2021年中考数学模拟试题分类汇编无理数及二次根式
初中数学试题分类汇编:二次根式的计算专项训练3(培优 附答案)
初中数学试题分类汇编:二次根式的计算专项训练3(培优 附答案)1.观察下列等式: ①212121(21)(21)-==-++-;②323232(32)(32)-==-++-;③434343(43)(43)-==-++-;…… 回答下列问题:(1)利用你观察到的规律,化简:2322+ (2)计算: 12++23++34++……+99100+ 2.(1)若5的小数部分为 a , 5 5 的小数部分为 b ,求 ab(2)己知 a 、b 、c 在数轴上的位置如图所示,化简22()a a b a c b c -++-+-3.观察下面的变形规律:2121=+ 3232=+4343=+,5454=+… 解答下面的问题:(1)若n 11n n ++= ;(2)计算:213243+++20182017+)×20181+) 43535+-解:设x 3535+-222(35)(35)2(35)(35)x =++-++-235354x =+,x 2=10∴x=10..5.已知x+y=-3,xy=26.已知y=(,x y均为实数),则y的最大值与最小值之差为______.7.计算:21)3)(3--8.9.计算:(1(2)21-;(3(4)((5)22-.10.计算(1)⎛-⎝;(2a>0,b>0,c>0).11.已知4x2+y2 -4x-6y+10=0,求253y x⎛⎛+--⎝⎝的值.12.(1)计算:﹣(2)化简:(.13.(探究题)观察下列各式,通过分母有理化把不是最简二次根式的化成最简二次根式. (()()1212121212121⨯--===-++⨯-; ()()()1323232323232⨯--===-++⨯-. 同理可得4343=-+…… 从计算结果中找出规律,并利用这一规律计算 ()2013121324320132012++++⨯+ ⎪++++⎝⎭…的值. 14.计算(1)16-2153-62⨯() (2)72-1631(31)8++-() 15.计算:(1)()0112441238⨯-⨯⨯-; (2)326232423⎛⎫--- ⎪ ⎪⎝⎭16.计算:312211-2 4.55532÷⨯ 17.计算:(1)2+3--; (2)-÷2+(3-)(1+). 18.计算(1)﹣()2+(π+)0﹣+|﹣2| (2)(3﹣2+)÷2 (3)(2+)2﹣(+)(﹣) (4)19.计算:(共12分)(12412186) (248-24÷6(3)(25+3)(25-3)(4)(22-3)2 20.计算:(1)(2)23523521.(114124182854. 233⎛⎝(23×6)+|﹣2|+(12)﹣3﹣(π﹣3.14)0.22.计算:(122–2;(2666);(3)3232()22-.参考答案1.(1(2)9【解析】【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【详解】解:(1= (2++99+1100+-1=10-1=9.2.(1)47-(2)2c a -【解析】【分析】 (1)利用“逼近法”分别求出确定a ,b 值,再求ab 的值即可;(2)根据数轴可得出0,a b c a c b <<<>>,再根据二次根式的性质以及绝对值的性质化简即可.【详解】解:(1)∵22125==∴459,121125144<<∴23<<,1112<<a , 的小数部分为b ,∴2a =-,11b =∴11)252247ab ==-=-(2)由数轴可得出:0,a b c a c b <<<>>,∴0,0,0a b a c b c +<-<-<()()()2a b b c a a b a c b c c a +-=-++----=-.【点睛】本题考查的知识点是求无理数的小数部分,二次根式的化简以及绝对值的化简,掌握“逼近法”,二次根式的性质以及绝对值的性质是解此题的关键.3.(1(2)2017.【解析】【分析】(1)直接利用分母有理化法则化简求出答案;(2)利用前面的计算规律得到原式1...++1)⨯,然后把前面括号内合并后利用平方差公式计算即可.【详解】解:(1==;(2)原式=1...1)⨯=1)1)⨯=2018-1=2017.故答案为:2017【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4【解析】【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x2=2+2+,即x2=4+4+6,x2=14∴x=.0,∴x.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.5.2【解析】【分析】根据已知条件可知,x,y是负数,再由二次根式的性质化简,把原式用x+y和xy表示. 【详解】∵x+y=-3,xy=2,∴x<0,y<0,+===.∴原式【点睛】本题主要考查了二次根式的乘除法法则的加减法法则,先要根据式子,找出题目中的隐含条件,判断所含字母或式子的符号,再结合二次根式的定义和运算法则,把式子用x+y和xy表示,再整体代入求值.6-.【解析】【分析】将根据题意0y ≥,14x ≤≤,原式y =两边同时平方,可得236y ≤≤,y ,进而即可求得最大值与最小值之差.【详解】0y ≥,14x ≤≤,233y =+=+, 236y ∴≤≤.0y ≥,y∴y -. 【点睛】本题考查了二次根式的求值问题,解本题的关键是通过y 2为媒介求得y 的取值范围从而找出最大最小值.7.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.8【解析】【分析】设a =b =c =2220a b c +-=,2ab =,再把原式变形后代入求值即可.【详解】设a =b =c =2220a b c +-=,2ab =. 原式()()()()()22222ab a b c ab a b c ab a b c a b c a b c a b c ++++===+-+-+++- ()22222ab a b c a b c a b ab c ++==++++-= 【点睛】本题考查了二次根式的混合运算,将原式变为分式,再进行变形求解是解决此题的关键.9.(1)72;(2)3;(3)2;(4)2;(5)-【解析】【分析】根据根式的运算性质即可解题.【详解】解:(1-2×=4-12=72;(2)21+3=3;(32=2;(4)(=(-÷=2;(5)22-=22⎤⎤-⎦⎦2+2+]-【点睛】本题考查了根式的运算,中等难度,熟悉根式的运算性质是提关键. 10.(1) 43-;(2)2ab c【解析】 【试题分析】(1)先进行二次根式的化简,然后求解即可;(2)先进行二次根式的除法运算,然后化简求解.【试题解析】(1)原式=﹣4×=﹣; (2)原式==.11.2364+【解析】试题分析:先求出x 、y 的值,然后化简二次根式,合并同类二次根式,最后把x 、y 的值代入即可.试题解析:解:22(441)(69)0x x y y -++-+=,∴22(21)(3)0x y -+-=,∴2x -1=0,y -3=0,∴x =12,y =3. 原式=25x x xy x x xy 6x x xy 当x =12,y =3时,原式1136222236 12.(1)33(2)a 2﹣a b+2+a 【解析】 试题分析:根据二次根式的性质,先化简各二次根式为最简二次根式,然后合并同类二次根式即可.试题解析:(1)48﹣18130.5(2)(=a 2﹣a b+2+a . 13.2012.【解析】试题分析:当分母中含有两个二次根式时,可以用平方差公式先有理化分母,再化简求值.试题解析:)1+⨯=)11⨯ ))=11=20131=2012⨯-. 点睛:本题主要考查了二次根式混合运算,对于分母中含有两具二次根式,且开方数的差值相等的几个二次根式的和的计算,要先将分母有理化,即用分数的基本性质,把分母配成平方差的形式,运算后即可化去分母中的二次根式,再运用二次根式的加减法法则计算.14.(1)2)【解析】试题分析:(1)根据二次根式的混合运算的法则,结合乘法的分配律,以及二次根式的性质计算即可;(2)根据二次根式的分母有理化和平方差公式即可求解.试题解析:(1)6==-(2)11+21+-31+-=1224-+15.(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041-(2⎛- ⎝-0-=16【解析】312211-2 4.55532÷⨯=8622323225533÷-⨯=- 17.(1)23 (2) 364322-+ 【解析】.(1)原式=4+2--=2. (2)原式=4-+3+--1=4-+2. 18.(1) ﹣3;(2) ;(3) 20+4;【解析】 解:(1)原式=﹣3+1﹣3+2﹣=﹣3(2)原式=(6﹣+4)÷2 =÷2 = (3)原式=(23+4)﹣(5﹣2)=20+4 19.(1)-324;(2)2-2;(3)11;(4)1 【解析】(1)原式=6226 =-32 - (248÷6-24÷684=2-2(3)原式=(2225320911-=-=(4)原式=222)31-=-20.(1)922ab -(2)6215-+ 【解析】 试题分析:(1)根据二次根式的性质,分别化简二次根式为最简二次根式,然后合并同类二次根式即可; (2)先跟平方差公式和完全平方公式计算,再合并即可. 试题解析:(1)33118182ab a b ab a b-- 211•22?322ab a ab b ab a b =-- =1222322ab ab ab -- =922ab - (2)()()235235+--+ ()][()235235⎡⎤=+-⋅--⎣⎦ =()()22235--()232155=--+=28215-+=6215-+21.(1)566 (2)7-2 【解析】(1)解:原式=4261885433⎛⎫-÷⨯ ⎪⎝⎭=4218633854⎛⎫-÷⎪⨯⎝⎭ =1666-=566(2)解:原式=﹣+2+8﹣1=﹣3+2+7=7﹣.22.(12(2)-5(3)42【解析】(1)原式=(1+3–52=2;(2)原式=1–6=–5;(3)原式32342。
2021年四川省中考数学试题分类汇编——专题5二次函数(含解析)
2021年四川省中考数学试题分类汇编——专题5二次函数一.选择题(共8小题)1.(2021•达州)如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=12,有下列结论:①abc>0;②a+b>0;③4a+2b+3c<0;④无论a,b,c取何值,抛物线一定经过(c2a,0);⑤4am2+4bm﹣b≥0.其中正确结论有()A.1个B.2个C.3个D.4个2.(2021•广元)将二次函数y=﹣x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为()A.−214或﹣3B.−134或﹣3C.214或﹣3D.134或﹣33.(2021•广安)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0,②4a﹣2b+c<0,③a﹣b≥x(ax+b),④3a+c<0,正确的有()A.1个B.2个C.3个D.4个4.(2021•眉山)在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=﹣x2﹣4x+5B.y=x2+4x+5C.y=﹣x2+4x﹣5D.y=﹣x2﹣4x﹣5 5.(2021•资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为()A.﹣4≤a<−32B.﹣4≤a≤−32C.−32≤a<0D.−32<a<06.(2021•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的是()A.abc>0B.函数的最大值为a﹣b+cC.当﹣3≤x≤1时,y≥0D.4a﹣2b+c<07.(2021•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2.其中正确的结论有()A.2个B.3个C.4个D.5个8.(2021•泸州)直线l过点(0,4)且与y轴垂直,若二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a(其中x是自变量)的图象与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是()A.a>4B.a>0C.0<a≤4D.0<a<4二.填空题(共2小题)9.(2021•南充)关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:①当a<0时,抛物线与直线y=2x+2没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.其中正确结论的序号是.10.(2021•成都)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.三.解答题(共16小题)11.(2021•广元)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x…﹣10123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.12.(2021•达州)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润W元与降价x元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?13.(2021•达州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c交x轴于点A和C(1,0),交y轴于点B(0,3),抛物线的对称轴交x轴于点E,交抛物线于点F.(1)求抛物线的解析式;(2)将线段OE绕着点O沿顺时针方向旋转得到线段OE',旋转角为α(0°<α<90°),连接AE′,BE′,求BE′+13AE′的最小值;(3)M为平面直角坐标系中一点,在抛物线上是否存在一点N,使得以A,B,M,N 为顶点的四边形为矩形?若存在,请直接写出点N的横坐标;若不存在,请说明理由.14.(2021•广安)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c的图象与坐标轴相交于A、B、C三点,其中A点坐标为(3,0),B点坐标为(﹣1,0),连接AC、BC.动点P从点A出发,在线段AC上以每秒√2个单位长度向点C做匀速运动;同时,动点Q 从点B出发,在线段BA上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ,设运动时间为t秒.(1)求b、c的值.(2)在P、Q运动的过程中,当t为何值时,四边形BCPQ的面积最小,最小值为多少?(3)在线段AC上方的抛物线上是否存在点M,使△MPQ是以点P为直角顶点的等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.15.(2021•资阳)抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,当PE :BE =1:2时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,使点D 落在点D '处,且DD '=2CD ,点M 是平移后所得抛物线上位于D '左侧的一点,MN ∥y 轴交直线OD '于点N ,连结CN .当√55D 'N +CN 的值最小时,求MN 的长. 16.(2021•南充)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价;(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克,写出购进苹果的支出y (元)与购进数量x (千克)之间的函数关系式;(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价z (元/千克)与一天销售数量x (千克)的关系为z =−1100x +12.在(2)的条件下,要使超市销售苹果利润w (元)最大,求一天购进苹果数量.(利润=销售收入﹣购进支出)17.(2021•眉山)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +4(a ≠0)经过点A (﹣2,0)和点B (4,0).(1)求这条抛物线所对应的函数表达式;(2)点P 为该抛物线上一点(不与点C 重合),直线CP 将△ABC 的面积分成2:1两部分,求点P 的坐标;(3)点M 从点C 出发,以每秒1个单位的速度沿y 轴移动,运动时间为t 秒,当∠OCA=∠OCB﹣∠OMA时,求t的值.18.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=5 2.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F 的坐标;若不存在,请说明理由.19.(2021•乐山)已知关于x的一元二次方程x2+x﹣m=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)二次函数y=x2+x﹣m的部分图象如图所示,求一元二次方程x2+x﹣m=0的解.20.(2021•乐山)已知二次函数y =ax 2+bx +c 的图象开口向上,且经过点A (0,32),B (2,−12).(1)求b 的值(用含a 的代数式表示);(2)若二次函数y =ax 2+bx +c 在1≤x ≤3时,y 的最大值为1,求a 的值;(3)将线段AB 向右平移2个单位得到线段A ′B ′.若线段A ′B ′与抛物线y =ax 2+bx +c +4a ﹣1仅有一个交点,求a 的取值范围.21.(2021•成都)如图,在平面直角坐标系xOy 中,抛物线y =a (x ﹣h )2+k 与x 轴相交于O ,A 两点,顶点P 的坐标为(2,﹣1).点B 为抛物线上一动点,连接AP ,AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,∠ABC =∠OAP ,且点C 位于x 轴上方,求点C 的坐标;(3)若点B 的横坐标为t ,∠ABC =90°,请用含t 的代数式表示点C 的横坐标,并求出当t <0时,点C 的横坐标的取值范围.22.(2021•凉山州)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A 、B 两点,与y 轴交于C点,AC=√10,OB=OC=3OA.(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大,求出点P的坐标;(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q,使点P、B、M、Q为顶点的四边形是平行四边形,若存在,请直接写出Q点的坐标;若不存在,请说明理由.23.(2021•遂宁)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?24.(2021•遂宁)如图,已知二次函数的图象与x轴交于A和B(﹣3,0)两点,与y轴交于C(0,﹣3),对称轴为直线x=﹣1,直线y=﹣2x+m经过点A,且与y轴交于点D,与抛物线交于点E,与对称轴交于点F.(1)求抛物线的解析式和m的值;(2)在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△AOD相似,若存在,求出点P的坐标;若不存在,试说明理由;(3)直线y=1上有M、N两点(M在N的左侧),且MN=2,若将线段MN在直线y =1上平移,当它移动到某一位置时,四边形MEFN的周长会达到最小,请求出周长的最小值(结果保留根号).25.(2021•泸州)如图,在平面直角坐标系xOy中,抛物线y=−14x2+32x+4与两坐标轴分别相交于A,B,C三点.(1)求证:∠ACB=90°;(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.①求DE+BF的最大值;②点G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.26.(2021•自贡)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.(1)直接写出∠OCA的度数和线段AB的长(用a表示);(2)若点D为△ABC的外心,且△BCD与△ACO的周长之比为√10:4,求此抛物线的解析式;(3)在(2)的前提下,试探究抛物线y=(x+1)(x﹣a)上是否存在一点P,使得∠CAP=∠DBA?若存在,求出点P的坐标;若不存在,请说明理由.2021年四川省中考数学试题分类汇编——专题5二次函数参考答案与试题解析一.选择题(共8小题)1.【解答】解:①∵抛物线的对称轴为直线x =12,即对称轴在y 轴的右侧, ∴ab <0,∵抛物线与y 轴交在负半轴上,∴c <0,∴abc >0,故①正确;②∵抛物线的对称轴为直线x =12,∴−b 2a =12,∴﹣2b =2a ,∴a +b =0,故②不正确;③∵抛物线y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)经过点(2,0),∴4a +2b +c =0,∵c <0,∴4a +2b +3c <0,故③正确;④由对称得:抛物线与x 轴另一交点为(﹣1,0),∵{a +b =04a +2b +c =0, ∴c =﹣2a ,∴c 2a =−1,∴当a ≠0,无论b ,c 取何值,抛物线一定经过(c 2a ,0),故④正确;⑤∵b =﹣a , ∴4am 2+4bm ﹣b =4am 2﹣4am +a =a (4m 2﹣4m +1)=a (2m ﹣1)2,∵a>0,∴a(2m﹣1)2≥0,即4am2+4bm﹣b≥0,故⑤正确;本题正确的有:①③④⑤,共4个.故选:D.2.【解答】解:二次函数解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的顶点坐标为(1,4),当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则抛物线y=﹣x2+2x+3与x轴的交点为A(﹣1,0),B(3,0),把抛物线y=﹣x2+2x+3图象x轴S4方的部分沿x轴翻折到x轴下方,则翻折部分的抛物线解析式为y=(x﹣1)2﹣4(﹣1≤x≤3),顶点坐标M(1,﹣4),如图,当直线y=x+b过点B时,直线y=x+b与该新图象恰好有三个公共点,∴3+b=0,解得b=﹣3;当直线y=x+b与抛物线y=(x﹣1)2﹣4(﹣3≤x≤1)相切时,直线y=x+b与该新图象恰好有三个公共点,即(x﹣1)2﹣4=x+b有相等的实数解,整理得x2﹣3x﹣b﹣3=0,△=32﹣4(﹣b﹣3)=0,解得b=−21 4,所以b的值为﹣3或−21 4,故选:A.3.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣1,即−b2a=−1,∴b=2a,则b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;∵抛物线对称轴为直线x=﹣1,与x轴的一个交点横坐标在0和1之间,则与x轴的另一个交点在﹣2和﹣3之间,∴当x=﹣2时,y=4a﹣2b+c>0,故②错误;∵x=﹣1时,y=ax2+bx+c的最大值是a﹣b+c,∴a﹣b+c≥ax2+bx+c,∴a﹣b≥ax2+bx,即a﹣b≥x(ax+b),故③正确;∵当x=1时,y=a+b+c<0,b=2a,∴a+2a+c=3a+c<0,故④正确;故选:C.4.【解答】解:由抛物线y=x2﹣4x+5=(x﹣2)²+1知,抛物线顶点坐标是(2,1).由抛物线y=x2﹣4x+5知,C(0,5).∴抛物线y=x2﹣4x+5的顶点坐标是(﹣2,9).∴该抛物线关于点C成中心对称的抛物线的表达式为:y=﹣(x+2)²+9=﹣x²﹣4x+5.故选:A.5.【解答】解:如图,由题意,抛物线的开口向下,a<0.当抛物线y=a(x﹣1)2+2经过点A(3,﹣4)时,﹣4=4a+2,∴a=−3 2,观察图象可知,当抛物线与线段AB没有交点或经过点A时,满足条件,∴−32≤a<0.故选:C.6.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc>0,所以A不符合题意;当x=﹣1时,函数的最大值为:a•(﹣1)2+b•(﹣1)+c=a﹣b+c,故B不符合题意;由图可知,抛物线与x轴的另一交点为(﹣3,0),所以﹣3≤x≤1时,y≥0,故C不符合题意;当x=﹣2时,y>0,所以,a•(﹣2)2+b•(﹣2)+c>0,即4a﹣2b+c>0,故D符合题意,故选:D.7.【解答】解:①二次函数图象性质知,开口向下,则a<0.再结合对称轴−b2a>0,得b>0.据二次函数图象与y轴正半轴相交得c>0.∴abc<0.①错.②二次函数图象与x轴交于不同两点,则b2﹣4ac>0.∴b2>4ac.②错.③∵−b2a=1,∴b=﹣2a.又当x=﹣1时,y<0.即a﹣b+c<0.∴2a﹣2b+2c<0.∴﹣3b+2c<0.2c<3b.∴③正确.④要使a+b>m(am+b)(m≠1)成立,只须a+b+c>m(am+b)+c成立.即当x=1时的y值大于当x=m时的y值成立.由于x=1时函数有最大值,所以上述式子成立.∴④正确.⑤将x轴下方二次函数图象翻折到x轴上方,则与直线y=1有四个交点即可.由二次函数图像的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4.故⑤错.综上:③④正确,故选:A.8.【解答】解:∵直线l过点(0,4)且与y轴垂直,∴直线l为:y=4,∵二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a的图象与直线l有两个不同的交点,∴(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a=4,整理得:3x2﹣12ax+12a2+a﹣4=0,△=(﹣12a)2﹣4×3(12a2+a﹣4)=144a2﹣144a2﹣12a+48=﹣12a+48>0,∴a<4,又∵二次函数y=(x﹣a)2+(x﹣2a)2+(x﹣3a)2﹣2a2+a=3x2﹣12ax+12a2+a对称轴在y轴右侧,∴−−12a2×3=2a>0,∴a>0,∴0<a<4,故选:D.二.填空题(共2小题)9.【解答】解:由{y =2x +2y =ax 2−2x +1,消去y 得到,ax 2﹣4x ﹣1=0, ∵△=16+4a ,a <0,∴△的值可能大于0,∴抛物线与直线y =2x +2可能有交点,故①错误.