 集合的相等1. 讲解集合的相等概念;2. 让学生通过练习题学会判断集合的相等关系。
第四章:集合的运算4.1 并集的定义及运算1. 讲解并集的定义和运算方法;2. 让学生通过练习题学会计算并集。
集合的概念及运算
二、元素与集合、集合与集合之间的关系
1.元素与集合之间的关系 元素与集合之间用“ ∈ ”或“ ( 或 ∈ )” 连 接; 元素与集合之间是个体与整体的关系 , 不存在大小与相等 关系. 2.集合与集合之间的关系 (1)包含关系: 如果对任一 x∈A, 都有 x∈B, 则称集合 A 是集合 B 的子集 , 记作AB 或 BA. 显然AA, A. (2)相等关系: 对于集合A、B, 如果AB, 同时AB, 那么称集合A等于集 合 B, 记作 A=B. (3)真包含关系: 对于集合A、B, 如果AB, 并且AB, 我们就说集合A 是 集合 B 的真子集, 记作 A B . 显然, 若A, 则 A. 即: 空集是任何非空集合的真子集.
典型例题
1.已知全集为 R, A={y | y=x2+2x+2}, B={y | y=x2+2x-8}, 求: (1) A∩B; (2) A∪CRB; (3) (CRA)∩(CRB). [1, +∞) (-∞, -9)∪[1, +∞) (-∞, -9) 评注 本题涉及集合的不同表示方法, 准确认识集合A、B是 解答本题的关键. 对(3)也可计算CR(A∪B). 2.已知集合A={x | x2-x-6<0}, B={x | 0<x-m<9}. (1)若A∪B=B, 求实数 m 的取值范围; [-6, -2] (2)若A∩B, 求实数 m 的取值范围. (-11, 3) 评注 (1)注意下面的等价关系: ①A∪B=B AB; ②A∩B=A AB; (2)用“数形结合思想”解题时, 要特别注意“端点” 的取舍.
; dota2ti8分组 ;
根汉正经历着壹场恐怖の挑战,傲仙谷中所有の飘浮岛都被打成了渣子了,光影阵还有大量の宫殿都消失不见了.这里只剩下了下面の壹片灵元之海,方
集合概念、表示方法、分类以及集合之间的关系
集合概念、表示方法、分类以及集合之间的关系一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
非负整数集(或自然数集),记作N;;N内排除0的集.正整数集,记作N*或N+整数集,记作Z;有理数集,记作Q;实数集,记作R;⑴确定性:⑵互异性:⑶无序性:1:判断以下元素的全体是否组成集合,并说明理由:⑴某班个子较高的同学⑵长寿的人⑷倒数等于它本身的数⑸某校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A ,4∉A ,等等。
练:A={2,4,8,16},则4A ,8 A ,32 A.巩固练习分析:练1.已知集合P 的元素为21,,3m m m --, 若2∈P 且-1∉P ,求实数m 的值。
练2下面有四个命题:①若-a ∉Ν,则a ∈Ν ②若a ∈Ν,b ∈Ν,则a +b 的最小值是2③集合N 中最小元素是1 ④ x 2+4=4x 的解集可表示为{2,2}其中正确命题的个数是( )3求集合{2a ,a 2+a }中元素应满足的条件?4若t 1t 1+-∈{t},求t 的值.⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示2.用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案一、教案内容:第1章集合1.1 集合的概念教学目标:了解集合的概念,掌握集合的表示方法。
教学重点:集合的概念,集合的表示方法。
教学难点:理解集合的相等性和包含性。
教学准备:教材、黑板、粉笔。
教学过程:引入集合的概念,讲解集合的表示方法,举例说明。
1.2 集合的关系教学目标:了解集合之间的关系,掌握集合的并、交、补运算。
教学重点:集合之间的关系,集合的并、交、补运算。
教学难点:理解集合的运算法则。
教学准备:教材、黑板、粉笔。
教学过程:讲解集合之间的关系,举例说明并、交、补运算。
