高中物理相对论
高中物理知识点相对论问题
高中物理知识点相对论问题相对论是物理学中的重要部分,它解释了时间、空间、质量和能量之间的关系。
虽然相对论通常被视为高级物理学中的概念,但在高中物理学中也有一些与相对论相关的基本知识点。
本文将讨论高中物理中的相对论问题,为学生进一步理解该科学原理提供指导。
1. 物体运动和光速相对论的核心是光速是不变的,无论光源相对于观察者的运动情况如何。
也就是说,光速的值是恒定不变的,即无论观察者以何种速度相对于光源移动,他们都将观察到相同的光速。
相对论还解释了运动物体的相对性。
观察者的速度和物体的速度是相对的,这意味着同一个物体的速度可能在两个不同的参考系中有两个不同的值。
例如,当两个人相对静止时,他们看到的互相的速度为零。
但如果其中一个人开始移动,另一个人也会看到他的速度增加。
这种相对性引出了相对论中的两种速度:矢量速度和标量速度。
矢量速度是相对于观察者的速度,而标量速度是相对于特定的参考系的速度。
2. 物体的质量和能量相对论中重要的概念是质量和能量的等价性。
相对论表明,质量和能量是相互转化的,而它们的总和在一个系统内是不变的。
这种等价关系由Einstein的著名方程E=mc²表示,其中E表示能量,m表示相对质量,c²表示光速的平方。
当物体以接近光速的速度运动时,它所具有的能量会增加,而它的质量也会增加。
这种质量增加被称为相对性质量增加,它们之间的关系由下式给出:m=m0/√(1-v²/c²)。
其中v是相对于观察者的速度,c是光速,m0是物体在相对静止状态下的质量。
这个公式说明了,在物体越来越接近光速时,它的质量也相应地增加。
3. 时间的相对性相对论还引入了时间的相对性的概念。
这种相对性表明,时间在不同的参考系中并不相同。
当两个人从不同的参考系中观察相同的事件时,他们将会看到截然不同的时间序列。
这是因为相对论中的相对运动会导致时间的变化,因为每个质点的相对时间被压缩或拉伸。
高中物理第十五章相对论简介34狭义相对论的其他结论广义相对论简介课件新人教版选修3-
解析:电子运动时的质量是静止质量的 2 倍,运用相对论质
量公式可解.m=2m0,代入相对论质量公式 m=
m0 ,可 1-vc2
得 2m0=
1m-0 vc2,v= 23c≈0.866c.
4.设宇宙射线粒子的能量是其静止能量的 k 倍.则粒子运 动时的质量等于其静止质量的 k 倍,粒子运动速度是光速
k2-1
的 k 倍.
解析:由
E=mc2
知 E = m ,根据 E0 m0
E=kE0
可得
m=km0;由
m=
m0 得, m =
1-vc2
m0
11-vc2=k,
得 v=
k2-1 k c.
5.在外层空间的宇宙飞船上,你正在一个以加速度 g=9.8 m/s2 向头顶方向运动的电梯中,这时,你举起一个小球自由地 丢下,请说明小球的运动情况.
在一切过程中,质量和能量是分别守恒的,只有在微观粒 子的裂变和聚变过程中,有质量亏损的情况下,才会有质能方 程的应用,即 ΔE=Δmc2.
【例 1】 若一宇宙飞船对地以速度 v 运动,宇航员在飞船 内沿同方向测得光速为 c,问在地上的观察者看来,光速应为 v +c 吗?
【导思】 根据相对论速度公式推导.
提示:如果物体的速度远小于真空中的光速,可以直接用 u =u′+v,求对地速度 u.其中 v 为参考系相对于地的速度,u′ 为物体相对参考系的速度,u 为物体对地速度.但当速度接近真 空中的光速时就要考虑相对论速度变换公式.
二、广义相对论简介 1.广义相对论的基本原理 (1)广义相对性原理:在 任何 参考系中,物理规律都是 相同的. (2)等效原理:一个均匀的引力场与一个做 匀加速 运动的 参考系等价. 2.广义相对论的几个结论 (1)物质的引力使光线 弯曲. (2)引力红移:引力场的存在使空间不同位置的 时间进程 出现差别,而使矮星表面原子发光频率 偏低.
高中物理选修3-4相对论知识点
高中物理选修3-4相对论知识点相对论是物理选修3-4的重点内容,高中学生要了解哪些知识点?下面店铺给大家带来高中物理相对论知识点,希望对你有帮助。
高中物理相对论知识点一、狭义相对论的基本假设;狭义相对论时空观与经典时空观的区别爱因斯坦狭义相对性原理的两个基本假设:⑴狭义相对性原理:在不同的惯性参考系中,一切物理定律都是相同的。
⑵光速不变原理:在不同的惯性参考系中,真空中的光速都是相同的。
即光速与光源、观测者间的相对运动没有关系。
相对论的时空观:经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的,是绝对的,空间与时间之间没有任何联系。
相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。
相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。
二、同时的相对性、长度的相对性、质能关系时间和空间的相对性(时长尺短)1.同时的相对性:指两个事件,在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。
2.长度的相对性:指相对于观察者运动的物体,在其运动方向的长度,总是小于物体静止时的长度。
而在垂直于运动方向上,其长度保持不变。
长度收缩公式:3.时间间隔的相对性:指某两个事件在不同的惯性系中观察,它们发生的时间间隔是不同的。
高中物理选修3-4知识点1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零;②阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动。
相对论 高中物理课件6-3
对运动对光速没有影响.
第3节 相对论简介
一、狭义相对论
2.相对论效应:时间和空间的相对性
笔记:相对论效应
(1)钟慢效应:时间的相对性(天上一日,地上一年)
假设事件发生在某个运动系统中,运动系统中的观察者所测得的时间为Δτ,地面上的观察
者所测得的时间为Δt,由相对论可得
Δt=
Δτ 1-(v)2.
c
由式可得Δt>Δτ,地面观察者认为运动系统中的时钟变慢了.
分析一:如图乙所示,以车厢为参考系,设车厢里 的人测得激光到达厢顶的时间为τ,则 h=cτ,c 为光速.
第3节 相对论简介
二、相对论的简单理解方式 1.钟慢效应的推导
笔记
如图甲所示,一车厢以速度 v 匀速向右运动,车厢高度为 h,车厢底部有一激光发生器,某 时刻激光发生器发射一竖直向上的激光.
分析二:如图丙所示,以地面为参考系,由于车厢 匀速向右运动,地面上的人看到激光到达厢顶的路径并 不是竖直向上,而是倾斜的虚线.
由于质增效应与质能方程的推导需要利用洛伦兹变换,难度系数高,因此不再介绍.
简单的科普一下质增效应:根据质增效应,随着速度的增加,物体的质量增大,惯性增大,
为了使物体的速度进一步变大,需要更多的能量,就算将所有的能量用来给物体加速,也不可
能使物体的速度加速到光速.
笔记:相对论效应
(4)质能方程: 用 m 表示物体的质量,E 表示它具有的能量,则爱因斯坦质能方程为 E=mc2. 特别注意:质能方程反映质量与能量的关系,不能认为质量转化成能量,只有功能之间可
以互相转化.
第3节 相对论简介
二、相对论的简单理解方式 1.钟慢效应的推导
笔记
如图甲所示,一车厢以速度 v 匀速向右运动,车厢高度为 h,车厢底部有一激光发生器,某 时刻激光发生器发射一竖直向上的激光.