∵抛物线与x 轴有两个交点,∴△=4﹣4a >0,∴a <1,∵抛物线经过(0,1),且x =1时,y =a ﹣1<0,∴抛物线与x 轴的交点一定在(0,0)与(1,0)之间.故②正确,∵抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界), ∴−−22a>0, ∴a >0,∴1>4a−44a≥0, 解得,a ≥1,故③正确,故答案为:②③.10.【解答】解:由题意得:△=b 2﹣4ac =4﹣4k =0,解得k =1,故答案为1.三.解答题(共16小题)11.【解答】解:(1)根据表格可得出A (﹣1,0),B (3,0),C (0,3), 设抛物线解析式为y =a (x +1)(x ﹣3),将C (0,3)代入,得:3=a (0+1)(0﹣3),解得:a =﹣1,∴y =﹣(x +1)(x ﹣3)=﹣x 2+2x +3=﹣(x ﹣1)2+4,∴该抛物线解析式为y =﹣x 2+2x +3,顶点坐标为M (1,4);(2)如图1,将点沿y 轴向下平移1个单位得C ′(0,2),连接BC ′交抛物线对称轴x =1于点Q ′,过点C 作CP ′∥BC ′,交对称轴于点P ′,连接AQ ′,∵A、B关于直线x=1对称,∴AQ′=BQ′,∵CP′∥BC′,P′Q′∥CC′,∴四边形CC′Q′P′是平行四边形,∴CP′=C′Q′,Q′P′=CC′=1,在Rt△BOC′中,BC′=√OC′2+OB2=√22+32=√13,∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=√13+1,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,∴AQ+QP+PC的最小值为√13+1;(4)线段EF的长为定值1.如图2,连接BE,设D(t,﹣t2+2t+3),且t>3,∵EF⊥x轴,∴DF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,∵F(t,0),∴BF=OF﹣OB=t﹣3,AF=t﹣(﹣1)=t+1,∵四边形ABED是圆内接四边形,∴∠DAF+∠BED=180°,∵∠BEF+∠BED=180°,∴∠DAF=∠BEF,∵∠AFD=∠EFB=90°,∴△AFD∽△EFB,∴EFBF =AFDF,∴EFt−3=t+1t2−2t−3,∴EF=(t+1)(t−3)t2−2t−3=t2−2t−3t2−2t−3=1,∴线段EF的长为定值1.12.【解答】解:(1)由题意得:W=(48﹣30﹣x)(500+50x)=﹣50x2+400x+9000,x=2时,W=(48﹣30﹣2)(500+50×2)=9600(元),答:工厂每天的利润W元与降价x元之间的函数关系为W=﹣50x2+400x+9000,当降价2元时,工厂每天的利润为9600元;(2)由(1)得:W=﹣50x2+400x+9000=﹣50(x﹣4)2+9800,∵﹣50<0,∴x=4时,W最大为9800,即当降价4元时,工厂每天的利润最大,最大为9800元;(3)﹣50x2+400x+9000=9750,解得:x 1=3,x 2=5,∵让利于民,∴x 1=3不合题意,舍去,∴定价应为48﹣5=43(元),答:定价应为43元.13.【解答】解:(1)把C (1,0),B (0,3)代入y =﹣x 2+bx +c 中,得:{−1+b +c =0c =3, ∴b =﹣2,c =3,∴y =﹣x 2﹣2x +3,(2)在OE 上取一点D ,使得OD =13OE ,连接DE ',BD ,∵OD =13OE =13OE′,对称轴x =﹣1,∴E (﹣1,0),OE =1,∴OE '=OE =1,OA =3,∴OE′OA =OD OE′=13, 又∵∠DOE '=∠E 'OA ,△DOE '∽△E 'OA ,∴DE ′=13AE′,∴BE ′+13AE′=BE′+DE′,当B ,E ',D 三点共线时,BE ′+DE ′最小为BD ,BD =√OD 2+OB 2=√32+(13)2=√823,∴BE ′+13AE′的最小值为√823; (3)∵A (﹣3,0),B (0,3),设N (n ,﹣n 2﹣2n +3),M (x ,y ),则AB 2=18,AN 2=(n 2+2n ﹣3)2+(n +3)2,BN 2=n 2+(n 2+2n )2,∵ABMN 构成的四边形是矩形,∴△ABN 是直角三角形,若AB 是斜边,则AB 2=AN 2+BN 2,即18=(n 2+2n ﹣3)2+(n +3)2+n 2+(n 2+2n )2,解得:n 1=−1−√52,n 2=−1+√52, ∴N 的横坐标为−1−√52或−1+√52, 若AN 是斜边,则AN 2=AB 2+BN 2,即(n 2+2n ﹣3)2+(n +3)2=18+n 2+(n 2+2n )2,解得n =﹣1,∴N 的横坐标是﹣1,若BN 是斜边,则BN 2=AB 2+AN 2,即n 2+(n 2+2n )2=18+(n 2+2n ﹣3)2+(n +3)2,解得n =2,∴N 的横坐标为2,综上N 的横坐标为−1−√52,−1+√52,﹣1,2.14.【解答】解:(1)∵抛物线y =﹣x 2+bx +c 经过点A (3,0),B (﹣1,0),则 {0=−9+3b +c 0=−1−b +c, 解得:{b =2c =3; (2)由(1)得:抛物线表达式为y =﹣x 2+2x +3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP =√2t ,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PE =√2t√2=t ,即E (3﹣t ,0),又Q (﹣1+t ,0),∴S 四边形BCPQ =S △ABC ﹣S △APQ=12×4×3−12×[3−(−1+t)]t =12t 2−2t +6,∵当其中一点到达终点时,另一点随之停止运动,AC =√32+32=3√2,AB =4,∴0≤t ≤3,∴当t =2时,四边形BCPQ 的面积最小,即为12×22−2×2+6=4;(3)∵点M 是线段AC 上方的抛物线上的点,如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,{∠F =∠QEP∠PMF =∠QPE PM =PQ,∴△PFM ≌△QEP (AAS ),∴MF =PE =t ,PF =QE =4﹣2t ,∴EF =4﹣2t +t =4﹣t ,又OE =3﹣t ,∴点M 的坐标为(3﹣2t ,4﹣t ),∵点M 在抛物线y =﹣x 2+2x +3上,∴4﹣t =﹣(3﹣2t )2+2(3﹣2t )+3,解得:t =9−√178或9+√178(舍), ∴M 点的坐标为(3+√174,23+√178).15.【解答】解:(1)∵y =﹣x 2+bx +c 经过B (﹣1,0),C (0,3),∴{c =3−1−b +c =0, 解得{b =2c =3, ∴抛物线的解析式为y =﹣x 2+2x +3.(2)如图1中,过点B 作BT ∥y 轴交AC 于T ,过点P 作PQ ∥OC 交AC 于Q .设P (m ,﹣m 2+2m +3),对于抛物线y =﹣x 2+2x +3,令y =0,可得x =3或﹣1,∴A (3,0),∵C (0,3),∴直线AC 的解析式为y =﹣x +3,∵B (﹣1,0),∴T (﹣1,4),∴BT =4,∵PQ ∥OC ,∴Q (m ,﹣m +3),∴PQ =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,∵PQ ∥BT ,∴PQ BT =PE BE =12, ∴﹣m 2+3m =2,解得m =1或2,∴P (1,4)或(2,3).(3)如图2中,连接AD ,过点N 作NJ ⊥AD 于J ,过点C 作CT ⊥AD 于T .∵抛物线y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D (1,4),∵C (0,3),∴直线CD 的解析式为y =x +3,CD =√2,∵DD ′=2CD ,∵DD ′=2√2,CD ′=3√2,∴D ′(3,6),∵A (3,0),∴AD ′⊥x 轴,∴OD ′=√OA 2+D′A 2=√32+62=3√5,∴sin ∠OD ′A =OA OD′=√55,∵CT ⊥AD ′,∴CT =3,∵NJ ⊥AD ′,∴NJ =ND ′•sin ∠OD ′A =√55D ′N ,∴√55D 'N +CN =CN +NJ , ∵CN +NJ ≥CT ,∴√55D 'N +CN ≥3, ∴√55D 'N +CN 的最小值为3, 此时N (1.5,3)N (1.5,3.75),∴MN =0.75.16.【解答】(1)解:设苹果的进价为x 元/千克,根据题意得:300x+2=200x−2,解得:x =10,经检验x =10是原方程的根,且符合题意,答:苹果的进价为10元/千克.(2)解:当0≤x ≤100时,y =10x ;当x >100时,y =10×100+(x ﹣100)(10﹣2)=8x +200;∴y ={10x(0≤x ≤100)8x +200(x >100). (3)解:当0≤x ≤100时,w =(z ﹣10)x=(−1100x +12−10)x =−1100(x −100)2+100,∴当x =100时,w 有最大值为100;当100<x ≤300时,w =(z ﹣10)×100+(z ﹣8)(x ﹣100)=(−1100x +12−10)×100+(−1100x +12−8)(x ﹣100)=−1100x 2+4x −200 =−1100(x −200)2+200, ∴当x =200时,w 有最大值为200;∵200>100,∴一天购进苹果数量为200千克时,超市销售苹果利润最大为200元.答:一天购进苹果数量为200千克时,超市销售苹果利润最大.17.【解答】解:(1)设抛物线的表达式为y =a (x ﹣x 1)(x ﹣x 2),则y =a (x +2)(x ﹣4)=ax 2﹣2ax ﹣8a ,即﹣8a =4,解得a =−12,故抛物线的表达式为y =−12x 2+x +4①;(2)由点A 、B 的坐标知,OB =2OA ,故CO 将△ABC 的面积分成2:1两部分,此时,点P 不在抛物线上;如图1,当BH =13AB =2时,CH 将△ABC 将△ABC 的面积分成2:1两部分,即点H 的坐标为(2,0),则CH 和抛物线的交点即为点P ,由点C 、H 的坐标得,直线CH 的表达式为y =﹣2x +4②,联立①②并解得{x =6y =−8(不合题意的值已舍去), 故点P 的坐标为(6,﹣8);(3)在点OB 上取点E (2,0),则∠ACO =∠OCE ,∵∠OCA =∠OCB ﹣∠OMA ,故∠AMO =∠ECB ,过点E 作EH ⊥BC 于点H ,在△BCE 中,由OB =OC 知,∠OBC =45°,则EH =√22EB =√22(4﹣2)=√2=BH ,由点B 、C 的坐标知,BC =4√2,则CH =BC =BH =4√2−√2=3√2,则tan ∠ECB =EH CH =√23√2=13=tan ∠AMO , 则tan ∠AMO =AO OM =2OM =13,则OM =6,故CM =OM ±OC =6±4=2或10,则t =2或10.18.【解答】解:(1)由题意得:{a +b +4=0−b 2a =52,解得{a =1b =−5, 故抛物线的表达式为y =x 2﹣5x +4①;(2)对于y =x 2﹣5x +4,令y =x 2﹣5x +4=0,解得x =1或4,令x =0,则y =4, 故点B 的坐标为(4,0),点C (0,4),设直线BC 的表达式为y =kx +t ,则{t =44k +t =0,解得{k =−1t =4, 故直线BC 的表达式为y =﹣x +4,设点P 的坐标为(x ,﹣x +4),则点Q 的坐标为(x ,x 2﹣5x +4),则PQ =(﹣x +4)﹣(x 2﹣5x +4)=﹣x 2+4x ,∵﹣1<0,故PQ 有最大值,当x =2时,PQ 的最大值为4=CO ,此时点Q 的坐标为(2,﹣2);∵PQ =CO ,PQ ∥OC ,故四边形OCPQ 为平行四边形;(3)∵D 是OC 的中点,则点D (0,2),由点D 、Q 的坐标,同理可得,直线DQ 的表达式为y =﹣2x ﹣2,过点Q 作QH ⊥x 轴于点H ,则QH ∥CO ,故∠AQH =∠ODA ,而∠DQE =2∠ODQ .∴∠HQA =∠HQE ,则直线AQ 和直线QE 关于直线QH 对称,故设直线QE 的表达式为y =2x +r ,将点Q 的坐标代入上式并解得r =﹣6,故直线QE 的表达式为y =2x ﹣6②,联立①②并解得{x =5y =4(不合题意的值已舍去), 故点E 的坐标为(5,4),设点F 的坐标为(0,m ),由点B 、E 的坐标得:BE 2=(5﹣4)2+(4﹣0)2=17,同理可得,当BE =BF 时,即16+m 2=17,解得m =±1;当BE =EF 时,即25+(m ﹣4)2=17,方程无解;当BF =EF 时,即16+m 2=25+(m ﹣4)2,解得m =258; 故点F 的坐标为(0,1)或(0,﹣1)或(0,258).19.【解答】解:(1)∵一元二次方程x 2+x ﹣m =0有两个不相等的实数根,∴△>0,即1+4m >0,∴m >−14;(2)二次函数y =x 2+x ﹣m 图象的对称轴为直线x =−12,∴抛物线与x 轴两个交点关于直线x =−12对称,由图可知抛物线与x 轴一个交点为(1,0),∴另一个交点为(﹣2,0),∴一元二次方程x 2+x ﹣m =0的解为x 1=1,x 2=﹣2.20.【解答】解:(1)∵二次函数y =ax 2+bx +c 的图象开口向上,经过点A (0,32),B (2,−12),∴{ a >0c =324a +2b +c =−12, ∴b =﹣2a ﹣1(a >0).(2)∵二次函数y =ax 2﹣(2a +1)x +32,a >0,在1≤x ≤3时,y 的最大值为1, ∴x =1时,y =1或x =3时,y =1,∴1=a ﹣(2a +1)+32或1=9a ﹣3(2a +1)+32,解得a =−12(舍弃)或a =56.∴a =56.(3)∵线段AB 向右平移2个单位得到线段A ′B ′,∴A ′(2,32),B ′(4,−12). ∵线段A ′B ′与抛物线y =ax 2﹣(2a +1)x +12+4a 仅有一个交点,∴{4a −2(2a +1)+12+4a ≤3216a −4(2a +1)+12+4a ≥−12, 解得,14≤a ≤34. 或{4a −2(2a +1)+12+4a ≥3216a −4(2a +1)+12+4a ≤−12不等式组无解, ∴14≤a ≤34. 21.【解答】解:(1)∵抛物线y =a (x ﹣h )2+k ,顶点P 的坐标为(2,﹣1), ∴h =2,k =﹣1,即抛物线y =a (x ﹣h )2+k 为y =a (x ﹣2)2﹣1,∵抛物线y =a (x ﹣h )2+k 经过O ,即y =a (x ﹣2)2﹣1的图象过(0,0), ∴0=a (0﹣2)2﹣1,解得a =14,∴抛物线表达为y =14(x ﹣2)2﹣1=14x 2﹣x ;(2)在y =14x 2﹣x 中,令y =x 得x =14x 2﹣x ,解得x =0或x =8,∴B (0,0)或B (8,8),①当B (0,0)时,过B 作BC ∥AP 交抛物线于C ,此时∠ABC =∠OAP ,如图:在y =14x 2﹣x 中,令y =0,得14x 2﹣x =0, 解得x =0或x =4,∴A (4,0),设直线AP 解析式为y =kx +b ,将A (4,0)、P (2,﹣1)代入得:{0=4k+b−1=2k+b,解得{k=12 b=−2,∴直线AP解析式为y=12x﹣2,∵BC∥AP,∴设直线BC解析式为y=12x+b',将B(0,0)代入得b'=0,∴直线BC解析式为y=1 2x,由{y=12xy=14x2−x 得{x=0y=0(此时为点O,舍去)或{x=6y=3,∴C(6,3);②当B(8,8)时,过P作PQ⊥x轴于Q,过B作BH⊥x轴于H,作H关于AB的对称点M,作直线BM交抛物线于C,连接AM,如图:∵P(2,﹣1),A(4,0),∴PQ=1,AQ=2,Rt△APQ中,tan∠OAP=PQAQ=12,∵B(8,8),A(4,0),∴AH=4,BH=8,Rt△ABH中,tan∠ABH=AHBH=12,∴∠OAP=∠ABH,∵H关于AB的对称点M,∴∠ABH=∠ABM,∴∠ABM=∠OAP,即C是满足条件的点,设M (x ,y ),∵H 关于AB 的对称点M , ∴AM =AH =4,BM =BH =8, ∴{(x −4)2+(y −0)2=42(x −8)2+(y −8)2=82, 两式相减变形可得x =8﹣2y ,代入即可解得{x =8y =0(此时为H ,舍去)或{x =85y =165, ∴M (85,165),设直线BM 解析式为y =cx +d ,将M (85,165),B (8,8)代入得;{8=8c +d165=85c +d ,解得{c =34d =2,∴直线BM 解析式为y =34x +2,解{y =34x +2y =14x 2−x 得{x =−1y =54或{x =8y =8(此时为B ,舍去), ∴C (﹣1,54),综上所述,C 坐标为(6,3)或(﹣1,54);(3)设BC 交y 轴于M ,过B 作BH ⊥x 轴于H ,过M 作MN ⊥BH 于N ,如图:∵点B 的横坐标为t , ∴B (t ,14t 2﹣t ),又A (4,0),∴AH =|t ﹣4|,BH =|14t 2﹣t |,OH =|t |=MN ,∵∠ABC =90°,∴∠MBN =90°﹣∠ABH =∠BAH , 且∠N =∠AHB =90°, ∴△ABH ∽△BMN ,∴AH BN=BH MN,即|t−4|BN=|14t 2−t||t|∴BN =|t 2−4t||14t 2−t|=4,∴NH =14t 2﹣t +4, ∴M (0,14t 2﹣t +4),设直线BM 解析式为y =ex +14t 2﹣t +4, 将B (t ,14t 2﹣t )代入得14t 2﹣t =et +14t 2﹣t +4,∴e =−4t ,∴直线BC 解析式为y =−4tx +14t 2﹣t +4,由{y =14x 2−x y =−4t x +14t 2−t +4得14x 2−x =−4t x +14t 2−t +4, 解得x 1=t (B 的横坐标),x 2=−t 2−4t+16t =−t −16t+4,∴点C 的横坐标为﹣t −16t +4; 当t <0时, x C =﹣t −16t +4 =(√−t )2+(√−t )2+4 =(√−t 4√−t 2+12,∴√−t =√−t时,x C 最小值是12,此时t =﹣4, ∴当t <0时,点C 的横坐标的取值范围是x C ≥12. 22.【解答】解:(1)∵OC =3OA ,AC =√10,∠AOC =90°, ∴OA 2+OC 2=AC 2,即OA 2+(3OA )2=(√10)2, 解得:OA =1,∴OC =3,∴A (1,0),C (0,3), ∵OB =OC =3, ∴B (﹣3,0),设抛物线解析式为y =a (x +3)(x ﹣1),将C (0,3)代入, 得:﹣3a =3, 解得:a =﹣1,∴y =﹣(x +3)(x ﹣1)=﹣x 2﹣2x +3, ∴该抛物线的解析式为y =﹣x 2﹣2x +3; (2)如图1,过点P 作PK ∥y 轴交BC 于点K ,设直线BC 解析式为y =kx +n ,将B (﹣3,0),C (0,3)代入, 得:{−3k +n =0n =3,解得:{k =1n =3,∴直线BC 解析式为y =x +3,设P (t ,﹣t 2﹣2t +3),则K (t ,t +3), ∴PK =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t ,∴S △PBC =S △PBK +S △PCK =12PK •(t +3)+12PK •(0﹣t )=32PK =32(﹣t 2﹣3t ), S △ABC =12AB •OC =12×4×3=6,∴S 四边形PBAC =S △PBC +S △ABC =32(﹣t 2﹣3t )+6=−32(t +32)2+758, ∵−32<0,∴当t =−32时,四边形PBAC 的面积最大,此时点P 的坐标为(−32,154);(3)存在.如图2,分两种情况:点Q 在x 轴上方或点Q 在x 轴下方. ①当点Q 在x 轴上方时,P 与Q 纵坐标相等, ∴﹣x 2﹣2x +3=154,解得:x 1=−12,x 2=−32(舍去), ∴Q 1(−12,154),②当点Q在x轴下方时,P与Q纵坐标互为相反数,∴﹣x2﹣2x+3=−15 4,解得:x1=−√31+22,x2=√31−22,∴Q2(−√31+22,−154),Q3(√31−22,−154),综上所述,Q点的坐标为Q1(−12,154),Q2(−√31+22,−154),Q3(√31−22,−154).23.【解答】解:(1)设T恤的销售单价提高x元,由题意列方程得:(x+40﹣30)(300﹣10x)=3360,解得:x1=2或x2=18,∵要尽可能减少库存,∴x2=18不合题意,应舍去.∴T恤的销售单价应提高2元,答:T恤的销售单价应提高2元;(2)设利润为M元,由题意可得:M=(x+40﹣30)(300﹣10x),=﹣10x 2+200x +3000, =﹣10(x ﹣10)2+4000, ∴当x =10时,M 最大值 =4000元, ∴销售单价:40+10=50(元),答:当服装店将销售单价定为50元时,得到最大利润是4000元.24.【解答】解:(1)∵抛物线的对称轴x =﹣1,与x 轴的交点为A ,B (﹣3,0), ∴A (1,0),∴可以假设抛物线的解析式为y =a (x +3)(x ﹣1), 把C (0,﹣3)代入得到,a =1, ∴抛物线的解析式为y =x 2+2x ﹣3. ∵直线y =﹣2x +m 经过点A (1,0), ∴0=﹣2+m , ∴m =2.(2)如图1中,∵直线AF 的解析式为y =﹣2x +2交y 轴于D ,与抛物线交于点E , ∴D (0,2),由{y =−2x +2y =x 2+2x −3,解得{x =1y =0即点A ,或{x =−5y =12, ∴E (﹣5,12), 过点E 作EP ⊥y 轴于P .∵∠EPD =∠AOD =90°,∠EDP =∠ODA ,∴△EDP∽△ADO,∴P(0,12).过点E作EP′⊥DE交y轴于P′,同法可证,△P′DE∽△ADO,∴∠P′=∠DAO,∴tan∠P′=tan∠DAO,∴EPPP′=ODOA,∴5PP′=21,∴PP′=2.5,∴P′(0,14.5),综上所述,满足条件的点P的坐标为(0,12)或(0,14.5).(3)∵E,F为定点,∴线段EF的长为定值,∴当EM+FN的和最小时,四边形MEFN的周长最小,如图2中,画出直线y=1,将点F向左平移2个单位得到F′,作点E关于直线y=1的对称点E′,连接E′F′与直线y=1交于点M,过点F作FN ∥E′F′交直线y=1于点N,由作图可知,EM=E′M,FN=F′M,∵E′,M,F′三点共线,∴EM +FN =E ′M +F ′M =E ′F ′,此时EM +FN 的值最小, ∵点F 为直线y =﹣2x +2与x =﹣1的交点, ∴F (﹣1,4), ∴F ′(﹣3,4), ∵E (﹣5,12), ∴E ′(﹣5,﹣10),如图,延长FF ′交线段EE ′于W , ∵FF ′∥直线y =1, ∴FW ⊥EE ′,在Rt △WEF 中,EF =√EW 2+FW 2=√(12−4)2+(−1+5)2=4√5,在Rt △E ′F ′W 中,E ′F ′=√E′W 2+F′W 2=√(4+10)2+(−3+5)2=10√2, ∴四边形MEFN 的周长的最小值=ME +FN +EF +MN =E ′F ′+EF +MN =10√2+4√5+2. 25.【解答】解:(1)y =−14x 2+32x +4中,令x =0得y =4,令y =0得x 1=﹣2,x 2=8, ∴A (﹣2,0),B (8,0),C (0,4), ∴OA =2,OB =8,OC =4,AB =10, ∴AC 2=OA 2+OC 2=20,BC 2=OB 2+OC 2=80, ∴AC 2+BC 2=100, 而AB 2=102=100, ∴AC 2+BC 2=AB 2, ∴∠ACB =90°;(2)①设直线BC 解析式为y =kx +b ,将B (8,0),C (0,4)代入可得:{0=8k +b 4=b ,解得{k =−12b =4,∴直线BC 解析式为y =−12x +4,设第一象限D (m ,−14m 2+32m +4),则E (m ,−12m +4), ∴DE =(−14m 2+32m +4)﹣(−12m +4)=−14m 2+2m ,BF =8﹣m , ∴DE +BF =(−14m 2+2m )+(8﹣m ) =−14m 2+m +8=−14(m ﹣2)2+9,∴当m =2时,DE +BF 的最大值是9; ②由(1)知∠ACB =90°, ∴∠CAB +∠CBA =90°, ∵DF ⊥x 轴于F , ∴∠FEB +∠CBA =90°, ∴∠CAB =∠FEB =∠DEC , (一)当A 与E 对应时,以点C ,D ,E 为顶点的三角形与△AOG 相似,只需OADE=AG CE或OA CE=AG DE,而G 为AC 中点,A (﹣2,0),C (0,4), ∴G (﹣1,2),OA =2,AG =√5,由①知:DE =−14m 2+2m ,E (m ,−12m +4), ∴CE =√(0−m)2+[4−(−12m +4)]2=√52m , 当OA DE=AG CE时,2−14m 2+2m=√5√52m ,解得m =4或m =0(此时D 与C 重合,舍去)∴D (4,6), 当OA CE=AG DE时,√52m =√5−14m 2+2m,解得m =3或m =0(舍去),∴D (3,254),∵Rt △AOC ,G 是AC 中点, ∴OG =AG ,∴∠GAO =∠GOA ,即∠CAB =∠GOA , ∴∠DEC =∠GOA , (二)当O 与E 对应时,以点C ,D ,E 为顶点的三角形与△AOG 相似,只需OA DE=OG CE或OA CE=OG DE,∵OG =AG , ∴OA DE=OG CE与OADE=AG CE答案相同,同理OA CE=OG DE与或OA CE=AG DE答案相同,综上所述,以点C ,D ,E 为顶点的三角形与△AOG 相似,则D 的坐标为(4,6)或(3,254).26.【解答】解:(1)定义抛物线y =(x +1)(x ﹣a ),令y =0,可得x =﹣1或a , ∴B (﹣1,0),A (a ,0), 令x =0,得到y =﹣a , ∴C (0,﹣a ), ∴OA =OC =a ,OB =1, ∴AB =1+a . ∵∠AOC =90°, ∴∠OCA =45°.(2)∵△AOC 是等腰直角三角形, ∴∠OAC =45°, ∵点D 是△ABC 的外心,∴∠BDC =2∠CAB =90°,DB =DC , ∴△BDC 也是等腰直角三角形, ∴△DBC ∽△OAC , ∴BC AC=√104, ∴√1+a 2√2a=√104, 解得a =2或﹣2(舍弃),∴抛物线的解析式为y =(x +1)(x ﹣2)=x 2﹣x ﹣2.(3)作点C 关于抛物线的对称轴x =12的对称点C ′,连接AC ′.∵C(0,﹣2),C′(1,﹣2),∴PC∥AB,∵BC,AC′关于直线x=12对称,∴CB=AC′,∴四边形ABCP是等腰梯形,∴∠CBA=∠C′AB,∵∠DBC=∠OAC=45°,∴∠ABD=∠CAC′,∴当点P与点C′重合时满足条件,∴P(1,﹣2).作点P关于直线AC的对称点E(0,﹣1),则∠EAC=∠P AC=∠ABD,作直线AE交抛物线于P′,点P′满足条件,∵A(2,0),E(0,﹣1),∴直线AE的解析式为y=12x﹣1,由{y=12x−1y=x2−x−2,解得{x=2y=0或{x=−12y=−54,∴P′(−12,−54),综上所述,满足条件的点P的坐标为(1,﹣2)或(−12,−54).第41 页共41 页。
