2019年高考数学(文)一轮复习精品资料:专题27等比数列及其前n项和(教学案)含解析

合集下载

2019年高考数学(理)一轮复习精品资料专题27等差数列及其前n项和(押题专练)含解析

2019年高考数学(理)一轮复习精品资料专题27等差数列及其前n项和(押题专练)含解析

2019年高考数学(理)一轮复习精品资料1.数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 5=1,则a 10=( ) A .5 B .-1 C .0 D .1解析:设公差为d ,由已知得21111()(2)41a d a a d a d ⎧+=+⎪⎨+=⎪⎩,解得⎩⎪⎨⎪⎧a 1=1d =0,所以a 10=a 1+9d =1,故选D 。

答案:D2.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( ) A .13 B .26 C .52 D .156答案:B3.在等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( ) A .297 B .144 C .99 D .66解析:∵a 1+a 4+a 7=39,a 3+a 6+a 9=27,∴a 1+a 4+a 7=3a 4=39,a 3+a 6+a 9=3a 6=27,即a 4=13,a 6=9.∴d =-2,a 1=19.∴S 9=19×9+9×82×(-2)=99。

答案:C4.已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64解析:2a 8=a 7+a 9=16⇒a 8=8,S 11=a 1+a 112=11·2a 62=11a 6=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A 。

答案:A5.在等差数列{a n }中,a 1=-2 012,其前n 项和为S n ,若S 2 0122 012-S 1010=2 002,则S 2 014的值等于( )A .2 011B .-2 012C .2 014D .-2 013 解析:等差数列中,S n =na 1+n n -2d ,S n n =a 1+(n -1)d 2,即数列{S n n }是首项为a 1=-2 012,公差为d2的等差数列。

2019版高考数学第6章数列3第3讲等比数列及其前n项和教案

2019版高考数学第6章数列3第3讲等比数列及其前n项和教案

第3讲 等比数列及其前n 项和1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件. 2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). 4.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 5.等比数列与指数函数的关系当q ≠1时,a n =a 1q·q n ,可以看成函数y =cq x,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x的图象上.判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.( )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) (3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (4)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (5)等比数列中不存在数值为0的项.( ) 答案:(1)× (2)× (3)× (4)× (5)√(教材习题改编)已知{an }是等比数列,a 2=2,a 5=14,则公比q =( )A .-12B .-2C .2D.12解析:选D.由通项公式及已知得a 1q =2①,a 1q 4=14②,由②÷①得q 3=18,解得q =12.故选D.已知数列{an }满足a n =12a n +1,若a 3+a 4=2,则a 4+a 5=( )A. 12 B .1 C .4D .8解析:选C.法一:因为a n =12a n +1得a n +1a n =2,所以{a n }为等比数列,其公比为2,又a 3+a 4=2得a 1=16,则a 4+a 5=a 1q 3+a 1q 4=4.法二:已知a n =12a n +1,可得a n +1=2a n ,所以a 4+a 5=2a 3+2a 4=2(a 3+a 4)=2×2=4.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为________.解析:设等比数列{a n }的公比为q (q >0), 由a 5=a 1q 4=16,a 1=1,得16=q 4,解得q =2,所以S 7=a 1(1-q 7)1-q =1×(1-27)1-2=127.答案:127(2017·高考北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则a 4=-1+3d =8,解得d =3;b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2,所以a 2b 2=1. 答案:1等比数列的基本运算(高频考点)等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,难度为中、低档题.高考对等比数列的基本运算的考查常有以下三个命题角度: (1)求首项a 1、公比q 或项数n ; (2)求通项或特定项; (3)求前n 项和.[典例引领]角度一 求首项a 1、公比q 或项数n(2018·武汉市武昌区调研考试)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则a 1=( ) A .-2 B .-1 C. 12D. 23【解析】 由S 2=3a 2+2,S 4=3a 4+2得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍)或q =32,将q =32代入S 2=3a 2+2中得a 1+32a 1=3×32a 1+2,解得a 1=-1.【答案】 B角度二 求通项或特定项(方程思想)(2018·合肥模拟)设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列,则a n =________.【解析】 由已知得:⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2.解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q,a 3=2q .又S 3=7,可知2q+2+2q =7,即2q 2-5q +2=0,解得q 1=2,q 2=12.由题意得q >1,所以q =2, 所以a 1=1.故数列{a n }的通项公式为a n =2n -1.【答案】 2n -1角度三 求前n 项和(2016·高考全国卷Ⅰ)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.【解】 (1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2.所以数列{a n }是首项为2,公差为3的等差数列, 通项公式为a n =3n -1.(2)由(1)和a n b n +1+b n +1=nb n ,得b n +1=b n 3,因此数列{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1-⎝ ⎛⎭⎪⎫13n1-13=32-12×3n -1.解决等比数列有关问题的三种常见思想方法(1)方程思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论思想:因为等比数列的前n 项和公式涉及对公比q 的分类讨论,所以当某一参数为公比进行求和时,就要对参数是否为1进行分类讨论. (3)整体思想:应用等比数列前n 项和公式时,常把q n或a 11-q当成整体进行求解. [通关练习]1.设等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 1=1,a 3=4,S k =63,则k =( ) A .4 B .5 C .6D .7解析:选C.设等比数列{a n }的公比为q ,由已知a 1=1,a 3=4,得q 2=a 3a 1=4.又{a n }的各项均为正数,所以q =2.而S k =1-2k1-2=63,所以2k-1=63, 解得k =6.2.(2017·高考江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________. 解析:设等比数列{a n }的公比为q ,则由S 6≠2S 3得q ≠1,则S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得q =2,a 1=14,则a 8=a 1q 7=14×27=32.答案:323.(2017·高考全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5,q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.等比数列的判定与证明[典例引领]已知数列{a n }的前n 项和为S n ,若a n +S n =n ,c n =a n -1. (1)求证:数列{c n }是等比数列; (2)求S n .【解】 (1)证明:由a n +S n =n ,① 得a 1+S 1=1,即2a 1=1,解得a 1=12.又a n +1+S n +1=n +1,②由②-①得a n +1-a n +(S n +1-S n )=1, 即2a n +1-a n =1,③因为c n =a n -1,所以a n =c n +1,a n +1=c n +1+1,代入③式,得2(c n +1+1)-(c n +1)=1,整理得2c n +1=c n , 故c n +1c n =12(常数). 所以数列{c n }是一个首项c 1=a 1-1=12-1=-12,公比为12的等比数列.(2)由(1)知,c n =-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n ,所以a n =c n +1=-⎝ ⎛⎭⎪⎫12n+1, 所以S n =-12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12+n =⎝ ⎛⎭⎪⎫12n +n -1.等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则{a n }是等比数列.(2)中项公式法:若数列{a n }中a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列的通项公式可写成a n =c ·q n -1(c ,q 均为不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[通关练习]1.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( ) A .-13B.13C .-12D.12 解析:选A.法一:当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a 2,所以a =-13.法二:因为等比数列的前n 项和S n =k ×q n-k ,则12a =-16,a =-13.2.数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),设b n =a n +1-2a n . (1)求证:{b n }是等比数列; (2)设c n =a n3n -1,求证:{c n }是等比数列. 证明:(1)a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n .b n +1b n =a n +2-2a n +1a n +1-2a n =(4a n +1-4a n )-2a n +1a n +1-2a n=2a n +1-4a n a n +1-2a n=2. 因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列. (2)由(1)知b n =3·2n -1=a n +1-2a n ,所以a n +12n -1-a n2n -2=3.所以数列⎩⎨⎧⎭⎬⎫a n 2n -2是等差数列,公差为3,首项为2.所以a n2n -2=2+(n -1)×3=3n -1.所以a n =(3n -1)·2n -2,所以c n =2n -2.所以c n +1c n =2n -12n -2=2.所以数列{c n }为等比数列.等比数列的性质(高频考点)等比数列的性质是高考的热点,多以选择题、填空题的形式出现,其难度为中等.高考对等比数列的性质的考查常有以下两个命题角度: (1)等比数列项的性质的应用; (2)等比数列前n 项和的性质的应用.[典例引领]角度一 等比数列项的性质的应用(1)在等比数列{a n }中,a 3,a 15是方程x 2-6x +8=0的根,则a 1a 17a 9的值为( ) A .2 2B .4C .-22或2 2D .-4或4(2)(2018·武汉华师附中调研)数列{a n }的通项公式为a n =2n -1,则使不等式a 21+a 22+…+a 2n<5×2n +1成立的n 的最大值为( )A .2B .3C .4D .5【解析】 (1)因为a 3,a 15是方程x 2-6x +8=0的根, 所以a 3a 15=8,a 3+a 15=6,易知a 3,a 15均为正,由等比数列的性质知,a 1a 17=a 29=a 3a 15=8, 所以a 9=22,a 1a 17a 9=22,故选A. (2)因为a n =2n -1,a 2n =4n -1,所以a 21+a 22+…+a 2n =1×(1-4n)1-4=13(4n-1).因为a 21+a 22+…+a 2n <5×2n +1,所以13(4n -1)<5×2n +1,所以2n(2n -30)<1,对n 进行赋值,可知n 的最大值为4. 【答案】 (1)A (2)C角度二 等比数列前n 项和的性质的应用等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( )A .1B .2C .3D .5【解析】 法一:因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项,所以(a 5+a 7)2=(a 1+a 3)·(a 9+a 11),故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2.同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项, 所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15), 故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.所以a 9+a 11+a 13+a 15=2+1=3. 法二:在等比数列{a n }中,得q 4=a 5+a 7a 1+a 3=12, 所以a 9+a 11+a 13+a 15=q 8(a 1+a 3+a 5+a 7)=14(8+4)=3.【答案】 C等比数列常见性质的应用等比数列性质的应用可以分为三类: (1)通项公式的变形; (2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[通关练习]1.已知等比数列{a n }中,a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( ) A .4 B .6 C .8D .-9解析:选 A.a 6(a 2+2a 6+a 10)=a 6a 2+2a 26+a 6a 10=a 24+2a 4a 8+a 28=(a 4+a 8)2,因为a 4+a 8=-2,所以a 6(a 2+2a 6+a 10)=4.2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A. 18 B .-18C. 578D. 558解析:选A.因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.3.在等比数列{a n }中,公比q =2,前87项的和S 87=140,则a 3+a 6+a 9+…+a 87=( ) A .20 B .56 C .80D .136解析:选 C.法一:a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a 1q 21-(q 3)291-q3=q 21+q +q 2·a 1(1-q 87)1-q =47×140=80.故选C. 法二:设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87,因为b 1q =b 2,b 2q =b 3,且b 1+b 2+b 3=140,所以b 1(1+q +q 2)=140,又1+q +q 2=7,所以b 1=20,b 3=q 2b 1=4×20=80.故选C.等比数列的单调性当⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列; 当⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列; 当q =1时,{a n }为常数列; 当q <0时,{a n }为摆动数列.与等比数列前n 项和S n 相关的结论(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . ①若共有2n 项,则S 偶∶S 奇=q ; ②若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q1+q(q ≠1且q ≠-1).(2)分段求和:S n +m =S n +q nS m ⇔q n=S n +m -S nS m(q 为公比).易错防范(1)由于等比数列的每一项都可能作分母,故每一项均不为0,因此q 也不能为0,但q 可为正数,也可为负数.(2)由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.(3)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.1.(2018·成都市第二次诊断性检测)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( )A .12B .18C .24D .36解析:选B.a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78⇒1+q 2+q 4=13⇒q 2=3,所以a 5=a 3q 2=6×3=18.故选B.2.(2018·银川一中模拟)在等比数列{a n }中,若a 1=19,a 4=3,则该数列前5项的积为( ) A .±3 B .3 C .±1D .1解析:选D.因为a 4=3,所以3=19×q 3(q 为公比),得q =3,所以a 1a 2a 3a 4a 5=a 53=(a 1q 2)5=⎝ ⎛⎭⎪⎫19×95=1,故选D. 3.(2018·云南省11校跨区调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50解析:选B.由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 12=4+8+16+32=60,选B. 4.(2018·莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( ) A .92 016B .272 016C .92 017D .272 017解析:选D.由已知条件知数列{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列, 所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.5.(2018·江南十校联考)设数列{a n }是各项均为正数的等比数列,T n 是{a n }的前n 项之积,a 2=27,a 3a 6a 9=127,则当T n 最大时,n 的值为( )A .5或6B .6C .5D .4或5解析:选D.数列{a n }是各项均为正数的等比数列,因为a 3a 6a 9=127,所以a 36=127,所以a 6=13.因为a 2=27,所以q 4=a 6a 2=1327=181,所以q =13.所以a n =a 2q n -2=27×⎝ ⎛⎭⎪⎫13n -2=⎝ ⎛⎭⎪⎫13n -5.令a n =⎝ ⎛⎭⎪⎫13n -5=1,解得n =5,则当T n 最大时,n 的值为4或5.6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项公式a n =________. 解析:设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3=a 1q 2=3,①a 10=a 1q 9=384,②②÷①,得q 7=128,即q =2,把q =2代入①,得a 1=34,所以数列{a n }的通项公式为a n =a 1q n -1=34×2n -1=3×2n -3. 答案:3×2n -37.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________.解析:当q ≠1时,a 1(1-q 3)1-q =3a 1q 2,解得q =1(舍去)或-12.当q =1时,S 3=a 1+a 2+a 3=3a 3也成立. 答案:1或-128.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53. 答案:-539.已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列, 所以a n =a 1+(n -1)d =2n -1. 故S n =1+3…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1qn -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q =23(4n-1).10.(2017·高考北京卷)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 解:(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10. 解得d =2.所以a n =2n -1. (2)设等比数列{b n }的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9.解得q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n-12.1.(2018·郑州市第一次质量预测)已知数列{a n }满足a 1a 2a 3…a n =2n2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A .(13,+∞)B .[13,+∞)C .(23,+∞)D .[23,+∞)解析:选D.依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2 n22(n -1)2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列{1a n }是以12为首项,14为公比的等比数列,等比数列{1a n }的前n 项和等于12(1-14n )1-14=23(1-14n )<23,因此实数t 的取值范围是[23,+∞),选D.2.(2018·安徽池州模拟)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,六朝才得到其关.”意思是某人要走三百七十八里的路程,第一天脚步轻快有力,走了一段路程,第二天脚痛,走的路程是第一天的一半,以后每天走的路程都是前一天的一半,走了六天才走完这段路程.则下列说法错误的是( ) A .此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里C .此人第三天走的路程占全程的18D .此人后三天共走了四十二里路解析:选C.记每天走的路程里数为a n (n =1,2,3,…,6), 由题意知{a n }是公比为12的等比数列,由S 6=378,得a 1⎝⎛⎭⎪⎫1-1261-12=378,解得a 1=192,所以a 2=192×12=96,此人第一天走的路程比后五天走的路程多192-(378-192)=6(里),a 3=192×14=48,48378>18, 前3天走的路程为192+96+48=336(里), 则后3天走的路程为378-336=42(里),故选C.3.已知直线l n :y =x -2n 与圆C n :x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *,数列{a n }满足:a 1=1,a n +1=14|A n B n |2,则数列{a n }的通项公式为________.解析:圆C n 的圆心到直线l n 的距离d n =|2n |2=n ,半径r n =2a n +n ,故a n +1=14|A n B n |2=r 2n -d 2n =2a n ,故数列{a n }是以1为首项,2为公比的等比数列,故a n =2n -1(n ∈N *).答案:a n =2n -1(n ∈N *)4.设数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m ,n 都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为________.解析:因为a m +n =a m ·a n ,令m =1得a n +1=a 1·a n ,即a n +1a n =a 1=13,所以{a n }为等比数列,所以a n =13n ,所以S n =13⎝ ⎛⎭⎪⎫1-13n 1-13=12⎝ ⎛⎭⎪⎫1-13n <12,所以a ≥12.故a 的最小值为12.答案:125.(2018·成都市第一次诊断性检测)已知数列{a n }满足a 1=-2,a n +1=2a n +4. (1)证明数列{a n +4}是等比数列; (2)求数列{|a n |}的前n 项和S n .解:(1)证明:因为a 1=-2,所以a 1+4=2. 因为a n +1=2a n +4,所以a n +1+4=2a n +8=2(a n +4), 所以a n +1+4a n +4=2, 所以{a n +4}是以2为首项,2为公比的等比数列.(2)由(1),可知a n +4=2n ,所以a n =2n-4. 当n =1时,a 1=-2<0,所以S 1=|a 1|=2; 当n ≥2时,a n ≥0.所以S n =-a 1+a 2+…+a n =2+(22-4)+...+(2n -4)=2+22+ (2)-4(n -1)=2(1-2n)1-2-4(n -1)=2n +1-4n +2.又当n =1时,上式也满足. 所以当n ∈N *时,S n =2n +1-4n +2.6.(2018·湖北黄冈调研)数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式;(2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 解:(1)由题设得a n +1n +1=12·a nn, 又a 11=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)证明:b n =a n 4n -a n =4n2n 4n -4n 2n=12n -1,因为对任意n ∈N *,2n -1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2.。

