集合的含义及表示
【高中数学】高中数学知识点:集合的含义及表示
【高中数学】高中数学知识点:集合的含义及表示
集合的概念:
1、集合:一般地我们把一些能够确定的不同对象的全体称为集合(简称集);集合
通常用大写的拉丁字母表示,如A、B、C、……。
元素:集合中每个对象叫做这个集合的元素,元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系:
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作 3、集合分类根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
常用数集及其表示方法:
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N*或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
集合中元素的特性:
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.任何一个
元素要么属于该集合,要么不属于该集合,二者必具其一。
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
易错点:
(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z
感谢您的阅读,祝您生活愉快。
集合的含义及其表示
集合的含义及其表示一、集合的相关概念元素集合一般用大括号”{}”表示集合,也常用大写的拉丁字母A、B、C…表示集合.用小写的拉丁字母a,b,c…表示元素二、集合三大特性:思考:判断以下元素的全体是否组成集合,并说明理由;(1) 大于3小于11的偶数;(2) 我国的小河流。
三、重要数集:四、元素对于集合的关系五、集合的分类有限集:无限集:空集:六、集合的表示方法1、列举法:例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合。
思考题 (1)你能用自然语言描述集合{2,4,6,8}吗? (2)你能用列举法表示不等式x-7<3吗?2、描述法:3、Venn图:例2 试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。
课堂小结集合间的基本关系观察以下几组集合,并指出它们元素间的关系:① A={1,2,3}, B={1,2,3,4,5};② A={x| x>1}, B={x | x2>1};③ A={四边形}, B={多边形};④ A={x | x是两边相等的三角形},B={x| x是等腰三角形} .一、子集的定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B 的子集。
记作:读作:Venn图表示:判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A={1,3,5}, B={1,2,3,4,5,6} ( )②A={1,3,5}, B={1,3,6,9} ( )③A={0}, B={x x2+2=0} ( )④A={a,b,c,d}, B={d,b,c,a} ( )二、集合相等的定义:一般地,对于两个集合A与B, 如果集合A中的都是集合B的元素,同时集合B中的都是集合A的元素,则称集合A等于集合B,记作三、真子集对于两个集合A与B,如果A B,但存素 ,则称集合A 是集合B的真子集.记作A B四、几个结论①空集是任何集合的子集Φ A②空集是任何非空集合的真子集Φ A (A ≠ Φ)③任何一个集合是它本身的子集,即 A A④对于集合A ,B ,C ,如果 A B,且B C ,则A C例3 设A={x,x 2,xy}, B={1,x,y},且A=B ,求实数x,y 的值.例4 已知集合 与集合 满足Q P , 求a 的取值组成的集合A 作业布置1.教材P.12 A 组 5 B 组2.2. 若A={x |-3≤x≤4}, B={x | 2m -1≤x≤m+1},当B A 时,求实数m 的取值范围.3.已知}06|{2=-+=x x x P },01|{=+=ax x Q {}{}AC B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆1.1.3 集合的基本运算(1)观察集合A,B,C元素间的关系:(1) A={4,5,6,8}B={3,5,7,8} C={3,4,5,6,7,8}(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}一、并集一般地,由属于集合A或属于集合B的所有元素组成的集合叫做A与B的并集,记作读作即A∪B=例1. A={4,5,6,8},B={3,5,7,8},求A∪B.例2.设A={x|-1<x<2},B={x|1<x<3},求A∪B性质1A∪A = A∪φ = A∪B B∪A二、交集观察集合A,B,C元素间的关系:A={4,5,6,8}, B={3,5,7,8},C={5,8}一般地,由既属于集合A又属于集合B的元素组成的集合叫做A与B的交集。
集合的含义与表示
称这两个集合相等
湖南省长沙市一中卫星远程学校
练习1.下列指定的对象,能构成一个集合 ( B ) 的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体 A. ②③④⑥⑦⑧ C. ②③⑥⑦ B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题
2.教科书11面习题1.1第1、2题
课堂小结
1.集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示 5.集合的分类
解:当a=0时,x=-1.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
2.集合的表示:
集合常用大写字母A,B,C,…表示,元素常用 小写字母a,b,c,…表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA.
例如:A表示方程x2=1的解. 2A,1∈A.