山东省潍坊市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
山东省潍坊市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.二次根式的混合运算(共1小题)1.(2023•潍坊)从﹣,,中任意选择两个数,分别填在算式(□+〇)2÷里面的“□”与“〇”中,计算该算式的结果是 .(只需写出一种结果)二.解二元一次方程组(共1小题)2.(2022•潍坊)方程组的解为 .三.估算一元二次方程的近似解(共1小题)3.(2023•潍坊)用与教材中相同型号的计算器,依次按键,显示结果为2.236067977.借助显示结果,可以将一元二次方程x2+x﹣1=0的正数解近似表示为 .(精确到0.001)四.解分式方程(共1小题)4.(2021•潍坊)若x<2,且+|x﹣2|+x﹣1=0,则x= .五.规律型:点的坐标(共1小题)5.(2021•潍坊)在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点A n(506,﹣505),则n的值为 .六.一次函数图象上点的坐标特征(共1小题)6.(2021•潍坊)甲、乙、丙三名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点(0,1);乙:y随x的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述,写出满足上述性质的一个函数表达式为 .七.反比例函数系数k的几何意义(共1小题)7.(2021•潍坊)如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB = .(结果用a,b表示)八.翻折变换(折叠问题)(共1小题)8.(2022•潍坊)小莹按照如图所示的步骤折叠A4纸,折完后,发现折痕AB′与A4纸的长边AB恰好重合,那么A4纸的长AB与宽AD的比值为 .九.坐标与图形变化-旋转(共1小题)9.(2022•潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,再沿y轴方向向上平移1个单位长度,则点B″的坐标为 .一十.相似三角形的应用(共1小题)10.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为 米.一十一.位似变换(共1小题)11.(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为 .一十二.列表法与树状图法(共1小题)12.(2023•潍坊)投掷两枚骰子,朝上一面的点数之和为7的概率是 .山东省潍坊市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.二次根式的混合运算(共1小题)1.(2023•潍坊)从﹣,,中任意选择两个数,分别填在算式(□+〇)2÷里面的“□”与“〇”中,计算该算式的结果是 ﹣2(答案不唯一) .(只需写出一种结果)【答案】﹣2(答案不唯一).【解答】解:若“□”是﹣,“〇”是,则(﹣+)2÷=(5﹣2)÷=﹣2;若“□”是﹣,“〇”是,则(﹣+)2÷=(8﹣2)÷=4﹣2;若“□”是,“〇”是,则(+)2÷=(9+2)÷=+6;故答案为:﹣2(答案不唯一).二.解二元一次方程组(共1小题)2.(2022•潍坊)方程组的解为 .【答案】.【解答】解:,由①×2得4x+6y=26③,由②×3得9x﹣6y=0④,由③+④得13x=26,解得x=2,将x=2代入②得3×2﹣2y=0,解得y=3,所以原方程组的解为.故答案为:.三.估算一元二次方程的近似解(共1小题)3.(2023•潍坊)用与教材中相同型号的计算器,依次按键,显示结果为2.236067977.借助显示结果,可以将一元二次方程x2+x﹣1=0的正数解近似表示为 0.618 .(精确到0.001)【答案】0.618.【解答】解:∵x2+x﹣1=0,∴a=1,b=1,c=﹣1,Δ=b2﹣4ac=12﹣4×1×(﹣1)=5,∴x==,∴x1=≈﹣1.618,x2=≈0.618,故答案为:0.618.四.解分式方程(共1小题)4.(2021•潍坊)若x<2,且+|x﹣2|+x﹣1=0,则x= 1 .【答案】1.【解答】解:+|x﹣2|+x﹣1=0,∵x<2,∴方程为+2﹣x+x﹣1=0,即=﹣1,方程两边都乘x﹣2,得1=﹣(x﹣2),解得:x=1,经检验x=1是原方程的解,故答案为:1.五.规律型:点的坐标(共1小题)5.(2021•潍坊)在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点A n(506,﹣505),则n的值为 2022 .【答案】2022.【解答】解:∵到达终点A n(506,﹣505),且此点在第四象限,根据题意和到达位置的坐标可知:A6(2,﹣1),A10(3,﹣2),A14(4,﹣3)•,∵6=2+4×(2﹣1),10=2+4×(3﹣1),14=2+4×(4﹣1),•n=2+4×(506﹣1)=2022.故答案为:2022.六.一次函数图象上点的坐标特征(共1小题)6.(2021•潍坊)甲、乙、丙三名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点(0,1);乙:y随x的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述,写出满足上述性质的一个函数表达式为 y=﹣x+1(答案不唯一) .【答案】见试题解答内容【解答】解:设一次函数解析式为y=kx+b,∵函数的图象经过点(0,1),∴b=1,∵y随x的增大而减小,∴k<0,取k=﹣1,∴y=﹣x+1,此函数图象不经过第三象限,∴满足题意的一次函数解析式为:y=﹣x+1(答案不唯一).七.反比例函数系数k的几何意义(共1小题)7.(2021•潍坊)如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB= a﹣ .(结果用a,b表示)【答案】a﹣.【解答】解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,∴阴影部分的面积S△AOB=mn﹣b﹣b﹣(m﹣)(n﹣)=mn﹣b﹣(mn﹣b﹣b+)=mn﹣b﹣mn+b﹣=a﹣.故答案为:a﹣.八.翻折变换(折叠问题)(共1小题)8.(2022•潍坊)小莹按照如图所示的步骤折叠A4纸,折完后,发现折痕AB′与A4纸的长边AB恰好重合,那么A4纸的长AB与宽AD的比值为 .【答案】见试题解答内容【解答】解:由第②次折叠知,AB=AB',由第①次折叠知,∠B'AB=45°,∴△AD'B'是等腰直角三角形,∴AB'=AD',∴AB与宽AD的比值为,故答案为:,九.坐标与图形变化-旋转(共1小题)9.(2022•潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,再沿y轴方向向上平移1个单位长度,则点B″的坐标为 (﹣,+1) .【答案】见试题解答内容【解答】解:过B'作B'D⊥y轴于D,连接OB,OB',如图:∵边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,∴∠BOB'=75°,∠BOC=45°,OB=OB'=2,∴∠B'OD=30°,∴B'D=OB'=,OD=B'D=,∴B'(﹣,),∵再沿y轴方向向上平移1个单位长度,∴B''(﹣,+1),故答案为:(﹣,+1).一十.相似三角形的应用(共1小题)10.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为 18.2 米.【答案】18.2.【解答】解:过点F作FG⊥CD,垂足为G,延长FG交AB于点H,由题意得:FH⊥AB,AH=CG=EF=1.4米,AC=GH=20米,CE=FG=10米,∴∠DGF=∠BHF=90°,∵CD=7米,∴DG=CD﹣CG=7﹣1.4=5.6(米),∵∠DFG=∠BFH,∴△FDG∽△FBH,∴=,∴=,∴BH=16.8,∴AB=BH+AH=16.8+1.4=18.2(米),∴塔的高度为18.2米,故答案为:18.2.一十一.位似变换(共1小题)11.(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为 4π .【答案】见试题解答内容【解答】解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.一十二.列表法与树状图法(共1小题)12.(2023•潍坊)投掷两枚骰子,朝上一面的点数之和为7的概率是 .【答案】.【解答】解:列表如下:1 234 5 61(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知共有36种等可能的情况,其中朝上一面的点数之和为7的结果有6种,∴投掷两枚骰子,朝上一面的点数之和为7的概率为=,故答案为:.。
浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.合并同类项(共1小题)1.(2022•连云港)计算:2a+3a= .二.最简二次根式(共1小题)2.(2022•杭州)计算:= ;(﹣2)2= .三.二次根式的加减法(共1小题)3.(2023•杭州)计算:= .四.一元二次方程的应用(共1小题)4.(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x= (用百分数表示).五.坐标与图形性质(共1小题)5.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC ∠DAE(填“>”、“=”、“<”中的一个).六.一次函数图象上点的坐标特征(共1小题)6.(2023•杭州)在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于 .七.一次函数与二元一次方程(组)(共1小题)7.(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是 .八.平行线的性质(共1小题)8.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= .九.切线的性质(共1小题)9.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O 的切线,T为切点,连结OT,则PT= .一十.正多边形和圆(共1小题)10.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= .一十一.圆的综合题(共1小题)11.(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B= 度;的值等于 .一十二.翻折变换(折叠问题)(共1小题)12.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF= 度.一十三.相似三角形的判定与性质(共1小题)13.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD =DF,则= (结果用含k的代数式表示).一十四.相似三角形的应用(共1小题)14.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= m.一十五.特殊角的三角函数值(共1小题)15.(2021•杭州)计算:sin30°= .一十六.加权平均数(共1小题)16.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 元/千克.一十七.概率公式(共2小题)17.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= .18.(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于 .浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.合并同类项(共1小题)1.(2022•连云港)计算:2a+3a= 5a .【答案】5a.【解答】解:2a+3a=5a,故答案为:5a.二.最简二次根式(共1小题)2.(2022•杭州)计算:= 2 ;(﹣2)2= 4 .【答案】2,4.【解答】解:=2,(﹣2)2=4,故答案为:2,4.三.二次根式的加减法(共1小题)3.(2023•杭州)计算:= ﹣ .【答案】﹣.【解答】解:原式=﹣2=﹣.故答案为:﹣.四.一元二次方程的应用(共1小题)4.(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x= 30% (用百分数表示).【答案】30%.【解答】解:新注册用户数的年平均增长率为x(x>0),依题意得:100(1+x)2=169,解得:x1=0.3,x2=﹣2.3(不合题意,舍去).0.3=30%,∴新注册用户数的年平均增长率为30%.故答案为:30%.五.坐标与图形性质(共1小题)5.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC = ∠DAE (填“>”、“=”、“<”中的一个).【答案】=.【解答】解:连接DE,由上图可知AB=2,BC=2,∴△ABC是等腰直角三角形,∴∠BAC=45°,又∵AE===,同理可得DE==,AD==,则在△ADE中,有AE2+DE2=AD2,∴△ADE是等腰直角三角形,∴∠DAE=45°,∴∠BAC=∠DAE,故答案为:=.六.一次函数图象上点的坐标特征(共1小题)6.(2023•杭州)在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于 5 .【答案】5.【解答】解:解法一:设直线AB的解析式为y1=k1x+b1,将点A(0,2),B(2,3)代入得,,解得:,∴k1+b1=,设直线AC的解析式为y2=k2x+b2,将点A(0,2),C(3,1)代入得,,解得:,∴k2+b2=,设直线BC的解析式为y3=k3x+b3,将点B(2,3),C(3,1)代入得,,解得:,∴k3+b3=5,∴k1+b1=,k2+b2=,k3+b3=5,其中最大的值为5.解法二:如图,作直线AB、AC、BC,作直线x=1,设直线AB的解析式为y1=k1x+b1,直线AC的解析式为y2=k2x+b2,直线BC的解析式为y3=k3x+b3,由图象可知,直线x=1与直线BC的交点最高,即当x=1时,k1+b1,k2+b2,k3+b3其中最大的值为k3+b3,将点B(2,3),C(3,1)代入得,,解得:,∴k3+b3=5,k1+b1,k2+b2,k3+b3其中最大的值为k3+b3=5.故答案为:5.七.一次函数与二元一次方程(组)(共1小题)7.(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是 .【答案】.【解答】解:∵一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∴联立y=3x﹣1与y=kx的方程组的解为:,故答案为:.八.平行线的性质(共1小题)8.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= 90° .【答案】90°.【解答】解:∵DE∥BC,∴∠B=∠ADE=28°,∵∠ACF=∠A+∠B,∴∠A=∠ACF﹣∠B=118°﹣28°=90°.故答案为:90°.九.切线的性质(共1小题)9.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O 的切线,T为切点,连结OT,则PT= .【答案】.【解答】解:∵PT是⊙O的切线,T为切点,∴OT⊥PT,在Rt△OPT中,OT=1,OP=2,∴PT===,故:PT=.一十.正多边形和圆(共1小题)10.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= 2 .【答案】2.【解答】解:如图所示,连接OA,OC,OE.∵六边形ABCDEF是⊙O的内接正六边形,∴AC=AE=CE,∴△ACE是⊙O的内接正三角形,∵∠B=120°,AB=BC,∴∠BAC=∠BCA=(180°﹣∠B)=30°,∵∠CAE=60°,∴∠OAC=∠OAE=30°,∴∠BAC=∠OAC=30°,同理可得,∠BCA=∠OCA=30°,∴△BAC≌△OAC(ASA),∴S△BAC=S△AOC,圆和正六边形的性质可得,S△BAC=S△AFE=S△CDE,由圆和正三角形的性质可得,S△OAC=S△OAE=S△OCE,∵S1=S△BAC+S△AEF+S△CDE+S△OAC+S△OAE+S△OCE=2(S△OAC+S△OAE+S△OCE)=2S2,∴,故答案为:2一十一.圆的综合题(共1小题)11.(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B= 36 度;的值等于 .【答案】36,.【解答】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;∵∠ECO=∠B,∠CEO=∠CEB,∴△CEO∽△BEC,∴,∴CE2=EO•BE,设EO=x,EC=OC=OB=a,∴a2=x(x+a),解得,x=a(负值舍去),∴OE=a,∴AE=OA﹣OE=a﹣a=a,∵∠AED=∠BEC,∠DAE=∠BCE,∴△BCE∽△DAE,∴,∴=.故答案为:36,.一十二.翻折变换(折叠问题)(共1小题)12.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF= 18 度.【答案】18.【解答】解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠FAD=∠MDA,∠MDC=∠MCD.∵DC,DF关于DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,DF=DC,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠FAD+∠ADM,∴∠DMC=2∠FAD.设∠FAD=x°,则∠DFC=4x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+4x+4x=180.∴x=18.故答案为:18.一十三.相似三角形的判定与性质(共1小题)13.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD =DF,则= (结果用含k的代数式表示).【答案】.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DFA,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DFA,∴∠FDE=∠DFA,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.一十四.相似三角形的应用(共1小题)14.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= 9.88 m.【答案】9.88.【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DF,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽△Rt△DEF,∴,即,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.一十五.特殊角的三角函数值(共1小题)15.(2021•杭州)计算:sin30°= .【答案】见试题解答内容【解答】解:sin30°=.一十六.加权平均数(共1小题)16.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 24 元/千克.【答案】24.【解答】解:这5千克什锦糖果的单价为:(30×2+20×3)÷5=24(元/千克).故答案为:24.一十七.概率公式(共2小题)17.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= 9 .【答案】9.【解答】解:根据题意,=,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.18.(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于 .【答案】.【解答】解:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性,∴从中随机抽取一张,编号是偶数的概率等于,故答案为:.。
全国中考试卷精品分类 无理数及二次根式
2.无理数及二次根式一、选择题1.(2009年绵阳市)已知n -12是正整数,则实数n 的最大值为( )A .12B .11C .8D .3 【关键词】二次根式 【答案】B 1.(2009年黄石市)下列根式中,不是..最简二次根式的是( )ABC D【关键词】最简二次根式 【答案】C2.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【关键词】无理数 【答案】B 3.(2009年广东省)4的算术平方根是( )A .2±B .2C .D【关键词】平方根 【答案】B 4.(2009年贺州)下列根式中不是最简二次根式的是( ). A .2 B .6 C .8 D . 10【关键词】最简二次根式 【答案】C5.(2009年贵州黔东南州)方程0|84|=--+-m y x x ,当0>y 时,m 的取值范围是( ) A 、10<<m B 、2≥m C 、2<m D 、2≤m 【关键词】非负数的性质 【答案】C 6.(2009年贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【关键词】有理数运算以及平方根 【答案】B7.(2009D ) A. BCD.8.(20092()x y =+,则x -y 的值为( )A .-1B .1C .2D .3解析:本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C . 【关键词】二次根式的意义 【答案】C 9.(2009年湖北省荆门市)|-9|的平方根是( ) A .81 B .±3 C .3 D .-3解析:本题考查绝对值与平方根的运算,|-9|=9,9的平方根是±3,故选B . 【关键词】绝对值、平方根 【答案】B10.(2009年内蒙古包头)函数y =中,自变量x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤【答案】Ba 的范围是0a ≥;∴y =中x 的范围由20x +≥得2x ≥-。
黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共3小题)1.(2023•哈尔滨)船闸是我国劳动人民智慧的结晶,三峡船闸的“人”字闸门是目前世界上最大的巨型闸门,重867000千克,用科学记数法表示为 千克.2.(2022•哈尔滨)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,用科学记数法表示为 兆瓦.3.(2021•哈尔滨)火星赤道半径约为3396000米,用科学记数法表示为 米.二.提公因式法与公式法的综合运用(共3小题)4.(2023•哈尔滨)把多项式xy2﹣16x分解因式的结果是 .5.(2022•哈尔滨)把多项式xy2﹣9x分解因式的结果是 .6.(2021•哈尔滨)把多项式a2b﹣25b分解因式的结果是 .三.二次根式的加减法(共3小题)7.(2023•哈尔滨)计算的结果是 .8.(2022•哈尔滨)计算+3的结果是 .9.(2021•哈尔滨)计算﹣2的结果是 .四.解一元一次不等式组(共3小题)10.(2023•哈尔滨)不等式组的解集是 .11.(2022•哈尔滨)不等式组的解集是 .12.(2021•哈尔滨)不等式组的解集是 .五.函数自变量的取值范围(共3小题)13.(2023•哈尔滨)在函数中,自变量x的取值范围是 .14.(2022•哈尔滨)在函数y=中,自变量x的取值范围是 .15.(2021•哈尔滨)在函数y=中,自变量x的取值范围是 .六.反比例函数图象上点的坐标特征(共3小题)16.(2023•哈尔滨)已知反比例函数的图象经过点(a,7),则a的值为 .17.(2022•哈尔滨)已知反比例函数y=﹣的图象经过点(4,a),则a的值为 .18.(2021•哈尔滨)已知反比例函数y=的图象经过点(2,﹣5),则k的值为 .七.二次函数图象上点的坐标特征(共1小题)19.(2023•哈尔滨)抛物线y=﹣(x+2)2+6与y轴的交点坐标是 .八.二次函数的最值(共1小题)20.(2021•哈尔滨)二次函数y=﹣3x2﹣2的最大值为 .九.三角形内角和定理(共1小题)21.(2022•哈尔滨)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是 度.一十.平行四边形的性质(共1小题)22.(2021•哈尔滨)四边形ABCD是平行四边形,AB=6,∠BAD的平分线交直线BC于点E,若CE=2,则▱ABCD的周长为 .一十一.菱形的性质(共1小题)23.(2022•哈尔滨)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为 .一十二.矩形的性质(共2小题)24.(2023•哈尔滨)矩形ABCD的对角线AC,BD相交于点O,点F在矩形ABCD边上,连接OF.若∠ADB=38°,∠BOF=30°,则∠AOF= .25.(2021•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为 .一十三.正方形的性质(共1小题)26.(2023•哈尔滨)如图,在正方形ABCD中,点E在CD上,连接AE,BE,F为BE的中点,连接CF,若CF=,=,则AE的长为 .一十四.弧长的计算(共2小题)27.(2023•哈尔滨)一个扇形的圆心角是150°,弧长是πcm,则扇形的半径是 cm.28.(2021•哈尔滨)一个扇形的弧长是8πcm,圆心角是144°,则此扇形的半径是 cm.一十五.扇形面积的计算(共1小题)29.(2022•哈尔滨)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是 度.一十六.列表法与树状图法(共1小题)30.(2022•哈尔滨)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是 .黑龙江省哈尔滨市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共3小题)1.(2023•哈尔滨)船闸是我国劳动人民智慧的结晶,三峡船闸的“人”字闸门是目前世界上最大的巨型闸门,重867000千克,用科学记数法表示为 8.67×105 千克.【答案】8.67×105.【解答】解:867000=8.67×105,故答案为:8.67×105.2.(2022•哈尔滨)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,用科学记数法表示为 2.53×105 兆瓦.【答案】2.53×105.【解答】解:数字253000用科学记数法可表示为2.53×105.故答案为:2.53×105.3.(2021•哈尔滨)火星赤道半径约为3396000米,用科学记数法表示为 3.396×106 米.【答案】3.396×106.【解答】解:3396000=3.396×106.故答案为:3.396×106.二.提公因式法与公式法的综合运用(共3小题)4.(2023•哈尔滨)把多项式xy2﹣16x分解因式的结果是 x(y+4)(y﹣4) .【答案】x(y+4)(y﹣4).【解答】解:xy2﹣16x=x(y2﹣16)=x(y+4)(y﹣4),故答案为:x(y+4)(y﹣4).5.(2022•哈尔滨)把多项式xy2﹣9x分解因式的结果是 x(y+3)(y﹣3) .【答案】x(y+3)(y﹣3).【解答】解:xy2﹣9x=x(y2﹣9)=x(y+3)(y﹣3),故答案为:x(y+3)(y﹣3).6.(2021•哈尔滨)把多项式a2b﹣25b分解因式的结果是 b(a+5)(a﹣5) .【答案】b(a+5)(a﹣5).【解答】解:a2b﹣25b=b(a2﹣25)=b(a+5)(a﹣5).故答案为:b(a+5)(a﹣5).三.二次根式的加减法(共3小题)7.(2023•哈尔滨)计算的结果是 2 .【答案】2.【解答】解:原式=3﹣=2,故答案为:2.8.(2022•哈尔滨)计算+3的结果是 2 .【答案】2.【解答】解:原式=+3×==2.故答案为:2.9.(2021•哈尔滨)计算﹣2的结果是 2 .【答案】2.【解答】解:原式=3﹣2×=3﹣=2.故答案为:2.四.解一元一次不等式组(共3小题)10.(2023•哈尔滨)不等式组的解集是 x> .【答案】x>.【解答】解:,由①得:x>,由②得:x≥﹣,则不等式组的解集为x>.故答案为:x>.11.(2022•哈尔滨)不等式组的解集是 x> .【答案】x>.【解答】解:解不等式3x+4≥0,得:x≥﹣,解不等式4﹣2x<﹣1,得:x>,则不等式组的解集为x>,故答案为:x>.12.(2021•哈尔滨)不等式组的解集是 x<3 .【答案】x<3.【解答】解:解不等式3x﹣7<2,得:x<3,解不等式x﹣5≤10,得:x≤15,则不等式组的解集为x<3,故答案为:x<3.五.函数自变量的取值范围(共3小题)13.(2023•哈尔滨)在函数中,自变量x的取值范围是 x≠8 .【答案】x≠8.【解答】解:由题意得:x﹣8≠0,解得:x≠8,故答案为:x≠8.14.(2022•哈尔滨)在函数y=中,自变量x的取值范围是 x≠﹣ .【答案】x≠﹣.【解答】解:由题意得:5x+3≠0,∴x≠﹣,故答案为:x≠﹣.15.(2021•哈尔滨)在函数y=中,自变量x的取值范围是 x≠ .【答案】x≠.【解答】解:7x﹣5≠0,x≠.故答案为:x≠.六.反比例函数图象上点的坐标特征(共3小题)16.(2023•哈尔滨)已知反比例函数的图象经过点(a,7),则a的值为 2 .【答案】2.【解答】解:∵y=,即k=xy=14,∴14=7a,∴a=2.故答案为:2.17.(2022•哈尔滨)已知反比例函数y=﹣的图象经过点(4,a),则a的值为 ﹣ .【答案】﹣.【解答】解:点(4,a)代入反比例函数y=﹣得,a=﹣=﹣,故答案为:﹣.18.(2021•哈尔滨)已知反比例函数y=的图象经过点(2,﹣5),则k的值为 ﹣10 .【答案】见试题解答内容【解答】解:∵反比例函数y=的图象经过点(2,﹣5),∴k=2×(﹣5)=﹣10,故答案为:﹣10.七.二次函数图象上点的坐标特征(共1小题)19.(2023•哈尔滨)抛物线y=﹣(x+2)2+6与y轴的交点坐标是 (0,2) .【答案】(0,2).【解答】解:在抛物线y=﹣(x+2)2+6中,令x=0,即y=﹣4+6=2,则抛物线y=﹣(x+2)2+6与y轴的交点坐标是(0,2),故答案为:(0,2).八.二次函数的最值(共1小题)20.(2021•哈尔滨)二次函数y=﹣3x2﹣2的最大值为 ﹣2 .【答案】﹣2.【解答】解:在二次函数y=﹣3x2﹣2中,∵顶点坐标为(0,﹣2),且a=﹣3<0,∴抛物线开口向下,∴二次函数y=﹣3x2﹣2的最大值为﹣2.故答案为:﹣2.九.三角形内角和定理(共1小题)21.(2022•哈尔滨)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是 80或40 度.【答案】80或40.【解答】解:当△ABC为锐角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC为钝角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD﹣∠CAD=60°﹣20°=40°.综上所述,∠BAC=80°或40°.故答案为:80或40.一十.平行四边形的性质(共1小题)22.(2021•哈尔滨)四边形ABCD是平行四边形,AB=6,∠BAD的平分线交直线BC于点E,若CE=2,则▱ABCD的周长为 20或28 .【答案】20或28.【解答】解:当E点在线段BC上时,如图:∵四边形ABCD为平行四边形,∴BC∥AD,∴∠BEA=∠EAD,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠BEA=∠BAE,∴BE=AB,∵AB=6,∴BE=6,∵CE=2,∴BC=BE+CE=6+2=8,∴平行四边形ABCD的周长为:2×(6+8)=28,当E点在线段BC延长线上时,如图:∵四边形ABCD为平行四边形,∴BC∥AD,∴∠BEA=∠EAD,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠BEA=∠BAE,∴BE=AB,∵AB=6,∴BE=6,∵CE=2,∴BC=BE﹣CE=6﹣2=4,∴平行四边形ABCD的周长为:2×(6+4)=20,综上,平行四边形ABCD的周长为20或28.故答案为20或28.一十一.菱形的性质(共1小题)23.(2022•哈尔滨)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为 2 .【答案】见试题解答内容【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,BO=DO,∴AE===5,∴BE=AE=5,∴BO=8,∴BC===4,∵点F为CD的中点,BO=DO,∴OF=BC=2,故答案为:2.一十二.矩形的性质(共2小题)24.(2023•哈尔滨)矩形ABCD的对角线AC,BD相交于点O,点F在矩形ABCD边上,连接OF.若∠ADB=38°,∠BOF=30°,则∠AOF= 46°或106° .【答案】46°或106°.【解答】当F在AB上时,如图,∵四边形ABCD是矩形,∴OD=OA,∠OAD=∠ODA=38°,∴∠AOB=∠ADO+∠DAO=76°,∵∠BOF=30°,∴∠AOF=∠AOB﹣∠BOF=46°;当F在BC上时,如图,∵四边形ABCD是矩形,∴OD=OA,∠OAD=∠ODA=38°,∴∠AOB=∠ADO+DAO=76°,∵∠BOF=30°,∴∠AOF=∠AOB+∠BOF=106°,∴∠AOF=46°或106°.故答案为:46°或106°.25.(2021•哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为 3 .【答案】3.【解答】解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵OE⊥BC,∴BE=CE,∠BOE=∠COE,又∵BC=2AF,∵AF=BE,在Rt△AFO和Rt△BEO中,,∴Rt△AFO≌Rt△BEO(HL),∴∠AOF=∠BOE,∴∠AOF=∠BOE=∠COE,又∵∠AOF+∠BOE+∠COE=180°,∴∠BOE=60°,∵OB=OD=6,∴BE=OB•sin60°=6×=3,故答案为:3.一十三.正方形的性质(共1小题)26.(2023•哈尔滨)如图,在正方形ABCD中,点E在CD上,连接AE,BE,F为BE的中点,连接CF,若CF=,=,则AE的长为 .【答案】.【解答】解:∵四边形ABCD是正方形,∴∠BCD=90°,BC=DC=AD,∵F为BE的中点,CF=,∴BE=2CF=,设DE=3x,EC=2x,则DC=BC=5x,在Rt△BCE中,(5x)2+(2x)2=()2,解得x=1或﹣1(舍去),∴CE=2,DE=3,BC=AD=DC=5,在Rt△ADE中,AE2=AD2+DE2,即AE==.故答案为:.一十四.弧长的计算(共2小题)27.(2023•哈尔滨)一个扇形的圆心角是150°,弧长是πcm,则扇形的半径是 3 cm.【答案】3.【解答】解:设扇形的半径是Rcm,则=π,解得:R=3,∴扇形的半径是3cm.故答案为:3.28.(2021•哈尔滨)一个扇形的弧长是8πcm,圆心角是144°,则此扇形的半径是 10 cm.【答案】10.【解答】解:设扇形的半径为rcm,由题意得,=8π,解得r=10(cm),故答案为:10.一十五.扇形面积的计算(共1小题)29.(2022•哈尔滨)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是 70 度.【答案】70.【解答】解:设扇形的圆心角为n°,则,∴n=70,故答案为:70.一十六.列表法与树状图法(共1小题)30.(2022•哈尔滨)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是 .【答案】.【解答】解:画树状图如下:共有4种等可能的结果,其中一枚硬币正面向上、一枚硬币反面向上的结果有2种,∴一枚硬币正面向上、一枚硬币反面向上的概率为=,故答案为:.。
中考数学真题专项汇编解析—二次根式
中考数学真题专项汇编解析—二次根式一.选择题1.(2022·湖南衡阳)那么实数a 的取值范围是( ) A .1a >B .1a ≥C .1a <D .1a ≤【答案】B【分析】根据二次根式中的被开方数是非负数求解可得.【详解】根据题意知1a -≥0,解得1a ≥,故选:B .【点睛】本题主要考查二次根式有意义的条件,解题的关键是掌握二次根式的双重非负性.2.(2022·江苏连云港)函数y =x 的取值范围是( ) A .1≥xB .0x ≥C .0x ≤D .1x ≤ 【答案】A【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∵1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.3.(2022·的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间 【答案】B6=【详解】 6=∵43,∵910<,故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.4.(2022·333,…,6666633n ++++++=个根号,一般地,对于正整数a ,b ,如果满足n b b b b b a a ++++++=个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:∵()4,12是完美方根数对;∵()9,91是完美方根数对;∵若(),380a 是完美方根数对,则20a =;∵若(),x y 是完美方根数对,则点(),P x y 在抛物线2y x x 上.其中正确的结论有( )A .1个B .2个C .3个D .4个 【答案】C 【分析】根据定义逐项分析判断即可. 【详解】解:1244+=,∴()4,12是完美方根数对;故∵正确;10=9≠∴()9,91不是完美方根数对;故∵不正确;若(),380a a =即2380a a =+解得20a =或19a =- a 是正整数则20a =故∵正确;若(),x y x =2y x x ∴+=,即2y x x 故∵正确故选C 【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.5.(2022·河北)下列正确的是( )A23=+ B 23⨯ C D 0.7【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23≠+,故错误;23=⨯,故正确;=≠0.7≠,故错误;故选:B .【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键. 6.(2022·河南)下列运算正确的是( )A .2-=B .()2211a a +=+C .()325a a =D .2322a a a ⋅= 【答案】D【分析】根据二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式逐项分析判断即可求解.【详解】解:A. =B. ()22112a a a +=++,故该选项不正确,不符合题意; C. ()326a a =,故该选项不正确,不符合题意;D. 2322a a a ⋅=,故该选项正确,符合题意;故选:D.【点睛】本题考查了二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式,正确地计算是解题的关键.7.(2022·湖南怀化)下列计算正确的是( )A .()32626a a =B .824a a a ÷=C 2D .()222x y x y -=- 【答案】C【分析】依次对每个选项进行计算,判断出正确的答案.【详解】∵()32366822a a a ==∵ A 错误 ∵82826a a a a -÷==∵ B 错误2∵C 正确∵()2222x y x xy y -=-+∵ D 错误故选:C .【点睛】本题考查整式的运算,解题的关键是熟练掌握运算法则.8.(2022·湖南怀化)下列计算正确的是( )A .(2a 2)3=6a 6B .a 8÷a 2=a 4C 2D .(x ﹣y )2=x 2﹣y 2【答案】C【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a 2)3=8a 6≠6a 6,故错误;B.a 8÷a 2=a 6≠a 4,故错误;=2,故正确;D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误;故选:C .【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键.9.(2022·云南)下列运算正确的是( )A =B .030=C .()3328a a -=-D .632a a a ÷=【答案】C【分析】根据合并同类二次根式判断A ,根据零次幂判断B ,根据积的乘方判断C ,根据同底数幂的除法判断D .【详解】解:题意;B.031=,此选项运算错误,不符合题意;C.()3328a a -=-,此选项运算正确,符合题意;D.633a a a ÷=,此选项运算错误,不符合题意;故选:C .【点睛】本题考查了二次根式的加法、零次幂、积的乘方、同底数幂相除,熟练掌握运算法则是解题的关键.10.(2022·四川德阳)下列计算正确的是( )A .()222a b a b -=-B 1=C .1a a a a ÷⋅=D .32361126ab a b ⎛⎫-=- ⎪⎝⎭ 【答案】B【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.222()2a b a ab b -=-+,故本选项错误;1,故本选项符合题意;C.1111a a a a a÷⋅=⋅=,故本选项错误;D.23332336111228()()ab a b a b ⨯-=-=-,故本选项错误;故选:B .【点睛】本题考查了完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键.11.(2022·江苏连云港)函数y =x 的取值范围是( ) A .1≥xB .0x ≥C .0x ≤D .1x ≤ 【答案】A【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∵1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.12.(2022·四川自贡)下列运算正确的是( )A .()212-=-B .1=C .632a a a ÷= D .0102022⎛⎫-= ⎪⎝⎭ 【答案】B【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.()211-=,故A 错误;B.221=-=,故B 正确;C.633a a a ÷=,故C 错误;D.0112022⎛⎫-= ⎪⎝⎭,故D 错误.故选:B . 【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.13.(2022· )A .±2B .-2C .4D .2【答案】D【分析】先计算(-2)2=4,再求算术平方根即可.2,故选:D .【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键. 14.(2022·4的值在( )A .6到7之间B .5到6之间C .4到5之间D .3到4之间【答案】D【分析】根据49<54<64,得到78<<,进而得到344<<,即可得到答案.【详解】解:∵49<54<64,∵78<,∵344<<4的值在3到4之间,故选:D .【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二.填空题15.(2022·x 的取值范围是______.【答案】x ≥﹣1【分析】根据二次根式有意义的条件可得:x +1≥0,即可求得.【详解】解:∵∵x +1≥0,∵x ≥﹣1.故答案为:x ≥﹣1.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.(2022·_________.【答案】2【分析】根据二次根式的性质进行化简即可.2.故答案为:2. ()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<. 17.(2022·湖北荆州)若3a ,小数部分为b ,则代数式()2b ⋅的值是______.【答案】2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∵132<, ∵3的整数部分为a ,小数部分为b ,∵1a =,312b ==∵()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.18.(2022·x 的取值范围为_____.【答案】x ≥5【分析】根据二次根式有意义的条件得出x −5≥0,计算求解即可.【详解】解:由题意知,50x -≥,解得,5x ≥,故答案为:5x ≥.【点睛】本题考查了二次根式有意义的条件,解一元一次不等式.熟练掌握二次根式有意义的条件是解题的关键.19.(2022·四川南充)x 为正整数,则x 的值是_______________.【答案】4或7或8【分析】根据根号下的数大于等于0和x 为正整数,可得x 可以取1、2、3、4、5、6、7、8为整数即可得x 的值.【详解】解:∵80x -≥∵8x ≤∵x 为正整数∵x 可以为1、2、3、4、5、6、7、8为整数∵x 为4或7或8故答案为:4或7或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.20.(2022·天津)计算1)的结果等于___________.【答案】18【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.21.(2022·浙江嘉兴)如图,在ABC中,∵ABC=90°,∵A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.【分析】先求解33,,3AB AD再利用线段的和差可得答案.【详解】解:由题意可得:1,15123,DE DC30,90, A ABC33, tan603BCAB同理:13,tan6033DEAD3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.22.(2022·新疆)在实数范围内有意义,则x的取值范围为__________.【答案】3x≥【分析】根据二次根式有意义的条件,得到不等式,解出不等式即可.有意义,则需要-30x≥,解出得到3x≥.故答案为:3x≥【点睛】本题考查二次根式有意义的条件,能够得到不等式是解题关键.23.(2022·2,…,排列:,2,4;…若2的位置记为(1,2)(2,3),则________.【答案】(4,2)【分析】先找出被开方数的规律,然后再求得∵规律为:被开数为从2开始的偶数,每一行4个数,∵28是第14个偶数,而14432÷=∵(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.24.(2022·x的取值范围是__.【答案】1x.【分析】二次根式有意义的条件:被开方数为非负数,再列不等式,从而可得答案.10x -,解得:1x .故答案为:1x .【点睛】本题考查的是二次根式有意义的条件,解题的关键是根据二次根式有意义的条件列不等式.25.(2022·四川遂宁)实数a ,b 在数轴上的位置如图所示,化简1a +______.【答案】2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案. 【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∵1a +|1||1|||a b a b +--+- =1(1)()a b a b +---- =11a b a b +-+-+ =2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.26.(2022·_____. 【答案】4【分析】根据二次根式的乘法法则计算即可.4=.故答案为:4.【点睛】本题考查了二次根式的乘法,解题的关键是掌握运算法则.27.(2022·湖南娄底)函数y=x的取值范围是_______.【答案】1x>有意义可得:10,x->再解不等式可得答案.有意义可得:10,10xx即10,x->解得: 1.x>故答案为:1x>【点睛】本题考查的是二次根式与分式有意义的条件,函数自变量的取值范围,理解函数自变量的取值范围的含义是解本题的关键.28.(2022·________.【答案】3【分析】直接利用二次根式的乘法法则计算得出答案.3.故答案为:3.【点睛】此题主要考查了二次根式的乘法法则,熟练掌握二次根式的乘法法则是解题关键.29.(2022·四川宜宾)《数学九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=18的三角形的三边满足::4:3:2a b c=,则用以上给出的公式求得这个三角形的面积为______. 【答案】【分析】根据周长为18的三角形的三边满足::4:3:2a b c =,求得8,6,4a b c ===,代入公式即可求解.【详解】解:∵周长为18的三角形的三边满足::4:3:2a b c =,设4,3,2a k b k c k === ∵43218k k k ++=解得2k =∴8,6,4a b c ===∴S =====故答案为:【点睛】本题考查了化简二次根式,正确的计算是解题的关键.30.(2022·湖北荆州)如图,在Rt ∵ABC 中,∵ACB =90°,通过尺规作图得到的直线MN 分别交AB ,AC 于D ,E ,连接CD .若113CE AE ==,则CD =______.【分析】先求解AE ,AC ,再连结BE ,证明,,AE BE AD BD 利用勾股定理求解BC,AB,从而可得答案.【详解】解:113CE AE==,3,4,AE AC如图,连结,BE由作图可得:MN是AB的垂直平分线,3,,AE BE AD BD90,ACB∠=︒223122,BC2242226,AB16.2BD AB【点睛】本题考查的是线段的垂直平分线的作图与性质,勾股定理的应用,二次根式的化简,熟悉几何基本作图与基本图形的性质是解本题的关键.31.(2022·x的取值范围是______.【答案】4x>【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:根据题意,得:4040xx-≥⎧⎨-≠⎩,解得:x>4,故答案为:x>4.【点睛】本题考查了二次根式有意义的条件是二次根式的被开方数是非负数,分式有意义的条件是分母不为0.32.(2022·x 的取值范围是_______. 【答案】1x【分析】根据二次根式的被开方数是非负数列出不等式10x -,解不等式即可求得x 的取值范围.【详解】解:根据题意得10x -,解得1x .故答案为:1x .【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式.33.(2022·__________.【答案】【解析】 【分析】先计算乘法,再合并,即可求解. 【详解】3=4233=,故答案为: 【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.34.