高考数学《等比数列及其前n项和》PPT知识点汇总

高考数学《等比数列及其前n项和》PPT知识点汇总

A.27
B.36
81 C. 2
D.54
C [公比q=aa43=1182=32,则a6=a4q2=18×322=821.]
2.在等比数列{an}中,a3=
3 2
,S3=
9 2
,则a1,q的值分别为
()
A.6,12
B.6,-12
C.32,1
D.32,1或6,-12
D [由S3=a1+a2+a3=a3(q-2+q-1+1),得 q-2+q-1+1=3,即2q2-q-1=0, 解得q=1或q=-12. 当q=1时,a1=32;当q=-12时,a1=6,故选D.]
本课结束
(1)an=a1qn-1=aq1·qn(q>0,且q≠1),则数列{an}的图象是函数y
=aq1·qx的图象上一系列孤立的点.
(2)Sn=
a11-qn 1-q
=-
a1 1-q
qn+
a1 1-q
(q≠1),若设a=
a1 1-q
,则Sn
=-aqn+a,由此可知,数列{Sn}的图象是函数y=-aqx+a图象上 一系列孤立的点.
(4)在等比数列{an}中,等距离取出若干项也构成一个等比数 列,即an,an+k,an+2k,an+3k,…为等比数列,公比为qk.
(5)当q≠-1时,数列Sm,S2m-Sm,S3m-S2m,…成等比数列. (6)若数列{an}的项数为2n,则S偶=S奇·q;若项数为2n+1,则S奇 =a1+S偶·q.
()
(2)三个数a,b,c成等比数列的充要条件是b2=ac.( )
(3)如果数列{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是
等比数列.
()
(4)如果数列{an}为等比数列,则数列{ln an}是等差数列. ()

2019版高考文科数学大一轮复习人教A版文档:6.3 等比数列及其前n项和

2019版高考文科数学大一轮复习人教A版文档:6.3 等比数列及其前n项和

§6.3 等比数列及其前n 项和最新考纲考情考向分析1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式.2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.3.了解等比数列与指数函数的关系.以考查等比数列的通项、前n 项和及性质为主,等比数列的证明也是考查的热点.本节内容在高考中既可以以选择题、填空题的形式进行考查,也可以以解答题的形式进行考查.解答题往往与等差数列、数列求和、不等式等问题综合考查.1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1(a 1≠0,q ≠0).3.等比中项如果在a 与b 中插入一个数G ,使得a ,G ,b 成等比数列,那么根据等比数列的定义,=Ga ,G 2=ab ,G =±,称G 为a ,b 的等比中项.bG ab 4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),,{a },{a n ·b n },仍是等比{1an }2n {anbn }数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n ==.a 1(1-qn )1-qa 1-anq1-q 6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .知识拓展等比数列{a n }的单调性(1)满足Error!或Error!时,{a n }是递增数列.(2)满足Error!或Error!时,{a n }是递减数列.(3)当Error!时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × )(2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × )(4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )(5)数列{a n }的通项公式是a n =a n ,则其前n 项和为S n =.( × )a (1-an )1-a (6)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × )题组二 教材改编2.[P51例3]已知{a n }是等比数列,a 2=2,a 5=,则公比q =______.14答案 12解析 由题意知q 3==,∴q =.a 5a 218123.[P54A 组T8]在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.答案 27,81解析 设该数列的公比为q ,由题意知,243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.题组三 易错自纠4.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则的值为________.a 1-a 2b 2答案 -12解析 ∵1,a 1,a 2,4成等差数列,∴3(a 2-a 1)=4-1,∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b =1×4=4,且2b 2=1×q 2>0,∴b 2=2,∴==-.a 1-a 2b 2-(a 2-a 1)b 2125.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则=________.S 5S 2答案 -11解析 设等比数列{a n }的公比为q ,∵8a 2+a 5=0,∴8a 1q +a 1q 4=0.∴q 3+8=0,∴q =-2,∴=·S 5S 2a 1(1-q 5)1-q1-q a 1(1-q 2)===-11.1-q 51-q 21-(-2)51-46.一种专门占据内存的计算机病毒开机时占据内存1 KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机________分钟,该病毒占据内存64 MB(1 MB =210 KB).答案 48解析 由题意可知,病毒每复制一次所占内存的大小构成一等比数列{a n },且a 1=2,q =2,∴a n =2n ,则2n =64×210=216,∴n =16.即病毒共复制了16次.∴所需时间为16×3=48(分钟).题型一 等比数列基本量的运算1.(2018·开封质检)已知等比数列{a n }满足a 1=,a 3a 5=4(a 4-1),则a 2等于( )14A .2 B .1 C. D.1218答案 C解析 由{a n }为等比数列,得a 3a 5=a ,24又a 3a 5=4(a 4-1),所以a =4(a 4-1),24解得a 4=2.设等比数列{a n }的公比为q ,则由a 4=a 1q 3,得2=q 3,解得q =2,14所以a 2=a 1q =.故选C.122.(2018届河北衡水中学二调)设正项等比数列{a n }的前n 项和为S n ,且<1,若an +1an a 3+a 5=20,a 3a 5=64,则S 4等于( )A .63或120 B .256C .120 D .63答案 C解析 由题意得Error!解得Error!或Error!又<1,所以数列{a n }为递减数列,故Error!an +1an 设等比数列{a n }的公比为q ,则q 2==,a 5a 314因为数列为正项数列,故q =,从而a 1=64,12所以S 4==120.故选C.64×[1-(12)4]1-12思维升华等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.题型二 等比数列的判定与证明典例 (2018·潍坊质检)设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列;(2)求数列{a n }的通项公式.(1)证明 由a 1=1及S n +1=4a n +2,得a 1+a 2=S 2=4a 1+2.∴a 2=5,∴b 1=a 2-2a 1=3.又Error!由①-②,得a n +1=4a n -4a n -1(n ≥2),∴a n +1-2a n =2(a n -2a n -1)(n ≥2).∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2),故{b n }是首项b 1=3,公比为2的等比数列.(2)解 由(1)知b n =a n +1-2a n =3·2n -1,∴-=,an +12n +1an2n 34故是首项为,公差为的等差数列.{an2n }1234∴=+(n -1)·=,an2n 12343n -14故a n =(3n -1)·2n -2.引申探究若将本例中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式.解 由已知得n ≥2时,S n =2S n -1+n .∴S n +1-S n =2S n -2S n -1+1,∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,(*)又a 1=1,S 2=a 1+a 2=2a 1+2,即a 2+1=2(a 1+1),∴当n =1时(*)式也成立,故{a n +1}是以2为首项,以2为公比的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.跟踪训练 (2016·全国Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=,求λ.3132(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=,a 1≠0.11-λ由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以=.an +1an λλ-1因此{a n }是首项为,公比为的等比数列,11-λλλ-1于是a n =n -1.11-λ(λλ-1)(2)解 由(1)得S n =1-n .(λλ-1)由S 5=得1-5=,即5=.3132(λλ-1)3132(λλ-1)132解得λ=-1.题型三 等比数列性质的应用1.已知数列{a n }为等比数列,且a 2a 3a 4=-a =-64,则tan 等于( )27(a 4a 63·π)A.B .-33C .-D .±333答案 B解析 由等比数列的性质可得a 2a 3a 4=a =-64,3∴a 3=-4,a 7=a 3q 4<0,结合a =64可得a 7=-8,27结合等比数列的性质可得a 4a 6=a 3a 7=32,即tan=tan π(a 4a 63·π)323=tan=tan π=-.(10π+23π)233故选B.2.(2017·云南省十一校跨区调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50答案 B解析 由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 12=4+8+16+32=60,故选B.思维升华 等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形.(2)等比中项的变形.(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.分类讨论思想在等比数列中的应用典例 (12分)已知首项为的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数32列.(1)求数列{a n }的通项公式;(2)证明:S n +≤(n ∈N *).1Sn 136思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式;(2)求出前n 项和,根据函数的单调性证明.规范解答(1)解 设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q ==-.[2分]a 4a 312又a 1=,所以等比数列{a n }的通项公式为32a n =×n -1=(-1)n -1·(n ∈N *).[3分]32(-12)32n (2)证明 由(1)知,S n =1-n,(-12)S n +=1-n +1Sn (-12)11-(-12)n=Error![6分]当n 为奇数时,S n +随n 的增大而减小,1Sn 所以S n +≤S 1+=+=.[8分]1Sn 1S 13223136当n 为偶数时,S n +随n 的增大而减小,1Sn 所以S n +≤S 2+=+=.[10分]1Sn 1S 234432512故对于n ∈N *,有S n +≤.[12分]1Sn 1361.(2017·福建漳州八校联考)等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则等于( )S 10S 5A .-3 B .5C .-31 D .33答案 D解析 设等比数列{a n }的公比为q ,则由已知得q ≠1.∵S 3=2,S 6=18,∴=,得q 3=8,∴q =2.1-q 31-q 6218∴==1+q 5=33,故选D.S 10S 51-q 101-q 52.(2017·武汉市武昌区调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则a 1等于( )A .-2 B .-1C. D.1223答案 B解析 由S 2=3a 2+2,S 4=3a 4+2,得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍去)或q =,将q =代入S 2=3a 2+2中得a 1+a 1=3×a 1+2,解得a 1=-1,故32323232选B.3.(2018届河南洛阳联考)在等比数列{a n }中,a 2,a 16是方程x 2+6x +2=0的根,则的值为( )a 2a 16a 9A .-B .-2+222C. D .-或222答案 D解析 由a 2,a 16是方程x 2+6x +2=0的根,可得a 2+a 16=-6,a 2×a 16=2,显然两根同为负值,a q 16=2,即有a =2,则的值为a 9=±.故选D.2129a 2a 16a 924.(2017·安阳一中模拟)已知数列{a n }的前n 项和S n =3n -2,n ∈N *,则( )A .{a n }是递增的等比数列B .{a n }是递增数列,但不是等比数列C .{a n }是递减的等比数列D .{a n }不是等比数列,也不单调答案 B解析 ∵S n =3n -2,∴S n -1=3n -1-2,∴a n =S n -S n -1=3n -2-(3n -1-2)=2×3n -1(n ≥2),当n =1时,a 1=S 1=1不适合上式.∴a n =Error!∵a 1=1,a 2=6,当n ≥2时,=an +1an =3.∴数列{a n }从第二项起构成首项为6,公比为3的等比数列.综上可得,数列{a n }是2·3n2·3n -1递增数列,但不是等比数列.5.(2017·广元模拟)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10等于( )A .5 B .9C .log 345 D .10答案 D解析 由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.6.(2018·南京质检)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里 B .96里 C .48里 D .24里答案 B解析 设等比数列{a n }的首项为a 1,公比为q =,12由题意得=378,a 1(1-126)1-12解得a 1=192,则a 2=192×=96,12即第二天走了96里,故选B.7.已知{a n }是各项都为正数的等比数列,其前n 项和为S n ,且S 2=3,S 4=15,则a 3=________.答案 4解析 S 4-S 2=a 3+a 4=12,S 2=a 1+a 2=3,∴=q 2==4,q =2或q =-2(舍去),a 3+a 4a 1+a 2123∴a 3+a 4=a 3(1+q )=3a 3=12,a 3=4.8.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.答案 4解析 因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4,得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1(舍去),a 6=a 2q 4=1×22=4.9.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和为________.答案 2n -1解析 设等比数列的公比为q ,则有Error!解得Error!或Error!又{a n }为递增数列,∴Error!∴数列{a n }的前n 项和为=2n -1.1-2n1-210.(2018·无锡模拟)已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________.答案 12n解析 ∵a n +S n =1,①∴a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即=(n ≥2),anan -112又a 1=,12∴数列{a n }是首项为,公比为的等比数列,1212则a n =×n -1=.12(12)12n 11.(2016·全国Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a -(2a n +1-1)a n -2a n +1=0.2n (1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意,得a 2=,a 3=.1214(2)由a -(2a n +1-1)a n -2a n +1=0,得2n 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1≠0,所以=.an +1an 12故{a n }是首项为1,公比为的等比数列,12因此a n =.12n -112.已知数列{a n }中,a 1=1,a n ·a n +1=n ,记T 2n 为{a n }的前2n 项的和,(12)b n =a 2n +a 2n -1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=n ,(12)∴a n +1·a n +2=n +1,(12)∴=,即a n +2=a n .an +2an 1212∵b n =a 2n +a 2n -1,∴===,bn +1bn a 2n +2+a 2n +1a 2n +a 2n -112a 2n +12a 2n -1a 2n +a 2n -112∵a 1=1,a 1·a 2=,12∴a 2=,∴b 1=a 1+a 2=.1232∴{b n }是首项为,公比为的等比数列.3212∴b n =×n -1=.32(12)32n (2)由(1)可知,a n +2=a n ,12∴a 1,a 3,a 5,…是以a 1=1为首项,以为公比的等比数列;a 2,a 4,a 6,…是以a 2=为首1212项,以为公比的等比数列,12∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=+=3-.1-(12)n 1-1212[1-(12)n ]1-1232n13.(2017·新乡三模)若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =________.答案 3n -1+12解析 ∵a 2-a 1=1,a 3-a 2=3,∴q =3,∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=,1-3n -11-3∵a 1=1,∴a n =.3n -1+1214.设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=(n =1,2,3,…),则12n S 2n +3=________.答案 43(1-14n +2)解析 由题意,得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+++…+1411614n +1=.43(1-14n +2)15.(2018届江苏横林高级中学考试)设{a n }是等比数列,公比q =,S n 为{a n }的前n 项和,2记T n =,n ∈N *,设为数列{T n }的最大项,则n 0=________.17Sn -S 2nan +10n T 答案 4解析 由等比数列的前n 项和公式得S n =,a 1(1-qn )1-q 则T n =17Sn -S 2nan +1=17×a 1(1-qn )1-q -a 1(1-q 2n )1-q a 1qn=,17-17(2)n -[1-(2)2n ](1-2)(2)n令()n =t ,则T n =211-2(t +16t -17)≤,11-2(2t ·16t -17)当且仅当t =,即t =4时等号成立,16t 即()n =4,n =4时,T n 取得最大值.216.(2017·武汉市武昌区调研)设S n 为数列{a n }的前n 项和,S n +=(-1)n a n (n ∈N *),则数12n 列{S n }的前9项和为________.答案 -3411 024解析 因为S n +=(-1)n a n ,12n 所以S n -1+=(-1)n -1a n -1(n ≥2).12n -1两式相减得S n -S n -1+-12n 12n -1=(-1)n a n -(-1)n -1a n -1,即a n -=(-1)n a n +(-1)n a n -1(n ≥2),12n 当n 为偶数时,a n -=a n +a n -1,即a n -1=-,12n 12n 此时n -1为奇数,所以若n 为奇数,则a n =-;12n +1当n 为奇数时,a n -=-a n -a n -1,12n 即2a n -=-a n -1,12n 所以a n -1=,此时n -1为偶数,12n -1所以若n 为偶数,则a n =.12n所以数列{a n }的通项公式为a n =Error!所以数列{S n }的前9项和为S 1+S 2+S 3+…+S 9=9a 1+8a 2+7a 3+6a 4+…+3a 7+2a 8+a 9=(9a 1+8a 2)+(7a 3+6a 4)+…+(3a 7+2a 8)+a 9=-----1221241261281210=-=-.122×[1-(14)5]1-143411 024。