高中物理相对论知识点
高中物理相对论知识点相对论是物理学中的一个重要概念,主要包括狭义相对论和广义相对论。
狭义相对论主要研究高速运动物体的力学性质,广义相对论则是对引力的理论解释。
下面将介绍一些高中物理中与相对论相关的知识点。
1. 光速不变性:根据狭义相对论的基本假设,光在真空中的速度是一个恒定值,即光速不随观察者的速度而改变。
这一原理对于描述高速运动物体的力学性质至关重要。
2. 相对论速度叠加原理:在相对论中,物体的速度不再简单地相加,而是遵循相对论速度叠加原理。
该原理指出,当两个物体以接近光速运动时,它们的相对速度并不简单地等于两个速度的矢量和,而是通过一个特殊的公式计算得出。
3. 时间的相对性:狭义相对论指出,时间不是绝对的,而是与观察者的运动状态有关。
当一个物体以接近光速运动时,其时间会相对于静止观察者来说变慢,这就是所谓的时间膨胀效应。
4. 空间的相对性:狭义相对论还指出,空间也不是绝对的,而是与观察者的运动状态有关。
当一个物体以接近光速运动时,其长度会相对于静止观察者来说变短,这就是所谓的长度收缩效应。
5. 质量增加:狭义相对论还预言了质量增加效应。
当一个物体以接近光速运动时,其质量会相对于静止观察者来说增加。
这种质量增加效应被称为相对论质量增加。
6. 引力的相对论解释:广义相对论是对引力的理论解释。
根据广义相对论,引力是由于物体弯曲了周围的时空而产生的。
质量越大的物体会弯曲周围的时空越多,这就形成了引力场。
7. 弯曲时空的效应:根据广义相对论,弯曲的时空会影响物体的运动轨迹。
光线在弯曲的时空中会发生偏折,这就是所谓的引力透镜效应。
此外,弯曲时空还可以解释黑洞的存在,黑洞是由质量极大的物体引起的,其引力场极强,连光都无法逃离。
8. 物质与能量的等价性:狭义相对论还提出了著名的质能等价原理,即物质与能量是可以相互转化的。
根据质能等价原理,质量为m的物体所对应的能量E等于m乘以光速的平方。
9. 时间延迟效应:根据狭义相对论,高速运动物体的时间会相对于静止观察者来说变慢。
高中物理相对论知识点归纳
高中物理相对论知识点归纳相对论是物理学中重要的分支之一,它揭示了物质的运动规律和性质在不同参考系下的变化。
在高中物理教学中,相对论知识点也是必不可少的一部分。
下面将对高中物理中的相对论知识点进行归纳整理,帮助同学们更好地理解相关内容。
1. 光速不变原理光速不变原理是相对论的核心之一,它指出光在真空中的传播速度是不随光源或观察者的运动状态而变化的,即$ c = 3.00 \times 10^8 \:m/s $。
这一原理对于狭义相对论和广义相对论都具有重要意义,是相对论理论体系的基础之一。
2. 时间相对性根据相对论的理论,时间并非绝对的,而是与观察者的运动状态相关。
在高速运动下,时间会发生相对论效应,即时间会因为运动速度而发生减缩。
这一概念也被称为时间相对性,是狭义相对论的重要内容之一。
3. 长度收缩效应除了时间相对性外,长度也会因为相对论效应而发生变化。
当物体以接近光速的速度运动时,其长度会发生收缩,即长度沿着运动方向缩短。
这一现象称为长度收缩效应,也是相对论中的重要内容之一。
4. 质量增加效应质量增加效应是相对论的一个重要结果,它指出质量会随着物体速度的增加而增加。
根据爱因斯坦的质能关系$ E = mc^2 $,质量与能量是等价的,因此高速运动的物体会有更大的质量。
这一效应在粒子加速器实验中得到了验证。
5. 相对论动量根据相对论理论,动量也会随速度的增加而发生变化。
相对论动量公式为$ p = \frac{mv}{\sqrt{1-\frac{v^2}{c^2}}} $,其中$ m $为物体的静止质量,$ v $为物体的速度,$ c $为光速。
相对论动量的引入使得在高速运动下动量仍然遵守动量守恒定律。
6. 相对论效应在日常生活中的应用相对论理论虽然在高速运动和微观领域中表现出最为明显的效应,但其在日常生活中也有一些应用。
例如,全球定位系统(GPS)在设计中考虑了相对论效应对信号传播时间的影响,以确保精确度。
人教版高中物理选修3-4第十五章相对论简介基础知识梳理
第十五章相对论简介15. 1 相对论的诞生一、经典的相对性原理1.惯性系与非惯性系(1)惯性系:如果牛顿运动定律在某个参考系中成立,这个参考系就叫惯性系。
地面参考系是惯性系,相对于它做匀速运动的汽车、轮船作为参考系也是惯性系。
(2)非惯性系:如果牛顿运动定律在某个参考系中不成立,这个参考系就叫非惯性系。
我们坐在加速的车厢里,以车厢为参考系观察到路边的树木、房屋向后方加速运动,根据牛顿运动定律,房屋、树木应该受到不为零的合力作用,但事实上房屋、树木所受的合力为零,也就是牛顿运动定律不成立。
这里加速的车厢就是非惯性系,也就是说在非惯性系中力学规律不相同。
2.伽利略相对性原理表述1:力学规律在任何惯性系中都是相同的。
表述2:在一个惯性参考系内进行的任何力学实验都不能判断这个惯性系是否相对于另一个惯性系做匀速直线运动。
表述3:任何惯性参考系都是平权的。
二、相对性原理与电磁规律1.相对性原理与电磁规律之间的矛盾(1)麦克斯韦的电磁理论得出的电磁波的速度不涉及参考系,也就是说在不同的参考系中光速不变。
(2)根据相对性原理,在不同的参考系中观测到的光速应与参考系有关。
在经典力学中如果某一惯性系相对另一个惯性系的速度为v,在此惯性系中有一物体速度为c,那么,此物体相对于另一惯性系的速度是 c+ v吗?根据伽利略相对性原理,答案是肯定的。
实验现象表明,不论光源和观察者做怎样的相对运动,光速都是恒定的.2.迈克耳孙一莫雷实验(1)实验装置如图所示(2)实验内容:转动干涉仪,在水平面内不同方向进行光的干涉实验,干涉条纹并没有预期移动。
(3)实验结论:光沿任何方向传播时,相对于地球的速度相同。
可见光和电磁波的运动不服从伽利略相对原理.任何参照系中测得的光在真空的速率都应该是3×108m/s。
3.伽利略相对性原理和爱因斯坦相对性原理的区别:(1)伽利略相对性原理指的是力学现象对一切惯性系来说,都遵循同样的规律;或者说,在研究力学规律时,一切惯性参考系都是等价、平权的,所以无法借助力学的手段确定惯性系自身的运动状态。
高中物理 第六章 相对论 6.5 广义相对论点滴 广义相对论的基本原理素材 教科版3-4 精
广义相对论的基本原理爱因斯坦提出马赫原理、广义协变性原理和等效原理作为广义相对论的基本原理。
他采用弯曲时空的黎曼几何来描述引力场,给出引力场中的物理规律,进而提出引力场方程,奠定了广义相对论的理论基础。
1、1马赫原理狭义相对论完全废除了以太概念,即电磁运动的绝对空间,但却仍然没有对经典力学把绝对空间当作世界的绝对惯性结构的理由做出解释,也没有为具有绝对惯性结构的力学提供新的替换。
也就是说,惯性系的存在,对于力学和电磁学都是必不可少的。
狭义相对论紧紧地依赖于惯性参考系,它们是一切非加速度的标准;它们使一切物理定律的形式表达实现了最简化。
惯性系的这种特权在很长时间里保持着一种神秘性。
