高中数学等比数列求和
无穷的等比数列求和公式

无穷的等比数列求和公式在我们学习数学的旅程中,有一个非常有趣且重要的概念——无穷的等比数列求和公式。
这玩意儿听起来好像有点复杂,有点高大上,但其实啊,只要咱们好好琢磨琢磨,就能发现其中的奥秘和乐趣。
先来说说啥是等比数列。
比如说,有这么一组数:1,2,4,8,16...... 每一个数都是前一个数乘以 2 得到的,这就是等比数列。
那要是这个等比数列一直延伸下去,没有尽头,这时候要求它的和,就得用到咱们今天的主角——无穷的等比数列求和公式啦。
公式是这样的:当公比 q 的绝对值小于 1 时,无穷等比数列的和 S= a₁ / (1 - q) ,这里的 a₁是数列的首项,q 是公比。
记得我当年上高中的时候,有一次数学老师在课堂上讲这个公式,好多同学都一脸懵,觉得太难懂啦。
我当时也有点迷糊,但是心里就憋着一股劲儿,非得把它搞明白不可。
下课后,我拿着课本和笔记,跑到教室外面的小花园里,找了个安静的角落坐下,开始自己琢磨。
阳光透过树叶的缝隙洒在我的本子上,微风轻轻吹过,带来一阵花香。
我就盯着那个公式,一遍又一遍地看,脑子里想着老师讲的例子。
我先试着把那个等比数列 1,1/2,1/4,1/8...... 套进公式里。
首项a₁是 1,公比 q 是 1/2 ,那根据公式算出来的和就是 1÷(1 - 1/2) = 2 。
我又自己多写了几个数加起来验证一下,嘿,还真对!那一刻,我心里别提多高兴了,就好像解开了一个超级难的谜题。
咱们再来说说这个公式在实际生活中的用处。
比如说,银行的利息计算。
假设你每年在银行存 1000 块钱,年利率是 5% ,而且利息每年都滚入本金继续生息。
这其实就可以看成一个等比数列,首项是1000 ,公比是 1 + 5% = 1.05 。
如果想知道很多年后你能有多少钱,就可以用这个无穷的等比数列求和公式来算一算。
还有啊,在物理学中,比如研究一些衰减的振动,也会用到这个公式。
比如说一个小球在弹簧上不停地振动,每次振动的幅度都在减小,这也能构成一个等比数列。
数列求和常见的7种方法

数列求和的根本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法〔合并法求和〕 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个根本方法。
数列是高中代数的重要容,又是学习高等数学的根底. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要容之一,除了等差数列和等比数列有求和公式外,大局部数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的根本方法和技巧. 一、利用常用求和公式求和利用以下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 〔利用常用公式〕=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n 〔利用常用公式〕 ∴1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②〔设制错位〕 ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 〔错位相减〕再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 函数〔1〕证明:;〔2〕求的值.解:〔1〕先利用指数的相关性质对函数化简,后证明左边=右边 〔2〕利用第〔1〕小题已经证明的结论可知, 两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假设将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 〔分组〕 当a =1时,2)13(n n n S n -+==2)13(nn + 〔分组求和〕当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n 〔分组求和〕 =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终到达求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 〔7〕)11(1))((1CAn B An B C C An B An a n +-+-=++=〔8〕n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111〔裂项〕则 11321211+++⋅⋅⋅++++=n n S n 〔裂项求和〕=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n 〔裂项〕∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n 〔裂项求和〕=)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法〔合并法求和〕针对一些特殊的数列,将*些项合并在一起就具有*种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假设103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的构造及特征进展分析,找出数列的通项及其特征,然后再利用数列的通项提醒的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项及特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n 〔找通项及特征〕=])4)(3(1)4)(2(1[8+++++⋅n n n n 〔设制分组〕=)4131(8)4121(4+-+++-+⋅n n n n 〔裂项〕∴∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n 〔分组、裂项求和〕 =418)4131(4⋅++⋅ =313 提高练习:1.数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c n nn ,求证:数列{}n c 是等差数列; 2.设二次方程n a *2-n a +1*+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122*N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。
高中数学数列求和的五种方法