高考数学(文)一轮配套文档知识整合:《等比数列及其前n项和》

高考数学(文)一轮配套文档知识整合:《等比数列及其前n项和》

第三节 等比数列及其前n 项和【考纲下载】1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.等比数列的相关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列. (2)公比:指定义中的“同一常数”,通常用字母q (q ≠0)表示. (3)定义的符号表示:a n +1a n =q (q 是常数且q ≠0,n ∈N *),或a n a n -1=q (n ≥2,n ∈N *,q 为常数且q ≠0).2.等比数列的通项公式及其推广(1)等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,q ≠0,则它的通项公式a n =a 1·q n -1.(2)通项公式的推广a n =a m ·q n -m .3.等比中项如果三个数a ,G ,b 成等比数列,则G 叫做a 和b 的等比中项,那么G a =b G,即G 2=ab . 4.等比数列的前n 项和公式等比数列{a n }的首项为a 1,公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q. 5.等比数列的性质(1)对任意的正整数m ,n ,p ,q ,若m +n =p +q ,则a m ·a n =a p ·a q .特别地,若m +n =2p ,则a m ·a n =a 2p .(2)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q ≠-1).(3)数列{a n }是等比数列,则数列{pa n }(p ≠0,p 是常数)也是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .1.b 2=ac 是a ,b ,c 成等比数列的充要条件吗?提示:不是.b 2=ac 是a ,b ,c 成等比数列的必要不充分条件,因为当b =0,a ,c 至少有一个为零时,b 2=ac 成立,但a ,b ,c 不成等比数列;若a ,b ,c 成等比数列,则必有b 2=ac .2.若a ≠0,则数列a ,a 2,a 3,…,a n ,…的前n 项和为S n =a (1-a n )1-a吗?提示:不一定.当a=1时,S n=na1=n;当a≠1时,S n=a(1-a n)1-a.1.(2013·江西高考)等比数列x,3x+3,6x+6,…的第四项等于()A.-24 B.0 C.12 D.24解析:选A由x,3x+3,6x+6成等比数列,知(3x+3)2=x·(6x+6),解得x=-3或x=-1(舍去).所以此等比数列的前三项为-3,-6,-12.故第四项为-24.2.已知{a n}是等比数列,a2=2,a5=14,则公比q等于()A.-12B.-2 C.2 D.12解析:选D∵a2=2,a5=14,∴a5a2=142=18=q3,∴q=12.3.在等比数列{a n}中,已知a7·a12=5,则a8a9a10a11=()A.10 B.25 C.50 D.75解析:选B∵a7a12=5,∴a8a9a10a11=(a8a11)(a9a10)=(a7a12)2=25.4.已知等比数列的前n项和S n=4n+a,则a=________.解析:当n=1时,a1=S1=4+a,当n≥2时,a n=S n-S n-1=(4n+a)-(4n-1+a)=4n-4n-1=3×4n-1.又∵该数列为等比数列,∴4+a=3×40,即a=-1.答案:-15.设S n为等比数列{a n}的前n项和,8a2+a5=0,则S5S2=________.解析:∵8a2+a5=0,∴8a2=-a5,即a5a2=-8.∴q3=-8,∴q=-2.∴S5S2=a1(1-q5)1-qa1(1-q2)1-q=1-q51-q2=1-(-2)51-(-2)2=-11.答案:-11数学思想(八)分类讨论思想在等比数列中的应用分类讨论思想在等比数列中应用较多,常见的分类讨论有:(1)已知S n与a n的关系,要分n=1,n≥2两种情况.(2)等比数列中遇到求和问题要分公比q=1,q≠1讨论.(3)项数的奇、偶数讨论.(4)等比数列的单调性的判断注意与a1,q的取值的讨论.[典例] (2013·天津高考)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式;(2)证明S n +1S n ≤136(n ∈N *). [解题指导] (1)利用等差数列的性质求出等比数列的公比,写出通项公式;(2)求出前n 项和,根据函数的单调性证明.[解] (1)设等比数列{a n }的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4,可得2a 4=-a 3,于是q =a 4a 3=-12. 又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n . (2)证明:S n =1-⎝⎛⎭⎫-12n , S n +1S n =1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n =⎩⎪⎨⎪⎧ 2+12n (2n +1),n 为奇数,2+12n (2n -1),n 为偶数.当n 为奇数时,S n +1S n随n 的增大而减小, 所以S n +1S n ≤S 1+1S 1=136. 当n 为偶数时,S n +1S n随n 的增大而减小, 所以S n +1S n ≤S 2+1S 2=2512. 故对于n ∈N *,有S n +1S n ≤136. [题后悟道] 1.数列与函数有密切的联系,证明与数列有关的不等式,一般是求数列中的最大项或最小项,可以利用图象或者数列的增减性求解,同时注意数列的增减性与函数单调性的区别.2.本题易忽视对n 的分类讨论,导致问题无法证明或证明过程错误.已知数列{a n }的前n 项和S n =a n -1(a ≠0),则{a n }( )A .一定是等差数列B .一定是等比数列C .或者是等差数列,或者是等比数列D .既不可能是等差数列,也不可能是等比数列解析:选C ∵S n =a n -1(a ≠0),∴a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,即a n =⎩⎪⎨⎪⎧ a -1,n =1,(a -1)a n -1,n ≥2. 当a =1时,a n =0,数列{a n }是一个常数列,也是等差数列;当a ≠1时,数列{a n }是一个等比数列.。

2019年高考数学(理)一轮复习精品资料专题28等比数列及其前n项和(教学案)含解析

2019年高考数学(理)一轮复习精品资料专题28等比数列及其前n项和(教学案)含解析

2019年高考数学(理)一轮复习精品资料1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:an -1an =q (n ≥2,q 为非零常数),或an an +1=q (n ∈N *,q 为非零常数). 2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1;通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n = 1-q a1(1-qn )=1-q a1-anq. 3.等比数列及前n 项和的性质(1)如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=ab .(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 【必会结论】等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a k 2.(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },an 1,{a n 2},{a n ·b n },bn an (λ≠0)仍然是等比数列. (4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(5)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . (6)等比数列{a n }满足q>1a1>0,或0<q<1a1<0,时,{a n }是递增数列;满足0<q<1a1>0,或q>1a1<0,时,{a n }是递减数列.高频考点一 等比数列基本量的运算例1、(1)[2017·全国卷Ⅱ]我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 答案 B解析 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则由题意知S 7=381,q =2,∴S 7=1-q 1-q7=1-21-27=381,解得a 1=3.故选B.(2)[2017·江苏高考]等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=47,S 6=463,则a 8=________. 答案 32【感悟提升】等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)所求问题可迎刃而解.解决此类问题的关键是熟练掌握等比数列的有关公式,并灵活运用,在运算过程中,还应善于运用整体代换思想简化运算的过程.【变式探究】(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A.215 B.431 C.433 D.217(2) (2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________. 答案 (1)B (2)6(2) 设等比数列{a n }的公比为q ,∴a2+a4=5a1+a3=10,⇒a1q +a1q3=5,a1+a1q2=10,解得,1∴a 1a 2…a n =a 1n q 1+2+…+(n -1)=2-2n2+27n .记t =-2n2+27n =-21(n 2-7n ),结合n ∈N +,可知n =3或4时,t 有最大值6. 又y =2t 为增函数.所以a 1a 2…a n 的最大值为64.【变式探究】(1)设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________. (2)设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2.a 3+4构成等差数列,则a n =________.解析 (1)由已知条件,得2S n =S n +1+S n +2, 即2S n =2S n +2a n +1+a n +2,即an +1an +2=-2. (2)由已知得:=3a2.(a1+3)+(a3+4)解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=q 2,a 3=2q .又S 3=7,可知q 2+2+2q =7,即2q 2-5q +2=0,解得q 1=2,q 2=21.由题意得q >1,所以q =2,所以a 1=1.故数列{a n }的通项为a n =2n -1.答案 (1)-2 (2)2n -1高频考点二 等比数列的判定与证明例2、已知数列{a n }满足对任意的正整数n ,均有a n +1=5a n -2·3n ,且a 1=8. (1)证明:数列{a n -3n }为等比数列,并求数列{a n }的通项公式; (2)记b n =3n an,求数列{b n }的前n 项和T n .(2)由(1)知,b n =3n an =3n 3n +5n =1+35n ,则数列{b n }的前n 项和T n =1+351+1+352+…+1+35n =n +35=2·3n 5n +1+n -25. 【方法技巧】等比数列的判定方法(1)定义法:若an an +1=q (q 为非零常数,n ∈N *)或an -1an=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a n +12=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列. (4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.【举一反三】已知数列{a n }的前n 项和为S n ,在数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴an -1an +1-1=21,∴{a n -1}是等比数列. 又a 1+a 1=1,∴a 1=21,又c n =a n -1,首项c 1=a 1-1,∴c 1=-21,公比q =21. ∴{c n }是以-21为首项,以21为公比的等比数列.【变式探究】已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3231,求λ.(1)证明 由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=1-λ1,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n , 由a 1≠0,λ≠0得a n ≠0,所以an an +1=λ-1λ. 因此{a n }是首项为1-λ1,公比为λ-1λ的等比数列, 于是a n =1-λ1λ-1λ.(2)解 由(1)得S n =1-λ-1λ.由S 5=3231得1-λ-1λ=3231,即λ-1λ=321. 解得λ=-1.高频考点三 等比数列的性质及应用例3、(1)已知等比数列{a n }满足a 1=41,a 3a 5=4(a 4-1),则a 2等于( ) A.2 B.1 C.21D.81(2)设等比数列{a n }的前n 项和为S n ,若S3S6=3,则S6S9=( ) A.2 B.37 C.38D.3法二 因为{a n }为等比数列,由S3S6=3,设S 6=3a ,S 3=a ,所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S6S9=3a 7a =37.答案 (1)C (2)B【举一反三】(1)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.81 B .-81 C.857 D.855 答案 A解析 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=81.故选A.(2)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ) A .80 B .30 C .26 D .16 答案 B解析 由题意知公比大于0,由等比数列性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列. 设S 2n =x ,则2,x -2,14-x 成等比数列. 由(x -2)2=2×(14-x ),解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列. 又∵S 3n =14,∴S 4n =14+2×23=30.故选B. 【方法技巧】等比数列的性质应用问题(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.【变式探究】 (1)在各项均为正数的等比数列{a n }中,a 3=-1,a 5=+1,则a 32+2a 2a 6+a 3a 7=________. (2)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为________.答案 (1)8 (2)-31. (2018年浙江卷)已知成等比数列,且.若,则A. B.C.D.【答案】B 【解析】令则,令得,所以当时,,当时,,因此,若公比,则,不合题意; 若公比,则但, 即,不合题意;因此,,选B.2. (2018年全国Ⅲ卷理数)等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.【答案】(1)或(2)1、[2017·全国卷Ⅱ]我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 答案 B解析 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则由题意知S 7=381,q =2,∴S 7=1-q 1-q7=1-21-27=381,解得a 1=3.故选B.2、[2017·江苏高考]等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=47,S 6=463,则a 8=________. 答案 32解析 设{a n }的首项为a 1,公比为q , 则,63两式相除得1-q61-q3=1+q31-q3=91, 解得q =2,,所以a 8=41×27=25=32.3.[2017·北京高考]已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1.1..【2016高考新课标1卷】设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .【答案】64【解析】设等比数列的公比为,由得,解得.所以,于是当或时,取得最大值.2.【2016高考江苏卷】(本小题满分16分) 记.对数列和的子集T ,若,定义;若,定义.例如:时,.现设是公比为3的等比数列,且当时,.(1)求数列的通项公式;(2)对任意正整数,若,求证:;(3)设,求证:.【答案】(1)(2)详见解析(3)详见解析【解析】(3)下面分三种情况证明.①若是的子集,则.②若是的子集,则.③若不是的子集,且不是的子集.令,则,,.于是,,进而由,得.设是中的最大数,为中的最大数,则.由(2)知,,于是,所以,即. 又,故,从而,故,所以,即.综合①②③得,.【2015高考浙江,理3】已知是等差数列,公差不为零,前项和是,若,,成等比数列,则()A. B. C. D.【答案】B.【2015高考安徽,理14】已知数列是递增的等比数列,,则数列的前项和等于.【答案】【解析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和.1.(2014·重庆卷)对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9,成等比数列【答案】D【解析】因为在等比数列中a n,a2n,a3n,…也成等比数列,所以a3,a6,a9成等比数列.2.(2014·安徽卷)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________.【答案】1【解析】因为数列{a n}是等差数列,所以a1+1,a3+3,a5+5也成等差数列.又a1+1,a3+3,a5+5构为公比为q的等比数列,所以a1+1,a3+3,a5+5为常数列,故q=1.3.(2014·广东卷)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+…+ln a20=________.【答案】504.(2014·全国卷)等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和等于() A.6 B.5C.4 D.3【答案】C 【解析】设数列{a n }的首项为a 1,公比为q ,根据题意可得,a1q4=5,a1q3=2,解得,5所以a n =a 1q n -1=12516×25=2×25,所以lg a n =lg 2+(n -4)lg 25,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 25=8lg 2+4lg 25=4lg 25=4.5.(2014·湖北卷) 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.【解析】(1)设数列{a n }的公差为d ,依题意得,2,2+d ,2+4d 成等比数列,故有(2+d)2=2(2+4d),化简得d 2-4d =0,解得d =0或d =4.当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2.6.(2014·新课标全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明21是等比数列,并求{a n }的通项公式; (2)证明a11+a21+…+an 1<23.【解析】(1)由a n +1=3a n +1得a n +1+21=321.又a 1+21=23,所以21是首项为23,公比为3的等比数列,所以a n +21=23n,因此数列{a n }的通项公式为a n =23n -1.(2)证明:由(1)知an 1=3n -12. 因为当n≥1时,3n -1≥2×3n -1,所以3n -11≤2×3n -11,即an 1=3n -12≤3n -11. 于是a11+a21+…+an 1≤1+31+…+3n -11=233n 1<23. 所以a11+a21+…+an 1<23.7.(2014·山东卷) 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1anan +14n,求数列{b n }的前n 项和T n .【解析】 (1)因为S 1=a 1,S 2=2a 1+22×1×2=2a 1+2, S 4=4a 1+24×3×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.8.(2014·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C);(2)若a ,b ,c 成等比数列,求cos B 的最小值.【解析】(1)∵a ,b ,c 成等差数列,∴a +c =2b.由正弦定理得sin A +sin C =2sin B.∵sin B =sin[π-(A +C)]=sin(A +C),∴sin A +sin C =2sin(A +C).(2)∵a ,b ,c 成等比数列,∴b 2=ac.由余弦定理得cos B =2ac a2+c2-b2=2ac a2+c2-ac ≥2ac 2ac -ac =21, 当且仅当a =c 时等号成立, ∴cos B 的最小值为21.9.(2014·天津卷)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.【答案】-21【解析】∵S 2=2a 1-1,S 4=4a 1+24×3×(-1)=4a 1-6,S 1,S 2,S 4成等比数列, ∴(2a 1-1)2=a 1(4a 1-6),解得a 1=-21.10.(2014·天津卷)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x|x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n}.(1)当q =2,n =3时,用列举法表示集合A.(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n.证明:若a n <b n ,则s<t.【解析】(1)当q =2,n =3时,M ={0,1},A ={x|x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1 ≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1 =1-q (q -1)(1-qn -1)-q n -1 =-1<0,所以s<t.11.(2013·新课标全国卷Ⅰ)若数列{a n }的前n 项和S n =32a n +31,则{a n }的通项公式是a n =________.【答案】(-2)n -112.(2013·北京卷)已知{a n}是由非负整数组成的无穷数列,该数列前n项的最大值记为A n,第n项之后各项a n+1,a n+2,…的最小值记为B n,d n=A n-B n.(1)若{a n}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,a n+4=a n),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:d n=-d(n=1,2,3,…)的充分必要条件为{a n}是公差为d的等差数列;(3)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为1.【解析】(1)d1=d2=1,d3=d4=3.(3)因为a1=2,d1=1,所以A1=a1=2,B1=A1-d1=1.故对任意n≥1,a n≥B1=1.假设{a n}(n≥2)中存在大于2的项.设m为满足a m>2的最小正整数,则m≥2,并且对任意1≤k<m,a k≤2.又因为a1=2,所以A m-1=2,且A m=a m>2,于是,B m=A m-d m>2-1=1,B m-1=min{a m,B m}>1.故d m-1=A m-1-B m-1<2-1=1,与d m-1=1矛盾.所以对于任意n≥1,有a n≤2,即非负整数列{a n}的各项只能为1或2.因为对任意n≥1,a n≤2=a1,所以A n=2.故B n=A n-d n=2-1=1.因此对于任意正整数n ,存在m满足m>n,且a m=1,即数列{a n}有无穷多项为113.(2013·北京卷)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=________;前n项和S n=________.【答案】22n+1-2【解析】∵a3+a5=q(a2+a4),∴40=20q,q=2,又∵a2+a4=a1q+a1q3=20,∴a1=2,∴a n=2n,∴S n=2n+1-2.14.(2013·江西卷)等比数列x ,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .24【答案】A【解析】(3x +3)2=x(6x +6)得x =-1或x =-3.当x =-1时,x ,3x +3,6x +6分别为-1,0,0,则不能构成等比数列,所以舍去;当x =-3时,x ,3x +3,6x +6分别为-3,-6,-12,且构成等比数列,则可求出第四个数为-24.15.(2013·江苏卷)在正项等比数列{a n }中,a 5=21,a 6+a 7=3. 则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.【答案】1216.(2013·湖南卷) 设S n 为数列{a n }的前n 项和,S n =(-1)na n -2n 1,n ∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.【答案】(1)-161 (2)31-11【解析】(1)因S n =(-1)na n -2n 1,则S 3=-a 3-81,S 4=a 4-161,解得a 3=-161.(2)当n 为偶数时,S n =a n -2n 1,当n 为奇数时,S n =-a n -2n 1,可得当n 为奇数时a n =-2n +11, 又S 1+S 2+…+S 100=21+221+…+2991+21001 =-a 1+a 2+…-a 99+a 100-21001=S 100-2(a 1+a 3+…+a 99)-21001=S 101-a 101-221001-21001=-21021-21021+2×221-21001 =-3121001=31-11.17.(2013·辽宁卷) 已知等比数列是递增数列,S n 是的前n 项和,若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.【答案】63【解析】由题意可知a 1+a 3=5,a 1·a 3=4.又因为{a n }为递增的等比数列,所以a 1=1,a 3=4,则公比q =2,所以S 6=1-21×(1-26)=63.18.(2013·全国卷)已知双曲线C :a2x2-b2y2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB|,|BF 2|成等比数列.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<2 ,代入①并化简得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=k2-86k2,x 1x 2=k2-89k2+8. 于是|AF 1|=1212=12-82=-(3x 1+1), |BF 1|=2222=22-82=3x 2+1.由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-32. 故k2-86k2=-32,解得k 2=54,从而x 1x 2=-919. 由于|AF 2|=1212=12-82=1-3x 1,|BF 2|=2222=22-82=3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4,|AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|,|AB|,|BF 2|成等比数列.19.(2013·全国卷)已知数列{a n }满足3a n +1+a n =0,a 2=-34,则{a n }的前10项和等于( ) A .-6(1-3-10)B.91(1-310)C .3(1-3-10)D .3(1+3-10)【答案】C20.(2013·陕西卷)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q≠1,证明数列{a n +1}不是等比数列.【解析】(1)设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 2+…+a n =na 1;当q≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,② ①-②得,(1-q)S n =a 1-a 1q n , ∴S n =1-q a1(1-qn ),∴S n =,q ≠1.a1(1-qn ) (2)假设{a n +1}是等比数列,则对任意的k ∈N +, (a k +1+1)2=(a k +1)(a k +2+1),即a k +12+2a k +1+1=a k a k +2+a k +a k +2+1, 即a 12q 2k+2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列.21.(2013·四川卷)在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n 项和.22.(2013·新课标全国卷Ⅱ) 等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( )A.31 B .-31 C.91 D .-91 【答案】C【解析】S 3=a 2+10a 1a 1+a 2+a 3=a 2+10a 1a 3=9a 1q 2=9,a 5=9a 3q 2=9a 3=1a 1=q2a3=91,故选C.23.(2013·重庆卷)已知{a n }是等差数列,a 1=1,公差d≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.【答案】64【解析】设数列{a n }的公差为d ,由a 1,a 2,a 5成等比数列,得(1+d)2=1·(1+4d),解得d =2或d =0(舍去),所以S 8=8×1+28(8-1)×2=64.。