为了满足狭义相对论而修改牛顿引力(平方反比)理论的失败,导致了广义相对论的兴起。
爱因斯坦是出于一种哲学欲望才把绝对空间彻底地从物理学中清除出去的。
自一开始,狭义相对论就把惯性系当作一种当然的存在。
可能,爱因斯坦本来也不反对在狭义相对论基础上建立的引力论。
由此,爱因斯坦不得不超越狭义相对论。
在这一工作中,他十分诚恳地反复强调,他得益于物理学家兼哲学家马赫的思想。
爱因斯坦说:“没有人能够否认,那些认识论的理论家们曾为这一发展铺平了道路;从我自己来说,我至少知道:我曾经直接地或间接地特别从休漠和马赫那里受到莫大的启发。
”爱因斯坦建立广义相对论的一个重要思想是认为时间和空间的几何不能先验地给定,而应当由物质及其运动所决定。
这个思想直接导致用黎曼几何来描述存在引力场的时间和空间,并成为写下引力场方程的依据。
爱因斯坦的这一思想是从物理学家和哲学家马赫对牛顿的绝对空间观念以及牛顿的整个体系的批判中汲取而来的。
爱因斯坦把这一思想称为马赫原理。
马赫原理早在17世纪就已经有了萌芽。
马赫的惯性思想包括四个方面的内容:(1)空间本身并不是一种“事物”,它纯粹是物质间距离关系总体的抽象。
(2)粒子的惯性是由这个粒子与宇宙中所有其他物质的相互作用造成的。
高三物理学科中的相对论知识点总结与应用
高三物理学科中的相对论知识点总结与应用相对论是物理学中一项重要的理论,它主要由爱因斯坦在20世纪初提出。
在高三物理学科中,相对论也被广泛地涉及和应用。
本文将对高三物理学科中的相对论知识点进行总结,并探讨其应用。
一、狭义相对论知识点总结1. 相对性原理:指出物理规律在惯性参考系下具有相同的形式。
即无论观察者的相对运动如何,物理现象的规律都是不变的。
2. 光速不变原理:无论物体的相对运动如何,光速在真空中的数值都是恒定不变的。
3. 等时原理:不同的观察者在相同的时刻测量到的空间间隔是相同的。
二、狭义相对论的应用1. 时间膨胀:根据狭义相对论的时间膨胀公式,可以计算高速运动物体的时间流逝比静止物体的时间慢。
2. 长度收缩:根据狭义相对论的长度收缩公式,可以计算高速运动物体在运动方向上的长度会缩短。
3. 质能关系:狭义相对论揭示了质量与能量之间的等价关系,即质量可以转化为能量,质能关系表达式为E=mc²。
4. 相对论动量:狭义相对论给出了相对论动量的计算公式,可以描述高速运动物体的动量。
三、广义相对论知识点总结1. 引力场和弯曲时空:广义相对论认为质量和能量会弯曲时空,形成引力场。
2. 时空弯曲的效应:在弯曲的时空中,物体的运动轨迹不再是直线,而是曲线。
光线也会受到引力场的弯曲影响。
3. 等效原理:广义相对论提出,重力场和加速度场的效应等价,即在自由下落的物体中,无法区分是地球的引力作用还是加速度场的作用。
四、广义相对论的应用1. 黑洞:广义相对论揭示了质量足够大的物体会形成黑洞,其中的引力场非常强大。
2. 宇宙膨胀:广义相对论的引力场效应揭示了宇宙的膨胀现象,并提出了宇宙膨胀的宇宙学模型。
3. GPS导航的相对论校正:由于卫星在高速运动中,相对论的效应会导致GPS导航中的时间误差,因此需要进行相对论校正。
综上所述,高三物理学科中的相对论知识点主要涵盖了狭义相对论和广义相对论。
在应用方面,相对论在时间膨胀、长度收缩、质能关系、相对论动量、引力场弯曲等方面都有着广泛的应用。
高一物理相对论初步知识点
高一物理相对论初步知识点相对论是物理学中的一门重要分支,它由爱因斯坦于20世纪初提出,对我们对世界的认识产生了深远影响。
在高一物理学习中,我们初步接触到了一些相对论的基础知识点,下面让我们来一起回顾和探讨这些知识点。
一、光速不变原理相对论的基础是光速不变原理,也就是光在真空中的传播速度是恒定不变的。
这个原理是相对论背后最重要的基石,它的发现打破了牛顿时代的绝对时间和绝对空间观念,引出了相对论的诞生。
光速不变原理指出,无论观察者在什么条件下,光速都是以相同的速度传播,即光速在任何参考系中都是不变的。
二、时间的相对性相对论还提出了时间的相对性。
根据相对论,时间并不是一个普适的概念,它取决于观察者的运动状态。
当两个观察者相对静止时,时间对两个人来说是一样的,但当观察者之间相对运动时,时间的流逝速度会因相对速度的不同而有所差异。
这就是著名的时间膨胀效应,也说明了为什么在接近光速时,时间会变慢。
三、尺度的相对性除了时间的相对性,相对论还指出了尺度的相对性。
根据狭义相对论的观点,物体的长度在运动方向上也会因相对速度的变化而改变。
当一个物体以高速运动时,尺寸沿运动方向会缩短,这就是尺度收缩效应。
与时间的相对性类似,尺度的相对性揭示了我们在不同参考系下观察到的世界会有所差异。
四、质量能量之间的等价性相对论还提出了质量能量之间的等价性,即著名的E=mc^2公式。
这个公式指出,质量和能量是可以相互转化的,它揭示了物质的本质和能量的本质之间的内在联系。
质量能量等价性的发现对于核能和核武器的开发产生了巨大影响,也让我们对宇宙的认识更加深入。
五、相对论的应用相对论不仅仅是一门理论学科,它也有着广泛的应用。
相对论的研究成果为GPS导航系统的精确定位提供了基础,也为粒子物理学的研究提供了指导。
此外,相对论的概念还影响了光学、天文学和天体物理学等领域的研究。
相对论的理论框架为人类对宇宙的探索提供了重要的工具和基础。
六、相对论的启示相对论的最高境界是人类思维的开放与自由。
高中物理 第六章 相对论 4 相对论的速度变换公式 质能关系 5 广义相对论点滴
4 相对论的速度变换公式 质能关系5 广义相对论点滴(选学)[学习目标] 1.知道相对论速度变换公式、相对论质量和质能方程.2.了解广义相对论的基本原理.3.初步了解广义相对论的几个主要观点以及主要观测证据.一、相对论的速度变换设高速行驶的火车对地面的速度为u ,车上的人相对火车以速度v ′运动,那么人相对地面的速度v 为:v =v ′+u1+uv ′c2.二、相对论质量和能量1.物体以速度v 运动时的质量m 与静止时的质量m 0之间的关系是:m =m 01-v 2c2.2.爱因斯坦质能关系式:E =mc 2,m 是物体的质量,E 是它具有的能量. 三、广义相对论点滴 1.广义相对论的基本原理(1)广义相对性原理:在任何参考系中物理规律都是一样的.(2)等效原理:一个不受引力作用的加速系统跟一个受引力作用的惯性系统是等效的. 2.广义相对论的几个结论(1)光在引力场中传播时,将会发生偏折. (2)引力作用使光波发生频移. (3)在引力场中时间会延缓.(4)当两个天体相互绕转时,会向外界辐射引力波. [即学即用] 判断下列说法的正误.(1)根据相对论速度变换公式,两个物体的速度无论多大,它们的相对速度也不会大于光速c.( √)(2)在相对论力学中,物体静止时的质量最小.( √)(3)根据质能方程,质量可以转化为能量,能量可以转化为质量.( ×)(4)一个均匀的引力场与一个做匀速运动的参考系等价,这就是著名的等效原理.