⾼中数学数列求和的五种⽅法⼀、公式法求和例题1、设 {an} 是由正数组成的等⽐数列,Sn为其前 n 项和,已知 a2 · a4=1 , S3=7,则 S5 等于( B )(A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2解析:∵ {an} 是由正数组成的等⽐数列 , 且 a2 · a4 = 1, q > 0 ,例题1图注:等⽐数列求和公式图例题2、已知数列 {an} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B )(A) 16 (B) 8 (C) 4 (D) 不确定解析:由数列 {an} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {an} 是等差数列,由S25= 1/2 ×(a1 + a25)× 25 = 100 ,解得 a1+a25 = 8,所以 a1+a25 = a12+a14 = 8。
注:等差数列求和公式图⼆、分组转化法求和例题3、在数列 {an} 中, a1= 3/2 ,例题3图(1)解析:例题3图(2)故例题3图(3)∵ an>1,∴ S < 2="">∴有 1 < s=""><>∴ S 的整数部分为 1。
例题4、数列例题4图(1)例题4图(2)解析:例题4图(3)三、并项法求和例题5、已知函数 f(x) 对任意 x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少?解析:由条件可知:f(x)+f(1-x)=1,⽽x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。
高中数学 数列求和常见的7种方法

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征) ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c nnn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。
数学累加公式

数学累加公式
数学中的累加公式,通常用于计算一组数的总和。
以下是一些常见的数学累加公式:
1. 等差数列的求和公式
对于一个等差数列,其公差为d,首项为a1,末项为an,那么它的前n项和Sn为:
Sn = (a1 + an) * n / 2
其中n为项数。
2. 等比数列的求和公式
对于一个等比数列,其公比为q,首项为a1,末项为an,那么它的前n项和Sn为:
如果q ≠1:
Sn = a1 * (1 - q^n) / (1 - q)
如果q = 1:
Sn = a1 * n
其中n为项数。
3. 奇偶数的求和公式
对于一组连续的奇数或偶数,它们的和可以用以下公式求出:- 连续n个奇数的和:
n^2
- 连续n个偶数的和:
n * (n + 1)
其中n为个数。
4. 平方数的求和公式
对于一组连续的平方数,它们的和可以用以下公式求出:
1^2 + 2^2 + 3^2 + ... + n^2 = n * (n + 1) * (2n + 1) / 6
其中n为最大的平方数。
以上是常见的数学累加公式,它们在数学中有着广泛的应用,例如在计算数列的平均数、方差等方面都有重要作用。
高中数列求和公式

数列求和的基本方法和技巧利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n3、 )1(211+==∑=n n k S nk n 自然数列4、 )12)(1(6112++==∑=n n n k S nk n 自然数平方组成的数列[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)∴ 1224-+-=n n n S 练习:*提示:不要觉得重复和无聊,乘公比错位相减的关键就是熟练! 通项为{a n · b n },1、an 是自然数列,bn 是首项为1,q 为2的等比数列2、an 是正偶数数列,bn 是首项为1,q 为2的等比数列3、an 是正奇数数列,bn 是首项为1,q 为2的等比数列4、an 是正偶数数列,bn 是首项为3,q 为3的等比数列5、an 是正奇数数列,bn 是首项为3,q 为3的等比数列6、an 是自然数列,bn 是首项为3,q 为3的等比数列 三、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a=1时,2)13(nn n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111nn aa S n n -+--==2)13(11n n a a a n -+---[例6] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=k k k nk nk nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n四、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n ====》升级分母是n(n+2)呢?---重点掌握这个型裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<=[例7] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n(裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例8] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n nS n (裂项求和)=)111(8+-n = 18+n n。
等比数列求和公式高中数学