(2022·湖北随州)已知mm 有最小值3721⨯=.设n 为正整数,是大于1的整数,则n 的最小值为______,最大值为______. 【答案】 3 75【分析】根据n 为正整数,1的整数,先求出n 的值可以为3、12、75,3001的整数来求解.【详解】解:=1的整数,∵1=. ∵n 为正整数∵n 的值可以为3、12、75,n 的最小值是3,最大值是75.故答案为:3;75.【点睛】本题考查了无理数的估算,理解无理数的估算方法是解答关键.35.(2022·0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =记11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++=_______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解:a =b =1ab ==∴, 1112211112a b a ba b b b a bS a a ++++=+===+++++++, 222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键. 三.解答题36.(2022·四川乐山)1sin 302-︒ 【答案】3【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可. 【详解】解:原式113322=+-=.【点睛】本题主要考查了特殊角三角函数值、负整数指数幂、二次根式的性质等知识,熟知相关计算法则是解题的关键.37.(2022·江苏宿迁)计算:112-⎛⎫ ⎪⎝⎭4sin 60°.【答案】2【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:11124sin 6023422=+2= 【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.38.(2022·湖南娄底)计算:()11202212sin 602π-⎛⎫-++-︒ ⎪⎝⎭. 【答案】-2【分析】分别计算零指数幂、负整数指数幂、绝对值和特殊角的三角函数值,然后按照去括号、先乘除后加减的顺序依次计算即可得出答案.【详解】解:()-112022-12sin 602π⎛⎫+-+︒ ⎪⎝⎭(1212=---121=-- 2=-.【点睛】此题考查实数的混合运算,包含零指数幂、负整数指数幂、绝对值和特殊角的三角函数值.熟练掌握相关运算的运算法则以及整体的运算顺序是解决问题的关键.39.(2022·浙江湖州)计算:()223+⨯-.【答案】0【分析】先算乘方,再算乘法和减法,即可. 【详解】()26(6)6236=+-=+--=⨯【点睛】本题考查实数的混合运算,关键是掌握2a=.40.(2022·【答案】【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:原式==【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.41.(2022·湖南常德)计算:213sin30452-︒︒⎛⎫- ⎪⎝⎭【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=11422-⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.42.(2022·四川广元)计算:2sin60°﹣2|+(π(﹣12)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣2|+(π+(﹣12)﹣2-- =3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.43.(2022·湖北十堰)计算:1202212(1)3-⎛⎫+- ⎪⎝⎭.【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:1202212(1)3-⎛⎫+- ⎪⎝⎭321=-【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简. 44.(2022·四川宜宾)计算:4sin 302︒;(2)21111aa a ⎛⎫-÷ ⎪+-⎝⎭. 【答案】1a -【分析】(1)先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;(2)先计算括号,再运用除法法则转化成乘法计算即可求解.【解析】(1)解:原式1422=⨯+=(2)解:原式211111a a a a a+-⎛⎫=-⋅ ⎪++⎝⎭ ()()111a a a a a+-=⋅+ 1a =-.【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算与分式混合运算法则,熟记特殊角的三角函数值.45.(2022·四川南充)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.【答案】24x -;-【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式=22326424x x x x x -+---=24x -;当x 1时,原式=)214-=3+1-4=- 【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键.46.(2022·湖南岳阳)计算:2022032tan 45(1))π--︒+--.【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+--32111=-⨯+-3211=-+-1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.47.(2022·湖南娄底)“体育承载着国家强盛、民族振兴的梦想”.墩墩使用握力器(如实物图所示)锻炼手部肌肉.如图,握力器弹簧的一端固定在点P 处,在无外力作用下,弹簧的长度为3cm ,即3cm PQ =.开始训练时,将弹簧的端点Q 调在点B 处,此时弹簧长4cm PB =,弹力大小是100N ,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q 调到点C 处,使弹力大小变为300N ,已知120∠=︒PBC ,求BC 的长.注:弹簧的弹力与形变成正比,即F k x =⋅∆,k 是劲度系数,x ∆是弹簧的形变量,在无外力作用下,弹簧的长度为0x ,在外力作用下,弹簧的长度为x ,则0x x x ∆=-.【答案】2【分析】利用物理知识先求解,k 再求解336,PC 再求解,,BM PM 再利用勾股定理求解MC ,从而可得答案.【详解】解:由题意可得:当100F时,431,x 100,k 即100,F x 当300F =时,则3,x 336,PC 如图,记直角顶点为M ,120,90,PBC PMB30,BPM 而4,PB 222,4223,BMPM 226232426,MC 26 2.BC MC BM【点睛】本题是跨学科的题,考查了正比例函数的性质,三角形的外角的性质,勾股定理的应用,含30的直角三角形的性质,二次根式的化简,理解题意,建立数学函数模型是解本题的关键.。
专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)
专题5二次根式(共36题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.【详解】4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .2.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A【分析】由二次根式的性质,分别进行判断,即可得到答案. 【详解】2==,故A 正确,C 错误;2,故B 、D 错误;故选:A .3.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】解:A2B3C 12为有理数D5故选:C4.(2021·江苏苏州市·中考真题)计算2的结果是()A B.3C.D.9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B.【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a=≥是解答此题的关键.5.(2021·甘肃武威市·中考真题)下列运算正确的是()A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.【详解】=A 错;=B 错;=C 正确;2=,故D 错.故选:C .6.(2021· )A .7B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;【详解】===故选:B .7.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( )A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键.8.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2+=C =D 3= 【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C.=D. =故选:C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.9.(2021· )A .4B .4±C .D .±【分析】()0,0,a b a b=≥≥直接化简即可得到答案.【详解】==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.10.(2021·江苏苏州市·中考真题)已知点)A m,3,2B n⎛⎫⎪⎝⎭在一次函数21y x=+的图像上,则m与n 的大小关系是()A.m n>B.m n=C.m n<D.无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∵y随x的增大而增大.∵2<94,32<.∵m<n.故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键.11.(2021·浙江台州市·之间的整数有()A.0个B.1个C.2个D.3个【分析】【详解】解:∵12<<,23<<,∵2,这一个数,故选:B .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的两个有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.(2021·四川资阳市·中考真题)若a =b =2c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .b a c <<C .a c b <<D .a b c << 【答案】C【分析】根据无理数的估算进行大小比较.【详解】解:<>又∵a c b <<故选:C .【点睛】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键.13.(2021·浙江中考真题)已知,a b 是两个连续整数,1a b <<,则,a b 分别是( ) A .2,1--B .1-,0C .0,1D .1,2 【答案】C【分析】1的范围即可得到答案.【详解】<<解:12,∴011,<-<∴==0,1,a b故选:.C【点睛】本题考查的是无理数的估算,掌握利用算术平方根的含义估算无理数是解题的关键.二、填空题14.(2021·天津中考真题)计算1)的结果等于_____.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】2=-=.1)19故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.15.(2021·浙江丽水市·有意义,则x可取的一个数是__________.x≥)【答案】如4等(答案不唯一,3【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵有意义,∵x﹣3≥0,∵x≥3,∵x可取x≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.16.(2021·江苏连云港市·=__________. 【答案】5【分析】直接运用二次根式的性质解答即可.【详解】5.故填5.【点睛】()()00a a a a ⎧-⎪=⎨≥⎪⎩<成为解答本题的关键. 17.(2021·湖南衡阳市·有意义,则x 的取值范围是________.【答案】x ≥3【分析】根据二次根式被开方数为非负数进行求解.【详解】由题意知,30x -≥,解得,x ≥3,故答案为:x ≥3.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.18.(2021·浙江金华市·x 的取值范围是___.【答案】x 3≥.【详解】x 30x 3-≥⇒≥.19.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___. 【答案】1x 2≥【详解】 试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非在实数范围内有意义,必须12x 10x 2-≥⇒≥.20.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.21.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______. 【答案】12016-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.三、解答题22.(2021·陕西中考真题)计算:0112⎛⎫-+ ⎪⎝⎭【答案】【分析】根据零次幂、算术平方根及二次根式的加减运算可直接进行求解.【详解】解:原式11=-=【点睛】本题主要考查零次幂、算术平方根及二次根式的加减运算,熟练掌握零次幂、算术平方根及二次根式的加减运算是解题的关键.23.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.【答案】﹣【分析】 根据零指数幂运算法则、绝对值符号化简、特殊角的三角函数值代入计算,然后根据同类二次根式合并求解即可.【详解】解:()020212tan 60π--︒=(12--=12-+=﹣.【点睛】本题主要考查了实数的综合运算能力,是中考题中常见的计算题型.熟练掌握零指数幂、特殊角的三角函数值、绝对值化简方法,同类二次根式是解题关键.24.(2021·四川眉山市·中考真题)计算:(10143tan 602-⎛⎫--︒--+ ⎪⎝⎭【答案】3【分析】依次计算“0次方”、tan 60︒等,再进行合并同类项即可.【详解】解:原式=()132123--+=-+=【点睛】本题综合考查了非零数的零次幂、特殊角的三角函数、负整数指数幂以及二次根式的化简等内容,解决本题的关键是牢记相关计算公式等,本题易错点为对112-⎛⎫-- ⎪⎝⎭的化简,该项出现的“ -”较多,因此符号易出错,因此要注意.25.(2021·上海中考真题)计算: 1129|12-+-【答案】2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+--,(112-⨯=31,=2.26.(2021·浙江台州市·中考真题)计算:|-2|【答案】【分析】先算绝对值,化简二次根式,再算加减法,即可求解.【详解】解:原式=2+【点睛】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.27.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦=【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.28.(2021·甘肃武威市·中考真题)计算:011(2021)()2cos 452π--+-︒.【答案】3【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】 解:011(2021)()2cos 452π--+-︒,122=+-3=【点睛】 本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.29.(2021·浙江金华市·中考真题)计算:()202114sin 45+2-︒-. 【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可【详解】解:原式1422=-+⨯+12=-+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.30.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221-- =3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.31.(2021·江苏苏州市·中考真题)先化简再求值:21111x x x-⎛⎫+⋅ ⎪-⎝⎭,其中1x =.【答案】1x +【分析】先算分式的加法,再算乘法运算,最后代入求值,即可求解.【详解】 解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式=【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.32.(2021·四川广安市·中考真题)计算:()03.1414sin 60π-+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1414sin 60π-+︒=1142-+⨯=11-+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.33.(2021·江苏苏州市·223--.【答案】-5【分析】分别化简算术平方根、绝对值和有理数的乘方,然后再进行加减运算即可得到答案.【详解】223-- 229=+-5=-.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.34.(2021·江苏扬州市·中考真题)计算或化简:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭; (2)()11a b a b ⎛⎫+÷+ ⎪⎝⎭. 【答案】(1)4;(2)ab【分析】(1)分别化简各数,再作加减法;(2)先通分,计算加法,再将除法转化为乘法,最后约分计算.【详解】解:(1)013|tan603⎛⎫-++︒ ⎪⎝⎭=13+=4;(2)()11a b a b ⎛⎫+÷+⎪⎝⎭ =()a b a b ab++÷ =()ab a b a b+⨯+ =ab【点睛】本题考查了实数的混合运算,特殊角的三角函数值,零指数幂,分式的混合运算,解题的关键是熟练掌握运算法则.35.(2021·四川自贡市·0|7|(2-+-.【答案】1-【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=-+=-.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.36.(2021·浙江丽水市·中考真题)计算:0|2021|(3)-+-.【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可;【详解】解:0|2021|(3)-+--202112=+-,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.。
甘肃省兰州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类(含答案)
甘肃省兰州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.平方差公式(共1小题)1.(2023•兰州)计算:(x+2y)(x﹣2y)﹣y(3﹣4y).二.分式的混合运算(共1小题)2.(2022•兰州)计算:(1+)÷.三.分式的化简求值(共2小题)3.(2021•兰州)先化简,再求值:,其中m=2.4.(2021•兰州)先化简,再求值:÷﹣,其中m=4.四.二次根式的混合运算(共3小题)5.(2023•兰州)计算:.6.(2021•兰州)计算:.7.(2021•兰州)计算:(+)×.五.解一元二次方程-配方法(共1小题)8.(2021•兰州)解方程:x2+4x﹣1=0.六.解一元一次不等式(共1小题)9.(2022•兰州)解不等式:2(x﹣3)<8.七.一次函数的应用(共1小题)10.(2021•兰州)小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发 分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.八.反比例函数与一次函数的交点问题(共1小题)11.(2022•兰州)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴,垂足为B (3,0),过C(5,0)作CD⊥x轴,交过B点的一次函数y=x+b的图象于D点,交反比例函数的图象于E点,S△AOB=3.(1)求反比例函数y=(x>0)和一次函数y=x+b的表达式;(2)求DE的长.九.二次函数的应用(共1小题)12.(2023•兰州)一名运动员在10m高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面OB的高度y(m)与离起跳点A的水平距离x(m)之间的函数关系如图所示,运动员离起跳点A的水平距离为1m时达到最高点,当运动员离起跳点A的水平距离为3m时离水面的距离为7m.(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点的水平距离OB的长.一十.全等三角形的判定与性质(共2小题)13.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.14.(2021•兰州)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC =DF.一十一.矩形的性质(共1小题)15.(2023•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE 是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.一十二.解直角三角形的应用(共1小题)16.(2021•兰州)避雷针是用来保护建筑物、高大树木等避免雷击的装置.如图,小陶同学要测量垂直于地面的大楼BC顶部避雷针CD的长度(B,C,D三点共线),在水平地面A点测得∠CAB=53°,∠DAB=58°,A点与大楼底部B点的距离AB=20m,求避雷针CD的长度.(结果精确到0.1m.参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)一十三.条形统计图(共1小题)17.(2021•兰州)2021年2月25日,习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告中国脱贫攻坚取得了全面胜利,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,根据2021年4月7日《人民日报》刊登的“人类减贫的中国实践”的相关数据进行收集和整理,信息如下:信息一:脱贫攻坚以来中国农村年度贫困人口数量信息二:脱贫攻坚以来财政专项扶贫资金投入信息三:脱贫攻坚以来贫困地区农村居民和全国农村居民年人均可支配收入及增长率年份、统计量名称20132014201520162017201820192020平均数贫困地区农村居民年人均可支配收入/元607968527653845293771037111567125889117贫困地区农村居民年人均可支配收入增长率/%16.512.711.710.410.910.611.58.811.6全国农村居民年人均可支配收入增长率/%12.411.28.98.28.68.89.6 6.99.3请根据以上信息,解决下列问题:(1)2019年底中国农村贫困人口数量为 万人.(2)2013年底至2020年底,贫困地区农村居民年人均可支配收入的极差为 元.(3)下列结论正确的是 (只填序号).①脱贫攻坚以来中国农村贫因人口数量逐年减少,最终全部脱贫;②脱贫攻坚以来我国贫困地区农村居民人均可支配收入年平均增长率为11.6%,增长持续快于全国农村;③2016﹣2020年各级财政专项扶贫资金投入连续5年超过中央财政专项扶贫资金1000亿元.一十四.折线统计图(共1小题)18.(2022•兰州)人口问题是“国之大者”,以习近平同志为核心的党中央高度重视人口问题,准确把握人口发展形势,有利于推动社会持续健康发展,为开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军创造良好的条件.某综合与实践研究小组根据我国第七次人口普查数据进行整理、描述和分析,给出部分数据信息:信息一:普查登记的全国大陆31个省、自治区、直辖市人口数的频数分布直方图如下:(数据分成6组:0≤x<20,20≤x<40,40≤x<60,60≤x<80,80≤x<100,100≤x≤120)信息二:普查登记的全国大陆31个省、自治区、直辖市人口数(百万人)在40≤x<60这一组的数据是:58,47,45,40,43,42,50;信息三:2010﹣2021年全国大陆人口数及自然增长率;请根据以上信息,解答下列问题:(1)普查登记的全国大陆31个省、自治区、直辖市人口数的中位数为 百万人.(2)下列结论正确的是 .(只填序号)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢;③2010﹣2021年全国大陆人口自然增长率持续降低.(3)请写出2016﹣2021年全国大陆人口数、全国大陆人口自然增长率的变化趋势,结合变化趋势谈谈自己的看法.一十五.中位数(共1小题)19.(2023•兰州)某校八年级共有男生300人,为了解该年级男生排球垫球成绩和掷实心球成绩的情况,从中随机抽取40名男生进行测试,对数据进行整理、描述和分析,下面是给出的部分信息.