( ×)一、相对论速度变换公式[导学探究] 一列车正以u =50m/s 的速度高速行驶,列车内一乘客以相对列车v =5 m/s 的速度向前跑,站台上的观察者测得该乘客的速度是多大?若列车的速度是0.9c ,乘客的速度是0.5c ,那么站台上的观察者测得该乘客的速度是0.9c +0.5c =1.4c 吗?为什么? 答案 站台上的观察者测得该乘客的速度是55m/s.不是.因为根据狭义相对论原理,光速c 是极限速度,任何物体的速度不可能超过光速. [知识深化] 对相对论速度变换公式的理解(1)公式v =v ′+u1+v ′u c2是矢量式.若人运动方向与火车运动方向相同,则v ′取正值.若人运动方向与火车运动方向相反,则v ′取负值.(2)如果u ≪c ,v ′≪c 时,uv ′c 2可忽略不计,这时相对论的速度变换公式可近似为v =v ′+u .(3)若v ′=c ,u =c ,则v =c ,表明一切物体的速度都不能超过光速.(4)该变换公式只适用于同一直线上匀速运动速度的变换,对于更复杂的情况不适用. 例1 一粒子以0.05c 的速率相对实验室参考系运动.此粒子衰变时发射出一个电子,电子相对于粒子的速度为0.8c ,电子的衰变方向与粒子运动方向相同,求电子相对于实验室参考系的速度. 答案 0.817c解析 已知v ′=0.05c ,u =0.8c . 由相对论速度变换公式得v =u +v ′1+uv ′c2=(u +v ′)c 2c 2+uv ′=(0.8c +0.05c )c 2c 2+0.8c ×0.05c ≈0.817c .二、相对论质量和质能方程[导学探究] 回旋加速器中磁场一次次把粒子拉到狭缝处,狭缝处的电场一次次加速带电粒子.假如回旋加速器的半径可以增大到很大,磁感应强度足够大,经回旋加速器加速的粒子的速度可以达到任意速度甚至超过光速吗?为什么? 答案 速度不可以超过光速.因为回旋加速器的理论基础是粒子在磁场中做圆周运动的周期(T =2πm qB)等于交变电场的周期;速度较小时粒子的质量m 可以认为不变,周期T 不变,电场变化与粒子圆周运动同步,但速度较大时,粒子质量增大明显,粒子做圆周运动的周期T 变大,无法做到圆周运动的周期与交变电场的周期同步. [知识深化] 对相对论质量的理解 (1)相对论质量m =m 01-(v c)2.(2)因为总有v <c ,所以运动物体的质量m 总要大于它静止时的质量m 0,但当v ≪c 时,m ≈m 0,所以低速运动的物体,可认为其质量与运动速度无关.(3)微观粒子的速度很大,因此粒子质量明显大于静止质量.例2 为使电子的质量增加到静止质量的两倍,需有多大的速度( ) A.6.0×108m/s B.3.0×108m/s C.2.6×108m/s D.1.5×108m/s答案 C解析 由相对论质速关系式m =m 01-⎝ ⎛⎭⎪⎫v c 2可得到v =c1-⎝ ⎛⎭⎪⎫m 0m2=c1-⎝ ⎛⎭⎪⎫122=32c ≈2.6×108m/s ,故选C.例3 1905年,爱因斯坦创立了“相对论”,提出了著名的质能方程,下面涉及对质能方程理解的几种说法中正确的是( ) A.若物体能量增大,则它的质量增大 B.若物体能量增大,则它的质量减小 C.E =mc 2中能量E 其实就是物体的内能 D.由ΔE =Δmc 2知质量和能量可以互相转化 答案 A解析 由爱因斯坦质能方程可知,物体具有的与质量相对应的能量称为质能.E =mc 2表明质量与能量之间存在一一对应的关系,物体吸收或放出能量,则对应其质量会增加或减少,质量与能量并没有相互转化,B 、D 项错误,A 项正确;E =mc 2中能量E 包括静止能量E 0和动能E k ,而非物体的内能,C 项错误.三、广义相对论的几个结论例4 (多选)下列说法中正确的是( ) A.物质的引力使光线弯曲B.光线弯曲的原因是介质不均匀而非引力作用C.在强引力的星球附近,时间进程会变慢D.广义相对论可以解释引力红移现象答案 ACD解析 从广义相对论的两个基本假设可以得出:物质的引力使光线弯曲;引力场的存在使得空间不同位置的时间进程出现差别,如在矮星表面的引力很强,那里的时间进程变慢,从而导致引力红移,所以正确的选项为A 、C 、D.1.光线在引力场中弯曲,以及引力红移现象都是在引力场很强的情况下产生的.2.光在同一种均匀介质中沿直线传播的现象,在我们的日常生活中仍然成立.1.(相对论速度变换公式)一高能加速器沿相反方向射出两个粒子,速度均为0.6c ,则它们的相对速度大小是多少? 答案 0.88c解析 以其中任意一个粒子为运动参考系,要求的就是另一个粒子在该运动参考系下的运动速度v ′.由题意知,运动参考系相对静止参考系的速度u =0.6c ,另一粒子相对于静止参考系的速度v =-0.6c .根据相对论速度变换公式v =v ′+u 1+v ′u c2,可知-0.6c =v ′+0.6c1+v ′·0.6c c2.可解得v ′≈-0.88c故两粒子的相对速度大小为0.88c .2.(相对论质量)星际火箭以0.8c 的速率飞行,其静止质量为运动质量的百分之几? 答案 60%解析 设星际火箭的静止质量为m 0′,运动质量为m ′, 则m 0′m ′=m 0′m 0′1-(0.8c c)2×100%=60%.3.(质能方程)一电子(m 0=9.1×10-31kg)以0.99c 的速率运动.问:(1)电子的总能量是多大?(2)电子的经典力学的动能与相对论的动能的比值是多大? 答案 (1)5.8×10-13J (2)0.08解析 (1)电子的总能量为:E =mc 2=m 01-(v c)2·c 2=9.1×10-311-(0.99c c)2×(3×108)2J ≈5.8×10-13J.(2)电子的经典力学动能为:E k =12m 0v 2=12m 0(0.99c )2.相对论的动能为:E k ′=E -E 0=mc 2-m 0c 2E k E k ′=12m 0(0.99c )2mc 2-m 0c 2=12×0.99211-(0.99c c)2-1≈0.08.4.(广义相对论)(多选)下列说法中正确的是( )A.在任何参考系中,物理规律都是相同的,这就是广义相对性原理B.在不同的参考系中,物理规律都是不同的,例如牛顿运动定律仅适用于惯性参考系C.一个均匀的引力场与一个做匀速运动的参考系等价,这就是著名的等效原理D.一个均匀的引力场与一个做匀加速运动的参考系等价,这就是著名的等效原理 答案 AD解析 根据广义相对论基本原理可知,选项A 、D 正确.一、选择题考点一 相对论速度变换公式1.(多选)在一列相对于地面速度为v 的高速行驶的火车上,车上的人以速度u ′沿着火车前进方向相对于火车运动,根据相对论速度变换公式,下列说法正确的是( ) A.人相对于地面的速度小于人的速度和火车速度之和 B.人相对于地面的速度大于人的速度和火车速度之和C.只要人和火车的速度足够大,人相对于地面的速度可以超过光速D.不管人和火车的速度多大,人相对于地面的速度都小于光速 答案 AD2.