等比数列求和公式高中数学
等比数列的求和公式在高中数学中主要有两种情况:
有限项等比数列求和:如果一个等比数列的首项为a1,公比为q (q≠1),共有n项,则其前n项和S_n可以通过下面的公式计算:S_n = a1 * (1 - q^n) / (1 - q)
无限项等比数列求和:当|q| < 1时(即公比绝对值小于1,保证级数收敛),无限项等比数列的和可以表示为:S = a1 / (1 - q)
请注意,如果公比q等于1,那么所有项都相等,可以直接用乘法算出总和,即S_n = n * a1。
另外,当公比q等于-1且项数n为偶数时,由于正负项相互抵消,也可以具体计算得出结果;若项数为奇数则不能直接使用上述公式。
等比数列求和

等比数列求和等比数列求和是高中数学中的一个重要概念,通过此概念可以计算一系列具有等比关系的数的和。
在本文中,我将详细解释等比数列求和的原理和公式,以及如何应用这些知识解决实际问题。
首先,让我们来了解等比数列的概念。
等比数列是一组按照相同比例递增或递减的数的序列。
数列中的每一项都是前一项乘以相同的比例得到的。
比如,1,3,9,27,81就是一个等比数列,其中每一项都是前一项乘以3得到的。
当我们需要计算等比数列的和时,我们可以使用等比数列求和公式。
根据公式,等比数列的和是第一项与等比数列公比的次方之差除以公比减1,再乘以公比。
其数学表达式为S = a(1 - r^n)/(1 - r),其中S表示等比数列的和,a表示第一项,r表示公比,n表示项数。
接下来,我将以一个实际问题为例来演示如何应用等比数列求和公式。
假设我们要计算投资项目的未来收益,该项目每年的回报率为10%。
我们分别在第1年、第2年、第3年和第4年投入了1000美元、1100美元、1210美元和1331美元。
我们想知道在未来4年内的总收益是多少。
首先,我们可以观察到这是一个等比数列,其中第一项a为1000美元,公比r为1.10,共有4项。
使用等比数列求和公式,我们可以得到S = 1000(1 - 1.10^4)/(1 - 1.10) = 4641美元。
因此,在未来4年内,我们的总收益将达到4641美元。
在实际应用中,等比数列求和的概念经常用于计算复利。
复利是指利息在计算期间被加入到本金中,从而积累更多利息的过程。
比如,我们将1000美元存入一家银行,该银行的年利率为5%。
我们计划将这笔钱存放5年,每年不动。
我们想知道在5年后,我们的总收益是多少。
同样地,我们可以观察到这是一个等比数列,其中第一项a为1000美元,公比r为1.05,共有5项。
使用等比数列求和公式,我们可以得到S = 1000(1 - 1.05^5)/(1 - 1.05) = 2762.82美元。
高中数列求和方法大全(配练习及答案)

数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+- 的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
等比数列求导求和公式