4.常用数集及记法:
N:自然数集(含0)
-1 3
x | 0
x | x
x 2
集合的含义及表示方法
确定性
集合中的元素具有确定性,即每个元素是否属于某个集合是明确的。对于任意一 个元素,如果它属于某个集合,则它只属于该集合;如果不属于该集合,则它与 该集合没有关系。
确定性的性质使得集合可以准确地描述事物的分类和归属问题,是数学和计算机 科学中基本的概念之一。
集合的含义及表示方法
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用
01
集合的基本概念
集合的定义
01 集合是由确定的、不同的元素所组成的总体 。
02
集合中的元素具有确定性,即每一个对象是 否属于某个集合是确定的。
03
集合中的元素具有互异性,即集合中不会有 重复的元素。
04
集合中的元素具有无序性,即集合中元素的 排列顺序不影响集合本身。
数据库系统
数据库系统是计算机科学中用来存储和管理大量数据的重要工具。集合理论在数据库设计 中起着重要的作用,例如关系数据库中的表可以看作是集合的表示。
在日常生活中的应用
分类问题
在生活中,我们经常需要对事物进行分类。集合可以用来表示不同的类别,帮助我们更好地组织 和理解事物。
决策制定
在决策制定过程中,我们经常需要考虑多个因素或条件。集合可以帮助我们表示这些因素或条件 ,并分析它们之间的关系,从而做出更好的决策。
03
补集
补集是指全集中不属于某个集合的元素组成的集合。
补集的表示方法是在一个集合后面加上"′",例如:A′。
补集运算满足反演律,即A′=(全集−A)∪(全集−B)。
03
集合的性质
无序性
集合中的元素没有固定的顺序,即元素的位置不影响集合的性质。例如,集合A={1,2,3}和集合B={3,2,1}是同一个集合,因为 元素的无序性,集合A和集合B具有相同的性质。
集合的含义与表示
集合的含义与表示目录集合的含义与表示 (1)知识点: (1)一、集合的三性:确定性、互异性、无序性 (3)①确定性 (3)②互异性 (4)二、集合的表示方法 (7)①元素与集合的关系 (7)②列举法 (8)③描述法 (10)三、区别点集与数集 (11)知识点:1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。
2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合.3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
①列举法:将集合中的元素一一列举出来{a,b,c……}②描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x∈R| x-3>2} ,{x| x-3>2}③语言描述法:例:{不是直角三角形的三角形}4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A∉(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.一、集合的三性:确定性、互异性、无序性①确定性1.下列各组对象能够构成集合的是( )A. 我国所有的老人B. 我们班的高个子C. 长命万岁的人D. 我国的小河流答案:C。
1.1集合的概念及表示
1.1集合的概念及表示【知识储备】1.集合的概念(1)含义:一般地,我们把所研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).(2)集合相等:只要构成两个集合的元素是一样的,即这两个集合中的元素完全相同,就称这两个集合相等.[知识点拨]集合中的元素必须满足如下性质:(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于或不属于这个集合是确定的,要么是该集合中的元素,要么不是,二者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合中的元素是没有顺序的,比如集合{1,2,3}与{2,3,1}表示同一集合.2.元素与集合的关系关系概念记法读法属于如果a是集合A中的元素,就说a属于集合Aa∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉A a不属于集合A[知识点拨]符号“∈”和“∉”只能用于元素与集合之间,并且这两个符号的左边是元素,右边是集合,具有方向性,左右两边不能互换.3.集合的表示法(1)自然语言表示法:用文字语言形式来表示集合的方法.例如:小于3的实数组成的集合.(2)字母表示法:用一个大写拉丁字母表示集合,如A,B,C等,用小写拉丁字母表示元素,如a,b,c等.常用数集的表示:名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R(3)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(4)描述法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.【题型精讲】【题型一集合概念的理解】必备技巧判断一组对象是否能构成集合的三个依据判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例1下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形例2(多选)下列各组对象能构成集合的是()A.拥有手机的人B.2024年高考数学难题C.所有有理数D.小于π的正整数【题型精练】1.给出下列说法:①在一个集合中可以找到两个相同的元素;②好听的歌能组成一个集合;③高一(1)班所有姓氏能构成集合;④把1,2,3三个数排列,共有6种情况,因此由这三个数组成的集合有6个.其中正确的个数为()A.0B.1C.2D.32.下列各组对象中能构成集合的是()A.充分接近的实数的全体B.