设想有一艘飞船以v =0.8c 的速度在地球上空飞行,如果这时从飞船上沿其运动方向抛出一物体,该物体相对于飞船的速度为0.9c ,从地面上的人看来,物体的速度为( )A.1.7cB.0.1cC.0.99cD.无法确定答案 C解析 根据相对论速度变换公式:v =v ′+u1+v ′u c2,得v =0.9c +0.8c1+0.9c ×0.8c c2≈0.99c .3.火箭以35c 的速度飞离地球,在火箭上向地球发射一束高能粒子,粒子相对地球的速度为45c ,其运动方向与火箭的运动方向相反.则粒子相对火箭的速度大小为( )A.75cB.c 5C.3537cD.5c13 答案 C解析 由相对论速度变换公式v =v ′+u 1+v ′u c 2,可得-45c =35c +v ′1+35cv ′c2,解得v ′=-3537c ,负号说明与v 方向相反. 考点二 相对论质量4.(多选)关于物体的质量,下列说法正确的是( ) A.在牛顿力学中,物体的质量是保持不变的B.在牛顿力学中,物体的质量随物体的速度变化而变化C.在相对论力学中,物体静止时的质量最小D.在相对论力学中,物体的质量随物体速度的增大而增大 答案 ACD解析 在牛顿力学中,物体的质量是保持不变的,故选项A 正确,B 错误;在相对论力学中,由于物体的速度v 不可能达到光速c ,所以v <c,1-(v c)2<1,根据m =m 01-(v c)2,可知选项C 、D 均正确.5.(多选)电子的电荷量为1.6×10-19C ,质量为9.1×10-31kg ,一个电子被电压为106V 的电场加速后,关于该电子的质量和速度,以下说法正确的是( ) A.电子的质量不变 B.电子的质量增大C.电子的速度可以达到1.9cD.电子的速度不可能达到c 答案 BD解析 电子被电场加速后,根据m =m 01-(v c)2可知,随电子速度的增大,其质量也增大,故A 错误,B 正确;此时不能根据eU =12m 0v 2求速度,任何物体的速度都不可能超过光速c ,故C 错误,D 正确. 考点三 质能方程6.如图1所示,鸡蛋和乒乓球都静止在地面上,关于二者所具有的能量关系,下列说法中正确的是( )图1A.鸡蛋大B.乒乓球大C.一样大D.无法进行比较答案 A解析 物体所具有的能量和其质量有关,根据质能方程,质量越大,所具有的能量越大,所以鸡蛋具有的能量大于乒乓球具有的能量.7.已知电子的静止能量为0.511MeV ,若电子的动能为0.25MeV ,则它所增加的质量Δm 与静止质量m 0的比值近似为( ) A.0.1B.0.2C.0.5D.0.9 答案 C解析 由题意E =m 0c 2即m 0c 2=0.511×106×1.6×10-19J ①ΔE =Δmc 2即Δmc 2=0.25×106×1.6×10-19J ②由②①得Δm m 0=0.250.511≈0.5,故C 项正确. 考点四 广义相对论8.(多选)下列说法中,正确的是( )A.由于太阳引力场的影响,我们有可能看到太阳后面的恒星B.强引力作用可使光谱线向红端偏移C.引力场越强的位置,时间进程越快D.由于物质的存在,实际的空间是弯曲的 答案 ABD解析 由广义相对论可知:物质的引力使光线弯曲,因此选项A 、D 正确;在引力场中时间进程变慢,而且引力越强,时间进程越慢,因此我们能观察到引力红移现象,所以选项B 正确,C 错误.9.在日全食的时候,通过仪器可以观察到太阳后面的恒星,这说明星体发出的光( ) A.经太阳时发生了衍射 B.可以穿透太阳及其他障碍物 C.在太阳引力场作用下发生了弯曲 D.经过太阳外的大气层时发生了折射 答案 C解析 根据爱因斯坦的广义相对论可知,光线在太阳引力场作用下发生了弯曲,所以可以在适当的时候(如日全食时)通过仪器观察到太阳后面的恒星,故C 正确,A 、B 、D 错误. 二、非选择题10.(相对论质量)设宇宙射线粒子的能量是其静止能量的k 倍,则粒子运动时的质量等于其静止质量的________倍,粒子运动速度是光速的________倍. 答案 kk 2-1k解析 依据爱因斯坦的质能方程E =mc 2,宇宙射线粒子的能量是其静止能量的k 倍,则其质量等于其静止质量的k 倍;再由相对论质量公式m =m 01-⎝ ⎛⎭⎪⎫v c 2得v c =k 2-1k . 11.(质能方程)一被加速器加速的电子,其能量为 3.00×109eV ,(m 0=9.1×10-31kg ,c =3×108m/s)试问:(1)这个电子的动质量是其静质量的多少倍? (2)这个电子的速率是多少?答案 (1)5.86×103(2)2.999999955×108m/s 解析 (1)由相对论质能关系E =mc 2和E 0=m 0c 2可得电子的动质量m 与静质量m 0之比为m m 0=E E 0=3.00×109×1.6×10-199.1×10-31×(3×108)2≈5.86×103. (2)由m =m 01-v 2c2可得v =1-m 20m2·c =0.999999985c =2.999999955×108m/s.。
高二物理学习中的相对论原理解析
高二物理学习中的相对论原理解析相对论,是指由爱因斯坦于1905年提出的一套物理理论,主要是关于时间、空间以及质量与能量等概念之间的相互关系和相互影响的理论。
在高二物理学习中,相对论原理被认为是一项重要的内容,对于理解物质的本性和宇宙的演化过程具有重要意义。
本文将对高二物理学习中的相对论原理进行解析。
一、相对论的起源与基本概念相对论的起源可以追溯到19世纪末和20世纪初,当时科学家们对光速的研究引发了一系列思考和实验。
相对论最早由爱因斯坦提出,其核心思想是“相对性原理”,即物理学中的自然规律在所有惯性参考系中都应该相同。
而爱因斯坦的狭义相对论则建立在两个基本假设上:光速不变原理和相对性原理。
光速不变原理是指光在真空中传播的速度恒为常数,与观察者和光源的运动状态无关。
相对性原理则是指物理规律在不同参考系中都应该成立,不会因为观察者的运动状态而有所改变。
这两个基本假设构成了狭义相对论的基础。
二、狭义相对论中的时间与空间根据狭义相对论,时间和空间并不是绝对的,而是与观察者的运动状态相关。
狭义相对论中引入了“时间膨胀”和“长度收缩”等概念。
1. 时间膨胀根据光速不变原理和相对性原理,当一个观察者与光源相对静止时,光的传播速度相对于观察者是恒定的。
然而,当观察者以接近光速的速度运动时,观察者所测量到的时间会比静止时的时间更慢。
这种现象被称为时间膨胀,即相对于静止观察者而言,运动观察者所经历的时间会减慢。
2. 长度收缩根据相对性原理,当观察者以接近光速的速度运动时,观察到的长度会比静止时的长度更短。
这种现象被称为长度收缩,即相对于静止观察者而言,运动观察者所测得的长度会收缩。
三、相对论与质量、能量相对论不仅对时间和空间产生了影响,还对质量和能量之间的转化关系提出了新的解释。
相对论中,质量和能量被统一为一个整体,即质能关系。
根据质能关系,质量和能量之间存在等效关系,表示为E=mc²,其中E表示能量,m表示物体的质量,c表示光速。