信息一:排球垫球成绩如图所示(成绩用x表示,分成六组:A、x<10;B、10≤x<15;C、15≤x<20;D、20≤x<25;E、25≤x<30;F、30≤x).信息二:排球垫球成绩在D、20≤x<25这一组的是:20,20,21,21,21,22,22,23,24,24;信息三:掷实心球成绩(成绩用y表示,单位:米)的人数(频数)分布表如表:分组y<6.0 6.0≤y<6.8 6.8≤y<7.67.6≤y<8.48.4≤y<9.29.2≤y 人数2m10962信息四:这次抽样测试中6名男生的两项成绩的部分数据如表:学生学生1学生2学生3学生4学生5学生6排球垫球262523222215掷实心球▲7.87.8▲8.89.2根据以上信息,回答下列问题:(1)填空:m= ;(2)下列结论正确的是 ;(填序号)①排球垫球成绩超过10个的人数占抽取人数的百分比低于60%;②掷实心球成绩的中位数记为n,则6.8≤n<7.6;③若排球垫球成绩达到22个及以上时,成绩记为优秀,如果信息四中6名男生的两项成绩恰好为优秀的有4名,那么学生3掷实心球的成绩是优秀;(3)若排球垫球成绩达到22个及以上时,成绩记为优秀,请估计全年级男生排球垫球成绩达到优秀的人数.甘肃省兰州市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.平方差公式(共1小题)1.(2023•兰州)计算:(x+2y)(x﹣2y)﹣y(3﹣4y).【答案】x2﹣3y.【解答】解:原式=x2﹣4y2﹣(3y﹣4y2)=x2﹣4y2﹣3y+4y2=x2﹣3y.二.分式的混合运算(共1小题)2.(2022•兰州)计算:(1+)÷.【答案】.【解答】解:原式===.三.分式的化简求值(共2小题)3.(2021•兰州)先化简,再求值:,其中m=2.【答案】见试题解答内容【解答】解:=+==,当m=2时,原式==2.4.(2021•兰州)先化简,再求值:÷﹣,其中m =4.【答案】,.【解答】解:原式=•﹣=﹣=,当m =4时,原式=.四.二次根式的混合运算(共3小题)5.(2023•兰州)计算:.【答案】.【解答】解:原式=3﹣2=.6.(2021•兰州)计算:.【答案】4.【解答】解:=+=+==3=4.7.(2021•兰州)计算:(+)×.【答案】5.【解答】解:原式=+=2+3=5.五.解一元二次方程-配方法(共1小题)8.(2021•兰州)解方程:x2+4x﹣1=0.【答案】见试题解答内容【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.六.解一元一次不等式(共1小题)9.(2022•兰州)解不等式:2(x﹣3)<8.【答案】x<7.【解答】解:去括号,得:2x﹣6<8,移项,得:2x<8+6,合并同类项,得:2x<14,两边同乘以,得:x<7.故原不等式的解集是x<7.七.一次函数的应用(共1小题)10.(2021•兰州)小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发 6 分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.【答案】(1)6;(2)y=300x﹣4500(15≤x≤25);(3)8分钟,理由见解答.【解答】解:(1)由图象可知,观光车出发:21﹣15=6(分钟),追上小军;故答案为:6;(2)设l2所在直线对应的函数表达式为y=kx+b,则,解得,15+3000÷300=25(min),∴l2所在直线对应的函数表达式为y=300x﹣4500(15≤x≤25);(3)33﹣25=8(min),故观光车比小军早8分钟到达观景点.八.反比例函数与一次函数的交点问题(共1小题)11.(2022•兰州)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴,垂足为B (3,0),过C(5,0)作CD⊥x轴,交过B点的一次函数y=x+b的图象于D点,交反比例函数的图象于E点,S△AOB=3.(1)求反比例函数y=(x>0)和一次函数y=x+b的表达式;(2)求DE的长.【答案】(1)反比例函数的表达式为y=,一次函数的表达式为y=x﹣;(2)DE=.【解答】解:(1)∵点A在反比例函数y=(x>0)的图象上,AB⊥x轴,∴S△AOB=|k|=3,∴k=6,∴反比例函数为y=,∵一次函数y=x+b的图象过点B(3,0),∴×3+b=0,解得b=﹣,∴一次函数为y=x﹣;(2)∵过C(5,0)作CD⊥x轴,交过B点的一次函数y=x+b的图象于D点,∴当x=5时y==;y=x﹣=3,∴E(5,),D(5,3),∴DE=3﹣=.九.二次函数的应用(共1小题)12.(2023•兰州)一名运动员在10m高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面OB的高度y(m)与离起跳点A的水平距离x(m)之间的函数关系如图所示,运动员离起跳点A的水平距离为1m时达到最高点,当运动员离起跳点A的水平距离为3m时离水面的距离为7m.(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点的水平距离OB的长.【答案】(1)y=﹣x2+2x+10;(2)运动员从起跳点到入水点的水平距离OB的长为(+1)米.【解答】解:(1)根据题意可得,抛物线过(0,10)和(3,7),对称轴为直线x=1,设y关于x的函数表达式为y=ax2+bx+c,∴,解得:,∴y关于x的函数表达式为y=﹣x2+2x+10;(2)在y=﹣x2+2x+10中,令y=0得0=﹣x2+2x+10,解得x=+1或x=﹣+1(舍去),∴运动员从起跳点到入水点的水平距离OB的长为(+1)米.一十.全等三角形的判定与性质(共2小题)13.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【答案】∠D=50°.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.14.(2021•兰州)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC =DF.【答案】见解析.【解答】证明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF.一十一.矩形的性质(共1小题)15.(2023•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE 是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.(1)判断四边形OCDE的形状,并说明理由;(2)当CD=4时,求EG的长.【答案】(1)答案见解答过程;(2).【解答】解:(1)四边形OCDE是菱形,理由如下:∵CD∥OE,∴∠FDC=∠FOE,∵CE是线段OD的垂直平分线,∴FD=FO,ED=OE,CD=CO,在△FDC和△FOE中,,∴△FDC≌△FOE(ASA),∴CD=OE,又ED=OE,CD=CO,∴ED=OE=CD=CO,∴四边形OCDE是菱形.(2)∵四边形ABCD为矩形,∴∠BCD=∠CDA=90°,DO=CO,∵CE是线段OD的垂直平分线,∴CD=CO,∴CD=CO=DO,∴△ODC为等边三角形,∴DO=CD=4,∠ODC=60°,∴,在Rt△CDF中,CD=4,DF=2,由勾股定理得:,由(1)可知:四边形OCDE是菱形,∴,∵∠GDF=∠CDA﹣∠ODC=30°,∴,∴,∴.一十二.解直角三角形的应用(共1小题)16.(2021•兰州)避雷针是用来保护建筑物、高大树木等避免雷击的装置.如图,小陶同学要测量垂直于地面的大楼BC顶部避雷针CD的长度(B,C,D三点共线),在水平地面A点测得∠CAB=53°,∠DAB=58°,A点与大楼底部B点的距离AB=20m,求避雷针CD的长度.(结果精确到0.1m.参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【答案】约为5.4米.【解答】解:在Rt△ABD中,∵tan∠BAD=,∴1.60≈,∴BD≈32(米),在Rt△CAB中,∵tan∠CAB=,∴1.33≈,∴BC≈26.6(米),∴CD=BD﹣BC≈5.4(米).答:避雷针DC的长度约为5.4米.一十三.条形统计图(共1小题)17.(2021•兰州)2021年2月25日,习近平总书记在全国脱贫攻坚总结表彰大会上庄严宣告中国脱贫攻坚取得了全面胜利,完成了消除绝对贫困的艰巨任务,创造了又一个彪炳史册的人间奇迹,根据2021年4月7日《人民日报》刊登的“人类减贫的中国实践”的相关数据进行收集和整理,信息如下:信息一:脱贫攻坚以来中国农村年度贫困人口数量信息二:脱贫攻坚以来财政专项扶贫资金投入信息三:脱贫攻坚以来贫困地区农村居民和全国农村居民年人均可支配收入及增长率20132014201520162017201820192020平均数年份、统计量名称607968527653845293771037111567125889117贫困地区农村居民年人均可支配收入/元16.512.711.710.410.910.611.58.811.6贫困地区农村居民年人均可支配收入增长率/%12.411.28.98.28.68.89.6 6.99.3全国农村居民年人均可支配收入增长率/%请根据以上信息,解决下列问题:(1)2019年底中国农村贫困人口数量为 551 万人.(2)2013年底至2020年底,贫困地区农村居民年人均可支配收入的极差为 6509 元.(3)下列结论正确的是 ①②③ (只填序号).①脱贫攻坚以来中国农村贫因人口数量逐年减少,最终全部脱贫;②脱贫攻坚以来我国贫困地区农村居民人均可支配收入年平均增长率为11.6%,增长持续快于全国农村;③2016﹣2020年各级财政专项扶贫资金投入连续5年超过中央财政专项扶贫资金1000亿元.【答案】(1)551;(2)6509;(3)①②③.【解答】解:(1)根据信息一:脱贫攻坚以来中国农村年度贫困人口数量的条形统计图即可知:2019年底中国农村贫困人口数量为551万人;故答案为:551;(2)12588﹣6079=6509,故答案为:6509;(3)根据信息一,可得,脱贫攻坚以来中国农村贫因人口数量逐年减少,最终全部脱贫,故①正确;②∵(16.5+12.7+11.7+10.4+10.9+10.6+11.5+8.8+11.6)÷9≈11.6,且每一年的我国贫困地区农村居民人均可支配收入年增长率持续快于全国农村;故②正确;③2016年:1700﹣665=1035>1000,2017年:2220﹣865=1355>1000,2018年:2780﹣1065=1715>1000,2019年:3160﹣1265=1895>1000,2020年:3520﹣1465=2055>1000,2016﹣2020年各级财政专项扶贫资金投入连续5年超过中央财政专项扶贫资金1000亿元.故③正确,故答案为:①②③.一十四.折线统计图(共1小题)18.(2022•兰州)人口问题是“国之大者”,以习近平同志为核心的党中央高度重视人口问题,准确把握人口发展形势,有利于推动社会持续健康发展,为开启全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军创造良好的条件.某综合与实践研究小组根据我国第七次人口普查数据进行整理、描述和分析,给出部分数据信息:信息一:普查登记的全国大陆31个省、自治区、直辖市人口数的频数分布直方图如下:(数据分成6组:0≤x<20,20≤x<40,40≤x<60,60≤x<80,80≤x<100,100≤x≤120)信息二:普查登记的全国大陆31个省、自治区、直辖市人口数(百万人)在40≤x<60这一组的数据是:58,47,45,40,43,42,50;信息三:2010﹣2021年全国大陆人口数及自然增长率;请根据以上信息,解答下列问题:(1)普查登记的全国大陆31个省、自治区、直辖市人口数的中位数为 40 百万人.(2)下列结论正确的是 ①② .(只填序号)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢;③2010﹣2021年全国大陆人口自然增长率持续降低.(3)请写出2016﹣2021年全国大陆人口数、全国大陆人口自然增长率的变化趋势,结合变化趋势谈谈自己的看法.【答案】(1)40;(2)①②;(3)2016﹣2021年全国大陆人口数增长缓慢,全国大陆人口自然增长率持续降低.看法:放开计划生育,鼓励多生优生,以免人口自然增长率为负(答案不唯一).【解答】解:(1)将这31个省、自治区、直辖市人口数从小到大排列处在中间位置的数是40百万人,因此中位数是40百万人,故答案为:40;(2)①全国大陆31个省、自治区、直辖市中人口数大于等于100(百万人)的有2个地区,故原结论正确,符合题意;②相对于2020年,2021年全国大陆人口自然增长率降低,全国大陆人口增长缓慢,故原结论正确,符合题意;③2010﹣2021年全国大陆人口自然增长率的情况是:2010﹣2012,2013﹣2014,2015﹣2016年增长率持续上升;2012﹣2013,2014﹣2015,2016﹣2021年增长率持续降低,故原结论错误,不符合题意.所以结论正确的是①②.故答案为:①②;(3)2016﹣2021年全国大陆人口数增长缓慢,全国大陆人口自然增长率持续降低.看法:放开计划生育,鼓励多生优生,以免人口自然增长率为负(答案不唯一).一十五.中位数(共1小题)19.(2023•兰州)某校八年级共有男生300人,为了解该年级男生排球垫球成绩和掷实心球成绩的情况,从中随机抽取40名男生进行测试,对数据进行整理、描述和分析,下面是给出的部分信息.信息一:排球垫球成绩如图所示(成绩用x表示,分成六组:A、x<10;B、10≤x<15;C、15≤x<20;D、20≤x<25;E、25≤x<30;F、30≤x).信息二:排球垫球成绩在D、20≤x<25这一组的是:20,20,21,21,21,22,22,23,24,24;信息三:掷实心球成绩(成绩用y表示,单位:米)的人数(频数)分布表如表:分组y<6.0 6.0≤y<6.8 6.8≤y<7.67.6≤y<8.48.4≤y<9.29.2≤y人数2m10962信息四:这次抽样测试中6名男生的两项成绩的部分数据如表:学生学生1学生2学生3学生4学生5学生6排球垫球262523222215掷实心球▲7.87.8▲8.89.2根据以上信息,回答下列问题:(1)填空:m= 11 ;(2)下列结论正确的是 ②③ ;(填序号)①排球垫球成绩超过10个的人数占抽取人数的百分比低于60%;②掷实心球成绩的中位数记为n,则6.8≤n<7.6;③若排球垫球成绩达到22个及以上时,成绩记为优秀,如果信息四中6名男生的两项成绩恰好为优秀的有4名,那么学生3掷实心球的成绩是优秀;(3)若排球垫球成绩达到22个及以上时,成绩记为优秀,请估计全年级男生排球垫球成绩达到优秀的人数.【答案】(1)11;(2)②③;(3)75人.【解答】解:(1)m=40﹣2﹣10﹣9﹣6﹣2=11,故答案为:11;(2)由条形统计图可得,排球垫球成绩超过10个的人数占抽取人数的百分比:≥65%,①错误.掷实心球成绩的中位数记为n,则6.8≤n<7.6,②正确.若排球垫球成绩达到22个及以上时,成绩记为优秀,如果信息四中6名男生的两项成绩恰好为优秀的有4名,那么学生3掷实心球的成绩是优秀.理由:如果学生3的掷实心球的成绩未到达优秀,那么只有学生1、4、5、6有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,③正确.故答案为:②③;(2)∵排球垫球成绩达到22个及以上的人数:10人,∴全年级男生排球垫球成绩达到优秀的人数是:300×=75,答:估计全年级男生排球垫球成绩达到优秀的人数是有75人.。
浙江省杭州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类
浙江省杭州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.数轴(共1小题)1.(2023•杭州)已知数轴上的点A,B分别表示数a,b,其中﹣1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是( )A.B.C.D.二.相反数(共1小题)2.(2021•杭州)﹣(﹣2021)=( )A.﹣2021B.2021C.﹣D.三.有理数的减法(共1小题)3.(2022•杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为( )A.﹣8℃B.﹣4℃C.4℃D.8℃四.有理数的混合运算(共1小题)4.(2023•杭州)(﹣2)2+22=( )A.0B.2C.4D.8五.科学记数法—表示较大的数(共3小题)5.(2023•杭州)杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A.8.8×104B.8.08×104C.8.8×105D.8.08×105 6.(2022•杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为( )A.14.126×108B.1.4126×109C.1.4126×108D.0.14126×10107.(2021•杭州)“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜纪录.数据10909用科学记数法可表示为( )A.0.10909×105B.1.0909×104C.10.909×103D.109.09×102六.因式分解-运用公式法(共2小题)8.(2023•杭州)分解因式:4a2﹣1=( )A.(2a﹣1)(2a+1)B.(a﹣2)(a+2)C.(a﹣4)(a+1)D.(4a﹣1)(a+1)9.(2021•杭州)因式分解:1﹣4y2=( )A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)七.分式的加减法(共1小题)10.(2022•杭州)照相机成像应用了一个重要原理,用公式=+(v≠f)表示,其中f 表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u=( )A.B.C.D.八.二次根式的性质与化简(共1小题)11.(2021•杭州)下列计算正确的是( )A.=2B.=﹣2C.=±2D.=±2九.由实际问题抽象出一元一次方程(共1小题)12.(2021•杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则( )A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5一十.二元一次方程的应用(共1小题)13.(2022•杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则( )A.||=320B.||=320C.|10x﹣19y|=320D.|19x﹣10y|=320一十一.不等式的性质(共1小题)14.(2022•杭州)已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+d B.a+b>c+d C.a+c>b﹣d D.a+b>c﹣d一十二.反比例函数的性质(共1小题)15.(2021•杭州)已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是( )A.y1=x2+2x和y2=﹣x﹣1B.y1=x2+2x和y2=﹣x+1C.y1=﹣和y2=﹣x﹣1D.y1=﹣和y2=﹣x+1一十三.二次函数的图象(共1小题)16.(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是( )A.命题①B.命题②C.命题③D.命题④一十四.二次函数图象与系数的关系(共1小题)17.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为( )A.B.C.D.一十五.二次函数的最值(共1小题)18.(2023•杭州)设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则( )A.当k=2时,函数y的最小值为﹣aB.当k=2时,函数y的最小值为﹣2aC.当k=4时,函数y的最小值为﹣aD.当k=4时,函数y的最小值为﹣2a一十六.垂线段最短(共1小题)19.(2021•杭州)如图,设点P是直线l外一点,PQ⊥l,垂足为点Q,点T是直线l上的一个动点,连结PT,则( )A.PT≥2PQ B.PT≤2PQ C.PT≥PQ D.PT≤PQ一十七.平行线的性质(共1小题)20.(2022•杭州)如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=( )A.10°B.20°C.30°D.40°一十八.三角形的角平分线、中线和高(共1小题)21.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则( )A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线一十九.矩形的性质(共1小题)22.(2023•杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则=( )A.B.C.D.二十.圆周角定理(共1小题)23.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC =19°,则∠BAC=( )A.23°B.24°C.25°D.26°二十一.三角形的外接圆与外心(共1小题)24.(2022•杭州)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )A.cosθ(1+cosθ)B.cosθ(1+sinθ)C.sinθ(1+sinθ)D.sinθ(1+cosθ)二十二.作图—基本作图(共1小题)25.(2021•杭州)已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC 的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB 于点P,则AP:AB=( )A.1:B.1:2C.1:D.1:二十三.坐标与图形变化-平移(共1小题)26.(2023•杭州)在直角坐标系中,把点A(m,2)先向右平移1个单位,再向上平移3个单位得到点B.若点B的横坐标和纵坐标相等,则m=( )A.2B.3C.4D.5二十四.坐标与图形变化-旋转(共1小题)27.(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是( )A.M1B.M2C.M3D.M4二十五.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=( )A.5B.4C.3D.2二十六.方差(共1小题)29.(2023•杭州)一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有出现数字6的是( )A.中位数是3,众数是2B.平均数是3,中位数是2C.平均数是3,方差是2D.平均数是3,众数是2二十七.列表法与树状图法(共1小题)30.(2021•杭州)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A.B.C.D.浙江省杭州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.数轴(共1小题)1.(2023•杭州)已知数轴上的点A,B分别表示数a,b,其中﹣1<a<0,0<b<1.若a×b=c,数c在数轴上用点C表示,则点A,B,C在数轴上的位置可能是( )A.B.C.D.【答案】B【解答】解:∵﹣1<a<0,0<b<1,∴﹣1<a×b<0,即﹣1<c<0,那么点C应在﹣1和0之间,则A,C,D不符合题意,B符合题意,故选:B.二.相反数(共1小题)2.(2021•杭州)﹣(﹣2021)=( )A.﹣2021B.2021C.﹣D.【答案】B【解答】解:﹣(﹣2021)=2021.故选:B.三.有理数的减法(共1小题)3.(2022•杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为( )A.﹣8℃B.﹣4℃C.4℃D.8℃【答案】D【解答】解:根据题意得:2﹣(﹣6)=2+6=8(℃),则该地这天的温差为8℃.故选:D.四.有理数的混合运算(共1小题)4.(2023•杭州)(﹣2)2+22=( )A.0B.2C.4D.8【答案】D【解答】解:(﹣2)2+22=4+4=8.故选:D.五.科学记数法—表示较大的数(共3小题)5.(2023•杭州)杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A.8.8×104B.8.08×104C.8.8×105D.8.08×105【答案】B【解答】解:80800=8.08×104,故选:B.6.(2022•杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为( )A.14.126×108B.1.4126×109C.1.4126×108D.0.14126×1010【答案】B【解答】解:1412600000=1.4126×109,故选:B.7.(2021•杭州)“奋斗者”号载人潜水器此前在马里亚纳海沟创造了10909米的我国载人深潜纪录.数据10909用科学记数法可表示为( )A.0.10909×105B.1.0909×104C.10.909×103D.109.09×102【答案】B【解答】解:10909=1.0909×104.故选:B.六.因式分解-运用公式法(共2小题)8.(2023•杭州)分解因式:4a2﹣1=( )A.(2a﹣1)(2a+1)B.(a﹣2)(a+2)C.(a﹣4)(a+1)D.(4a﹣1)(a+1)【答案】A【解答】解:4a2﹣1=(2a)2﹣12=(2a﹣1)(2a+1).故选:A.9.(2021•杭州)因式分解:1﹣4y2=( )A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)【答案】A【解答】解:1﹣4y2=1﹣(2y)2=(1﹣2y)(1+2y).故选:A.七.分式的加减法(共1小题)10.(2022•杭州)照相机成像应用了一个重要原理,用公式=+(v≠f)表示,其中f 表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u=( )A.B.C.D.【答案】C【解答】解:=+(v≠f),=+,,,u=.故选:C.八.二次根式的性质与化简(共1小题)11.