数学成绩比较好的同学C.小于20的所有自然数D.未来世界的高科技产品【题型二用列举法表示集合】例3用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(+1)(2−4)=0的所有实数根组成的集合;(3)一次函数=2与=+1的图象的交点组成的集合.【题型精练】1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A;(2)方程2−9=0的实数根组成的集合B;(3)一次函数=+2与=−2+5的图象的交点组成的集合C.2.用列举法表示下列集合.(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程22−−3=0的实数根组成的集合C;(4)一次函数=+3与=−2+6的图象的交点组成的集合D.【题型三用描述法表示集合】必备技巧利用描述法表示集合的关注点(1)写清楚该集合代表元素的符号.(2)所有描述的内容都要写在花括号内.(3)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例4用适当的方法表示下列集合:(1)方程组2314,328x y x y -=⎧⎨+=⎩的解集;(2)方程2210x x -+=的实数根组成的集合;(3)平面直角坐标系内所有第二象限的点组成的集合;(4)二次函数2210y x x =+-的图象上所有的点组成的集合;(5)二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【题型精练】1.用描述法表示下列集合:(1)不等式3+2>5的解集;(2)平面直角坐标系中第二象限的点组成的集合;(3)二次函数=2−2+3图象上的点组成的集合.(4)平面直角坐标系中第四象限内的点组成的集合;(5)集合1,12,13,14(6)所有被3整除的整数组成的集合;(7)方程2++1=0的所有实数解组成的集合.2.试说明下列集合各表示什么?1|A y yx ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.【题型四元素与集合的关系】必备技巧判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.例5用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .例6(吉林长春市期中)已知集合M=6*,5a N a ⎧∈⎨-⎩且}a Z ∈,则M 等于()A .{2,3}B .{1,2,3,4}C .{1,2,3,6}D .{1-,2,3,4}【题型精练】1.(多选)(浙江高一期末)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A∈C .3A∈D .4A∈2.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是()①1+;;A .4B .3C .2D .1【题型五确定集合中的元素】必备技巧确定集合中的元素(1)充分理解集合的描述法,(2)注意检验元素互异性.例7(1)(山东济南高一期末)已知集合(){},2,,A x y x y x y N =+≤∈,则A 中元素的个数为()A .1B .5C .6D .无数个(2)集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为()A .4B .6C .8D .12例8(1)(江苏苏州市期中)设集合{123}{45}}A C x B y x A y B ===+∈∈,,,,,,,则C 中元素的个数为()A .3B .4C .5D .6(2)(江苏南通市月考)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为()A .9B .10C .12D .13(3)(黑龙江大庆市期中)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .51.若集合()(){}326A x N x x =∈--<,则A 中的元素个数为()A .3B .4C .5D .62.若集合{}0123A =,,,,()}{,,B x y x A y A x y A =∈∈-∈,,则B 中所含元素的个数为()A .4B .6C .7D .103.(青海高一月考)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为()A .3B .6C .8D .10【题型六元素特性中的求参问题】必备技巧利用集合中元素的确定性、互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出参数的所有可能值,再根据集合中元素的互异性对求得的参数值进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.例9(上海市进才中学高一期末)已知集合22{2,(1),33}Aa a a =+++,且1A∈,则实数a 的值为________.例10(山东济南月考)已知集合{}2210,A x ax x a R =++=∈.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围.1.(吴起高级中学高一月考)若{}22111a a ∈++,,,则a =()A .2B .1或-1C .1D .-12.已知{}222,(1),33A a a a a =++++,若1A∈,则实数a 构成的集合B 的元素个数是()A .0B .1C .2D .33.(云南丽江市期末)若集合2{|210}A x kx x =++=中有且仅有一个元素,则k 的值为___________.。
集合的含义与表示
反思与感悟 判断给定的对象能不能构成集合,关键在于是否给出一 个明确的标准,使得对于任何一个对象,都能按此标准确定它是不是 给定集合的元素.