2019届高考数学一轮必备考情分析学案:6.3《等比数列及其前n项和》(含解析)

2019届高考数学一轮必备考情分析学案:6.3《等比数列及其前n项和》(含解析)

6.3等比数列及其前n 项和考情分析高考中主要在选择题、填空题中考查等比数列的定义、基本运算和性质,在解答题中多与等差数列、函数、不等式等综合考考查基础知识1、等比数列的判定:(1)定义法:*1()n na q q n N a +=∈为非零常数,(2)等比中项法:2*11(0,2)n n n n a a a a n N n -+=≠∈≥且(3)通项公式法:*(,)n n a cq c q n N =∈均为非零常数,(4)1()1n n a S kq k k q=-=≠≠-是常数且q 0且q 1 (5)若{},{}n n a b 均为等比数列,n S 为{}n a 的前n 项和,则1{}(0),{||}{}{()}{}k n n n n n nka k a ma b a a ≠;;;公比不为1的等比数列由相邻两项的差213243{,,}a a a a a a ---,相邻k 项和232{,,}k k k k k S S S S S --仍是等比;由原等比数列中相隔k 项的项从新组成的数列仍等比2、等比数列的性质[:(1)通项公式:①11n n a a q -=②n m n ma q a -= (2)前n 项和公式:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩(3)下脚标性质:若m+n=p+q ,则m n p q a a a a =(4)两个常用技巧:若三个数成等比通常设成,,a a aq q ,若四个数成等比通常设成33,,,a a aq aq q q ,方便计算 注意事项1.利用错位相减法推导等比数列的前n 项和:S n =a 1+a 1q +a 1q 2+…+a 1qn -1, 同乘q 得:qS n =a 1q +a 1q 2+a 1q 3+…+a 1q n ,两式相减得(1-q)S n =a 1-a 1q n ,∴S n =a 1-q n 1-q (q≠1).2.(1)由a n +1=qa n ,q≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.3.等比数列的判断方法有:(1)定义法:若a n +1a n =q(q 为非零常数)或a n a n -1=q(q 为非零常数且n≥2且n ∈N *),则{a n }是等比数列. (2)中项公式法:在数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列. 题型一 等比数列基本量的计算【例1】设S n 为数列{a n }的前n 项和.已知S 3=7,a 1+3,3a 2,a 3+4构成等差数列.(1)求a 2的值;(2)若{a n }是等比数列,且a n +1<a n (n ∈N *),试求S n 的表达式.解:(1)由已知得:⎩⎪⎨⎪⎧ a 1+a 2+a 3=7,1++3+2=3a 2. ∴a 2=2.(2)设数列{a n }的公比为q ,由a 2=2,可得a 1=2q,a 3=2q. 又S 3=7,可知2q+2+2q =7,即2q 2-5q +2=0, 解得q 1=12,q 2=2(舍去,a n +1<a n (n ∈N *)). ∵q =12,∴a 1=4. 故数列{a n }的前n 项和S n =8-23-n (n ∈N *).【变式1】 等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1). (1)求数列{a n }的通项公式;(2)若该数列前n 项和S n =21,求n 的值.解 (1)∵a 3·a 4=a 1·a 6=329, 又a 1+a 6=11,故a 1,a 6看作方程x 2-11x +329=0的两根, 又q ∈(0,1)∴a 1=323,a 6=13, ∴q 5=a 6a 1=132,∴q =12, ∴a n =323·⎝ ⎛⎭⎪⎫12n -1=13·⎝ ⎛⎭⎪⎫12n -6. (2)由(1)知S n =643⎝ ⎛⎭⎪⎫1-12n =21,解得n =6. 题型二 等比数列的判定或证明【例2】已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *. (1)令b n =a n +1-a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.(1)证明 b 1=a 2-a 1=1.当n≥2时,b n =a n +1-a n =a n -1+a n 2-a n =-12(a n -a n -1)=-12b n -1, ∴{b n }是以1为首项,-12为公比的等比数列. (2)解 由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1, 当n≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1 =53-23⎝ ⎛⎭⎪⎫-12n -1. 当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1, ∴a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *). 【变式2】设d 为非零实数,a n =1n[C 1n d +2C 2n d 2+…+(n -1)C n -1n d n -1+nC n n d n ](n ∈N *). (1)写出a 1,a 2,a 3并判断{a n }是否为等比数列.若是,给出证明;若不是,说明理由;(2)设b n =nda n (n ∈N *),求数列{b n }的前n 项和S n .解 (1)由已知可得a 1=d ,a 2=d(1+d),a 3=d(1+d)2.当n≥2,k≥1时,k nC k n =C k -1n -1,因此 a n =∑n k =1k n C k n d k =∑n k =1C k -1n -1d k =d ∑n -1k =0C k n -1d k =d(d +1)n -1. 由此可见,当d≠-1时,{a n }是以d 为首项,d +1为公比的等比数列;当d =-1时,a 1=-1,a n =0(n≥2),此时{a n }不是等比数列.(2)由(1)可知,a n =d(d +1)n -1,从而b n =nd 2(d +1)n -1 S n =d 2[1+2(d +1)+3(d +1)2+…+(n -1)(d +1)n -2+n(d +1)n -1].①当d =-1时,S n =d 2=1.当d≠-1时,①式两边同乘d +1得 (d +1)S n =d 2[(d +1)+2(d +1)2+…+(n -1)(d +1)n -1+n(d +1)n ].② ①,②式相减可得-dS n =d 2[1+(d +1)+(d +1)2+…+(d +1)n -1-n(d +1)n] =d 2⎣⎢⎡⎦⎥⎤+n -1d -+n .[:数理化] 化简即得S n =(d +1)n (nd -1)+1.综上,S n =(d +1)n(nd -1)+1.题型三 等比数列的性质及应用【例3】已知公差不为0的等差数列{a n }的首项a 1为a(a ∈R),且1a 1,1a 2,1a 4成等比数列. (1)求数列{a n }的通项公式;(2)对n ∈N *,试比较1a 2+1a 22+1a 23+…+1a 2n 与1a 1的大小. 解:(1)设等差数列{a n }的公差为d ,由题意可知(1a 2)2=1a 1·1a 4, 即(a 1+d)2=a 1(a 1+3d), 从而a 1d =d 2, 因为d≠0,所以d =a 1=a.故通项公式a n =na.(2)记T n =1a 2+1a 22+…+1a 2n, 因为a 2n =2n a , 所以T n =1a (12+122+…+12n )=1a ·12[1-12n ]1-12=1a [1-(12)n ]. 从而,当a>0时,T n <1a 1; 当a<0时,T n >1a 1. 【变式3】在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________. 解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.[:数理化]答案 -2 2n -1-12重难点突破【例4】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.[: [解析] (1)解 设成等差数列的三个正数分别为a -d ,a ,a +d.依题意,得a -d +a +a +d =15,解得a =5 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d.依题意,由(7-d)(18+d)=100,解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2,由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3(2)证明 数列{b n }的前n 项和S n =54-2n1-2=5·2n -2-54,即S n +54=5·2n-2所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,公比为2的等比数列.巩固提高1. 公比为2的等比数列{a n }的各项都是正数,且a 2a 12=16,则a 5=( )A. 1B. 2C. 4D. 8答案:A解析:∵a 2a 12=16,∴a 27=16,∴a 7=4=a 5×22,∴a 5=1.2.已知等比数列{a n }的前n 项和为S n ,a 3=32,S 3=92,则公比q =( )A. 1或-12B. -12C. 1D. -1或12答案:A解析:设数列的公比为q ,∵a 3=32,S 3=92,∴a 1q 2=32,a 1(1+q +q 2)=92.两式相除得1+q +q2q 2=3,即2q 2-q -1=0.∴q =1或q =-12.3.在各项均为正数的等比数列{a n }中,a 1=3,前三项的和S 3=21,则a 3+a 4+a 5的值为() A. 33 B. 72C. 84D. 189答案:C[: 解析:由题意可知该等比数列的公比q≠1,故可由S 3=-q 31-q =21,得q 3-7q +6=0,解得q =2或q =-3(舍去).所以a 3+a 4+a 5=3×(22+23+24)=84,故选C.4.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则a 10=( )A. 64B. 32C. 16D. 8 答案:B解析:∵a n +1a n =2n ,∴a n +2·a n +1=2n +1, 两式相除得a n +2a n=2. ∵a 1=1.∴a 1,a 3,a 5,a 7,a 9构成以1为首项,以2为公比的等比数列,∴a 9=16. 又a 10·a 9=29,∴a 10=25=32.5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2·a 4=1,S 3=7,则S 5=( )A. 334B. 314C.172 D. 152 答案:B解析:依题意知,a 21q 4=1,又a 1>0,q>0,则a 1=1q 2.又S 3=a 1(1+q +q 2)=7,于是有(1q +3)(1q-2)=0,因此有q =12,所以S 5=41-1251-12=314,选B.。