(2021•杭州)下列计算正确的是( )A.=2B.=﹣2C.=±2D.=±2【答案】A【解答】解:A.,符合题意;B.,不符合题意;C.,不符合题意;D.,不符合题意,故选:A.九.由实际问题抽象出一元一次方程(共1小题)12.(2021•杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x>0),则( )A.60.5(1﹣x)=25B.25(1﹣x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5【答案】D【解答】解:设该景点今年四月到五月接待游客人次的增长率为x(x>0),则25(1+x)=60.5.故选:D.一十.二元一次方程的应用(共1小题)13.(2022•杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则( )A.||=320B.||=320C.|10x﹣19y|=320D.|19x﹣10y|=320【答案】C【解答】解:由题意可得:|10x﹣19y|=320.故选:C.一十一.不等式的性质(共1小题)14.(2022•杭州)已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+d B.a+b>c+d C.a+c>b﹣d D.a+b>c﹣d【答案】A【解答】解:A选项,∵a>b,c=d,∴a+c>b+d,故该选项符合题意;B选项,当a=2,b=1,c=d=3时,a+b<c+d,故该选项不符合题意;C选项,当a=2,b=1,c=d=﹣3时,a+c<b﹣d,故该选项不符合题意;D选项,当a=﹣1,b=﹣2,c=d=3时,a+b<c﹣d,故该选项不符合题意;故选:A.一十二.反比例函数的性质(共1小题)15.(2021•杭州)已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是( )A.y1=x2+2x和y2=﹣x﹣1B.y1=x2+2x和y2=﹣x+1C.y1=﹣和y2=﹣x﹣1D.y1=﹣和y2=﹣x+1【答案】A【解答】解:A.令y1+y2=0,则x2+2x﹣x﹣1=0,解得x=或x=,即函数y1和y2具有性质P,符合题意;B.令y1+y2=0,则x2+2x﹣x+1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;C.令y1+y2=0,则﹣﹣x﹣1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;D.令y1+y2=0,则﹣﹣x+1=0,整理得,x2﹣x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;故选:A.一十三.二次函数的图象(共1小题)16.(2022•杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是( )A.命题①B.命题②C.命题③D.命题④【答案】A【解答】解:假设抛物线的对称轴为直线x=1,则﹣=1,解得a=﹣2,∵函数的图象经过点(3,0),∴3a+b+9=0,解得b=﹣3,故抛物线的解析式为y=x2﹣2x﹣3,当y=0时,得x2﹣2x﹣3=0,解得x=3或x=﹣1,故抛物线与x轴的交点为(﹣1,0)和(3,0),函数的图象与x轴的交点位于y轴的两侧;故命题②③④都是正确,①错误,故选:A.一十四.二次函数图象与系数的关系(共1小题)17.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为( )A.B.C.D.【答案】A【解答】解:由图象知,A、B、D组成的二次函数图象开口向上,a>0;A、B、C组成的二次函数开口向上,a>0;B、C、D三点组成的二次函数开口向下,a<0;A、D、C三点组成的二次函数开口向下,a<0;即只需比较A、B、D组成的二次函数和A、B、C组成的二次函数即可.设A、B、C组成的二次函数为y1=a1x2+b1x+c1,把A(0,2),B(1,0),C(3,1)代入上式得,,解得a1=;设A、B、D组成的二次函数为y=ax2+bx+c,把A(0,2),B(1,0),D(2,3)代入上式得,,解得a=,即a最大的值为,也可以根据a的绝对值越大开口越小直接代入ABD三点计算,即可求求解.故选:A.一十五.二次函数的最值(共1小题)18.(2023•杭州)设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则( )A.当k=2时,函数y的最小值为﹣aB.当k=2时,函数y的最小值为﹣2aC.当k=4时,函数y的最小值为﹣aD.当k=4时,函数y的最小值为﹣2a【答案】A【解答】解:令y=0,则(x﹣m)(x﹣m﹣k)=0,∴x1=m,x2=m+k,∴二次函数y=a(x﹣m)(x﹣m﹣k)与x轴的交点坐标是(m,0),(m+k,0),∴二次函数的对称轴是:,∵a>0,∴y有最小值,当时,y最小,即,当k=2时,函数y的最小值为;当k=4时,函数y的最小值为,故选:A.一十六.垂线段最短(共1小题)19.(2021•杭州)如图,设点P是直线l外一点,PQ⊥l,垂足为点Q,点T是直线l上的一个动点,连结PT,则( )A.PT≥2PQ B.PT≤2PQ C.PT≥PQ D.PT≤PQ【答案】C【解答】解:∵PQ⊥l,点T是直线l上的一个动点,连结PT,∴PT≥PQ,故选:C.一十七.平行线的性质(共1小题)20.(2022•杭州)如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=( )A.10°B.20°C.30°D.40°【答案】C【解答】解:∵∠AEC为△CED的外角,且∠C=20°,∠AEC=50°,∴∠AEC=∠C+∠D,即50°=20°+∠D,∴∠D=30°,∵AB∥CD,∴∠A=∠D=30°.故选:C.一十八.三角形的角平分线、中线和高(共1小题)21.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则( )A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线【答案】B【解答】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的BC边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的AC边上高线,故本选项说法错误,不符合题意;故选:B.一十九.矩形的性质(共1小题)22.(2023•杭州)如图,矩形ABCD的对角线AC,BD相交于点O.若∠AOB=60°,则=( )A.B.C.D.【答案】D【解答】解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOB=60°,∴△ABO是等边三角形,∴∠BAO=60°,∴∠ACB=30°,∴BC=AB,∴=,故选:D.二十.圆周角定理(共1小题)23.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC =19°,则∠BAC=( )A.23°B.24°C.25°D.26°【答案】D【解答】解:连接OC,∵∠ABC=19°,∴∠AOC=2∠ABC=38°,∵半径OA,OB互相垂直,∴∠AOB=90°,∴∠BOC=90°﹣38°=52°,∴∠BAC=∠BOC=26°,故选:D.二十一.三角形的外接圆与外心(共1小题)24.(2022•杭州)如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )A.cosθ(1+cosθ)B.cosθ(1+sinθ)C.sinθ(1+sinθ)D.sinθ(1+cosθ)【答案】D【解答】解:当△ABC的高AD经过圆的圆心时,此时△ABC的面积最大,如图所示,∵A′D⊥BC,∴BC=2BD,∠BOD=∠BA′C=θ,在Rt△BOD中,sinθ=,cosθ=∴BD=sinθ,OD=cosθ,∴BC=2BD=2sinθ,A′D=A′O+OD=1+cosθ,∴A′D•BC=×2sinθ(1+cosθ)=sinθ(1+cosθ).故选:D.二十二.作图—基本作图(共1小题)25.(2021•杭州)已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC 的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB 于点P,则AP:AB=( )A.1:B.1:2C.1:D.1:【答案】D【解答】解:∵AC⊥AB,∴∠CAB=90°,∵AD平分∠BAC,∴∠EAB=×90°=45°,∵EP⊥AB,∴∠APE=90°,∴∠EAP=∠AEP=45°,∴AP=PE,∴设AP=PE=x,故AE=AB=x,∴AP:AB=x:x=1:.故选:D.二十三.坐标与图形变化-平移(共1小题)26.(2023•杭州)在直角坐标系中,把点A(m,2)先向右平移1个单位,再向上平移3个单位得到点B.若点B的横坐标和纵坐标相等,则m=( )A.2B.3C.4D.5【答案】C【解答】解:∵把点A(m,2)先向右平移1个单位,再向上平移3个单位得到点B.∴点B(m+1,2+3),∵点B的横坐标和纵坐标相等,∴m+1=5,∴m=4.故选:C.二十四.坐标与图形变化-旋转(共1小题)27.(2022•杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1(﹣,0),M2(﹣,﹣1),M3(1,4),M4(2,)四个点中,直线PB经过的点是( )A.M1B.M2C.M3D.M4【答案】B【解答】解:∵点A(4,2),点P(0,2),∴PA⊥y轴,PA=4,由旋转得:∠APB=60°,AP=PB=4,如图,过点B作BC⊥y轴于C,∴∠BPC=30°,∴BC=2,PC=2,∴B(2,2+2),设直线PB的解析式为:y=kx+b,则,∴,∴直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=﹣,∴点M1(﹣,0)不在直线PB上,当x=﹣时,y=﹣3+2=﹣1,∴M2(﹣,﹣1)在直线PB上,当x=1时,y=+2,∴M3(1,4)不在直线PB上,当x=2时,y=2+2,∴M4(2,)不在直线PB上.故选:B.二十五.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=( )A.5B.4C.3D.2【答案】C【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.二十六.方差(共1小题)29.(2023•杭州)一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有出现数字6的是( )A.中位数是3,众数是2B.平均数是3,中位数是2C.平均数是3,方差是2D.平均数是3,众数是2【答案】C【解答】解:当中位数是3,众数是2时,记录的5个数字可能为:2,2,3,4,5或2,2,3,4,6或2,2,3,5,6,故A选项不合题意;当平均数是3,中位数是2时,5个数之和为15,记录的5个数字可能为1,1,2,5,6或1,2,2,5,5,故B选项不合题意;当平均数是3,方差是2时,5个数之和为15,假设6出现了1次,方差最小的情况下另外4个数为:2,2,2,3,此时方差s=×[3×(2﹣3)2+(3﹣3)2+(6﹣3)2]=2.4>2,因此假设不成立,即一定没有出现数字6,故C选项符合题意;当平均数是3,众数是2时,5个数之和为15,2至少出现两次,记录的5个数字可能为1,2,2,4,6,故D选项不合题意;故选:C.二十七.列表法与树状图法(共1小题)30.(2021•杭州)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A.B.C.D.【答案】C【解答】解:把3节车厢分别记为A、B、C,画树状图如图:共有9种等可能的结果,甲和乙从同一节车厢上车的结果有3种,∴甲和乙从同一节车厢上车的概率为=,故选:C.。
江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类
江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类一.二次函数的应用(共1小题)1.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K 到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为 ;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为 ;(3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.二.二次函数综合题(共2小题)2.(2023•江西)综合与实践问题提出某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=,动点P以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF.设点P的运动时间为ts,正方形DPEF 的面积为S,探究S与t的关系.初步感知(1)如图1,当点P 由点C 运动到点B 时,①当t =1时,S = ;②S 关于t 的函数解析式为 .(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等.①t 1+t 2= ;②当t 3=4t 1时,求正方形DPEF 的面积.3.(2021•江西)二次函数y =x 2﹣2mx 的图象交x 轴于原点O 及点A .感知特例(1)当m =1时,如图1,抛物线L :y =x 2﹣2x 上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ′,O ′,C ′,A ′,D ′,如表:…B (﹣1,3)O (0,0)C (1,﹣1)A ( , )D (3,3)……B '(5,﹣3)O ′(4,0)C '(3,1)A ′(2,0)D '(1,﹣3)…①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为 ;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是 (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m的值.三.四边形综合题(共2小题)4.(2022•江西)综合与实践问题提出某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).操作发现(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为 ;当OF与BC垂直时,重叠部分的面积为 ;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为 ;类比探究(2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.①如图2,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;②如图3,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);拓展应用(3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).5.(2021•江西)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是 ;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是 ;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.①求证:∠ABC+∠ADC=90°;②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).四.圆的综合题(共1小题)6.(2021•江西)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.五.相似形综合题(共1小题)7.(2023•江西)课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD中,对角线BD⊥AC,垂足为O.求证:▱ABCD是菱形.知识应用(2)如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.①求证:▱ABCD是菱形;②延长BC至点E,连接OE交CD于点F,若∠E=∠ACD,求的值.六.解直角三角形的应用(共1小题)8.(2023•江西)图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图.已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)(1)连接CD,求证:DC⊥BC;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)江西省2021-2023三年中考数学真题分类汇编-03解答题(较难题)知识点分类参考答案与试题解析一.二次函数的应用(共1小题)1.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K 到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为 66 ;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为 b> ;(3)在(2)的条件下,若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.【答案】(1)66;(2)①基准点K的高度h为21m;②b>;(3)他的落地点能超过K点,理由见解答过程.【解答】解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)①∵a=﹣,b=,∴y=﹣x2+x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣×752+×75+66=21,∴基准点K的高度h为21m;②∵a=﹣,∴y=﹣x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即﹣×752+75b+66>21,解得b>,故答案为:b>;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣,∴抛物线解析式为y=﹣(x﹣25)2+76,当x=75时,y=﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.二.二次函数综合题(共2小题)2.(2023•江西)综合与实践问题提出某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=,动点P以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF.设点P的运动时间为ts,正方形DPEF 的面积为S,探究S与t的关系.初步感知(1)如图1,当点P由点C运动到点B时,①当t=1时,S= 3 ;②S关于t的函数解析式为 S=t2+2 .(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S关于t的函数解析式及线段AB的长.延伸探究(3)若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等.①t1+t2= 4 ;②当t3=4t1时,求正方形DPEF的面积.【答案】(1)①3;②S=t2+2;(2)S=t2﹣8t+18(2≤t≤8),AB=6;(3)①4;②正方形DPEF的面积为.【解答】解:(1)①当t=1时,CP=1,又∵∠C=90°,CD=,∴S=DP2=CP2+CD2=12+()2=3.故答案为:3;②当点P由点C运动到点B时,CP=t,∵∠C=90°,CD=,∴S=DP2=CP2+CD2=t2+()2=t2+2.故答案为:S=t2+2;(2)由图2可得:当点P运动到点B处时,PD2=BD2=6,当点P运动到点A处时,PD2=AD2=18,抛物线的顶点坐标为(4,2),∴BC===2,AD==3,∴M(2,6),设S=a(t﹣4)2+2,将M(2,6)代入,得4a+2=6,解得:a=1,∴S=(t﹣4)2+2=t2﹣8t+18,∴AC=AD+CD=3+=4,在Rt△ABC中,AB===6,CB+AC=2+6=8,∴抛物线的解析式为S=t2﹣8t+18(2≤t≤8);(3)①如图,则∠AHD=90°=∠C,∵∠DAH=∠BAC,∴△ADH∽△ABC,∴==,即==,∴DH=,AH=4,∴BH=2,DH=CD,∵存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等,∴DP1=DP2=DP3,∴CP1=t1,P2H=4﹣t2,在Rt△CDP1和Rt△HDP2中,,∴Rt△CDP1≌Rt△HDP2(HL),∴CP1=HP2,∴t1=4﹣t2,∴t1+t2=4.故答案为:4;②∵DP 3=DP 1,DH =DC ,∠DHP 3=∠C =90°,∴Rt △DHP 3≌Rt △DCP 1(HL ),∴P 3H =CP 1,∵P 3H =t 3﹣4,∴t 3﹣4=t 1,∵t 3=4t 1,∴t 1=,∴S =()2+2=.3.(2021•江西)二次函数y =x 2﹣2mx 的图象交x 轴于原点O 及点A .感知特例(1)当m =1时,如图1,抛物线L :y =x 2﹣2x 上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ′,O ′,C ′,A ′,D ′,如表:…B (﹣1,3)O (0,0)C (1,﹣1)A ( 2 , 0 )D (3,3)……B '(5,﹣3)O ′(4,0)C '(3,1)A ′(2,0)D '(1,﹣3)…①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L'上的点和抛物线L上的点关于点A中心对称,则称L'是L 的“孔像抛物线”.例如,当m=﹣2时,图2中的抛物线L'是抛物线L的“孔像抛物线”.探究问题(2)①当m=﹣1时,若抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,则x的取值范围为 ﹣3≤x≤﹣1 ;②在同一平面直角坐标系中,当m取不同值时,通过画图发现存在一条抛物线与二次函数y=x2﹣2mx的所有“孔像抛物线”L'都有唯一交点,这条抛物线的解析式可能是 y=ax2 (填“y=ax2+bx+c”或“y=ax2+bx”或“y=ax2+c”或“y=ax2”,其中abc≠0);③若二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点,求m 的值.【答案】(1)①(2,0);②所画图象见解答;(2)①﹣3≤x≤﹣1;②y=ax2;③m=±1.【解答】解:(1)①∵B(﹣1,3)、B'(5,﹣3)关于点A中心对称,∴点A为BB′的中点,设点A(m,n),∴m==2,n==0,故答案为:(2,0);②所画图象如图1所示,(2)①当m=﹣1时,抛物线L:y=x2+2x=(x+1)2﹣1,对称轴为直线x=﹣1,开口向上,当x≤﹣1时,L的函数值随着x的增大而减小,抛物线L′:y=﹣x2﹣6x﹣8=﹣(x+3)2+1,对称轴为直线x=﹣3,开口向下,当x≥﹣3时,L′的函数值随着x的增大而减小,∴当﹣3≤x≤﹣1时,抛物线L与它的“孔像抛物线”L'的函数值都随着x的增大而减小,故答案为:﹣3≤x≤﹣1;②∵抛物线y=x2﹣2mx的“孔像抛物线”是y=﹣x2+6mx﹣8m2,∴设符合条件的抛物线M解析式为y=a′x2+b′x+c′,令a′x2+b′x+c′=﹣x2+6mx﹣8m2,整理得(a′+1)x2+(b′﹣6m)x+(c′+8m2)=0,∵抛物线M与抛物线L′有唯一交点,∴分下面两种情形:i)当a′=﹣1时,无论b′为何值,都会存在对应的m使得b′﹣6m=0,此时方程无解或有无数解,不符合题意,舍去;ii)当a′≠﹣1时,Δ=(b′﹣6m)2﹣4(a′+1)(c′+8m2)=0,即b′2﹣12b′m+36m2﹣4(a′+1)•8m2﹣4c′(a′+1)=0,整理得[36﹣32(a′+1)]m2﹣12b′m+b′2﹣4c′(a′+1)=0,∵当m取不同值时,两抛物线都有唯一交点,∴当m取任意实数,上述等式都成立,即:上述等式成立与m取值无关,∴,解得a′=,b′=0,c′=0,则y=x2,故答案为:y=ax2;③抛物线L:y=x2﹣2mx=(x﹣m)2﹣m2,顶点坐标为M(m,﹣m2),其“孔像抛物线”L'为:y=﹣(x﹣3m)2+m2,顶点坐标为N(3m,m2),抛物线L与其“孔像抛物线”L'有一个公共点A(2m,0),∴二次函数y=x2﹣2mx及它的“孔像抛物线”与直线y=m有且只有三个交点时,有三种情况:i)直线y=m经过M(m,﹣m2),∴m=﹣m2,解得:m=﹣1或m=0(舍去),ii)直线y=m经过N(3m,m2),∴m=m2,解得:m=1或m=0(舍去),iii)直线y=m经过A(2m,0),∴m=0,但当m=0时,y=x2与y=﹣x2只有一个交点,不符合题意,舍去,综上所述,m=±1.三.四边形综合题(共2小题)4.(2022•江西)综合与实践问题提出某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).操作发现(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为 1 ;当OF与BC垂直时,重叠部分的面积为 1 ;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为 S1=S ;类比探究(2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.①如图2,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;②如图3,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);拓展应用(3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).