等比数列求导求和公式等比数列在我们的数学学习中可是个重要的角色呢!它就像是一个神秘的魔法序列,有着独特的规律和魅力。
咱们先来说说等比数列的定义。
简单来讲,等比数列就是从第二项起,每一项与它的前一项的比值等于同一个常数,这个常数就叫做公比,通常用字母 q 来表示。
比如说,2,4,8,16,32……这就是一个公比为 2 的等比数列。
那等比数列的通项公式是啥呢?设等比数列的首项是 a₁,公比是 q,那么第 n 项 aₙ 就等于 a₁×q⁽ⁿ⁻¹⁾。
比如说,一个等比数列首项是 3,公比是 2,那它的第 5 项就是 3×2⁽⁵⁻¹⁾ = 48 。
接下来就是重点中的重点啦,等比数列的求和公式。
当公比 q 不等于 1 时,前 n 项和 Sₙ = a₁×(1 - qⁿ) / (1 - q) 。
我记得我上学那会,为了搞懂这个公式,可是费了不少劲。
有一次做作业,遇到了一道等比数列求和的难题,我盯着题目看了半天,脑袋里一片浆糊。
我就试着把公式写出来,一点点代入数字,不停地计算,算错了就重新再来,折腾了好久,终于算出了正确答案,那种成就感,别提多爽了!那等比数列的求导公式又是啥呢?这得从函数的角度来看。
如果我们把等比数列看成一个函数,那么对其求导就能得到一些有趣的结果。
不过这部分知识在高中阶段涉及得相对较少,在大学的高等数学里会有更深入的研究和应用。
在实际生活中,等比数列的应用也不少呢。
比如说,银行存款的复利计算,就是一个典型的等比数列问题。
假设年利率是 5%,每年复利一次,初始本金是10000 元,那么n 年后的本息和就是一个等比数列。
再比如,在计算机科学中,等比数列也常常出现在算法的时间复杂度分析里。
总之,等比数列虽然看起来有点复杂,但只要我们掌握了它的规律和公式,就能轻松应对各种相关的问题。
就像我们在生活中遇到的困难一样,只要找到了方法,就能迎刃而解。
所以呀,同学们,别害怕等比数列,多练习,多思考,它一定会成为我们的好朋友!。
等比数列求和公式及通项公式

等比数列求和公式及通项公式哎,说到等比数列,我可是深有感触啊。
记得高中那会儿,数学老师一提到这个,我就头疼得要命。
但现在回想起来,等比数列求和公式和通项公式其实还挺有趣的。
先来说说等比数列求和公式吧。
咱们举个例子,比如有一个数列:2,4,8,16,32……,这个数列就是一个等比数列,因为每一项都是前一项的2倍。
那我们怎么求这个数列的和呢?哈哈,这时候就要用到求和公式了。
公式是这样的:S = a1 * (1 q^n) / (1 q),其中S表示数列的和,a1是首项,q是公比,n是项数。
咱们用刚才的例子来算一下:S = 2 * (1 2^5) / (1 2) = 62。
怎么样,是不是觉得这个公式有点意思?再来说说通项公式。
这个公式是用来求等比数列第n项的值的。
公式是这样的:an = a1 * q^(n1),其中an表示第n项,a1是首项,q是公比,n是项数。
比如说,我们要找刚才那个数列的第10项,就可以用通项公式来算:a10 = 2 * 2^(101) = 2^9 = 512。
是不是很简单?不过,说到这里,我有个小疑问。
大家有没有想过,为什么等比数列的求和公式和通项公式是这样的呢?其实,这个背后有一个有趣的故事。
据说,这个公式最早是由古希腊数学家欧几里得提出的。
他发现,在等比数列中,如果我们把每一项都乘以公比q,那么得到的数列就是原来的数列的下一项。
这个规律,就是等比数列的通项公式。
而等比数列求和公式,则是欧几里得在研究几何问题时发现的。
他发现,在等比数列中,如果我们把每一项都乘以公比q,然后把它们相加,得到的和就是首项a1和末项an的乘积。
这个规律,就是等比数列求和公式。
哈哈,没想到吧,等比数列的求和公式和通项公式背后还有这样的故事。
不过,说到底,数学就是一门充满奥秘的学科,等着我们去探索。
好了,今天就跟大家聊到这里。
希望大家通过这篇课件,对等比数列求和公式和通项公式有更深入的了解。
下次再见!。
高中数学知识点总结等差数列与等比数列的求和性质