2019版高考数学文一轮复习教师用书:第五章 第三节 等

2019版高考数学文一轮复习教师用书:第五章 第三节 等

第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k .1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.答案:(1)× (2)× (3)× (4)×2.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4. 又∵a 5=a 3q 2>0,∴a 5=4.3.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19D .-19解析:选C 由已知条件及S 3=a 1+a 2+a 3,得a 3=9a 1,设数列{a n }的公比为q ,则q 2=9,所以a 5=9=a 1·q 4=81a 1,得a 1=19.4.已知S n 是各项均为正数的等比数列{a n }的前n 项和,若a 2·a 4=16,S 3=7,则a 8=( ) A .32 B .64 C .128D .256解析:选C ∵a 2·a 4=a 23=16,∴a 3=4(负值舍去),① 又S 3=a 1+a 2+a 3=a 3q 2+a 3q+a 3=7,②联立①②,得3q 2-4q -4=0,解得q =-23或q =2,∵a n >0,∴q =2,∴a 8=a 3·q 5=27=128.5.(2017·北京高考)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 则a 4=-1+3d =8,解得d =3; b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2, 所以a 2b 2=1.答案:16.设{a n }是公比为正数的等比数列,S n 为{a n }的前n 项和,若a 1=1,a 5=16,则数列{a n }的前7项和为________.解析:设等比数列{a n }的公比为q (q >0), 由a 5=a 1q 4=16,a 1=1,得q 4=16,解得q =2,所以S 7=a 1(1-q 7)1-q =1×(1-27)1-2=127.答案:127考点一 等比数列的基本运算 (基础送分型考点——自主练透)[考什么·怎么考]1.已知等比数列{a n }单调递减,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:选B 由题意,设等比数列{a n }的公比为q ,q >0,则a 23=a 2a 4=1,又a 2+a 4=52,且{a n }单调递减,所以a 2=2,a 4=12,则q 2=14,q =12,所以a 1=a 2q =4.2.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则q =________.解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2·a 1q 4=4(a 1q 3-1),∴116q 6=4⎝⎛⎭⎫14q 3-1, ∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2. 答案:2考法(二) 求通项公式或特定项3.设S n 为等比数列{a n }的前n 项和,若a 1=1且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:因为3S 1,2S 2,S 3成等差数列,所以2×2(a 1+a 2)=3a 1+a 1+a 2+a 3⇒a 3=3a 2⇒q =3,所以a n =a 1q n -1=3n -1.答案:3n -14.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.解析:设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧q =2,a 1=14, 则a 8=a 1q 7=14×27=32.答案:32考法(三) 求等比数列的前n 项和5.(2018·东北四市高考模拟)已知等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=________.解析:由题意得,2(a 1+a 2+a 3)=8a 1+3a 2, 所以2a 3-a 2-6a 1=0. 设{a n }的公比为q (q >0),则2a 1q 2-a 1q -6a 1=0,即2q 2-q -6=0, 解得q =2或q =-32(舍去).因为a 4=16,所以a 1=2,则S 4=2(1-24)1-2=30.答案:306.(2017·全国卷Ⅰ节选)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式; (2)求S n .解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =(-2)×[1-(-2)n ]1-(-2)=-23+(-1)n 2n +13. [怎样快解·准解]1.等比数列基本运算中的2种常用数学思想(1)等比数列可以由首项a 1和公比q 确定,所有关于等比数列的计算和证明,都可围绕a 1和q 进行.(2)对于等比数列问题,一般给出两个条件,就可以通过列方程(组)求出a 1,q .如果再给出第三个条件就可以完成a 1,n ,q ,a n ,S n 的“知三求二”问题.考点二 等比数列的判定与证明 (重点保分型考点——师生共研)(2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.[解题师说]1.掌握等比数列的4种常用判定方法(1)等比数列的证明经常利用定义法和等比中项法,通项公式法、前n项和公式法经常在选择题、填空题中用来判断数列是否为等比数列.(2)证明一个数列{a n}不是等比数列,只需要说明前三项满足a22≠a1·a3,或者是存在一个正整数m,使得a2m+1≠a m·a m+2即可.[冲关演练]1.(2018·湖南五市十校高三联考)已知数列{a n}的前n项和S n=Aq n+B(q≠0),则“A =-B”是“数列{a n}是等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B若A=B=0,则S n=0,故数列{a n}不是等比数列;若数列{a n}是等比数列,则a1=Aq+B,a2=Aq2-Aq,a3=Aq3-Aq2,由a3a2=a2a1,得A=-B.2.数列{a n}的前n项和为S n,若a n+S n=n,c n=a n-1.求证:数列{c n}是等比数列.证明:当n=1时,a1=S1.由a n+S n=n,①得a1+S1=1,即2a1=1,解得a1=1 2.又a n+1+S n+1=n+1,②②-①得a n+1-a n+(S n+1-S n)=1,即2a n+1-a n=1,③因为c n=a n-1,所以a n=c n+1,a n+1=c n+1+1,代入③式,得2(c n+1+1)-(c n+1)=1,整理得2c n+1=c n,故c n +1c n =12(常数). 所以数列{c n }是一个首项c 1=a 1-1=-12,公比为12的等比数列.考点三 等比数列的性质 (重点保分型考点——师生共研)1.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ) A .80 B .30 C .26D .16解析:选B 由题意知公比大于0,由等比数列性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列.设S 2n =x ,则2,x -2,14-x 成等比数列.由(x -2)2=2×(14-x ),解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列. 又∵S 3n =14,∴S 4n =14+2×23=30.2.(2018·石家庄模拟)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________. 解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝⎛⎭⎫-98=-53. 答案:-53[解题师说]1.掌握运用等比数列性质解题的2个技巧(1)在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件.(2)利用性质可以得到一些新数列仍为等比数列或为等差数列,例如:①若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列.②若公比不为1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .2.牢记与等比数列前n 项和S n 相关的几个结论 (1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . ①若共有2n 项,则S 偶∶S 奇=q ;②若共有2n +1项,则S 奇-S 偶=a 1+a 2n +1q 1+q (q ≠1且q ≠-1),S 奇-a 1S 偶=q .(2)分段求和:S n +m =S n +q n S m ⇔q n =S n +m -S nS m (q 为公比). [冲关演练]1.(2018·湖北华师一附中月考)在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=( ) A .1 B .±1 C .2D .±2解析:选A 因为数列{a n }是等比数列,所以a 2a 3a 4=a 33=8,所以a 3=2,所以a 7=a 3q 4=2q 4=8,所以q 2=2,则a 1=a 3q2=1,故选A.2.已知各项均为实数的等比数列{a n }的前n 项和为S n ,若S 10=10,S 30=70,则S 40=( )A .150B .140C .130D .120解析:选A 在等比数列{a n }中,由S 10=10,S 30=70可知q ≠-1, 所以S 10,S 20-S 10,S 30-S 20,S 40-S 30构成公比为q ′的等比数列. 所以(S 20-S 10)2=S 10·(S 30-S 20), 即(S 20-10)2=10·(70-S 20), 解得S 20=30(负值舍去). 因为S 20-S 10S 10=30-1010=2=q ′,所以S 40-S 30=2(S 30-S 20)=80,S 40=S 30+80=150.3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n-1a n a n +1=a 31q 3n -3=324,因此q 3n -6=81=34=q 36,所以3n -6=36,即n =14.答案:14(一)普通高中适用作业A 级——基础小题练熟练快1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列,选D.2.(2018·云南11校跨区调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50解析:选B 由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 9-S 6=16,S 6=12,S 12-S 9=32,S 12=32+16+12=60.3.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( )A .-13B.13 C .-12D.12解析:选A 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a 2,所以a =-13.4.(2018·新乡调研)已知各项均不为0的等差数列{a n }满足a 3-a 272+a 11=0,数列{b n }为等比数列,且b 7=a 7,则b 1·b 13=( )A .25B .16C .8D .4解析:选B 由a 3-a 272+a 11=0,得2a 7-a 272=0,a 7=4,所以b 7=4,b 1·b 13=b 27=16. 5.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( )A .4n -1B .4n -1C .2n -1D .2n -1解析:选D 设等比数列{a n }的公比为q , 则q =a 2+a 4a 1+a 3=5452=12,所以S na n =1-q n(1-q )q n -1=1-12n12n=2n -1.6.(2018·漳州八校联考)等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31D .33解析:选D 设等比数列{a n }的公比为q ,则由已知得q ≠1.∵S 3=2,S 6=18,∴1-q 31-q 6=19,得q 3=8,∴q =2, ∴S 10S 5=1-q 101-q5=1+q 5=33. 7.已知等比数列{a n }中,a 3=3,a 10=384,则数列{a n }的通项公式a n =________. 解析:设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3=a 1q 2=3, ①a 10=a 1q 9=384, ② ②÷①,得q 7=128,即q =2, 把q =2代入①,得a 1=34,所以数列{a n }的通项公式为a n =a 1q n -1=34×2n -1=3×2n -3.答案:3×2n -38.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,489.(2018·邢台摸底)若正项数列{a n }满足a 2=12,a 6=132,且a n +1a n=a n a n -1(n ≥2,n ∈N *),则log 2a 4=________.解析:由a n +1a n =a n a n -1(n ≥2,n ∈N *)可得数列{a n }是等比数列,所以a 24=a 2a 6=164,又a 4>0,则a 4=18,故log 2a 4=log 218=-3.答案:-310.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.解析:设公比为q ,由a 25=a 10,得(a 1q 4)2=a 1·q 9,即a 1=q . 又由2(a n +a n +2)=5a n +1,得2q 2-5q +2=0, 解得q =2⎝⎛⎭⎫q =12舍去,所以a n =a 1·q n -1=2n. 答案:2nB 级——中档题目练通抓牢1.已知等比数列{a n }的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为( )A .4B .6C .8D .10解析:选C 由题意得a 1+a 3+…=85,a 2+a 4+…=170,所以数列{a n }的公比q =2,由数列{a n }的前n 项和S n =a 1(1-q n )1-q ,得85+170=1-2n1-2,解得n =8.2.(2018·福建模拟)已知递增的等比数列{a n }的公比为q ,其前n 项和S n <0,则( ) A .a 1<0,0<q <1 B .a 1<0,q >1 C .a 1>0,0<q <1D .a 1>0,q >1解析:选A ∵S n <0,∴a 1<0, 又数列{a n }为递增的等比数列, ∴a n +1>a n ,且|a n |>|a n +1|, ∴-a n >-a n +1>0,则q =-a n +1-a n∈(0,1), ∴a 1<0,0<q <1.故选A.3.(2018·湖北七市(州)联考)在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n 等于( )A .3n-1 B.1-(-3)n 2C.1+3n 2D.3n 2+n 2解析:选A 由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,且a 1=2,∴a n +3a n -1>0,∴a n -3a n -1=0,即a na n -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =a 1(1-q n )1-q =2×(3n -1)3-1=3n -1.4.在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________.解析:∵a 5-a 1=15,a 4-a 2=6.∴⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1) 两式相除得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, ∴q =2或q =12,当q =2时,a 1=1; 当q =12时,a 1=-16(舍去).∴a 3=1×22=4. 答案:45.(2018·海口调研)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.解析:依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝⎛⎭⎫1-14n +2. 答案:43⎝⎛⎭⎫1-14n +26.(2018·兰州诊断性测试)在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n . 解:(1)设等差数列{a n }的公差为d ,则依题意有⎩⎪⎨⎪⎧a 1=1,(a 1+3d )2=(a 1+d )(a 1+7d ), 解得d =1或d =0(舍去), ∴a n =1+(n -1)=n . (2)由(1)知a n =n , ∴b n =2n ,∴b n +1b n=2,∴{b n }是首项为2,公比为2的等比数列,∴T n =2(1-2n )1-2=2n +1-2.7.已知数列{a n }的前n 项和为S n ,满足S n =4a n -p ,其中p 为非零常数. (1)求证:数列{a n }为等比数列; (2)若a 2=43,求{a n }的通项公式.解:(1)证明:当n =1时,S 1=4a 1-p ,得a 1=p3≠0.当n ≥2时,a n =S n -S n -1=(4a n -p )-(4a n -1-p )=4a n -4a n -1, 得3a n =4a n -1,即a n a n -1=43,所以数列{a n }是首项为p 3,公比为43的等比数列.(2)由(1)知,数列{a n }的通项公式为a n =p 3×⎝⎛⎭⎫43n -1,又a 2=43,可知p =3,于是a n =⎝⎛⎭⎫43n -1. C 级——重难题目自主选做(2018·黄冈调研)在数列{a n }中,a 1=2,a n +1=n +12n·a n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式;(2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a nn, 又a 11=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝⎛⎭⎫12n -1=22-n ,a n =n ·22-n =4n 2n . (2)由(1)知b n =a n 4n -a n=4n 2n 4n -4n 2n=12n -1,因为对任意n ∈N *,2n -1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝⎛⎭⎫1-12n <2.(二)重点高中适用作业A 级——保分题目巧做快做1.在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .36解析:选B a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78⇒1+q 2+q 4=13⇒q 2=3,所以a 5=a 3q 2=6×3=18.2.(2018·湖南师大附中月考)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.3.已知等比数列{a n }的前n 项和为S n =a ·2n -1+16,则a 的值为( )A .-13B.13 C .-12D.12解析:选A 当n ≥2时,a n =S n -S n -1=a ·2n -1-a ·2n -2=a ·2n -2,当n =1时,a 1=S 1=a +16,所以a +16=a 2,所以a =-13.4.(2018·云南11校跨区调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50解析:选B 由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,因此S 9-S 6=16,S 6=12,S 12-S 9=32,S 12=32+16+12=60.5.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( )A .4n -1B .4n -1C .2n -1D .2n -1解析:选D 设等比数列{a n }的公比为q ,则q =a 2+a 4a 1+a 3=5452=12,所以S na n=1-q n(1-q )q n -1=1-12n12n=2n -1. 6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项公式a n =________. 解析:设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3=a 1q 2=3, ①a 10=a 1q 9=384, ②②÷①,得q 7=128,即q =2, 把q =2代入①,得a 1=34,所以数列{a n }的通项公式为a n =a 1q n -1=34×2n -1=3×2n -3.答案:3×2n -37.在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________. 解析:∵a 5-a 1=15,a 4-a 2=6.∴⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1) 两式相除得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0, ∴q =2或q =12,当q =2时,a 1=1; 当q =12时,a 1=-16(舍去).∴a 3=1×22=4. 答案:48.(2018·合肥质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n , 即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=2×(1-29)1-2=210-2=1 022.答案:1 0229.(2018·兰州诊断性测试)在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n . 解:(1)设等差数列{a n }的公差为d ,则依题意有⎩⎪⎨⎪⎧a 1=1,(a 1+3d )2=(a 1+d )(a 1+7d ), 解得d =1或d =0(舍去),∴a n =1+(n -1)=n . (2)由(1)得a n =n , ∴b n =2n ,∴b n +1b n=2,∴{b n }是首项为2,公比为2的等比数列, ∴T n =2(1-2n )1-2=2n +1-2.10.(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:(1)设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3. ① 由a 3+b 3=5得2d +q 2=6. ②联立①②解得⎩⎪⎨⎪⎧ d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6. B 级——拔高题目稳做准做1.(2018·天津实验中学月考)设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( )A .210B .220C .216D .215解析:选B 因为a 1a 2a 3=a 32,a 4a 5a 6=a 35,a 7a 8a 9=a 38,…,a 28a 29a 30=a 329,所以a 1a 2a 3a 4a 5a 6a 7a 8a 9…a 28a 29a 30=(a 2a 5a 8…a 29)3=230.所以a 2a 5a 8…a 29=210.则a 3a 6a 9…a 30=(a 2q )(a 5q )(a 8q )…(a 29·q )=(a 2a 5a 8…a 29)q 10=210×210=220,故选B.2.(2018·郑州第一次质量预测)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A.⎝⎛⎭⎫13,+∞ B.⎣⎡⎭⎫13,+∞ C.⎝⎛⎭⎫23,+∞ D.⎣⎡⎭⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n 22(n -1)2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝⎛⎭⎫1-14n 1-14=23⎝⎛⎭⎫1-14n <23,因此实数t 的取值范围是⎣⎡⎭⎫23,+∞. 3.(2018·海口调研)设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3=________.解析:依题意得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=1-14n +21-14=43⎝⎛⎭⎫1-14n +2. 答案:43⎝⎛⎭⎫1-14n +24.等比数列{a n }满足a n >0,n ∈N *,且a 3·a 2n -3=22n (n ≥2),则当n ≥1时,log 2a 1+log 2a 2+…+log 2a 2n -1=________.解析:由等比数列的性质,得a 3·a 2n -3=a 2n =22n,从而得a n =2n .∴log 2a 1+log 2a 2+…+log 2a 2n -1=log 2[(a 1a 2n -1)·(a 2a 2n -2)·…·(a n -1a n +1)·a n ] =log 22n (2n-1)=n (2n -1)=2n 2-n .答案:2n 2-n5.(2018·广州综合测试)已知数列{a n }的前n 项和为S n ,且S n =2a n -2(n ∈N *). (1)求数列{a n }的通项公式; (2)求数列{S n }的前n 项和T n .解:(1)当n =1时,S 1=2a 1-2,即a 1=2a 1-2,解得a 1=2.当n ≥2时,a n =S n -S n -1=(2a n -2)-(2a n -1-2)=2a n -2a n -1,即a n =2a n -1, 所以数列{a n }是首项为2,公比为2的等比数列. 所以a n =2×2n -1=2n (n ≥2).又n =1时也符合上式,所以a n =2n (n ∈N *). (2)由(1),知S n =2a n -2=2n +1-2,所以T n =S 1+S 2+…+S n =22+23+…+2n +1-2n =4×(1-2n )1-2-2n =2n +2-4-2n .6.(2018·黄冈调研)在数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式;(2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a nn, 又a 11=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝⎛⎭⎫12n -1=22-n ,a n=n ·22-n =4n 2n . (2)b n =a n 4n -a n=4n2n 4n -4n 2n=12n -1,因为对任意n ∈N *,2n -1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝⎛⎭⎫1-12n <2.。