跟踪训练1 下列各组对象可以组成集合的是
A.数学必修1课本中所有的难题
√B.小于8的所有素数
C.直角坐标平面内第一象限的一些点
D.所有小的正数 解析 A中“难题”的标准不确定,不能构成集合;
知识点二 元素与集合的关系
思考 1是整数吗?1 是整数吗?有没有这样一个数,它既是整数,又 2
不是整数? 答案 1是整数;12 不是整数;没有.
梳理 元素与集合的关系有且只有两种,分别为属于、 不属于 ,数学 符号分别为 ∈ 、 ∉ .
知识点三 元素的三个特性
思考1 某班所有的“帅哥”能否构成一个集合?某班身高高于175厘 米的男生能否构成一个集合?集合元素确定性的含义是什么? 答案 某班所有的“帅哥”不能构成集合,因“帅哥”无明确的标准. 高于175厘米的男生能构成一个集合,因标准确定. 元素确定性的含义:集合中的元素必须是确定的,也就是说,给定一 个集合A,那么任何一个对象a是不是这个集合中的元素就确定了.
思考2 构成单词“bee”的字母形成的集合,其中的元素有多少个? 答案 2个.集合中的元素互不相同,这叫元素的互异性.
思考3 “中国的直辖市”构成的集合中,元素包括哪些?甲同学说: “北京、上海、天津、重庆”;乙同学说:“上海、北京、重庆、天 津”,他们的回答都正确吗?由此说明什么?怎么说明两个集合相等? 答案 两个同学都说出了中国直辖市的所有城市,因此两个同学的回 答都是正确的. 由此说明,集合中的元素是无先后顺序的,这就是元素的无序性.只要 构成两个集合的元素一样,我们就称这两个集合是相等的.
集合的含义与表示知识点
集合的含义与表示一集合与元素1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set)。
集合常用大写的拉丁字母来表示,如集合A、集合B……;集合中的每一个对象称为该集合的元素(element),简称元。
集合的元素常用小写的拉丁字母来表示。
如a、b、c、p、q……指出下列对象是否构成集合,如果是,指出该集合的元素。
(1)我国的直辖市;(2)省溧中高一(1)班全体学生;(3)较大的数(4)young 中的字母;(5)大于100的数;(6)小于0的正数。
2.集合中元素的属性(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:集合中的元素在描述时没有固定的先后顺序。
3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a∉A,读作“a不属于集合A”.4.集合相等如果构成两个集合的元素个数及元素相同,就称这两个集合相等,与元素的排列顺序无关.二集合的分类1.有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合;2.无限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做∅.三集合的表示方法1.集合元素与集合的关系用“属于”和“不属于”表示;(1)如果a是集合A的元素,就说a属于A,记作a∈A;(2)如果a不是集合A的元素,就说a不属于A,记作a∉A (“∈”的开口方向,不能把a∈A颠倒过来写)2.常用数集(1)自然数集:又称为非负整数集,记做N;(2)正整数集:自然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表示方法(1)自然语言法:用文字叙述的形式描述集合。
集合的含义与表示
例1:判断下列各组对象能否组成一个集合:
(1)9以内的正偶数;
(2)篮球打得好的人;
(3)2012年伦敦奥运会的所有参赛运动员;
(4)高一(1)班所有高个子同学.
练习1:有下列4组对象:(1)某校2015级新生;(2)小于0的自然数;(3)所有数学难题;(4)接近1的数.其中能构成集合的是________.
记作: , 读作: 包含于 或 包含 。
特别提醒:1、“ 是 的子集”的含义是:集合 的任何一个元素都是集合 的元素,即由 ,能推出 。如: ; 。2、当“ 不是 的子集”时,我们记作:“ ”,读作:“ 不包含于 ,(或 不包含 )”。如: 。3、任何集合都是它本身的子集。即对于任何一集合 ,它的任何一个元素都属于集合 本身,记作 。4、我们规定:空集是任何集合的子集,即对于任一集合 ,有 。5、在子集的定义中,不能理解为子集 是集合 中部分元素组成的集合。因为若 ,则 中不含有任何元素;若 = ,则 中含有 中的所有元素,但此时都说集合 是集合 的子集。
特别提醒:1、写清楚该集合中元素的代号;2、说明该集合中元素的特征;3、不能出现未被说明的字母;4、多层描述时,应当准确使用“或”、“且”、“非”;5、所有描述的内容都要写在大括号内;6、用于描述的语言要力求简明、确切。7、错误表示法: {实数集}或 {全体实数};正确的表示方法为:
(3)韦恩图法:用一条封闭的曲线的内部来表示一个集合的方法。如:集合 可用韦恩图表示为:
练习2:下列各组对象中,不能组成集合的是()
A.所有的正数B.所有的老人C.不等于零的数D.我国古代四大发明
类型二集合中元素的特性
例2:集合A是含有两个不同实数a-3,2a-1的集合,求实数a的取值范围.