高中数学知识点总结等差数列与等比数列的求和性质等差数列(Arithmetic Progression)和等比数列(Geometric Progression)是高中数学中常见的数列类型,它们在数学和实际问题的解决中起到了重要的作用。
本文将对等差数列和等比数列的求和性质进行总结和讨论。
一、等差数列的求和性质等差数列是指一个数列中每个相邻的两个数之差都相等的数列。
设等差数列的首项为a₁,公差为d,第n项为aₙ,则该数列的通项公式为:aₙ = a₁ + (n-1)d等差数列的前n项和(即等差数列的求和)可以通过以下公式来计算:Sₙ = (a₁ + aₙ)n/2其中,Sₙ表示前n项和。
例如,若我们有等差数列:2,4,6,8,10,则首项a₁为2,公差d为2。
若我们要计算前5项的和,则利用公式可以得到:S₅ = (2 + 10) × 5/2 = 12 × 5/2 = 30所以,该等差数列的前5项和为30。
二、等比数列的求和性质等比数列是指一个数列中每个相邻的两个数之比都相等的数列。
设等比数列的首项为a₁,公比为r,第n项为aₙ,则该数列的通项公式为:aₙ = a₁ × r^(n-1)等比数列的前n项和可以通过以下公式来计算:Sₙ = a₁ × (1 - rⁿ)/(1 - r)其中,Sₙ表示前n项和。
例如,若我们有等比数列:3,6,12,24,48,则首项a₁为3,公比r为2。
若我们要计算前4项的和,则利用公式可以得到:S₄ = 3 × (1 - 2⁴)/(1 - 2) = 3 × (1 - 16)/(-1) = 3 × (-15) = -45所以,该等比数列的前4项和为-45。
以上就是等差数列和等比数列的求和性质的总结。
这些性质在解决数学问题时非常有用,可以帮助我们计算数列的和,从而更好地理解和应用这些数列。
通过掌握这些概念和公式,我们能够更加高效地解决与等差数列和等比数列相关的问题。
高中数列求和方法总结

高中数列求和方法总结
数列求和是高中数学中的重要知识点之一,下面总结几种常见的数列求和方法。
1. 等差数列求和公式:
对于等差数列$a_1, a_2, a_3, ..., a_n$,其中公差为d。
则求
和公式为:
$S_n = \frac{n}{2}(a_1 + a_n)$
其中,$S_n$表示前n项和。
2. 等比数列求和公式:
对于等比数列$a_1, a_2, a_3, ..., a_n$,其中公比为q(不为零)。
则求和公式为:
$S_n = \frac{a_1(1-q^n)}{1-q}$
其中,$S_n$表示前n项和。
3. 部分和公式:
当数列不是等差或等比数列时,可以考虑使用部分和公式。
如果数列的通项表达式为$f(n)$,则前n项和为$S_n = f(1) +
f(2) + f(3) + ... + f(n)$。
例如,对于数列$1, 4, 7, 10, ...$,通项表达式为$a_n = 3n-2$,则前n项和为$S_n = \sum_{i=1}^{n}(3i-2)$。
4. 偶数项和与奇数项和:
当数列为周期性的时候,可以考虑分别计算偶数项和与奇数
项和,然后相加得到总和。
例如,对于数列$1, -2, 3, -4, 5, -6, ...$,可以将它分为偶数项
$-2, -4, -6, ...$与奇数项$1, 3, 5, ...$,分别计算偶数项和与奇数项和,然后相加得到总和。
以上是常见的数列求和方法总结。
掌握这些方法可以帮助我们更快地计算数列的和。
高中数学完整讲义——数列3.等比数列3-等比数列的通项公式与求和