【2019版课标版】高考数学文科精品课件§6.3 等比数列及其前n项和

【2019版课标版】高考数学文科精品课件§6.3 等比数列及其前n项和

§6.3 等比数列及其前n 项和考纲解读分析解读本节在高考中主要考查等比数列的定义、性质、通项公式、前n 项和公式及等比中项等相关内容.对等比数列的定义、通项公式、性质及等比中项的考查,常以选择题、填空题的形式出现,难度较小.对前n 项和以及与其他知识(函数、不等式)相结合的考查,多以解答题的形式出现,注重题目的综合与新颖,突出对逻辑思维能力的考查.本节内容在高考中分值为5分左右,难度不大.五年高考考点一 等比数列的定义及通项公式1.(2014安徽,12,5分)如图,在等腰直角三角形ABC 中,斜边BC=2 过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;……,依此类推.设BA=a 1,AA 1=a 2,A 1A 2=a 3,……,A 5A 6=a 7,则a 7= .答案2.(2017课标全国Ⅱ,17,12分)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2. (1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析 设{a n }的公差为d,{b n }的公比为q,则a n =-1+(n-1)d,b n =q n-1. 由a 2+b 2=2得d+q=3.① (1)由a 3+b 3=5得2d+q 2=6.②联立①和②解得 (舍去),或因此{b n }的通项公式为b n =2n-1. (2)由b 1=1,T 3=21得q 2+q-20=0.解得q=-5或q=4.当q=-5时,由①得d=8,则S 3=21. 当q=4时,由①得d=-1,则S 3=-6.3.(2016课标全国Ⅰ,17,12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=,a n b n+1+b n+1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.解析(1)由已知,a1b2+b2=b1,b1=1,b2=,得a1=2,(3分)所以数列{a n}是首项为2,公差为3的等差数列,通项公式为a n=3n-1.(5分)(2)由(1)和a n b n+1+b n+1=nb n得b n+1=,(7分)因此{b n}是首项为1,公比为的等比数列.(9分)记{b n}的前n项和为S n,则S n==-.(12分)-教师用书专用(4—7)4.(2014福建,17,12分)在等比数列{a n}中,a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.解析(1)设{a n}的公比为q,依题意得解得因此,a n=3n-1.(2)因为b n=log3a n=n-1,所以数列{b n}的前n项和S n==-.5.(2014北京,15,13分)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解析(1)设等差数列{a n}的公差为d,由题意得d=-==3.所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得==8,解得q=2.q3=--所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为1×=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.6.(2013四川,16,12分)在等比数列{a n}中,a2-a1=2,且2a2为3a1和a3的等差中项,求数列{a n}的首项、公比及前n项和. 解析设该数列的公比为q.由已知,可得a1q-a1=2,4a1q=3a1+a1q2,所以a1(q-1)=2,q2-4q+3=0,解得q=3或q=1.由于a1(q-1)=2,因此q=1不合题意,应舍去.故公比q=3,首项a1=1.所以数列的前n项和S n=-.7.(2013天津,19,14分)已知首项为的等比数列{a n}的前n项和为S n(n∈N*),且-2S2,S3,4S4成等差数列.(1)求数列{a n}的通项公式;(2)证明S n+≤(n∈N*).解析(1)设等比数列{a n}的公比为q,因为-2S2,S3,4S4成等差数列,所以S3+2S2=4S4-S3,即S4-S3=S2-S4,可得2a4=-a3,于是q==-.又a1=,所以等比数列{a n}的通项公式为a n=×--=(-1)n-1·.(2)证明:S n=1--,S n+=1--+-=为奇数为偶数当n为奇数时,S n+随n的增大而减小,所以S n+≤S1+=.当n为偶数时,S n+随n的增大而减小,所以S n+≤S2+=.故对于n∈N*,有S n+≤.考点二等比数列的性质及其应用1.(2015课标Ⅱ,9,5分)已知等比数列{a n}满足a1=,a3a5=4(a4-1),则a2=()A.2B.1C.D.答案C2.(2015广东,13,5分)若三个正数a,b,c成等比数列,其中a=5+2,c=5-2,则b=.答案 13.(2014广东,13,5分)等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.答案 5教师用书专用(4—5)4.(2014大纲全国,8,5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64答案C5.(2013辽宁,14,5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=. 答案63考点三等比数列的前n项和公式1.(2013课标全国Ⅰ,6,5分)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n答案D2.(2017江苏,9,5分)等比数列{a n}的各项均为实数,其前n项和为S n.已知S3=,S6=,则a8=.答案323.(2015课标Ⅰ,13,5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和.若S n=126,则n=.答案 64.(2017课标全国Ⅰ,17,12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.解析(1)设{a n}的公比为q,由题设可得解得q=-2,a1=-2.故{a n}的通项公式为a n=(-2)n.(2)由(1)可得S n=-=-+(-1)n·.由于S n+2+S n+1=-+(-1)n·-=2-·=2S n,故S n+1,S n,S n+2成等差数列.5.(2016北京,15,13分)已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设c n=a n+b n,求数列{c n}的前n项和.解析(1)等比数列{b n}的公比q===3,(1分)所以b1==1,b4=b3q=27.(3分)设等差数列{a n}的公差为d.因为a1=b1=1,a14=b4=27,所以1+13d=27,即d=2.(5分)所以a n=2n-1(n=1,2,3,…).(6分)(2)由(1)知,a n=2n-1,b n=3n-1.因此c n=a n+b n=2n-1+3n-1.(8分)从而数列{c n}的前n项和S n=1+3+…+(2n-1)+1+3+…+3n-1=-+=n2+-.(13分)教师用书专用(6—11)6.(2013江西,12,5分)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于.答案 67.(2013北京,11,5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=;前n项和S n=.答案2;2n+1-28.(2015四川,16,12分)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)设数列的前n项和为T n,求T n.解析(1)由已知S n=2a n-a1,有a n=S n-S n-1=2a n-2a n-1(n≥2),即a n=2a n-1(n≥2).从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1).所以a1+4a1=2(2a1+1),解得a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(2)由(1)得=.所以T n=++…+==1-.9.(2015重庆,16,13分)已知等差数列{a n}满足a3=2,前3项和S3=.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b1=a1,b4=a15,求{b n}的前n项和T n.解析(1)设{a n}的公差为d,则由已知条件得a1+2d=2,3a1+d=,化简得a1+2d=2,a1+d=,解得a1=1,d=,故通项公式a n=1+-,即a n=.(2)由(1)得b1=1,b4=a15==8.设{b n}的公比为q,则q3==8,从而q=2,故{b n}的前n项和T n=-==2n-1.10.(2014四川,19,12分)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)证明:数列{b n}为等比数列;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-,求数列{a n}的前n项和S n. 解析(1)证明:由已知可知,b n=>0,当n≥1时,=-=2d,所以数列{b n}是首项为,公比为2d的等比数列.(2)函数f(x)=2x的图象在(a2,b2)处的切线方程为y-=(x-a2)ln 2,该切线在x轴上的截距为a2-. 由题意知,a2-=2-,解得a2=2.所以d=a2-a1=1,a n=n,b n=2n,a n=n·4n.于是,S n=1×4+2×42+3×43+…+(n-1)×4n-1+n×4n,4S n=1×42+2×43+…+(n-1)×4n+n×4n+1,因此S n-4S n=4+42+…+4n-n×4n+1=--n×4n+1=--.所以S n=-.11.(2013湖北,19,13分)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{a n}的通项公式;(2)是否存在正整数n,使得S n≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由. 解析(1)设数列{a n}的公比为q,则a1≠0,q≠0.由题意得--即---解得故数列{a n}的通项公式为a n=3×(-2)n-1.(2)由(1)有S n==1-(-2)n.若存在n,使得S n≥2 013,则1-(-2)n≥2 013,即(-2)n≤-2 012.当n为偶数时,(-2)n>0,上式不成立;当n为奇数时,(-2)n=-2n≤-2 012,即2n≥2 012,则n≥11.综上,存在符合条件的正整数n,且所有这样的n的集合为{n|n=2k+1,k∈N,k≥5}.三年模拟A组2016—2018年模拟·基础题组考点一等比数列的定义及通项公式1.(2018四川资阳一诊,4)已知各项均为正数的等比数列{a n}满足a1·a5=16,a2=2,则公比q=()A.4B.C.2D.答案C2.(2017江西抚州七校联考,5)在正项等差数列{a n}中,=2a5-a9,且a5+a6+a7=18,则()A.a1,a2,a3成等比数列B.a4,a6,a9成等比数列C.a3,a4,a8成等比数列D.a2,a3,a5成等比数列答案B3.(2016河南洛阳期中模拟,6)在等比数列{a n}中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q等于()A.2B.-2C.3D.-3答案C4.(2018福建福安一中考试,17)已知等比数列{a n}的各项均为正数,且a2=4,a3+a4=24.(1)求数列{a n}的通项公式;(2)若数列{b n}的前n项和S n=n2+n+2n+1-2(n∈N*),求证:数列{a n-b n}是等差数列.解析(1)设等比数列{a n}的公比为q,依题意知q>0.因为两式相除得q2+q-6=0,解得q=2或q=-3(舍去).所以a1==2.所以数列{a n}的通项公式为a n=a1·q n-1=2n.(2)证明:当n=1时,b1=4;当n≥2时,b n=S n-S n-1=n2+n+2n+1-2-(n-1)2-(n-1)-2n+2=2n+2n,又b1=4符合此式,∴b n=2n+2n(n∈N*),设c n=a n-b n,则c n=-2n,当n≥2时,c n-c n-1=-2,∴{c n}即{a n-b n}是等差数列.考点二等比数列的性质及其应用5.(2018福建上杭调研,6)等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=()A.12B.8C.10D.2+log35答案C6.(2018安徽淮北二模,7)5个数依次组成等比数列,且公比为-2,则其中奇数项和与偶数项和的比值为()A.-B.-2C.-D.-答案C7.(2017广东深圳一模,4)已知等比数列{a n}的前n项和S n=a·3n-1+b,则=()A.-3B.-1C.1D.3答案A8.(2017辽宁六校协作体期中联考,9)在等比数列{a n}中,a5+a6=a(a≠0),a15+a16=b,则a25+a26的值是()A. B. C. D.答案C9.(2017广东惠州二调,4)已知{a n}为等比数列,a4+a7=2,a5·a6=-8,则a1+a10=()A.7B.-7C.-5D.5答案B10.(2018广东惠州一调,15)已知等比数列{a n}的公比为正数,且a3a9=2,a2=1,则a1=.答案考点三等比数列的前n项和公式11.(2018河北“名校联盟”高三教学质量监测,5)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前2 018项之和S2 018=()A.22 018B.22 017-1C.22 018-1D.22 019-1答案C-等于()12.(2017湖北六校联合体4月模拟,10)在数列{a n}中,a1=1,a n+1=2a n,则S n=-+-+…+-A.(2n-1)B.(1-24n)C.(4n-1)D.(1-2n)答案B13.(2017福建龙岩五校期中,5)已知数列{a n}是等比数列,其前n项和是S n,若a2=2,a3=-4,则S5等于()A.8B.-8C.11D.-11答案D14.(2017江西吉安一中模拟,15)已知正项等比数列{a n}满足log2a n+2-log2a n=2,且a3=8,则数列{a n}的前n项和S n=.答案2n+1-215.(2017河南平顶山一模,17)已知S n为数列{a n}的前n项和,且2S n=3a n-2(n∈N*).(1)求a n和S n;(2)若b n=log3(S n+1),求数列{b2n}的前n项和T n.解析(1)∵2S n=3a n-2,∴当n=1时,2S1=3a1-2,解得a1=2;当n≥2时,2S n-1=3a n-1-2,∴2S n-2S n-1=3a n-3a n-1,∴2a n=3a n-3a n-1,∴a n=3a n-1,∴数列{a n}是首项为2,公比为3的等比数列,∴a n=2·-,S n==3n-1.(2)由(1)知S n=3n-1,∴b n=log3(S n+1)=log33n=n,∴b2n=2n,∴T n=2+4+6+…+2n==n2+n.B组2016—2018年模拟·提升题组(满分:45分时间:30分钟)一、选择题(每小题5分,共10分)1.(2018广东珠海调研,4)已知等比数列{a n}的公比为正数,前n项和为S n,a1+a2=2,a3+a4=6,则S8等于()A.81-27B.54C.38-1D.80答案D2.(2016河南洛阳期中模拟,5)下列结论正确的是()A.若数列{a n}的前n项和S n=n2+n+1,则{a n}为等差数列B.若数列{a n}的前n项和S n=2n-2,则{a n}为等比数列C.非零实数a,b,c不全相等,若a,b,c成等差数列,则,,也可能构成等差数列D.非零实数a,b,c不全相等,若a,b,c成等比数列,则,,一定构成等比数列答案D二、填空题(共5分)3.(2017江西仿真模拟,16)已知数列{a n}的前n项和为S n,且满足:a1=1,a2=2,S n+1=a n+2-a n+1(n∈N*),若不等式λS n>a n恒成立,则实数λ的取值范围是.答案λ>1三、解答题(每小题15分,共30分)4.(2017江西南昌三校12月联考,18)已知等比数列{a n}满足a n+1+a n=9·2n-1,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{a n}的前n项和为S n,若不等式S n>ka n-2对一切n∈N*恒成立,求实数k的取值范围.解析(1)设等比数列{a n}的公比为q,∵a n+1+a n=9·2n-1,n∈N*,∴a2+a1=9,a3+a2=18,∴q===2,∴2a1+a1=9,∴a1=3.∴a n=3·2n-1,n∈N*.(2)由(1)知S n=-==3(2n-1),∴不等式化为3(2n-1)>k·3·2n-1-2,对一切n∈N*恒成立.即k<2--令f(n)=2-,n∈N*,易知f(n)随n的增大而增大,-∴f(n)min=f(1)=2-=,∴k<.∴实数k的取值范围为-.5.(2016山东枣庄八中南校区2月模拟,19)已知单调递增的等比数列{a n}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)设b n=a n·log2a n,数列{b n}的前n项和为S n,若(n-1)2≤m(S n-n-1)对于n≥2(n∈N*)恒成立,求实数m的取值范围.解析(1)设等比数列的首项为a1,公比为q,由题意可知2(a3+2)=a2+a4,又因为a2+a3+a4=28,∴a3=8,a2+a4=20.∴解得或(舍去).∴a n=2n.(2)由(1)知,b n=n·2n,∴S n=1×2+2×22+3×23+…+n·2n,2S n=2×2+2×23+3×24+…+n·2n+1,-S n=2+22+23+…+2n-n·2n+1,∴S n=--·=(n-1)2n+1+2,若(n-1)2≤m(S n-n-1)对于n≥2(n∈N*)恒成立,则(n-1)2≤m[(n-1)2n+1+2-n-1],即(n-1)2≤m(n-1)(2n+1-1), ∴m≥--(n≥2),令f(n)=--,当n≥2时, f(n+1)-f(n)=----=----<0,∴当n≥2时, f(n)单调递减, f(n)的最大值为,故实数m的取值范围为.C组2016—2018年模拟·方法题组方法1等比数列的基本运算1.(2018河南郑州一模,3)若等比数列{a n}的前n项和为S n,且S2=3,S6=63,则S5=()A.-33B.15C.31D.-33或31答案D2.(2017河北衡水中学三调,4)等比数列{a n}的前n项和为S n,已知a2a5=2a3,且a4与2a7的等差中项为,则S5=()A.29B.31C.33D.36答案B3.(2016安徽安庆摸底,4)已知{a n}是各项均为正数的等比数列,其前n项和为S n,若a3=4,S3=7,则公比q等于()A. B. C.2 D.3答案C方法2等比数列性质的应用策略4.(2018福建福州八县联考,4)已知数列{a n}为等比数列,且a1a13+2=4π,则tan(a2a12)的值为()A. B.- C.± D.-答案A方法3等比数列的判定与证明5.(2018福建福州八校联考,21)数列{a n}中,a1=3,a n+1=2a n+2(n∈N*).(1)求证:{a n+2}是等比数列,并求数列{a n}的通项公式;(2)设b n=,S n=b1+b2+b3+…+b n,证明:∀n∈N*,都有≤S n<.解析(1)由=2a n+2(n∈N*),得+2=2(a n+2),∵a1=3,∴a1+2=5,∴{a n+2}是首项为5,公比为2的等比数列,∴a n+2=5×2n-1,∴a n=5×2n-1-2.(2)证明:由(1)可得b n=-,S n=-①,S n=②,-=·-=.①-②整理可得S n=-∵n∈N*,∴S n<.又∵S n+1-S n=×>0,∴数列{S n}单调递增,∴S n≥S1=,∴∀n∈N*,都有≤S n<.6.(2017辽宁六校协作体期中联考,19)已知数列{a n},{c n}满足条件:a1=1,a n+1=2a n+1,c n=.(1)求证数列{a n+1}是等比数列,并求数列{a n}的通项公式;(2)求数列{c n}的前n项和T n,并求使得T n>对任意n∈N*都成立的正整数m的最小值.解析(1)∵a n+1=2a n+1,∴a n+1+1=2(a n+1),∵a1=1,a1+1=2≠0,∴数列{a n+1}是首项为2,公比为2的等比数列.∴a n+1=2×2n-1,∴a n=2n-1.(2)∵c n==-,∴T n=---=-==.∵=·==1+>1,又T n>0,∴T n<T n+1,n∈N*,∴数列{T n}是递增数列.∴当n=1时,T n取得最小值.要使得T n>对任意n∈N*都成立,,由此得m>4.结合(1)的结果,只需>-∴正整数m的最小值是5.。

2019届高考数学一轮复习第五章数列第3讲等比数列及其前n项和课件文

2019届高考数学一轮复习第五章数列第3讲等比数列及其前n项和课件文

等比数列的判定方法
(1)定义法:若aan+n 1=q(q 为非零常数,n∈N*)或aan-n 1=q(q 为 非零常数且 n≥2,n∈N*),则{an}是等比数列. (2)等比中项法:若数列{an}中,an≠0 且 a2n+1=an·an+2(n∈N*), 则数列{an}是等比数列. (3)通项公式法:若数列通项公式可写成 an=c·qn(c,q 均是不 为 0 的常数,n∈N*),则{an}是等比数列.
na,q=1, 前 n 项和 Sn=__a_(__11_--__qq_n_)__,__q_≠__1_______________.
[解析] 当 q=1 时,Sn=na, 当 q≠1 时,Sn=a(11--qqn).
3.(2018·唐山模拟)已知等比数列{an}的前 n 项和为 Sn,且
a1+a3=52,a2+a4=54,则Sann=__2_n_-__1__.
3.等比中项 若 G2=a·b(ab≠0),那么 G 叫做 a 与 b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:an=am·qn-m(n,m∈N*). (2)若{an}为等比数列,且 m+n=p+q(m,n,p,q∈N*),则
am·an=___a_p_·a__q ___.
(3)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0),a1n, {a2n},{an·bn},abnn仍是等比数列.
(4)等比数列{an}的前 n 项和为 Sn,则 Sn,S2n-Sn,S3n-S2n 仍成等比数列,其公比为 qn(当{an}的公比 q=-1 时,n 不取 偶数).
5.等比数列的前 n 项和公式
等比数列{an}的公比为 q(q≠0),其前 n 项和为 Sn, 当 q=1 时,Sn=na1; 当 q≠1 时,Sn=a1(11--qqn)=__a_11_--__aqn_q___.

2019高考数学一轮辅导:等比数列的前n项和

2019高考数学一轮辅导:等比数列的前n项和

2019高考数学一轮辅导:等比数列的前n项和
本网整理了2019高考数学一轮辅导:等比数列的前n项和,更多高考数学资讯将持续更新,敬请及时关注本网站。

2019高考数学一轮辅导:等比数列的前n项和
一个推导
利用错位相减法推导等比数列的前n项和:
Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0。

(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误。

三种方法
等比数列的判断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q (q为非零常数且n≥2且n∈N*),则{an}是等比数列。

(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N*),则数列{an}是等比数列。

(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列。

注:前两种方法也可用来证明一个数列为等比数列。

专题27 等比数列及其前n项和(押题专练)(解析版)

专题27 等比数列及其前n项和(押题专练)(解析版)

1.已知等比数列{a n }的前n 项和为S n ,且S 1,S 2+a 2,S 3成等差数列,则数列{a n }的公比为( ) A .1 B .2 C.12D .3 解析:因为S 1,S 2+a 2,S 3成等差数列,所以2(S 2+a 2)=S 1+S 3,2(a 1+a 2+a 2)=a 1+a 1+a 2+a 3,a 3=3a 2,q =3。

选D 。

答案:D2.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10= ( ) A .12 B .10 C .8 D .2+log 35解析:由题意可知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18得a 5a 6=a 4a 7=9, 而log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1·a 2·…·a 10) =log 3(a 5a 6)5=log 395 =log 3310=10。

答案:B3.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =( )A .4n -1 B .4n -1 C .2n -1 D .2n -1解析:∵⎩⎨⎧a 1+a 3=52a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,1a 1q +a 1q 3=54,2由(1)除以(2)可得1+q 2q +q 3=2,解得q =12,代入(1)得a 1=2,∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n ,∴S n a n =4⎝⎛⎭⎫1-12n 42n =2n -1,选D 。

答案:D4.在等比数列{a n }中,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为17,则S 6=( ) A.634 B .16 C .15 D.614解析:由等比数列的性质知a 2·a 3=a 1·a 4=2a 1,即a 4=2。