集合的含义及其表示
集合的含义及其表示
一、集合的概念:一般地,我们把研究对象统称为元素;把一些元
素组成的总体叫做集合,也简称集.
二、集合元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.
(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写
三、集合相等
构成两个集合的元素一样,就称这两个集合相等
四、集合元素与集合的关系
集合元素与集合的关系用“属于”和“不属于”表示:
(1)如果a是集合A的元素,就说a属于A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于A,记作a∈A
五、常用数集及其记法
非负整数集(或自然数集),记作N;
除0的非负整数集,也称正整数集,记作N*或N+;
整数集,记作Z;
有理数集,记作Q;
实数集,记作R
六、集合的表示方式
(1)列举法:把集合中的元素一一列举出来,写在大括号内;
(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)(3)图示法:画一条封闭的曲线,用它的内部表示一个集合
七、集合的分类
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合,记:Φ
注:{Φ}表示集合中有Φ这个元素,这个集合的子集是:Φ,{Φ}而Φ表示集合是空集,子集只有Φ。
人教版-高一-数学-1.集合的含义与表示
集合的含义与表示一、知识概括1、集合的概念一般地,我们把研究对象统称为元素(element ),通常用小写拉丁字母a,b,c ,…表示。
把一些元素组成的总体叫集合(set ),也简称集,通常用大写拉丁字母A,B,C ,…表示。
集合如同平面几何中点、线、平面等概念一样,是集合论中的原始概念,只进行描述说明,无法定义概念。
某些教材中对集合的描述是:指定的某些对象的全体称为集合。
其中,注意理解(1)指定即说明某些对象具有共同的特征或共同的属性,说明已具备判定对象是否成为该集合的元素的判定标准,而不是随意组合。
(2)对象在不同的集合中,应有不同的内涵。
在不同的集合中,元素还可能是人、物、质点或抽象事物等。
(3)全体说明集合是一个整体概念,针对全部对象而言,并且在这个整体中各元素间无先后排列要求,没有一定的顺序关系。
【注】(1)只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
(2)构成集合的元素除了常见的数、式、点等数学对象外,还可以是其他任何确定的对象。
2、集合元素的特性集合元素具有确定性、互异性、无序性三大特性。
(1)确定性集合中的元素必须是确定的,也就是说,给定一个集合,按照该集合的构成标准能够明确判定一个对象是否属于这个集合。
如“个子高的同学”这一组对象就不能构成一个集合,因为“个子高”这个标准不够明确,而“身高超过170cm 的同学”这一组对象可以构成一个集合。
(2)互异性集合中的元素一定是不同的(或说是互异的)也就是说,相同的元素在一个集合中只能出现一次。
如方程0122=+-x x 的解构成的集合是{1},而不能写成{1,1}(3)无序性集合中元素的排列次序无先后之分,如集合{1,2}和{2,1}是同一个集合。
3、集合与元素的关系元素与集合有属于(∈)和不属于(∉)两种关系。
如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A 。
集合的含义及其表示
一、复习
请你说一说昨天学过的主要内容:
集合的含义:一定范围内某些确 定的、不同的对象的全体构成一 个集合 集合中元素的三个特征是: (1)确定性(2)互异性 (3)无序性
集合与元素的关系:只能用 属于∈或不属于
集合的表示方法有:(1)列举法;(2)描述法; (3)venn(韦恩)图法
则a ___,b ___.
4 :已知1{x | 3x2 px 1 0},求p的值及集合中
的所有元素。
5 : 若{x | x2 mx n 0} {1}, 则m __,n ___.
6 : A {2n | n Z}与B {x | x 2k, k Z}相等吗? 7: 下列各对集合中, 有相等关系的是____.