3D .3L S ,则 10等于.【例6】 等比数列 {a }中, a = 512 ,公比 q = - ,用 ∏ 表示它前 n 项的积: ∏ = a a ...a ,2【例7】已知数列{a }的前 n 项和为 S , S = (a - 1)(n ∈ N * ) .3n高中数学讲义等比数列的通项公式与求和典例分析【例1】 在等比数列 {a }中, a = 2 , a = 128 ,则它的公比 q = _______,前 n 项和 S = _______.n2 5 n【例2】 等差数列 {a }的前 n 项和为 S ,且 6S - 5S = 5 ,则 a =.nn 5 3 4【例3】 设等比数列 {a }的前 n 项和为 S ,若 n n SS 6 = 3 ,则 3S S9 = ( )6A . 2B .73C .8【例4】 设 {a }是公比为 q 的等比数列, q > 1 ,令 b = a + 1(n = 1,2 , ) ,若数列 {b }有连续四项nnnn在集合 {-53,- 23,19 ,37 ,82}中,则 6q =.【例5】 等比数列 {a }的首项 a = -1 ,前 n 项和为 S ,公比 q ≠ 1 ,若 S 10 = n1n531 32a a 51 n1nn1 2n则 ∏ , ∏ ,…, ∏ 中最大的是_______.12n1nnn⑴求 a , a , a 的值; 123⑵求 a 的通项公式及 S .n10思维的发掘 能力的飞跃 1【例11】在等比数列 {a }中, a = 2 , a + a = .若数列 {a }的公比大于1 ,且 b = log n ,求数3 93 2 【例13】等比数列{a } 中,已知对任意自然数 n , a + a + a + ⋯ + a = 2n - 1 ,高中数学讲义【例8】 在等比数列 {a }中, a ⋅ a ⋅ a = 27 , a + a = 30n1 2 3 2 4试求:⑴ a 和公比 q ;⑵前 6 项的和 S .16【例9】 在等比数列 {a }中,已知对任意正整数 n ,有 S = 2n - 1 ,则 a 2 + a 2 + L + a 2 = ________.nn 1 2 n【例10】求和: (a - 1) + (a 2 - 2) + L + (a n - n ),( a ≠ 0) .20 a n 4 3 5 n n列 {b }的前 n 项和 S .nn【例12】在各项均为正数的等比数列 {b }中,若 b ⋅ b = 3 ,则 log b + log b + …… + log b 等于(n783 13 23 14)A . 5B . 6C . 7D . 8n123n则 a 2 + a 2 + ⋅⋅⋅ + a 2 = (12n)2思维的发掘 能力的飞跃2 【例15】在等比数列 {a }中, a = 2 , a + a = .若数列 {a }的公比大于1 ,且 b = log n ,求数3 93 2 是方程 x 2 - c x + ( )n = 0 的两根,且a = 2 ,求数列{c } 的前 n 项和3A . (2n - 1)B . 高中数学讲义1 (2n - 1) C . 4n - 1 D . 1 (4n - 1) 3 3【例14】若 lg x + lg x 2 +⋯+ lg x 10 = 110 ,求 lg x + lg 2 x +⋯+ lg 10 x 的值.20 an 4 3 5 n n列 {b }的前 n 项和 S .nn【例16】在等比数列 {a }的前 n 项中, a 最小,且 a + a = 66, a a n11n2 n -1和公比 q .= 128 ,前 n 项和 S = 126 ,求 nn【例17】设等比数列 {an}前 n 项和为 S n,若 S + S = 2S ,求数列的公比 q . 