高考数学一轮复习 第六章 数列 第3讲 等比数列及其前n项和教学案 理

高考数学一轮复习 第六章 数列 第3讲 等比数列及其前n项和教学案 理

第3讲 等比数列及其前n 项和一、知识梳理1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫作等比数列.这个常数叫作等比数列的公比,通常用字母q 表示.(2)等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件.2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N +(1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r . (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列.(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1).常用结论1.正确理解等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时 ,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时 ,{a n }是递减数列; 当q =1时,{a n }是常数列; 当q =-1时,{a n }是摆动数列. 2.记住等比数列的几个常用结论(1)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. (2)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k.(3)一个等比数列各项的k 次幂,仍组成一个等比数列,新公比是原公比的k 次幂.(4){a n }为等比数列,若a 1·a 2·…·a n =T n ,则T n ,T 2n T n ,T 3nT 2n,…成等比数列.(5)当q ≠0,q ≠1时,S n =k -k ·q n(k ≠0)是{a n }成等比数列的充要条件,此时k =a 11-q.(6)有穷等比数列中,与首末两项等距离的两项的积相等.特别地,若项数为奇数时,还等于中间项的平方.二、教材衍化1.在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,482.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =________.解析:由题意知q 3=a 5a 2=18,所以q =12.答案:123.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则{a n }的通项公式a n =________.解析:因为S 10S 5=3132,所以S 10-S 5S 5=-132,因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,则a n =-1×⎝ ⎛⎭⎪⎫-12n -1=-⎝ ⎛⎭⎪⎫-12n -1.答案:-⎝ ⎛⎭⎪⎫-12n -1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)与等差数列类似,等比数列的各项可以是任意一个实数.( )(2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) 答案:(1)× (2)× (3)× 二、易错纠偏常见误区|K(1)忽视项的符号判断; (2)忽视公比q =1的特殊情况; (3)忽视等比数列的项不为0.1.在等比数列{a n }中,a 3=4,a 7=16,则a 3与a 7的等比中项为________.解析:设a 3与a 7的等比中项为G ,因为a 3=4,a 7=16,所以G 2=4×16=64,所以G =±8.答案:±82.数列{a n }的通项公式是a n =a n(a ≠0),则其前n 项和S n =________.解析:因为a ≠0,a n =a n,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时S n =a (1-a n )1-a.答案:⎩⎪⎨⎪⎧n ,a =1,a (1-a n )1-a,a ≠0,a ≠13.已知x,2x+2,3x+3是一个等比数列的前三项,则x的值为________.解析:因为x,2x+2,3x+3是一个等比数列的前三项,所以(2x+2)2=x(3x+3),即x2+5x+4=0,解得x=-1或x=-4.当x=-1时,数列的前三项为-1,0,0,不是等比数列,舍去.答案:-4等比数列基本量的运算(师生共研)(1)(2019·高考全国卷Ⅲ)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=( ) A.16 B.8C.4 D.2(2)等比数列{a n}中,a1=1,a5=4a3.①求{a n}的通项公式;②记S n为{a n}的前n项和.若S m=63,求m.【解】(1)选C.设等比数列{a n}的公比为q,由a5=3a3+4a1得q4=3q2+4,得q2=4,因为数列{a n}的各项均为正数,所以q=2,又a1+a2+a3+a4=a1(1+q+q2+q3)=a1(1+2+4+8)=15,所以a1=1,所以a3=a1q2=4.(2)①设{a n}的公比为q,由题设得a n=q n-1.由已知得q 4=4q 2,解得q =0(舍去)或q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.②若a n =(-2)n -1,则S n=1-(-2)n3.由S m =63得(-2)m=-188,此方程没有正整数解.若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6.综上,m =6.解决等比数列有关问题的2种常用思想方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解 分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n=a 1(1-q n )1-q =a 1-a n q 1-qn n 前n 项和,若a 1=13,a 24=a 6,则S 5=________.解析:通解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213.优解:设等比数列{a n }的公比为q ,因为a 24=a 6,所以a 2a 6=a 6,所以a 2=1,又a 1=13,所以q =3,所以S 5=a 1(1-q 5)1-q=13×(1-35)1-3=1213.答案:12132.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.等比数列的判定与证明(师生共研)(2018·高考全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn.(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.【解】 (1)由条件可得a n +1=2(n+1)na n .将n =1代入得,a 2=4a 1, 而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2, 所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a n n,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.等比数列的4种常用判定方法定义法若a n +1a n =q (q 为非零常数,n ∈N +)或a na n -1=q (q 为非零常数且n ≥2,n ∈N +),则{a n }是等比数列中项 公式法 若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N +),则数列{a n }是等比数列通项若数列通项公式可写成a n =c ·qn -1(c ,q 均是不为0的常数,证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.1.已知数列{a n}的前n项和为S n,a1=1,S n+1=4a n+2(n∈N*),若b n=a n+1-2a n,求证:{b n}是等比数列.证明:因为a n+2=S n+2-S n+1=4a n+1+2-4a n-2=4a n+1-4a n,所以b n+1b n=a n+2-2a n+1a n+1-2a n=4a n+1-4a n-2a n+1a n+1-2a n=2a n+1-4a na n+1-2a n=2.因为S2=a1+a2=4a1+2,所以a2=5.所以b1=a2-2a1=3.所以数列{b n}是首项为3,公比为2的等比数列.2.已知数列{a n}的前n项和为S n,且S n=2a n-3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.解:(1)当n=1时,S1=a1=2a1-3,解得a1=3,当n=2时,S2=a1+a2=2a2-6,解得a2=9,当n=3时,S3=a1+a2+a3=2a3-9,解得a3=21.(2)假设{a n+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3.下面证明{a n +3}为等比数列:因为S n =2a n -3n ,所以S n +1=2a n +1-3n -3,所以a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n +1,所以2(a n +3)=a n +1+3,所以a n +1+3a n +3=2,所以存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列.所以a n +3=6×2n -1,即a n =3(2n-1)(n ∈N +).等比数列的性质(多维探究) 角度一 等比数列项的性质(1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________.【解析】 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=1×(1-25)1-2=31.【答案】 (1)50 (2)31角度二 等比数列前n 项和的性质(1)(一题多解)等比数列{a n }中,前n 项和为48,前2n项和为60,则其前3n 项和为________.(2)数列{a n }是一个项数为偶数的等比数列,所有项之和是偶数项之和的4倍,前三项之积为64,则此数列的通项公式为a n =________.【解析】 (1)法一:设数列{a n }的前n 项和为S n . 因为S 2n ≠2S n ,所以q ≠1,由前n 项和公式得⎩⎪⎨⎪⎧a 1(1-q n )1-q =48,①a 1(1-q 2n)1-q=60,②②÷①,得1+q n=54,所以q n=14.③将③将入①,得a 11-q=64. 所以S 3n =a 1(1-q 3n )1-q =64×⎝⎛⎭⎪⎫1-143=63.法二:设数列{a n }的前n 项和为S n , 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列, 所以(S 2n -S n )2=S n (S 3n -S 2n ),即S 3n =(S 2n -S n )2S n +S 2n =(60-48)248+60=63.法三:设数列{a n }的前n 项和为S n , 因为S 2n =S n +q nS n ,所以q n=S 2n -S n S n =14,所以S 3n =S 2n +q2nS n =60+⎝ ⎛⎭⎪⎫142×48=63.(2)设此数列{a n }的公比为q , 由题意,知S 奇+S 偶=4S 偶, 所以S 奇=3S 偶,所以q =S 偶S 奇=13.又a 1a 2a 3=64,即a 1(a 1q )(a 1q 2)=a 31q 3=64, 所以a 1q =4.又q =13,所以a 1=12,所以a n =a 1qn -1=12×⎝ ⎛⎭⎪⎫13n -1.【答案】 (1)63(2)12×⎝ ⎛⎭⎪⎫13n -1等比数列常见性质的应用等比数列性质的应用可以分为三类 (1)通项公式的变形. (2)等比中项的变形. (3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[提醒] 在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.(一题多解)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12D .18解析:选C.法一:因为a 3a 5=a 24,a 3a 5=4(a 4-1), 所以a 24=4(a 4-1), 所以a 24-4a 4+4=0,所以a 4=2.又因为q 3=a 4a 1=214=8,所以q =2,所以a 2=a 1q =14×2=12,故选C.法二:因为a 3a 5=4(a 4-1), 所以a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,所以a 2=a 1q =12,故选C.数列与数学文化及实际应用1.等差数列与数学文化(2020·陕西汉中二模)我国古代名著《九章算术》中有这样一段话:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金箠,长5尺,头部1尺,重4斤,尾部1尺,重2斤.若该金箠从头到尾,每一尺的质量构成等差数列,则该金箠共重( )A .6斤B .7斤C .9斤D .15斤【解析】 设从头到尾每一尺的质量构成等差数列{a n },则有a 1=4,a 5=2,所以a 1+a 5=6,数列{a n }的前5项和为S 5=5×a 1+a 52=5×3=15,即该金箠共重15斤.故选D.【答案】 D以数学文化为背景的等差数列模型题的求解关键:一是会脱去数学文化的背景,读懂题意;二是构建模型,即由题意构建等差数列的模型;三是解模,即把文字语言转化为求等差数列的相关问题,如求指定项、公差或项数、通项公式或前n 项和等.2.等比数列与数学文化(2020·湖南衡阳三模)中国古代数学名著《九章算术》中有如下问题.今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文如下:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还的粟(单位:升)为( )A.253 B .503C.507D .1007【解析】 5斗=50升.设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则a 1(1-23)1-2=50,解得a 1=507,所以马主人应偿还粟的量为a 2=2a 1=1007,故选D.【答案】 D以数学文化为背景的等比数列模型题的求解关键:一是会透过数学文化的“表象”看“本质”;二是构建模型,即盯准题眼,构建等比数列的模型;三是解模,即把文字语言转化为求等比数列的相关问题,如求指定项、公比或项数、通项公式或前n 项和等.3.递推数列与数学文化(2020·北京市石景山区3月模拟)九连环是我国从古至今广为流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合而为一.”在某种玩法中,用a n 表示解下n (n ≤9,n ∈N +)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,则解下4个环所需的最少移动次数a 4为( )A .7B .10C .12D .22【解析】 因为数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,所以a 2=2a 1-1=2-1=1,所以a 3=2a 2+2=2×1+2=4,所以a 4=2a 3-1=2×4-1=7.故选A.以数学文化为背景的已知递推公式的数列模型的求解关键是耐心读题、仔细理解题,只有弄清题意,才能将实际问题转化为数学模型进行解答,“盯紧”题目条件中的递推公式,利用此递推公式往要求的量转化,如本题,剥去数学文化背景,实质就是已知a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,求a 4的问题.4.周期数列与数学文化(2020·山东临沂三模)意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2)(n ≥3,n ∈N +).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n },则数列{a n }的前2 019项的和为( )A .672B .673C .1 346D .2 019【解析】 由于{a n }是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{a n }为1,1,0,1,1,0,1,1,0,1,…,所以{a n }是周期为3的周期数列,且一个周期中的三项之和为1+1+0=2. 因为2 019=673×3,所以数列{a n }的前2 019项的和为673×2=1 346.故选C.以数学文化为背景的周期数列模型题的求解关键是细审题,建立数学模型,并会适时脱去背景,如本题,脱去背景,实质是利用斐波那契数列的各项除以2的余数的特征,得出新数列的周期性,进而求出结果.5.数列在实际问题中的应用私家车具有申请报废制度.一车主购买车辆时花费15万,每年的保险费、路桥费、汽油费等约1.5万元,每年的维修费是一个公差为3 000元的等差数列,第一年维修费为3 000元,则该车主申请车辆报废的最佳年限(使用多少年的年平均费用最少)是________年.【解析】 设这辆汽车报废的最佳年限为n 年,第n 年的费用为a n ,则a n =1.5+0.3n .前n 年的总费用为S n =15+1.5n +n2(0.3+0.3n )=0.15n 2+1.65n +15,年平均费用:S n n =0.15n +15n+1.65≥20.15n ×15n +1.65=4.65,当且仅当0.15n =15n,即n=10时,年平均费用S nn取得最小值.所以这辆汽车报废的最佳年限是10年.【答案】 10数学建模是指对现实问题进行抽象,用数学语言表达和解决实际问题的过程.有关数列的应用问题,是让学生能够在实际情境中,用数学的思想分析数列问题,用数学的语言表达数列问题,用数学的知识得到数列模型,用数列的方法得到结论,验证数学结论与实际问题的相符程度,最终得到符合实际规律的结果.[基础题组练]1.(2020·江西宜春一模)在等比数列{a n }中,a 1a 3=a 4=4,则a 6的所有可能值构成的集合是( )A .{6}B .{-8,8}C .{-8}D .{8}解析:选D.因为a 1a 3=a 22=4,a 4=4,所以a 2=2,所以q 2=a 4a 2=2,所以a 6=a 2q 4=2×4=8,故a 6的所有可能值构成的集合是{8},故选D.2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .135B .100C .95D .80解析:选A.由等比数列前n 项和的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32,所以a 7+a 8=40×⎝ ⎛⎭⎪⎫323=135.3.(2020·山西3月高考考前适应性测试)正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( )A .1B .2 C.22D .2解析:选D.设公比为q ,由正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,可得a 23+2a 3a 7+a 27=(a 3+a 7)2=16,即a 3+a 7=4,由a 5与a 9的等差中项为4,得a 5+a 9=8,则q 2(a 3+a 7)=4q 2=8,则q=2(舍负),故选D.4.(2020·湘赣十四校第二次联考)中国古代著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走了( )A .6里B .12里C .24里D .96里解析:选A.由题意可得,每天行走的路程构成等比数列,记作数列{a n },设等比数列{a n }的首项为a 1,公比为q ,则q =12,依题意有a 1(1-q 6)1-q =378,解得a 1=192,则a 6=192×(12)5=6,最后一天走了6里,故选A.5.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .10解析:选B.设该等比数列为{a n },其前n 项积为T n ,则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9,(a 1·a n )3=3×9=33,所以a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n =a n ·a n -1·…·a 2·a 1,所以T 2n =(a 1·a n )n,即7292=3n,所以n =12.6.(2020·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.解析:设{a n }的公比为q (q >0),因为a 1a 6=2a 3,而a 1a 6=a 3a 4,所以a 3a 4=2a 3,所以a 4=2.又a 4+2a 6=3,所以a 6=12,所以q =12,a 1=16,所以S 5=16[1-(12)5]1-12=31.答案:317.(一题多解)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.解析:法一:设数列{a n }的公比为q ,则由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.所以⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,所以a 1+a 10=a 1(1+q 9)=-7.答案:-78.(2020·安徽安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N +,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________.解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:29.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.10.(2019·高考全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n+1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8,即a n +1-b n +1=a n -b n+2.又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列.(2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[综合题组练]1.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A .(-∞,-1]B .(-∞,0)∪[1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2(1q +1+q )=1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-(-q -1q)≤1-2(-q )·(-1q)=-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).2.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q 等于( )A .-12B .12C .-32D .32解析:选C.{b n }有连续四项在{-53,-23,19,37,82}中且b n =a n +1.a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中.因为{a n }是等比数列,等比数列中有负数项,则q <0,且负数项为相隔两项,所以等比数列各项的绝对值递增或递减.按绝对值的顺序排列上述数值18,-24,36,-54,81, 相邻两项相除-2418=-43,36-24=-32,-5436=-32,81-54=-32,则可得-24,36,-54,81是{a n }中连续的四项.q =-32或q =-23(因为|q |>1,所以此种情况应舍),所以q =-32.故选C.3.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n =________.解析:因为{a n }为等比数列, 所以a 3·a n -2=a 1·a n =64. 又a 1+a n =34,所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧a 1=2,a n =32或⎩⎪⎨⎪⎧a 1=32,a n =2.又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32.由S n =a 1-a n q 1-q =2-32q 1-q=42,解得q =4.由a n =a 1qn -1=2×4n -1=32,解得n =3. 答案:34.已知数列{a n }满足a 1=2且对任意的m ,n ∈N +,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________.解析:因为a n +ma m=a n ,令m =1,则a n +1a 1=a n ,即a n +1a n=a 1=2,所以{a n }是首项a 1=2,公比q =2的等比数列,S n =2(1-2n)1-2=2n +1-2.答案:2n +1-25.(2020·湖北武汉4月毕业班调研)已知正项等比数列{a n }的前n 项和S n 满足S 2+4S 4=S 6,a 1=1.(1)求数列{a n }的公比q ;(2)令b n =a n -15,求T =|b 1|+|b 2|+…+|b 10|的值. 解:(1)由题意可得q ≠1, 由S 2+4S 4=S 6,可知a 1(1-q 2)1-q +4·a 1(1-q 4)1-q =a 1(1-q 6)1-q,所以(1-q 2)+4(1-q 4)=1-q 6,而q ≠1,q >0, 所以1+4(1+q 2)=1+q 2+q 4,即q 4-3q 2-4=0, 所以(q 2-4)(q 2+1)=0,所以q =2.(2)由(1)知a n =2n -1,则{a n }的前n 项和S n =1-2n1-2=2n-1,当n ≥5时,b n =2n -1-15>0,n ≤4时,b n =2n -1-15<0,所以T =-(b 1+b 2+b 3+b 4)+(b 5+b 6+…+b 10)=-(a 1+a 2+a 3+a 4-15×4)+(a 5+a 6+…+a 10-15×6) =-S 4+S 10-S 4+60-90=S 10-2S 4-30=(210-1)-2(24-1)-30 =210-25-29=1 024-32-29=963.6.已知数列{a n }中,a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N +.(1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .解:(1)因为a n ·a n +1=⎝ ⎛⎭⎪⎫12n,所以a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1,所以a n +2a n =12,即a n +2=12a n .因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12,因为a 1=1,a 1·a 2=12,所以a 2=12,所以b 1=a 1+a 2=32.所以{b n }是首项为32,公比为12的等比数列.所以b n =32×⎝ ⎛⎭⎪⎫12n -1=32n .(2)由(1)可知,a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=3-32n .。

高考文科数学一轮复习:等比数列及其前n项和96页PPT

高考文科数学一轮复习:等比数列及其前n项和96页PPT
高考文科数学一轮复习:等比数列及

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
其前n项和
谢谢!