高中物理第十五章相对论简介第3、4节狭义相对论的其他结论广义相对论简介4
第3、4节狭义相对论的其他结论 广义相对论简介1.光速是宇宙速度的极限,相对任何参考系光速都是一样的。
2.物体的质量随物体速度的增大而增大,质能方程:E =mc 2。
3.广义相对论的基本原理:在任何参考系中,物理规律都是相同的;一个均匀的引力场与一个做匀加速运动的参考系等价。
4.广义相对论的结论:光线在引力场中偏转;引力场的存在使得空间不同位置的时间进程出现偏差。
一、狭义相对论的其他结论 1.相对论速度变换公式(1)公式:设高速行驶的火车的速度为v ,车上的人以速度u ′沿着火车前进的方向相对火车运动,那么人相对地面的速度u 为u =u ′+v1+u ′v c2。
(2)结论:光速c 是宇宙速度的极限,且相对任何参考系,光速都是一样的。
2.相对论质量(1)经典力学:物体的质量是不变的,一定的力作用在物体上产生一定的加速度,足够长时间后物体可以达到任意的速度。
(2)相对论:物体的质量随物体速度的增大而增大。
物体以速度v 运动时的质量m 与静止时的质量m 0之间的关系是:m =m 01-⎝ ⎛⎭⎪⎫v c 2,因为总有v <c ,可知运动物体的质量m 总要大于它静止时的质量m 0。
3.质能方程E =mc 2。
二、广义相对论简介1.超越狭义相对论的思考爱因斯坦思考狭义相对论无法解决的两个问题:(1)引力问题:万有引力理论无法纳入狭义相对论的框架。
(2)非惯性系问题:狭义相对论只适用于惯性参考系。
它们是促成广义相对论的前提。
2.广义相对性原理和等效原理(1)广义相对性原理:在任何参考系中,物理规律都是相同的。
(2)等效原理:一个均匀的引力场与一个做匀加速运动的参考系等价。
3.广义相对论的几个结论 (1)光线经过强引力场发生弯曲。
(2)引力红移:引力场的存在使得空间不同位置的时间进程出现了差别。
而使矮星表面原子发光频率偏低。
1.自主思考——判一判(1)只有运动物体才具有能量,静止物体没有质能。
(×) (2)一定的质量总是和一定的能量相对应。
高中物理第六章相对论第4讲相对论的速度变换公式质能
二、广义相对论点滴(选学) 1.广义相对性原理和等效原理
(1)广义相对性原理 在__任__何__参__考__系__中物理规律都是_一__样___的. (2)等效原理 一个不受引力作用的加速度系统跟一个受引力作用的 _惯__性__系__统___是等效的. 2.支持广义相对论的几个观测结果 (1)光在引力场中传播时,将会发生__偏__折__,而不再是直线 传播. (2)引力作用使光波发生__频__移__.
第4讲 相对论的速度变换公式 质能关系
第5讲 广义相对论点滴(选学)
[目标定位] 1.知道相对论速度变换公式、相对论质量和质能 方程.2.了解广义相对论的基本原理.3.初步了解广义相对论的几 个主要观点以及主要观测证据.
一、相对论的速度变换公式 质能关系
1.相对论的速度变换
在以速率u相对于参考系S运动的参考系S′中,一物体沿与
(3)在引力场中时间也会__延__缓__,引力越强,时钟就走得越 __慢____. (4)水星绕太阳运动的轨道与根据牛顿万有引力定律计算所 得的不一致. (5)当两个天体相互绕转时,会向外界辐射出__引__力__波____. 3.宇宙的演化 (1)20世纪40年代末,物理学家伽莫夫把宇宙膨胀与粒子反 应理论结合起来,提出宇宙大爆炸假说. (2)宇宙大爆炸理论最大说服力的证据是宇宙背景辐射的发 现.
解析 已知 v=0.05c,ux′=0.8c. 由相对论速度叠加公式得 ux=1u+x′ux+c′2vv=cu2x+′u+x′vvc2, ux=c20+.8c0+.8c0×.050c.05c2c≈0.817c. 答案 0.817c
二、对相对论质量和质能方程的理解
1.相对论质量 物体的质量会随物体的速度增大而增大,物体以速度 v 运 动 时 的 质 量 m 与 静 止 时 的 质 量 m0 之 间 的 关 系 m = 1m-0 vc2.
高中物理选修3-4相对论简介
相对论简介教学目的:1.了解相对论的诞生及发展历程2.了解时间和空间的相对性3.了解狭义相对论和广义相对论的内容教学重点:时间和空间的相对性、狭义相对论和广义相对论教学难点:时间和空间的相对性教学过程:一、狭义相对论的基本假设牛顿力学是在研究宏观物体的低速(与光速相比)运动时总结出来的.对于微观粒子,牛顿力学并不适用,在这一章中我们还将看到,对于高速运动,即使是宏观物体,牛顿力学也不适用.19世纪后半叶,关于电磁场的研究不断深入,人们认识到了光的电磁本质.我们已经知道,电磁波是以巨大的速度传播的,因此在电磁场的研究中不断遇到一些矛盾,这些矛盾导致了相对论的出现.相对论不仅给出了物体在高速运动时所遵循的规律,而且改变了我们对于时间和空间的认识,它的建立在物理学和哲学的发展史上树立了一座重要的里程碑.经典的相对性原理如果牛顿运动定律在某个参考系中成立,这个参考系叫做惯性系,相对一个惯性系做匀速直线运动的另一个参考系也是惯性系.我们引用伽利略的一段话,生动地描述了一艘平稳行驶的大船里发生的事情.“船停着不动时,你留神观察,小虫都以等速向各方向飞行,鱼向各个方向随意游动,水滴滴进下面的罐中;你把任何东西扔给你的朋友时,只要距离相等,向这一方向不比向另一方向用更多的力.你双脚齐跳,无论向哪个方向跳过的距离都相同.当你仔细观察这些事情之后,再使船以任何速度前进,只要运动是匀速的,也不忽左忽右地摆动,你将发现,所有上述现象丝毫没有变化.你也无法从其中任何一个现象来确定,船是在运动还是停着不动”通过这段描述以及日常经验,人们很容易相信这样一个论述:力学规律在任何惯性系中都是相同的.这个论述叫做伽利略相对性原理.相对性原理可以有不同的表述.例如还可以表述为:在一个惯性参考系内进行任何力学实验都不能判断它是否在相对于另一个惯性参考系做匀速直线运动;或者说,任何惯性系都是平权的.在不同的参考系中观察,物体的运动情况可能不同,例如在一个参考系中物体是静止的,在另一个参考系中看,它可能是运动的,在不同的参考系中它们运动的速度和方向也可能不同.但是,它们在不同的惯性系中遵从的力学规律是一样的,例如遵从同样的牛顿运动定律、同样的运动合成法则……光速引起的困难自从麦克斯韦预言了光的电磁本质以及电磁波的速度以后,物理学家们就在思考,这个速度是对哪一个参考系说的?如果存在一个特殊的参考系O,光对这个参考系的速度是c,另一个参考系O′以速度v沿光传播的方向相对参考系O运动,那么在O′中观测到的光速就应该是c-v,如果参考系O′逆着光的传播方向运动,在参考系O′中观测到的光速就应该是c+v.由于一般物体的运动速度比光速小得多,c+v和c-v与光速c的差别很小,在19世纪的技术条件下很难直接测量,于是物理学家们设计了许多巧妙的实验,力图测出不同参考系中光速的差别.最著名的一个实验是美籍物理学家麦克尔逊设计的.