二、教案内容:第2章函数2.1 函数的概念教学目标:了解函数的概念,掌握函数的表示方法。
教学重点:函数的概念,函数的表示方法。
教学难点:理解函数的定义域和值域。
教学准备:教材、黑板、粉笔。
教学过程:引入函数的概念,讲解函数的表示方法,举例说明。
2.2 函数的性质教学目标:了解函数的性质,掌握函数的单调性、奇偶性、周期性。
教学重点:函数的性质,函数的单调性、奇偶性、周期性。
教学难点:理解函数的性质。
教学准备:教材、黑板、粉笔。
教学过程:讲解函数的性质,举例说明单调性、奇偶性、周期性。
三、教案内容:第3章实数与不等式3.1 实数的概念教学目标:了解实数的概念,掌握实数的分类。
教学重点:实数的概念,实数的分类。
教学难点:理解实数的性质。
教学准备:教材、黑板、粉笔。
教学过程:引入实数的概念,讲解实数的分类,举例说明。
3.2 不等式的解法教学目标:了解不等式的解法,掌握不等式的解法技巧。
教学重点:不等式的解法,不等式的解法技巧。
教学难点:理解不等式的解法。
教学准备:教材、黑板、粉笔。
教学过程:讲解不等式的解法,举例说明解法技巧。
四、教案内容:第4章平面几何4.1 点、线、面的关系教学目标:了解点、线、面的关系,掌握直线、平面的方程。
教学重点:点、线、面的关系,直线、平面的方程。
教学难点:理解点、线、面的关系。
集合的概念与表示
集合的概念与表示一、教学内容本节课的教学内容选自人教版小学数学教材五年级下册第五单元“数据的收集与处理”,具体包括第100页至102页的内容,主要介绍了集合的概念、集合的表示方法以及集合间的基本关系。
二、教学目标1. 让学生了解集合的概念,能够用集合的表示方法表示一些简单的实际问题。
2. 培养学生运用集合知识解决实际问题的能力。
3. 帮助学生建立集合的基本观念,发展学生的逻辑思维能力。
三、教学难点与重点重点:集合的概念、集合的表示方法以及集合间的基本关系。
难点:集合的表示方法,以及如何运用集合知识解决实际问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:教材、练习本、彩色笔。
五、教学过程1. 实践情景引入:教师通过讲解一个故事,引出集合的概念。
例如:讲述一个动物园里各种动物的数量,让学生了解集合的概念。
2. 讲解集合的概念:教师通过多媒体课件,生动形象地讲解集合的概念,引导学生理解集合的含义。
3. 学习集合的表示方法:教师讲解集合的表示方法,如列举法、描述法等,并给出实例,让学生学会用集合的表示方法表示具体问题。
4. 练习与讨论:教师给出一些实际问题,让学生运用集合的知识解决,并进行小组讨论,分享解题过程和答案。
六、板书设计板书内容主要包括集合的概念、集合的表示方法以及集合间的基本关系。
教师在黑板上用粉笔书写,要求字迹工整、条理清晰。
七、作业设计1. 作业题目:(1)用列举法表示下列集合:① 小明家的水果② 班级里的学生③ 我国的省份(2)用描述法表示下列集合:① 有4个字母的单词② 身高超过1.7米的人③ 平行四边形2. 答案:(1)① {苹果,香蕉,橘子}② {小明,小红,小刚,小李}③ {北京,上海,广东,浙江}(2)① {单词|单词中有4个字母}② {人|人的身高超过1.7米}③ {四边形|四边形是平行四边形}八、课后反思及拓展延伸课后,教师应反思本节课的教学效果,检查学生对集合知识的掌握程度,针对存在的问题进行调整教学策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合概念、表示方法、分类以及集合之间的关系
一般地,我们把研究对象统称为元素,一些元素组成的总体叫集
合,也简称集。
通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
元素与集合的关系有“属于∈”及“不属于∉两种)
⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;
⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
非负整数集(或自然数集),记作N;
;N内排除0的集.