如果两个集合的元素完全相同,则它们相等
含有有限个元素的集合称为有限集, 特别, 不含任何元素的集合称为空集,记为 若一个集合不是有限集,则该集合称为无限集
常用数集的记法
二:练习 1、请各举有限集、无限集、空集的 一个实例 2、用列举法表示下列集合:
(1){(x, y) | x {1,2}, y {1,2}}
(2){x | x (1)n , n N}
(3){(x, y) | 3x 2y 16, x N, y N} (4){x x是15的约数,x N}
(5) x,{y) | x( y 2且x 2y 4}
3: 若A {1,2},B {x | x2 ax b 0},且A B,
10 : A {x a | b | c | abc | , a,b, c R}中有几个元素?
| a | b | c | abc 用列举法表示A.
11: 若A {x | x2 2x a 0}是空集, 则实数a的取值集合是
集合的含义及其表示
1.1集合1.1.1 集合的含义及其表示1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。
集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素(element ),简称元。
集合的元素常用小写的拉丁字母来表示。
如a 、b 、c 、p 、q ……指出下列对象是否构成集合,如果是,指出该集合的元素。
①我国的直辖市;②十四中高一③班全体学生;④较大的数⑤young 中的字母;⑥大于100的数; 2.关于集合的元素的特征: ①确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。
②互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
③无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。
3.集合元素与集合的关系用“属于”和“不属于”表示; ①如果a 是集合A 的元素,就说a 属于A ,记作a ∈A②如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (不能把a ∈A 颠倒过来写) 4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。
5. 集合的分类①有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合; ②无限集:集合中元素的个数是不可数的; ③空集:不含有任何元素的集合,记做∅. 6.常用数集的记法:①非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N②正整数集:非负整数集内排除0的集记作N *或N +{},3,2,1*=N③整数集:全体整数的集合记作Z , {} ,,,210±±=Z ④有理数集:全体有理数的集合记作Q , {}整数与分数=Q⑤实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:①自然数集与非负整数集是相同的,也就是说,自然数集包括数0②非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *7.集合的表示方法:①自然语言法:用文字叙述的形式描述集合。
集合的含义及其表示课件(新)
交集
对于任意两个集合A和B,由所有既 属于A又属于B的元素组成的集合称 为A和B的交集,记作A∩B。
补集
对于任意集合A和全集U,由所有属 于U但不属于A的元素组成的集合称 为A的补集,记作∁UA。
差集
对于任意两个集合A和B,由所有属 于A但不属于B的元素组成的集合称 为A和B的差集,记作A-B。
集合的基本定理
举例
由数1,2,3,4组成的集 合可表示为{1, 2, 3, 4}。
注意事项
元素间用逗号隔开,且元 素不重复。
描述法表示集合
定义
用确定的条件表示某些对 象是否属于这个集合的方 法。
举例
由所有大于0小于5的整数 组成的集合可表示为{x | 0 < x < 5, x ∈ ℤ}。
注意事项
描述法表示集合时,首先 要弄清楚集合中元素所具 有的特征,再用确定的条 件表示出来。
算法设计
许多算法都涉及到对集合的操作,如排序、查找、遍历等。通过对集合的合理运用,可以 设计出高效、稳定的算法。
数据库系统
数据库是计算机科学中另一个广泛应用集合的领域。数据库中的表可以看作是一个个的集 合,通过对这些集合进行增删改查等操作,可以实现数据的存储和管理。
集合在其他领域的应用
物理学
在物理学中,集合用于描述各种物理现象和规律。例如, 量子力学中的态空间就是一个集合,描述了所有可能的状 态。
或B包含A,记作A⊆B或B⊇A。
自反性
任何集合都包含于自身,即A⊆A。
传递性
如果A⊆B且B⊆C,则A⊆C。
反对称性
如果A⊆B且B⊆A,则A=B。
集合的相等关系
定义
对于两个集合A和B,如果A包含于B且B包含 于A,则称A与B相等,记作A=B。
集合的含义及表示