36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

高三第一轮复习等比数列及其前n项和PPT课件

高三第一轮复习等比数列及其前n项和PPT课件
解 ∵a3a11= =4a7, ∵a7≠0,∴a7=4,∴b7=4, ∵{bn}为等差a 72数列,∴b5+b9=2b7=8.
11
方法二 由已知得
a11a12a13a14a15a1a1aa55aa22aa44aa332 a1a2aa332a4a5 a832 2.

a
2 3
=4.∴a3=±2.
10
探究提高 在解决等比数列的有关问题时,要注 意挖掘隐含条件,利用性质,特别是性质“若 m+n=p+q,则am·an=ap·aq”,可以减少运算量 , 提高解题速度. 知能迁移3 已知等比数列{an}中,有a3a11=4a7,数 列{bn}是等差数列,且b7=a7,求b5+b9的值;
等比数列及其前n项和列 从第二项起,后项与相邻前项的比是
一个确定的常数(不为零)
,那么这个数
列叫做等比数列,这个常数叫做等比公数比列的 , 通常用字q母 表示.
2.等比数列的通项公式
设等比数列{an}的首项为a1,公比为q,则它的通 项an= a1·qn-1 .
(2)也可利用性质 a =32 a1·a5=a2·a4直接求得a3.
解 方法一 设公比为q,显然q≠1,
∵{an}是等比数列,∴
1 an
也是等比数列,公比
为1 .
q
9
a
1
(1 1
q q
5
)
8
由已知条件得
1 (1 a1
1 q5
)
1 1 q
2
解a得 12q44,

a
2 3
=(a1q2)2=4,∴a3=±2.
{
an}(≠0), a1n
,{a

高考理科数学一轮复习课件等比数列及其前n项和

高考理科数学一轮复习课件等比数列及其前n项和
等比中项性质
任意两项的等比中项等于前后两 项的几何平均数。
等比数列性质总结
等比数列中,任意两项之积等于它们中 间各项之积。
若m、n、p(m,n,p∈N*)成等差数列 ,则am、an、ap构成等比数列。
在等比数列中,连续k项的和仍为等比数 列。
等比数列前n项和公式:Sn=a1(1q^n)/(1-q)(q≠1)。当q=1时, Sn=na1。
设等比数列 {an} 的前 n 项 和为 Sn,若 S3, S9 - S6, S12 - S9 成等差数列,则 S6/S3 = _______.
由题意得 2(S9 - S6) = S3 + (S12 - S9),即 S9 - S6 = S6 - S3。又因为 {an} 是等 比数列,所以 S3, S6 - S3, S9 - S6, S12 - S9 成等比数 列。设公比为 r,则 r = (S6 - S3) / S3。所以 S6/S3 = r + 1。又因为 r^3 = (S12 S9) / (S9 - S6) = (S12 - S9) / (S6 - S3),代入上式得 (r + 1)^2 = r^3 + 1,解得 r = 3 或 r = -1(舍去)。所
经济增长模型
在经济学中,某些经济增长模型也采用了等比数 列来描述经济增长的趋势。例如,假设某国经济 以固定的增长率持续增长,那么其未来的经济总 量可以通过等比数列进行预测和分析。
THANKS
注意事项:在设立等比数列模型时,要确保模型与实际 问题背景相符合,同时要注意公比q的取值范围和特殊 情况。
典型例题三:综合应用多种方法求解复杂问题
• 解题思路:对于复杂的等比数列问题,可能需要综合 运用多种方法进行求解,如分类讨论、数形结合、方 程法等。

2019年高考数学总复习教师用书:第7章第3讲等比数列及其前n项和

2019年高考数学总复习教师用书:第7章第3讲等比数列及其前n项和

第3讲 等比数列及其前n 项和最新考纲 1.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知 识 梳 理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:a na n -1=q (n ≥2,q 为非零常数),或a n +1a n =q (n ∈N *,q 为非零常数).(2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)等比数列{a n }的单调性:当q >1,a 1>0或0<q <1,a 1<0时,数列{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,数列{a n }是递减数列; 当q =1时,数列{a n }是常数列.(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)与等差数列类似,等比数列的各项可以是任意一个实数.( ) (2)公比q 是任意一个常数,它可以是任意实数.( ) (3)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(5)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,a n ≠0. (2)在等比数列中,q ≠0.(3)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (4)当a =1时,S n =na .(5)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)× (5)×2.(2019·太原模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( ) A.2B.4C. 2D.2 2解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q =4.答案 B3.(2019·湖北省七市考试)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A.8B.9C.10D.11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10,故选C. 答案 C4.(2019·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 65.(2019·广东卷)若a ,b ,c 三个正数成等比数列,其中a =5+26,c =5-26,则b 的值为________.解析 ∵a ,b ,c 成等比数列,∴b 2=ac . 即b 2=(5+26)(5-26)=1,又b >0,∴b =1. 答案 16.(2019·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析 由⎩⎨⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3,当n ≥2时,由已知可得: a n +1=2S n +1,① a n =2S n -1+1,②①-②得a n +1-a n =2a n ,∴a n +1=3a n ,又a 2=3a 1, ∴{a n }是以a 1=1为首项,公比q =3的等比数列. ∴S 5=1-1×351-3=121.答案 1 121考点一 等比数列基本量的运算【例1】 (1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A.152B.314C.334D.172(2)(2019·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析(1)显然公比q ≠1,由题意得⎩⎨⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去), ∴S 5=a 1(1-q 5)1-q=4⎝ ⎛⎭⎪⎫1-1251-12=314. (2)设等比数列{a n }的公比为q ,∴⎩⎨⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎨⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12, ∴a 1a 2…a n =a n 1q1+2+…+(n -1)=2-n 22+7n 2.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *,可知n =3或4时,t 有最大值6. 又y =2t 为增函数.所以a 1a 2…a n 的最大值为64. 答案 (1)B (2)64规律方法 等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.【训练1】 (1)设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.(2)(2019·合肥模拟)设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列,则a n =________. 解析 (1)由已知条件,得2S n =S n +1+S n +2, 即2S n =2S n +2a n +1+a n +2,即a n +2a n +1=-2.(2)由已知得:⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2.解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q .又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0,解得q 1=2,q 2=12.由题意得q >1,所以q =2,所以a 1=1.故数列{a n }的通项为a n =2n -1. 答案 (1)-2 (2)2n -1考点二 等比数列的性质及应用【例2】 (1)(2019·全国Ⅱ卷)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( ) A.2B.1C.12D.18(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( ) A.2B.73C.83D.3解析 (1)由{a n }为等比数列,得a 3a 5=a 24,所以a 24=4(a 4-1),解得a 4=2,设等比数列{a n }的公比为q ,则a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.选C.(2)法一 由等比数列的性质及题意,得S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a ,所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)C (2)B规律方法 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练2】 (1)(2019·丽水调研)在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=________.(2)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为________.解析 (1)由等比数列性质,得a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.(2)∵-1,x ,y ,z ,-3成等比数列,∴y 2=xz =(-1)×(-3)=3,且x 2=-y >0,即y <0, ∴y =-3,xz =3, ∴xyz =-3 3. 答案 (1)8 (2)-3 3考点三 等比数列的判定与证明【例3】 已知数列{a n }的前n 项和为S n ,在数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. 又a 1+a 1=1,∴a 1=12,又c n =a n -1,首项c 1=a 1-1,∴c 1=-12,公比q =12. ∴{c n }是以-12为首项,以12为公比的等比数列.(2)解 由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n,∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 =⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n. 又b 1=a 1=12代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n .规律方法 证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.【训练3】 (2019·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n , 由a 1≠0,λ≠0且λ≠1得a n ≠0, 所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n. 由S 5=3132得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝⎛⎭⎪⎫λλ-15=132.解得λ=-1.[思想方法]1.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q .2.已知等比数列{a n }(1)数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1an 也是等比数列. (2)a 1a n =a 2a n -1=…=a m a n -m +1. [易错防范]1.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.基础巩固题组 (建议用时:40分钟)一、选择题1.已知{a n },{b n }都是等比数列,那么( ) A.{a n +b n },{a n ·b n }都一定是等比数列B.{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列C.{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列D.{a n +b n },{a n ·b n }都不一定是等比数列 解析 两个等比数列的积仍是一个等比数列. 答案 C2.在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为( ) A.2B.12C.2或12D.-2或12解析 设数列{a n }的公比为q ,由a 1+a 4a 2+a 3=a 1(1+q 3)a 1(q +q 2)=1+q 3q +q 2=(1+q )(1-q +q 2)q (1+q )=1-q +q 2q =1812,得q =2或q =12.故选C. 答案 C3.(必修5P67A1(2)改编)一个蜂巢里有1只蜜蜂.第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有________只蜜蜂( ) A.55 986B.46 656C.216D.36解析 设第n 天蜂巢中的蜜蜂数量为a n ,根据题意得数列{a n }成等比数列,a 1=6,q =6,所以{a n }的通项公式a n =6×6n -1,到第6天,所有的蜜蜂都归巢后,蜂巢中一共有a 6=6×65=66=46 656只蜜蜂,故选B. 答案 B4.(2019·全国Ⅱ卷)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21B.42C.63D.84解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 答案 B5.设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A.150 B.-200 C.150或-200D.400或-50解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30,又S 20>0, 因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80. S 40=150.故选A. 答案 A 二、填空题6.(2019·乐清市模拟)在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于________.解析 两式相减得a 4-a 3=2a 3,从而求得a 4a 3=3.即q =3.答案 37.(2019·宁波调研)已知数列{a n }满足a 1=1,a n +1=a n +2n (n ∈N *),则a 3=________;通项公式a n =________.解析 ∵a 1=1,a n +1=a n +2n (n ∈N *),∴a 2=a 1+2=3,a 3=a 2+22=3+4=7.n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=2n -12-1=2n-1(n =1时也成立),∴a n =2n -1. 答案 7 2n -18.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________.解析 设等比数列{a n }的首项为a 1,公比为q ,显然q ≠1且q >0,因为S 4=3S 2,所以a 1(1-q 4)1-q =3a 1(1-q 2)1-q ,解得q 2=2,因为a 3=2,所以a 7=a 3q 4=2×22=8. 答案 8 三、解答题9.在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解 (1)设{a n }的公比为q ,依题意得 ⎩⎨⎧a 1q =3,a 1q 4=81,解得⎩⎨⎧a 1=1,q =3. 因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n 2.10.(2019·宁波十校联考)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.解 (1)设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q ,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1. (2)假设{a n +1}是等比数列,则对任意的k ∈N *,(a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾.故数列{a n +1}不是等比数列.能力提升题组(建议用时:25分钟)11.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A.12B.13C.14D.15 解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.答案 C12.(2019·临沂模拟)数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A.(3n -1)2B.12(9n -1)C.9n -1D.14(3n -1)解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B13.(2019·沈阳模拟)在等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是________.解析 当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3,当且仅当a 1=a 3=1时等号成立.当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1,当且仅当a 1=a 3=-1时等号成立.所以,S 3的取值范围是(-∞,-1]∪[3,+∞).答案 (-∞,-1]∪[3,+∞)14.(2019·四川卷)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值. 解 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2),所以q =2.从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以,数列{a n }是首项为2,公比为2的等比数列,故a n =2n .(2)由(1)得1a n=12n , 所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000, 即2n >1 000,因为29=512<1 000<1 024=210,所以n ≥10,于是,使|T n -1|<11 000成立的n 的最小值为10.15.(2019·绍兴模拟)已知正项数列{a n }的奇数项a 1,a 3,a 5,…a 2k -1,…构成首项a 1=1的等差数列,偶数项构成公比q =2的等比数列,且a 1,a 2,a 3成等比数列,a 4,a 5,a 7成等差数列.(1)求数列{a n }的通项公式;(2)设b n =a 2n +1a 2n,T n =b 1b 2…b n ,求正整数k ,使得对任意n ∈N *,均有T k ≥T n . 解 (1)由题意:⎩⎨⎧a 22=a 1a 3,2a 5=a 4+a 7,设a 1,a 3,a 5,…,a 2k -1,…的公差为d ,则a 3=1+d ,a 5=1+2d ,a 7=1+3d ,a 4=2a 2,代入⎩⎨⎧a 22=1(1+d ),1+d =2a 2,又a 2>0,故解得⎩⎨⎧a 2=2,d =3. 故数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3n -12,n 为奇数,2n 2,n 为偶数,(2)b n =3n +12n ,显然b n >0,∵b n +1b n=3n +42n +13n +12n=3n +46n +2<1,∴{b n }单调递减,又b 1=2,b 2=74,b 3=108,b 4=136,∴b 1>b 2>b 3>1>b 4>b 5>…,∴k =3时,对任意n ∈N *,均有T 3≥T n .。

高考文科数学一轮复习:等比数列及其前n项和共96页

高考文科数学一轮复习:等比数列及其前n项和共96页

谢谢!
高考文科数学一轮复习:等比数列及 其前n项和
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
ቤተ መጻሕፍቲ ባይዱ
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学(文)一轮复习精品资料1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (q ≠0)表示.数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数),或a n +1a n=q (n ∈N *,q 为非零常数). 2. 等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1;通项公式的推广:a n =a m qn -m.(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q1-q.3.等比数列及前n 项和的性质(1)如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=ab .(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m. (4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.高频考点一 等比数列的基本运算例1、(1)[2017·全国卷Ⅱ]我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 【答案】B【解析】设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则由题意知S 7=381,q =2,∴S 7=a 1-q 71-q=a 1-271-2=381,解得a 1=3.故选B.(2)[2017·江苏高考]等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.【答案】32【方法技巧】等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)所求问题可迎刃而解.解决此类问题的关键是熟练掌握等比数列的有关公式,并灵活运用,在运算过程中,还应善于运用整体代换思想简化运算的过程.【变式探究】(1)[已知等比数列{a n }的前n 项和为S n ,a 1+a 3=52,且a 2+a 4=54,则S na n =( )A .4n -1B .4n -1C .2n -1D .2n-1【答案】D【解析】设等比数列的公比为q ,由题意,得⎩⎪⎨⎪⎧a1+q2=52,a 1q+q2=54,解得⎩⎪⎨⎪⎧a 1=2,q =12,则a n =a 1·⎝ ⎛⎭⎪⎫12n -1=a 12n -1,S n =a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=a 1n-2n -1,所以S n a n=2n-1.故选D.(2)已知S n 是各项均为正数的等比数列{a n }的前n 项和,若a 2·a 4=16,S 3=7,则a 8=________. 【答案】128高频考点二 等比数列的性质例2、(1)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 2 【答案】A【解析】(a 1a 2a 3)×(a 7a 8a 9)=a 65=50,a 4a 5a 6=a 35=5 2.选A.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=________. 【答案】31【解析】a 3a 5=a 2a 6=64,因为a 3+a 5=20,所以a 3和a 5为方程x 2-20x +64=0的两根,因为a n >0,q >1,所以a 3<a 5,所以a 5=16,a 3=4,所以q =a 5a 3=164=2,所以a 1=a 3q 2=44=1,所以S 5=1-q 51-q=31. 【举一反三】(1)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18 C.578 D.558 【答案】A【解析】因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.故选A.(2)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ) A .80 B .30 C .26 D .16 【答案】B【解析】由题意知公比大于0,由等比数列性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列. 设S 2n =x ,则2,x -2,14-x 成等比数列. 由(x -2)2=2×(14-x ), 解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列.又∵S 3n =14,∴S 4n =14+2×23=30.故选B. 【方法技巧】等比数列的性质应用问题(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要. 高频考点三 等比数列的判定与证明例3、已知数列{a n }满足对任意的正整数n ,均有a n +1=5a n -2·3n,且a 1=8. (1)证明:数列{a n -3n}为等比数列,并求数列{a n }的通项公式; (2)记b n =a n3n ,求数列{b n }的前n 项和T n .【方法技巧】等比数列的判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列. (2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列. (4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列. 【变式探究】 已知数列{a n }满足2a 1+4a 2+ (2)a n =n n +2.(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;(2)求数列{a n }的前n 项和T n .解 (1)证明:当n =1时,由2a 1=1,得a 1=12,当n ≥2时,由2a 1+4a 2+ (2)a n =n n +2,得2a 1+4a 2+…+2n -1a n -1=n -1n2,于是2na n =n n +12-n -1n2=n ,1. (2018年浙江卷)已知成等比数列,且.若,则A. B.C.D.【答案】B 【解析】令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但, 即,不合题意;因此,,选B.2. (2018年浙江卷)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列 {b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.【答案】(Ⅰ)(Ⅱ)【解析】.设,所以,因此,又,所以.3. (2018年江苏卷)设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。

下面讨论数列的最大值和数列的最小值().①当时,,当时,有,从而.因此,当时,数列单调递增,故数列的最大值为.②设,当x>0时,,所以单调递减,从而<f(0)=1.当时,,因此,当时,数列单调递减,故数列的最小值为.因此,d的取值范围为.4. (2018年全国I卷)已知数列满足,,设.(1)求;(2)判断数列是否为等比数列,并说明理由;(3)求的通项公式.【答案】(1) b1=1,b2=2,b3=4.(2) {b n}是首项为1,公比为2的等比数列.理由见解析.(3) a n=n·2n-1.【解析】(1)求的通项公式;(2)记为的前项和.若,求.【答案】(1)或(2)【解析】1.[2017·北京高考]已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,所以2a 1+4d =10, 解得d =2,所以a n =2n -1. (2)设等比数列{b n }的公比为q ,因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3, 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n-12.2.【2017课标1,文17】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)32)1(321+⋅-+=n n n S ,证明见解析. 【解析】(1)设{}n a 的公比为q .由题设可得121(1)2(1)6a q a q q +=⎧⎨++=-⎩ ,解得2q =-,12a =-. 故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列.3.【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){ b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(Ⅰ)2nn a =.(Ⅱ)2552n nn T +=-. 【解析】12231357212122222n n n n n n T c c c --+=+++=+++++, 又234113572121222222n n n n n T +-+=+++++, 两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-. 4.【2017北京,文15】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求和:13521n b b b b -++++.【答案】(Ⅰ)21n a n =- ;(Ⅱ)312n -.【解析】【2016高考天津文数】(本小题满分13分) 已知{}n a 是等比数列,前n 项和为()n S n N ∈*,且6123112,63S a a a -==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意的,b n n N ∈*是2log n a 和21log n a +的等差中项,求数列(){}21nn b -的前2n 项和.【答案】(Ⅰ)12-=n n a (Ⅱ)22n []【解析】2212212221224232221222)(2)()()(n b b n b b b b b b b b b T n n n n n =+=+⋅⋅⋅++=+-+⋅⋅⋅++-++-=-【2015高考广东,文13】若三个正数a ,b ,c 成等比数列,其中526a =+526c =-,则b = . 【答案】1【解析】因为三个正数a ,b ,c 成等比数列,所以(25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1.【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = . 【答案】6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴264n =,∴n=6.。

相关文档
最新文档