正整数集,记作N*或N
+
整数集,记作Z;有理数集,记作Q;实数集,记作R;
⑴确定性:⑵互异性:⑶无序性:
1:判断以下元素的全体是否组成集合,并说明理由:
⑴某班个子较高的同学⑵长寿的人
⑷倒数等于它本身的数
⑸某校2011级新生;⑹血压很高的人;
⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点
7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”)
⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;
⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A ,4
∉A ,等等。
练:A={2,4,8,16},则4A ,8 A ,32 A.
巩固练习分析:
练1.已知集合P 的元素为21,,3m m m --, 若2∈P 且-1∉P ,求实
数m 的值。
练2下面有四个命题:
①若-a ∉Ν,则a ∈Ν ②若a ∈Ν,b ∈Ν,则a +b 的最小值是2
③集合N 中最小元素是1 ④ x 2+4=4x 的解集可表示为{2,2}
其中正确命题的个数是( )
3求集合{2a ,a 2+a }中元素应满足的条件?
4若
t 1t 1+-∈{t},求t 的值.
⒈列举法:把集合中的元素一一列举出来, 并用花括号“{
}”括起来表
示
2.用列举法表示下列集合:
(1) 小于5的正奇数组成的集合;
(2) 能被3整除而且大于4小于15的自然数组成的集合;
⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。
一般格式:{}()x A p x ∈
如:{x|x-3>2},{(x,y)|y=x 2
+1},{x|直角三角形},…;。
3.用描述法表示下列集合:
(1)由适合x 2-x-2>0的所有解组成的集合;
(2)方程220x -=的所有实数根组成的集合 例4.判断下列两组集合是否相等?
(1)A={x|y=x+1}与B={y|y=x+1}; (2)A={自然数}与B={正整数}
集合的分类:::()empty set ⎧⎪⎨⎪∅-⎩有限集含有有限个元素的集合
无限集含有无限个元素的集合
空集不含有任何元素的集合
三、文氏图
集合的表示除了上述两种方法以外,还有文氏图法,即
画一条封闭的曲线,用它的内部来表示一个集合,如下图所示:
元素与集合的关系
例5、设集合A ={1,a ,b },B={a ,a 2,ab },且A=B ,求实数a ,b.
A 表示任意一个集合A
3,9,27 表示{3,9,27}
【变式练习】以实数a 2,2-a .,4为元素组成一个集合A ,A 中含有2个元素,则的a 值为 . 例6.下列说法正确的是( )
A.{0}是空集
B. {x ∈Q ∣x
6∈Z }是有限集 C.{x ∈Q ∣x 2+x+2=0}是空集 D.{2,1}与{1,2}是不同的集合
四、集合与集合的关系
子集:对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B 的元素,
我们说这 两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:()A B B A ⊆⊇或 读作:A 包含于B ,或B 包含A
集合相等定义:如果A 是集合B 的子集,且集合B 是集合A 的子集,则集合A 与集合B
真子集定义:若集合A B ⊆,但存在元素,x B x A ∈∉且,则称集合A 是集合B 的真子集。
记作:A B (或B A ) 读作:A 真包含于B (或B 真包含A )
空集定义:不含有任何元素的集合称为空集。
记作:φ
练习:用适当的符号填空:
φ {}0; 0 φ ; φ {φ}; {}0 {φ}
几个重要的结论:
⑴空集是任何集合的子集;对于任意一个集合A 都有φ⊆A 。
⑵空集是任何非空集合的真子集;
⑶任何一个集合是它本身的子集;
⑷对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆。
练习:填空:
⑴2 N ; {2} N ; φ A;
⑵已知集合A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},则
A B; A C; {2} C; 2 C
特别地,空集的子集个数为1,真子集个数为0。
例7写出集合{a,b,c}的所有子集,并指出其中哪些是真子集,哪些是非空的真子集。
【变式练习】已知集合M满足{2,3}⊆M⊆{1,2,3,4,5}求集合M
例8有三个元素的集合A,B,已知A={2,x,y},B={2x,2,2y},且A=B,求x,y的值。
五、
1.并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,
称为集合A与集合B 的并集,即A与B的所有部分,
记作A∪B,读作:A并B 即A∪B={x|x∈A或x∈B}。
Venn图表示:
说明:定义中要注意“所有”和“或”这两个条件。
讨论:A∪B与集合A、B有什么特殊的关系?