他把一束光分成互相垂直的两束,一束的传播方向和地球运动的方向一致,另一束和地球运动的方向垂直,然后使它们发生干涉,如果不同方向上的光速有微小的差别,当两束光互相置换时干涉条纹就会发生变化.由于地球在宇宙中运动的速度很大,希望它对光速能有较大的影响.但是,这个实验和其他实验都表明,不论光源和观察者做怎样的相对运动,光速都是相同的.这些否定的结果使当时的物理学家感到震惊,因为它和传统的观念,例如速度合成的法则,是矛盾的.狭义相对论的两个假设上面的矛盾使我们面临一个困难的选择:要么放弃麦克斯韦的电磁理论,要么否定特殊参考系的存在.爱因斯坦选择了后者.他认为,既然在不同的惯性系中力学规律都一样,我们会很自然地想到,电磁规律在不同的惯性系中也是一样的,也就是说,并不存在某一个特殊参考系(例如地球参考系、太阳参考系,或者所谓的以太……)爱因斯坦把伽利略的相对性原理推广到电磁规律和一切其他物理规律,成为他的第一个假设:在不同的惯性参考系中,一切物理规律都是相同的.这个假设通常称为爱因斯坦相对性原理.另一条假设是:真空中的光速在不同的惯性参考系中都是相同的,与光源的运动和观察者的运动没有关系.这个假设通常叫做光速不变原理.这两个假设似乎是麦克尔逊实验的直接结论,为什么还要叫做假设?这是因为,虽然实验表明了假设所说的内容,但这终归是有限的几次实验.只有在从这两个假设出发,经过逻辑推理(包括数学推导)所得出的大量结论都与事实相符时,它们才能成为真正意义上的原理.同时的相对性作为相对论的两个假设的直接推论,现在讨论“同时”的相对性,以体会相对论描述的世界和我们日常的经验有多大的差别.我们研究两个“事件”的同时性.在这里,“事件”可以指一个光子与观测仪器的碰撞,也可以指闪电对地面的打击,还可以指一个婴儿的诞生……假设一列很长的火车在沿平直轨道飞快地匀速行驶.车厢中央有一个光源发出了一个闪光,闪光照到了车厢的前壁和后壁,这是两个事件.车上的观察者认为两个事件是同时的.在他看来这很好解释,因为车厢是个惯性系,光向前、后传播的速度相同,光源又在车厢的中央,闪光当然会同时到达前后两壁(图甲).车下的观察者则不以为然.他观测到,闪光先到达后壁,后到达前壁.他的解释是:地面也是一个惯性系,闪光向前、后传播的速度对地面也是相同的,但是在闪光飞向两壁的过程中,车厢向前行进了一段距离,所以向前的光传播的路程长些,到达前壁的时刻也就晚些(图乙),这两个事件不同时.在经典物理学家的头脑中,如果两个事件在一个参考系中看来是同时的,在另一个参考系中看来一定也是同时的,这一点似乎天经地义,无需讨论.但是,如果接受了爱因斯坦的两个假设,我们自然会得出“同时是相对的”这样一个结论.为什么在日常生活中没有人觉察到这种相对性?原来,火车运动的速度远远小于光速,光从车厢中央传播到前后两壁的短暂时间内,火车前进不了多大距离,因此地面观察者不会发现闪光到达前壁、后壁的时间差.时间和空间的相对性时间间隔的相对性经典物理学认为,某两个事件,在不同的惯性系中观察,它们发生的时间差,也就是它们的时间间隔,总是相同的.但是,从狭义相对论的两个基本假设出发,我们会看到,时间间隔是相对的.还以高速火车为例,假设车厢地板上有一个光源,发出一个闪光.对于车上的人来说,闪光到达光源正上方h高处的小镜后被反射,回到光源的位置(如图甲),往返所用的时间为△t′.对于地面的观察者来说,情况有所不同.从地面上看,在光的传播过程中,火车向前运动了一段距离,因此被小镜反射后又被光源接收的闪光是沿路径AMB传播的光(图乙).如果火车的速度为v,地面观察者测得的闪光从出发到返回光源所用时间记为△t,那么应用勾股定理可得这又是一个令人吃惊的结论:关于闪光从光源出发,经小镜反射后又回到光源所经历的时间,地面上的人和车上的人测量的结果不一样,地面上的人认为这个时间长些.更严格的推导表明,(1)式具有普遍意义,它意味着,从地面上观察,火车上的时间进程变慢了,由于火车在运动,车上的一切物理、化学过程和生命过程都变慢了:时钟走得慢了,化学反应慢了,甚至人的新陈代谢也变慢了……可是车上的人自己没有这种感觉,他们反而认为地面上的时间进程比火车上的慢,因为他们看到,地面正以同样的速度朝相反的方向运动!(1)式又一次生动地展示了时间的相对性.长度的相对性在这一小节中我们将要说明,高速火车上的一个杆,当它的方向和运动方向平行时,地面上的人测得的杆长要小于火车上的人测得的杆长!假设一个杆沿着车厢运动的方向固定在火车上,和车一起运动.在火车上的人看来,杆是静止的.他利用固定在火车上的坐标轴,测出杆两端的位置坐标,坐标之差就是他测出的杆长L′.地面上的人要利用固定在地面上的坐标轴,测出杆两端的位置坐标,坐标之差就是他测出的杆长L.可是,对于地面上的人,杆是运动的,要使这种测量有意义,他必须同时测出杆两端的位置坐标;如果在某一时刻测出杆一端的位置坐标,在另一时刻测出另一端的位置坐标,坐标之差就不能代表杆长了.火车上的人和地面上的人各自用上述方法测量随车运动的杆长,结果发现,L′>L.他们两人的测量都是符合测量要求的,但测量结果不同,这跟同时的相对性有关.地面上的人认s为同时的两个事件(同时对A、B两端读数),火车上的人认为不是同时的.火车上的人认为,地面上的人对B端的读数早些,对A端的读数迟些,在这个时间内杆向前运动了一段距离,因而地面上的人测得的杆长比较短.(2)式具有普遍意义,也就是说,一个杆,当它沿着自身的方向相对于测量者运动时,测得的长度比它静止时的长度小,速度越大,差别也越大.这就是我们所说的空间的相对性.当杆沿着垂直于自身的方向运动时,测得的长度和静止时一样.可以想像这样一幅图景:一列火车以接近光的速度从我们身边飞驶而过,我们感到车厢变短了,车窗变窄了……火车越快,这个现象越明显,但是车厢和车窗的高度都没有变化.车上的人有什么感觉呢?他认为车上的一切都和往常一样,因为他和火车是相对静止的.但是,他却认为地面上的景象有些异常:沿线的电线杆的距离变短了,面对铁路线的正方形布告牌由于宽度变小而高度未变竟成了窄而高的矩形……时空相对性的实验验证从(l)、(2)两式可以看到,只有当两个参考系的相对速度可与光速相比时,时间与空间的相对性才比较明显.目前的技术还不能使宏观物体达到这样的速度,但是随着对微观粒子研究的不断深入,人们发现,许多情况下粒子的速度会达到光速的90%以上,时空的相对性应该是不可忽略的.事实正是如此.时至今日,不但狭义相对论的所有结论已经完全得到证实,实际上它已经成为微观粒子研究的基础之一.时空相对性的最早证据跟宇宙线的观测有关(1941年).宇宙线是来自太阳和宇宙深处的高能粒子流,它和高层大气作用,又产生多种粒子,叫做次级宇宙线,它们统称宇宙线.次级宇宙线中有一种粒子叫做μ子,寿命不长,只有 3.0μs,超过这个时间后大多数μ子就衰变为别的粒子了.宇宙线中μ子的速度约为0.99c,所以在它的寿命之内,运动的距离只有约890m.μ子生成的高度在100km以上,这样说来宇宙线中的μ子不可能到达地面.但在实际上,地面观测到的宇宙线中有许多μ子,这只能用相对论来解释.我们说μ子的寿命为 3.0μs,这是在与它相对静止的参考系中说的.