3 6 9【例18】 {a } 的相邻两项 a ,a n n n +1S .n思维的发掘 能力的飞跃3【例19】已知数列 {a }:1 , 2(- ) , 3(- )2 ,…, n (- )n -1,求它的前 n 项和.2 2 2【例20】已知:数列{a } 满足 a + 3a + 32 a + L + 3n -1 a = , a ∈ N .3 ⑵设 b = , 求数列 {b } 的前 n 项和 S a⑵求数列 {T }的通项公式.高中数学讲义1 1 1 nn n 1 2 3 n +⑴求数列 {a } 的通项;nnn n nn【例21】已知数列 {a }的通项公式为 a = n ⋅ 5n ,求其前 n 项和公式.nn【例22】求数列 a , 2a 2 , 3a 3,…, na n ,…,( a 为常数)的前 n 项的和.【例23】已知等差数列 {a },公差为 d ,求 S = a x + a x 3 + a x 5 + L a x 2n -1 ( x ≠ 1且x ≠ 0)nn 1 2 3 n【例24】设 {a }为等比数列, T = na + (n - 1)a + ⋅⋅⋅ 2a nn12n -1⑴求数列 {a }的首项和公比; nn+ a ,已知 T = 1 , T = 4 .n1 24思维的发掘 能力的飞跃⑵ 设 b= 2n ,求数列 {a b }的前 n 项和 S . 2高中数学讲义【例25】已知 a ≠ 1,数列 {a } 是首项为 a ,公比为 a 的等比数列,令 b = a lg a n (a > 0, n ∈ N * ) ,nn n⑴当 a = 2 时,求数列 {b } 的前 n 项和 S ;nn⑵若数列 {b } 中的每一项总小于它后面的项时,求 a 的取值范围.n【例26】已知函数 f (x ) 是一次函数,且 f (8) = 15 , f (2), f (5) , f (14) 成等比数列,设 a = f (n ),n(n ∈ N *).⑴ 求 T ;nnn nn【例27】设等比数列 {a }的公比为 q ,前 n 项和 S > 0 (n ∈ N nn⑴求 q 的取值范围;+) .⑵设 b = a n n +2 3- a 2 n +1,记 {b }的前 n 项和为 T ,试比较 S 与 T 的大小.n n n n【例28】设 {a }是由正数组成的等比数列, S 是前 n 项和,证明 log 0.5 S n + log 0.5 Sn +2 > log n n0.5 Sn +1思维的发掘 能力的飞跃5⑵是否存在常数 C > 0 使得 = lg (S 高中数学讲义【例29】设 {a n }是由正数组成的等比数列, S n 是前 n 项和.⑴证明: lg S + lg Sn2n +2 < lg S n +1 ; lg (S - C ) + lg (S - C )n n +22n +1- C )成立?并证明你的结论.【例30】用分期付款方式购买家用电器一件,价格为1150 元,购买当天先付150 元,以后每月这一天都交付 50 元,并加付欠款的利息,月利率为1 %,若交付150 元后的第一个月开始算分期付款的第一个月,问分期付款的第十个月该交付多少钱?全部货款付清后,买这件家 电实际花了多少钱?【例31】从盛满 a 升 (a > 1)纯酒精的溶液里倒出1 升,然后填满水,再倒出1 升混合溶液后又用水填满.如此继续下去,那么第 n 次操作后溶液的浓度是多少?【例32】某企业年初有资金1000 万元,如果该企业经过生产经营能使每年资金平均增长率为50 %,但每年年底都要扣除消费基金 x 万元,余下基金投入再生产,为实现经过 5 年资金达到2000 万元(扣除消费基金后),那么每年应扣除消费基金多少万元(精确到万元)?6思维的发掘 能力的飞跃高中数学讲义【例33】小芳同学若将每月省下的零花钱5元在月末存入银行,月利按复利计算,月利率为0.2%,每够一年就将一年的本利和改存,年利按复利计算,年利率为6%,问三年后取出本利共多少元(保留到个位)?【例34】用n个不同的实数a,a,L,a可得到n!个不同的排列,每个排列为一行写成一个n!行的12n数阵。
高中数学等比数列通项求和公式