集合的含义及表示一. 知识卡片1. 一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set ).2. 集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征.确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序性:集合中的元素没有顺序.3. 集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示. 如果a 是集合A 的元素,就说a 属于(belong to)集合A ,记作:a ∈A ; 如果a 不是集合A 的元素,就说a 不属于(not belong to)集合A ,记作:a A .4. 常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N ;正整数集:所有正整数的集合,记作N *或N +;整数集:全体整数的集合,记作Z ;有理数集:全体有理数的集合,记作Q ;实数集:全体实数的集合,记作R .5. 列举法把集合的元素一一列举出来,并用花括号“{ }”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a 与{a }不同.6. 描述法用集合所含元素的共同特征表示集合的方法称为描述法,一般形式为,其中x 代表元素,P 是确定条件.7. 反思与小结:① 描述法表示集合时,应特别注意集合的代表元素,如与不同.② 只要不引起误解,集合的代表元素也可省略,例如,. ③ 集合的{ }已包含“所有”的意思,例如:{整数},即代表整数集Z ,所以不必写{全体整数}.下列写法{实数集},{R }也是错误的.④ 列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.∉{|}x A P ∈2{(,)|1}x y y x =-2{|1}y y x =-{|1}x x >{|3,}x x k k Z =∈二. 高考预测本部分内容为高考中频考点,多见于选择题、填空题。
集合的概念和表示
x,x, | x |, x 2 ,3 x 3 所组成的集合,最多 5.由实数
含有 2 个元素; 6.求数集{1,x,x2-x}中的元素x应满足的条件; 7.表示所有正偶数组成的集合; {x|x=2n,n∈N*},是无限集; 8.用描述法表示不超过30的非负偶数的集合是 9.用列举法表示
{x | x 2k,0 k 15, k Z}
说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素).
Venn图表示: A B
A
A∪B
B
A
A∪B
B
A∪B
并集例题
例1.设A={4,5,6,8},B={3,5,7,8}, 求AUB. 解:A B {4,5,6,8} {3,5,7,8} {3,4,5,6,7,8}
我们把不含任何元素的集合叫做 空集,符号记为 例如:方程x2+1=0没有实数根, 所以方程x2+1=0的实数根组成 的集合为
5.空集
规定:空集是任何集合的子集. 空集也是任何非空集合的真子集.
6.子集的有关性质
(1)任何一个集合都是它本身的子集,即AA (2)对于集合A、B、C, 如果AB,BC,则AC
答:方程组的解集为 x y 4 {(x,y,z)│ y z 5 } z x 3 ={(x,y,z)│x=1,y=3,z=2} ={(1,3,2)}
的解集。
3. 图示法(Venn图)
我们常常画一条封闭的曲线,用它的内部表示 一个集合. 例如,图1-1表示任意一个集合A; 图1-2表示集合{1,2,3,4,5} .
A
图1-1
1,2,3, 5, 4.
图1-2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的含义及表示
一、单选题(共14道,每道7分)
1.在直角坐标内,坐标轴上的点构成的集合可表示为( )
A. B.
C. D.
2.已知集合,用列举法可表示为( )
A.{0,1,2}
B.{-3,-1,0,1}
C.{-3,0,1,2}
D.{-2,-1,1,2}
3.设集合,,则下列关系中正确的是( )
A. B.
C. D.
4.下面关于集合的表示,正确的个数是( )
①;②;③.
A.0
B.1
C.2
D.3
5.下列集合中,是空集的是( )
A. B.
C. D.
6.下列集合中与相等的是( )
A.{1,-1}
B.{1,0,-1}
C.{2,-2}
D.{2,0,-2}
7.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )
A.3
B.6
C.8
D.10
8.已知:①;②;③;
④,上述四个关系中,错误的个数是( )
A.1
B.2
C.3
D.4
9.若集合中只有一个元素,则a=( )
A.4
B.2
C.0
D.0或4
10.若以正实数a,b,c,d四个元素构成集合A,则以A中四个元素为边长构成的四边形可能是( )
A.梯形
B.平行四边形
C.菱形
D.矩形
11.下面各数中,集合中的x不能取的一个值是( )
A.2
B.3
C.4
D.5
12.若,则x的值为( )
A.-1
B.2
C.-1或2
D.1或-2
13.已知集合,集合.若集合A=B,则a的值为( )
A.1
B.3
C.0
D.0或1
14.已知集合,且A=B,则x,y的值分别为( )
A.-1,0
B.1,0
C.1,-1或0
D.-1,1。