从地面参考系看,μ子在以接近光速的速度运动,根据(l)式,它的寿命比3.0μs长得多,在这样长的时间内,许多μ子可以飞到地面.如果观察者和μ子一起运动,这个现象也好解释.这位观察者看到,μ子的寿命仍是3.0μs,但是大地正向他扑面而来,因此大气层的厚度不是100km,由于长度的相对性,在他看来大气层比100km薄得多,许多μ子在衰变为其他粒子之前可以飞过这样的距离.相对论的第一次宏观验证是在1971年进行的.当时把铯原子钟放在喷气式飞机上作环球飞行,然后与地面上的基准钟对照.实验结果与理论预言符合得很好.相对论的时空观什么是时间?什么是空间?时间和空间有什么性质?经典物理学对这些问题并没有正面回答.但是从它对问题的处理上,我们体会到,经典物理学认为空间好像一个大盒子(一个没有边界的盒子),它是物质运动的场所.至于某一时刻在某一空间区域是否有物质存在,物质在做什么样的运动,这些对于空间本身没有影响,就像盒子里是否装了东西对于盒子的性质没有影响一样.时间与此相似,它在一分一秒地流逝,与物质的运动无关.换句话说,经典物理学认为空间和时间是脱离物质而存在的,是绝对的,空间与时间之间也是没有联系的.相对论则认为有物质才有空间和时间,空间和时间与物质的运动状态有关.前面已经看到,在一个确定的参考系中观察,运动物体的长度(空间距离)和它上面物理过程的快慢(时间进程)都跟物体的运动状态有关.我们生活在低速运动的世界里,因此自然而然地接受了经典的时空观,过去谁都未曾有意识地考虑过空间与时间的性质.只有当新的实验事实引出的结论与传统观念不一致时,人们才回过头来认真思考过去对于空间和时间的认识.科学的发展和人对于自然界的认识就是这样一步一步地前进的.新科学没有全盘否定经典物理学,经典物理学建立在实验的基础上,它的结论又受到无数次实践的检验.虽然相对论更具有普遍性,但是经典物理学作为它在低速运动时的特例,在自己的适用范围内还将继续发挥作用.狭义相对论的其他三个结论我们不做推导而直接引入狭义相对论的三个重要结论.相对论速度叠加公式仍以高速火车为例.设车对地面的速度为v,车上的人以速度u′沿着火车前进的方向相对火车运动,那么他相对地面的速度u为如果车上人的运动方向与火车的运动方向相反,则u′取负值.这两个速度的方向垂直或成其他角度时,(1)式不适用,这种情况不做讨论.按照经典的时空观,u=u′+v.而从(1)式来看,实际上人对地面的速度u比u′与v之和要小,不过只有在u′和v的大小可以与c相比时才会观察到这个差别.从(1)式还可以看出,如果u′和v都很大,例如十分接近光速,它们的合速度也不会超过光速,也就是说,光速是速度的极限.此外,当u′=c时,不论v取什么值,总有u=c,这表明,从不同参考系中观察,光速都是相同的,这和相对论的第二个假设一致.相对论质量按照牛顿力学,物体的质量是不变的,因此一定的力作用在物体上,产生的加速度也是一定的,这样,经过足够长的时间以后物体就可以达到任意大的速度.但是相对论的速度叠加公式告诉我们,物体的运动速度不能无限增加.这个矛盾启发我们思考:物体的质量是否随物体的速度而增大?严格的论证证实了这一点.实际上,物体以速度v运动时的质量m和它静止时的质量m之间有如下关系:微观粒子的运动速度很高,它的质量明显地大于静止质量,这个现象必须考虑.例如,回旋加速器中被加速的粒子,在速度增大后质量增大,因此做圆周运动的周期变大,它的运动与加在D形盒上的交变电压不再同步,所以回旋加速器中粒子的能量受到了限制.质能方程相对论另一个重要结论就是大家已经学过的爱因斯坦质能方程:E = mc(3)2它表达了物体的质量和它所具有的能量的关系.物体运动时的能量E和静时有以下近似关系于是知道:这就是过去熟悉的动能表达式.这个结果又一次让我们看到,牛顿力学是相对论力学在v<<c时的特例.。
高中物理知识全解4.5相对论简介
高中物理知识全解 4.5 相对论简介一:经典力学经典力学有它的适用范围:只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界;只适用于弱引力情况,不适用于强引力情况。
对于高速运动(速度接近真空中的光速),需要应用爱因斯坦的相对论。
当物体的运动速度远小于真空中的光速时,相对论物理学与经典物理学的结论没有区别。
对于微观世界,需要应用量子力学。
当普朗克常数可以忽略不计时,量子力学和经典力学的结论没有区别。
对于强引力情况,需要应用爱因斯坦引力理论。
当天体的实际半径远大于它们的引力半径时,爱因斯坦引力理论和牛顿引力理论计算出的力的差异并不很大。
二:狭义相对论①两个基本假设惯性系:牛顿第一、第二定律在其中有效的参照系,简称惯性系。
如果S为一惯性参照系,则任何对于S做匀速直线运动的参照系都是惯性参照系;而对于S做加速运动的参照系则是非惯性参照系。
所有的惯性参照系都是等效的。
惯性参照系即惯性系。
1、狭义相对性原理:在不同的惯性参考系中,一切物理规律都是相同的。
∴狭义相对论只涉及无加速度运动的惯性系。
【例题】以下说法中正确的是()A、经典物理学中的速度合成公式在任何情况下都是适应的。
B、经典物理规律也适应于高速运动的物体。
C、力学规律在一个静止的参考系和一个匀速运动的参考系中是不等价的。
D、力学规律在任何惯性系里都是等价的。
答案:D2、光速不变原理:真空中的光速在不同的惯性参考系中都是相同的。
∴一切运动的物体相对观察者的速度都不能大于真空中的光速。
【例题】属于狭义相对论基本假设的是:在不同的惯性系中( )A.真空中光速不变B.时间间隔具有相对性C.物体的质量不变D.物体的能量与质量成正比答案:A【例题】如下图所示,沿平直铁路线有间距相等的三座铁塔A、B和C。
假想有一列车沿AC方向以接近光速行驶,当铁塔B发出一个闪光,列车上的观测者测得A、C两铁塔被照亮的顺序是()(A)同时被照亮(B)A先被照亮(C)C先被照亮(D)无法判断②时间和空间的相对性1、“同时”的相对性:两个事件是否同时发生,与参考系的选取有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理相对论
高中物理相对论是一门介绍相对论基础知识的学科。
相对论是物理学中的一个重要分支,是描述物体在高速运动或强引力环境下特殊的物理效应的理论。
相对论的发展对于科学技术的进步和人类对宇宙的认识有着重要的影响。
在高中物理相对论中,学生们将学习狭义相对论和广义相对论的基础知识。
狭义相对论主要研究物体在相对静止状态下的运动规律,探究时间、空间、质量等物理量的变化规律;广义相对论则进一步研究物体在强引力环境下的运动规律,探究引力场和时空的弯曲效应。
学生们在学习高中物理相对论时需要具备一定的数学基础和物理基础,如向量、微积分、动力学等。
同时,需要学生具备较强的逻辑思维能力和分析问题的能力。
通过学习高中物理相对论,学生们将能够更加深入地了解宇宙中的物理规律,理解世界的本质,同时也为未来的科学研究和技术开发奠定了坚实的基础。