高中数学等比数列通项求和公式高中数学等比数列通项求和公式大全学好数学的关键是公式的掌握,数学在多个不同领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。
下面是小编为大家整理的高中数学等比数列通项求和公式,希望能帮助到大家!等比数列通项求和公式an=a1__q’(n-1)(其中首项是a1,公比是q)an=Sn-S(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为Sn=a1(1-q’n)/(1-q)=(a1-a1__q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为Sn=na1高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。
象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。
等比数列的求和方式是什么

等比数列的求和方式是什么等比数列求和公式q≠1时 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)q=1时Sn=na1(a1为首项,an为第n项,d为公差,q 为等比)这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。
注:q=1 时,{an}为常数列。
利用等比数列求和公式可以快速的计算出该数列的和。
等比数列求和公式推导Sn=a1+a2+a3+...+an(公比为q)qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)Sn-qSn=(1-q)Sn=a1-a(n+1)a(n+1)=a1qnSn=a1(1-qn)/(1-q)(q≠1)高中数学公式总结圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
两角和公式1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) 4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb等差数列1、等差数列的通项公式为:an=a1+(n-1)d(1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N__,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)__项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1__q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N__,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap__aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.抛物线1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。
数列求和的8种常用方法(最全)

数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位)①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。
高中数学_数列求和及数列通项公式的基本方法和技巧

大沥高级中学论文数列求和的基本方法和技巧关键词:数列求和 通项分式法 错位相减法 反序相加法 分组法 分组法合并法数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定 的技巧 . 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式: S nn( a 1 a n )na 1n(n 1) d22na 1q n )(q1)2、 等比数列求和公式: S n a 1 (1a 1 a n q (q 1)1 q1 q自然数方幂和公式:n1n( n 1)nk 21n(n 1)(2n 1)3、 S nk4、 S nk 12k16nk 3 [ 1n( n 1)]25、 S nk12[ 例 ] 求和 1+x 2 +x 4+x 6+,x 2n+4(x ≠0)解:∵x ≠0∴该数列是首项为 1,公比为 x 2 的等比数列而且有 n+3 项 当 x 2=1 即 x =±1时 和为 n+3评注:(1) 利用等比数列求和公式.当公比是用字母表示时,应对其是否为 1 进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对 x 是否为 0 进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项.2n 1 对应高考考题:设数列1,( 1+2 ),, ,( 1+2+22),,, 的前顶和为s n ,则 s n 的值。
大沥高级中学论文二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列 {a n ·b n } 的前 n 项和,其中 { a n } 、 { b n } 分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学等比数列求和
等比数列是数学中常见的一种数列,它的特点是每一项与前一项的比值都相等。
在高中数学中,我们经常需要计算等比数列的和,这对于我们掌握数列的性质和运算规律非常重要。
我们来回顾一下等比数列的定义和性质。
等比数列可以用以下公式来表示:a,ar,ar²,ar³,...,其中a是首项,r是公比。
公比r不等于0,否则数列将变成等差数列。
在求等比数列的和时,我们可以通过以下方法来计算:
1. 等比数列求和公式
等比数列求和的公式是一个重要的工具,它可以用来计算任意项数的等比数列的和。
公式如下:
Sn = a * (1 - r^n) / (1 - r)
其中,Sn表示前n项的和,a是首项,r是公比。
2. 等比数列求和的步骤
求等比数列的和一般可以分为以下几个步骤:
(1)确定首项a和公比r;
(2)确定要求和的项数n;
(3)代入公式Sn = a * (1 - r^n) / (1 - r)计算结果。
需要注意的是,在使用等比数列求和公式时,我们需要确保公比r 不等于1,否则公式中的分母为0,无法计算。
此外,当公比r的绝对值小于1时,等比数列的和会趋于一个有限值;当公比r的绝对值大于1时,等比数列的和会趋于无穷大。
3. 实例分析
为了更好地理解等比数列求和的过程,我们来看一个实例。
例题:求等比数列1,3,9,27,...的前10项和。
解:根据题目,我们可以确定首项a=1,公比r=3,要求和的项数n=10。
将这些值代入公式Sn = a * (1 - r^n) / (1 - r),我们可以得到:
S10 = 1 * (1 - 3^10) / (1 - 3)
计算得到S10 = -29524/2 = -14762。
所以,等比数列1,3,9,27,...的前10项和为-14762。
通过这个例子,我们可以看到等比数列求和的具体步骤和计算过程。
当然,在实际应用中,我们也可以利用等比数列的性质,通过递推关系来求解等比数列的和。
总结起来,等比数列的求和是高中数学中的重要内容之一。
通过掌握等比数列的定义、性质和求和公式,我们可以更好地理解数列的运算规律,并且能够应用于实际问题的解决中。
希望通过本文的介绍,能够对等比数列的求和有一个更加深入的理解。