A∪A= , A∪Ф= , A∪B B∪A
A ∪
B =A ⇒ , A ∪B =B ⇒ . 巩固练习(口答): ①.A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;
②.设A ={锐角三角形},B ={钝角三角形},则A ∪B = ;
③.A ={x|x>3},B ={x|x<6},则A ∪B = 。
2.交集定义:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,叫作集合A 、B 的交集(intersection set ),
记作:A ∩B 读作:A 交B 即:A ∩B ={x|x ∈A ,且x ∈B}
Venn 图表示:
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个
集合没有交集
讨论:A ∩B 与A 、B 、B ∩A 的关系?
A ∩A = A ∩φ= A ∩
B B ∩A
A ∩
B =A ⇒ A ∩B =B ⇒
巩固练习(口答):
①.A ={3,5,6,8},B ={4,5,7,8},则A ∩B = ;
②.A ={等腰三角形},B ={直角三角形},则A ∩B = ;
③.A ={x|x>3},B ={x|x<6},则A ∩B = 。
3.一些特殊结论
⑴若A B ⊆,则A ∩B=A ; ⑵若B A ⊆,则A ⋃B=A ;
⑶若A ,B 两集合中,B=φ,,则A ∩φ=φ, A ⋃φ=A 。
例9、已知集合A ={y |y=x 2-2x-3,x ∈R },B={y |y=-x 2+2x +13,x ∈R }求
(阴影部分即为A 与B 的交集)
A ∩
B 、A ∪B
10:设集合A ={∣a+1∣,3,5},B={2a+1,a 2+2a,a 2+2a-1},当A ∩B={2,
3}时,求A ∪B
解:∵∣a+1∣=2 ∴a =1或-3
当a =1时,集合B 的元素a 2
+2a =3,2a+1=3,
由集合的元素应具有互异性的要求可知a ≠1.
当a =-3时,集合B={-5,2,3}
∴A ∪B={-5,2,3,5}
六、
(一). 全集、补集概念及性质:
⒈全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么 就称这个集合为全集,记作U ,是相对于所研究问题而言的一个相对概念。
⒉补集的定义:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合,叫作集合A 相对于全集U 的补集,
记作:U C A ,读作:A 在U 中的补集,即{},U C A x x U x A =∈∉且
Venn 图表示:(阴影部分即为A 在全集U 中的补集)
说明:补集的概念必须要有全集的限制
讨论:集合A 与U C A 之间有什么关系?→借助Venn 图分析
,
,()U U U U A C A A C A U C C A A ⋂=∅⋃==
,U U C U C U =∅∅= 巩固练习(口答):
①.U={2,3,4},A={4,3},B=φ,则U C A = ,U C B = ; ②.设U ={x|x<8,且x ∈N},A ={x|(x-2)(x-4)(x-5)=0},则U C A = ; ③.设U ={三角形},A ={锐角三角形},则U C A = 。
11、设全集{}{}{},1233456U x A B ===x 是小于9的正整数,,,,,,, 求U C A ,U C B .
12、设全集U 为R ,{}{}22120,
50A x x px B x x x q =++==-+=,若
{}{}()2,()4U U C A B A C B ⋂=⋂=,求A B ⋃。
(答案:{}2,3,4)
感谢您的阅读,祝您生活愉快。