【答案】(1)1,1,S1=S;(2)①证明见解析部分;②﹣1;(3)S2的最小值为tan,S2的最大值为1﹣tan(45°﹣α).【解答】解:(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O作OM⊥AB于点M,ON ⊥BC于点N.∵O是正方形ABCD的中心,∴OM=ON,∵∠OMB=∠ONB=∠B=90°,∴四边形OMBN是矩形,∵OM=ON,∴四边形OMBN是正方形,∴∠MON=∠EOF=90°,∴∠MOJ=∠NOK,∵∠OMJ=∠ONK=90°,∴△OMJ≌△ONK(AAS),∴S△PMJ=S△ONK,∴S四边形OKBJ=S正方形OMBN=S正方形ABCD,∴S1=S.故答案为:1,1,S1=S.(2)①如图2中,结论:△OMN是等边三角形.理由:过点O作OT⊥BC,∵O是正方形ABCD的中心,∴BT=CT,∵BM=CN,∴MT=TN,∵OT⊥MN,∴OM=ON,∵∠MON=60°,∴△MON是等边三角形;②如图3中,连接OC,过点O作OJ⊥BC于点J.∵CM=CN,∠OCM=∠OCN,OC=OC,∴△OCM≌△OCN(SAS),∴∠COM=∠CON=30°,∴∠OMJ=∠COM+∠OCM=75°,∵OJ⊥CB,∴∠JOM=90°﹣75°=15°,∵BJ=JC=OJ=1,∴JM=OJ•tan15°=2﹣,∴CM=CJ﹣MJ=1﹣(2﹣)=﹣1,∴S四边形OMCN=2××CM×OJ=﹣1.(3)如图4﹣1中,过点O作OQ⊥BC于点Q,当BM=CN时,△OMN的面积最小,即S2最小.在Rt△MOQ中,MQ=OQ•tan=tan,∴MN=2MQ=2tan,∴S2=S△OMN=×MN×OQ=tan.如图4﹣2中,当CM=CN时,S2最大.同法可证△COM≌△CON,∴∠COM=α,∵∠COQ=45°,∴∠MOQ=45°﹣α,QM=OQ•tan(45°﹣α)=tan(45°﹣α),∴MC=CQ﹣MQ=1﹣tan(45°﹣α),∴S2=2S△CMO=2××CM×OQ=1﹣tan(45°﹣α).5.(2021•江西)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与∠A相等的角是 ∠DCE′ ;类比迁移(2)如图2,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可类比(1)中思路进行拼合:先作∠CDF=∠ABC,再过点C作CE⊥DF于点E,连接AE,发现AD,DE,AE之间的数量关系是 AD2+DE2=AE2 ;方法运用(3)如图3,在四边形ABCD中,连接AC,∠BAC=90°,点O是△ACD两边垂直平分线的交点,连接OA,∠OAC=∠ABC.①求证:∠ABC+∠ADC=90°;②连接BD,如图4,已知AD=m,DC=n,=2,求BD的长(用含m,n的式子表示).【答案】(1)∠DCE′.(2)AD2+DE2=AE2.(3)①证明见解析部分.②.【解答】(1)解:如图1中,由图形的拼剪可知,∠A=∠DCE′,故答案为:∠DCE′.(2)解:如图2中,∵∠ADC+∠ABC=90°,∠CDE=∠ABC,∴∠ADE=∠ADC+∠CDE=90°,∴AD2+DE2=AE2.故答案为:AD2+DE2=AE2.(3)①证明:如图3中,连接OC,作△ADC的外接圆⊙O.∵点O是△ACD两边垂直平分线的交点∴点O是△ADC的外心,∴∠AOC=2∠ADC,∵OA=OC,∴∠OAC=∠OCA,∵∠AOC+∠OAC+∠OCA=180°,∠OAC=∠ABC,∴2∠ADC+2∠ABC=180°,∴∠ADC+∠ABC=90°.②解:如图4中,在射线DC的下方作∠CDT=∠ABC,过点C作CT⊥DT于T.∵∠CTD=∠CAB=90°,∠CDT=∠ABC,∴△CTD∽△CAB,∴∠DCT=∠ACB,=,∴=,∠DCB=∠TCA∴△DCB∽△TCA,∴=,∵=2,∴AC:BA:BC=CT:DT:CD=1:2:,∴BD=AT,∵∠ADT=∠ADC+∠CDT=∠ADC+∠ABC=90°,DT=n,AD=m,∴AT===,∴BD=.四.圆的综合题(共1小题)6.(2021•江西)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.【答案】(1)证明见解答;(2)①是菱形,理由见解答;②+π.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∵CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD =S△ACD+S扇形COD=××2×2+=+π.五.相似形综合题(共1小题)7.(2023•江西)课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD中,对角线BD⊥AC,垂足为O.求证:▱ABCD是菱形.知识应用(2)如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.①求证:▱ABCD是菱形;②延长BC至点E,连接OE交CD于点F,若∠E=∠ACD,求的值.【答案】(1)证明见解答过程;(2)①证明见解答过程;②.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BO=DO,又∵BD⊥AC,垂足为O,∴AC是BD的垂直平分线,∴AB=AD,∴▱ABCD是菱形.(2)①证明:∵▱ABCD中,对角线AC和BD相交于点O,AC=8,BD=6,∴AO=CO=AC=4,DO=BD=3,又∵AD=5,∴在三角形AOD中,AD2=AO2+DO2,∴∠AOD=90°,即BD⊥AC,∴▱ABCD是菱形;②解:如图,设CD的中点为G,连接OG,∴OG是△ACD的中位线,∴OG=AD=,由①知:四边形ABCD是菱形,∴∠ACD=∠ACB,又∵∠E=∠ACD,∴∠E=∠ACB,又∵∠ACB=∠E+∠COE,∴∠E=∠COE,∴CE=CO=4,∵OG是△ACD的中位线,∴OG∥AD∥BE,∴△OGF∽△ECF,∴,又∵OG=,CE=4,∴.六.解直角三角形的应用(共1小题)8.(2023•江西)图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图.已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)(1)连接CD,求证:DC⊥BC;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【答案】(1)证明过程见解答;(2)雕塑的高约为4.2m.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵AD=AC,∴∠ADC=∠ACD,∵∠B+∠ACB+∠ADC+∠ACD=180°,∴2∠ACB+2∠ACD=180°,∴∠ACB+∠ACD=90°,∴∠BCD=90°,∴DC⊥BC;(2)解:过点E作EF⊥BC,垂足为F,在Rt△DCB中,∠B=55°,BC=1.8m,∴BD=≈=(m),∵DE=2m,∴BE=BD+DE=(m),在Rt△BEF中,EF=BE•sin55°≈×0.82≈4.2(m),∴雕塑的高约为4.2m.。
2021年全国中考数学真题分类汇编--数与式:实数的运算及比较大小(解析版)
【解答】解:原式=﹣1+ ﹣4× +2
=﹣1+2 ﹣2 +2
=1.
13.(2021•浙江省台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.
C.当北京时间是15:00时,莫斯科时间是10:00,符合题意;
D.当北京时间 18:00时,不合题意.
故选:C
5.(2021•山东省泰安市)下列各数:﹣4,﹣2.8,0,|﹣4|,其中比﹣3小的数是( )
A.﹣4B.|﹣4|C.0D.﹣2.8
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【答案】C
【解析】
【分析】根据北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,逐项判断出莫斯科时间,即可求解.
【详解】解:由北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,
所以A.当北京时间是10:00时,莫斯科时间是5:00,不合题意;
B.当北京时间是12:00时,莫斯科时间是7:00,不合题意;
2021全国中考真题分类汇编(数与式)
----实数的运算及大小比较
一、选择题
1.(2021•湖南省常德市)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即 ,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()
山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.科学记数法—表示较大的数(共1小题)1.(2021•济宁)数字6100000用科学记数法表示是 .二.因式分解的应用(共1小题)2.(2023•济宁)已知实数m满足m2﹣m﹣1=0,则2m3﹣3m2﹣m+9= .三.二次根式有意义的条件(共1小题)3.(2022•济宁)若二次根式有意义,则x的取值范围是 .四.函数关系式(共1小题)4.(2021•济宁)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是 .五.一次函数的性质(共2小题)5.(2023•济宁)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 .6.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值 (写出一个即可),使x>2时,y1>y2.六.反比例函数的性质(共1小题)7.(2022•济宁)如图,A是双曲线y=(x>0)上的一点,点C是OA的中点,过点C 作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是 .七.二次函数图象与系数的关系(共1小题)8.(2021•济宁)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是 .(只填序号)八.平行线的性质(共1小题)9.(2022•济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是 .九.全等三角形的判定(共1小题)10.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 ,使△ABC≌△ADC.一十.全等三角形的判定与性质(共1小题)11.(2023•济宁)如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE=30°,,则BD= .一十一.多边形内角与外角(共1小题)12.(2023•济宁)一个多边形的内角和是540°,则这个多边形是 边形.一十二.扇形面积的计算(共1小题)13.(2021•济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是 .一十三.解直角三角形(共1小题)14.(2022•济宁)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是 .一十四.解直角三角形的应用-仰角俯角问题(共1小题)15.(2023•济宁)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是 .山东省济宁市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共1小题)1.(2021•济宁)数字6100000用科学记数法表示是 6.1×106 .【答案】6.1×106.【解答】解:用科学记数法表示6100000,应记作6.1×106,故答案是:6.1×106.二.因式分解的应用(共1小题)2.(2023•济宁)已知实数m满足m2﹣m﹣1=0,则2m3﹣3m2﹣m+9= 8 .【答案】8.【解答】解:∵m2﹣m﹣1=0,∴m2﹣m=1,∴2m3﹣3m2﹣m+9=(2m3﹣2m2)﹣m2﹣m+9=2m(m2﹣m)﹣m2﹣m+9=2m﹣m2﹣m+9=﹣m2+m+9=﹣(m2﹣m)+9=﹣1+9=8,故答案为:8.三.二次根式有意义的条件(共1小题)3.(2022•济宁)若二次根式有意义,则x的取值范围是 x≥3 .【答案】见试题解答内容【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.四.函数关系式(共1小题)4.(2021•济宁)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是 y =+2 .【答案】y=+2.【解答】解:根据题意得:y=(0+1+x+3+6)÷5=+2.故答案为:y=+2.五.一次函数的性质(共2小题)5.(2023•济宁)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 y=x+2(答案不唯一) .【答案】y=x+2(答案不唯一).【解答】解:设一次函数的解析式为y=kx+b(k≠0).∵一次函数y=kx+b的图象经过点(1,3),∴3=k+b,又∵函数值y随自变量x的增大而增大,∴k>0,∴k=1,b=2符合题意,∴符合上述条件的函数解析式可以为y=x+2.故答案为:y=x+2(答案不唯一).6.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值 0(答案不唯一) (写出一个即可),使x>2时,y1>y2.【答案】0(答案不唯一).【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).六.反比例函数的性质(共1小题)7.(2022•济宁)如图,A是双曲线y=(x>0)上的一点,点C是OA的中点,过点C 作y轴的垂线,垂足为D,交双曲线于点B,则△ABD的面积是 4 .【答案】4.【解答】解:∵点C是OA的中点,∴S△ACD=S△OCD,S△ACB=S△OCB,∴S△ACD+S△ACB=S△OCD+S△OCB,∴S△ABD=S△OBD,∵点B在双曲线y=(x>0)上,BD⊥y轴,∴S△OBD==4,∴S△ABD=4,故答案为:4.七.二次函数图象与系数的关系(共1小题)8.(2021•济宁)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是 ①②④ .(只填序号)【答案】见试题解答内容【解答】解:由图象可得,a<0,b>0,c>0,则abc<0,故①正确;∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;∵函数图象与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x=1,∴函数图象与x轴的另一个交点在点(0,0)和点(﹣1,0)之间,故④正确;∴当x=﹣1时,y=a﹣b+c<0,∴y=a+2a+c<0,∴3a+c<0,故③错误;故答案为:①②④.八.平行线的性质(共1小题)9.(2022•济宁)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是 53°28' .【答案】53°28'.【解答】解:如图:∵l1∥l2,l2∥l3,∴l1∥l3,∴∠1=∠3=126°32',∴∠2=180°﹣∠3=180°﹣126°32'=53°28';故答案为:53°28'.九.全等三角形的判定(共1小题)10.(2021•济宁)如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件 AD=AB (答案不唯一) ,使△ABC≌△ADC.【答案】见试题解答内容【解答】解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).一十.全等三角形的判定与性质(共1小题)11.(2023•济宁)如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE=30°,,则BD= 3﹣ .【答案】3﹣.【解答】解:过点A作AH⊥BC于H,∵△ABC是等边三角形,∴AB=AC=BC=6,∠BAC=60°,∴AH⊥BC,∴,∴∠BAD+∠DAH=30°,∴∠DAE=30°,∴∠BAD+∠EAC=30°,∴∠DAH=∠EAC,∴tan∠DAH=tan∠EAC=,∵BH=AB=3,∵AH=AB sin60°=6×=3,∴,∴DH=,∴BD=BH﹣DH=3﹣,故答案为:3﹣.一十一.多边形内角与外角(共1小题)12.(2023•济宁)一个多边形的内角和是540°,则这个多边形是 五 边形.【答案】五.【解答】解:设此多边形的边数为n,则(n﹣2)•180°=540°,解得:n=5,即此多边形为五边形,故答案为:五.一十二.扇形面积的计算(共1小题)13.(2021•济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是 ﹣ .【答案】见试题解答内容【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.一十三.解直角三角形(共1小题)14.(2022•济宁)如图,点A,C,D,B在⊙O上,AC=BC,∠ACB=90°.若CD=a,tan∠CBD=,则AD的长是 2a .【答案】2a.【解答】解:连接AB,作直径CE.连接DE,设AD交BC于点T.∵∠ACB=90°,∴AB是直径,∵EC是直径,∴∠CDE=90°,∵∠CBD=∠E,∴tan E=tan∠CBD=,∴=,∴DE=3a,∴EC=AB===a,∴AC=BC=AB=a,∵∠CAT=∠CBD,∴tan∠CAT=tan∠CBD=,∴CT=a,BT=a,∴AT===a,∵AB是直径,∴∠ADB=90°,∵tan∠DBT==,∴DT=BT=a,∴AD=AT+DT=2a,解法二:过点C作CE⊥AD于点E,则CE=DE=a,AE=a,∴AD=AE+CE=2a.故答案为:2a.一十四.解直角三角形的应用-仰角俯角问题(共1小题)15.(2023•济宁)某数学活动小组要测量一建筑物的高度,如图,他们在建筑物前的平地上选择一点A,在点A和建筑物之间选择一点B,测得AB=30m,用高1m(AC=1m)的测角仪在A处测得建筑物顶部E的仰角为30°,在B处测得仰角为60°,则该建筑物的高是 (15+1)m .【答案】(15+1)m.【解答】解:如图:延长CD交EF于点G,由题意得:DB=AC=FG=1m,CG⊥EF,DC=AB=30m,∠EDG=60°,∠ECG=30°,∵∠EDG是△EDC的一个外角,∴∠DEC=∠EDG﹣∠ECG=30°,∴∠DEC=∠ECD=30°,∴ED=CD=30m,在Rt△EGD中,EG=ED•sin60°=30×=15(m),∴EF=EG+FG=(15+1)m,∴该建筑物的高是(15+1)m,故答案为:(15+1)m.。
专题04 二次根式 2022-2024年中考数学真题分类汇编
专题04 二次根式【考点归纳】一、考点01二次根式的概念--------------------------------------------------------------------------------------------------------------------1二、考点02二次根式有意义的条件----------------------------------------------------------------------------------------------------------1三、考点03二次根式的性质--------------------------------------------------------------------------------------------------------------------2四、考点04二次根式的运算--------------------------------------------------------------------------------------------------------------------3五、考点05二次根式的估值--------------------------------------------------------------------------------------------------------------------4考点01 二次根式的概念一、考点01二次根式的概念1.(2024·内蒙古包头·)A.3B C.D.±2.(2024·上海·1,则x=.3.(2022·广西桂林·)A.B.3C.D.24.(2023·山东烟台·中考真题)下列二次根式中,与)A B C D5.(2024·四川德阳· ,按以下方式进行排列:则第八行左起第1个数是()A.B.C D.6.(2022·广西·=.考点02 二次根式有意义的条件二、考点02二次根式有意义的条件7.(2023·江西·a 的值可以是( )A .1-B .0C .2D .68.(2024·云南·在实数范围内有意义,则x 的取值范围是( )A .0x >B .0x ≥C .0x <D .0x ≤9.(2023·山东·x 的取值范围是( )A .2x ≠B .0x ≥C .2x ≥D .0x ≥且2x ≠10.(2023·湖北黄石·中考真题)函数y =x 的取值范围是( )A .0x ≥B .1x ≠C .0x ≥且1x ≠D . 1x >11.(2022·江苏徐州·中考真题)使式子有意义的x 的取值范围是( )A .2x >B .2x ≥C .2x <D .2x ≤12.(2023·四川绵阳·有意义的整数x 有( )A .5个B .4个C .3个D .2个13.(2023·辽宁·a 的取值范围是.14.(2024·北京·x 的取值范围是 .15.(2023·江苏徐州·中考真题)要使代数式有意义,则x 的取值范围是 .16.(2024·黑龙江齐齐哈尔·中考真题)在函数12y x =++中,自变量x 的取值范围是 .17.(2024·山东烟台·x 的取值范围为 .18.(2024·黑龙江大兴安岭地·中考真题)在函数y =中,自变量x 的取值范围是 .考点03 二次根式的性质三、考点03二次根式的性质19.(2023·湖南·=是( )A .0,0a b >>B .0,0a b <<C .0,0a b ≤≤D .0,0a b ≥≥20.(2023·广东广州·中考真题)已知关于x 的方程()222210x k x k --+-=有两个实数根,则2的化简结果是( )A .1-B .1C .12k--D .23k -21.(2024·四川乐山·中考真题)已知12x <<2x +-的结果为( )A .1-B .1C .23x -D .32x-22.(2024·内蒙古呼伦贝尔·中考真题)实数,a b 在数轴上的对应位置如图所示,()2b a --的化简结果是( )A .2B .22a -C .22b -D .-223.(2023·内蒙古·中考真题)实数m =.考点04 二次根式的运算四、考点04二次根式的运算24.(2024·安徽·中考真题)下列计算正确的是( )A .356a a a +=B .632a a a ÷=C .()22a a -=D a=25.(2024·湖南长沙·中考真题)下列计算正确的是( )A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+26.(2023·山东青岛·中考真题)下列计算正确的是( )A =B .2-=C =D 32=27.(2024·山东威海·=.28.(2023·河北·中考真题)若a b ==( )A .2B .4C D 29.(2023·上海·中考真题)下列运算正确的是( )A .523a a a ÷=B .336a a a +=C .()235a a =D a=30.(2023·浙江杭州·= .31.(2024·天津·中考真题)计算)11的结果为 .32.(2024·贵州·的结果是 .33.(2023·天津·中考真题)计算的结果为.34.(2023·江苏连云港·中考真题)计算:2= .35.(2023·广东·=.36.(2024·北京·中考真题)计算:()052sin 30π-︒+-37.(2024·甘肃兰州·-.38.(2024·云南·中考真题)计算:12117sin3062-⎛⎫++--- ⎪⎝⎭.39.(2024·上海·中考真题)计算:102|124(1+.40.(2024·甘肃·.41.(2023·山东淄博·中考真题)先化简,再求值:()()22254x y x y x y -+--,其中x =,y =.42.(2023·江苏宿迁·中考真题)先化简,再求值:21111x x x-⎛⎫-⋅⎪+⎝⎭,其中1x =43.(2023·内蒙古·中考真题)先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中1x =-,1y =.考点05 二次根式的估值五、考点05二次根式的估值44.(2024·湖南· )A .B .C .14D45.(2024·重庆·的值应在( )A .8和9之间B .9和10之间C .10和11之间D .11和12之间46.(2024·江苏盐城·,设其面积为2cm S ,则S 在哪两个连续整数之间( )A .1和2B .2和3C .3和4D .4和547.(2023·山东临沂·中考真题)设m =m 所在的范围是( )A .5m <-B .54m -<<-C .43m -<<-D .3m >-专题04 二次根式(解析版)【考点归纳】一、考点01二次根式的概念-----------------------------------------------------------------------------------------------------------1二、考点02二次根式有意义的条件--------------------------------------------------------------------------------------------------3三、考点03二次根式的性质-----------------------------------------------------------------------------------------------------------7四、考点04二次根式的运算-----------------------------------------------------------------------------------------------------------9五、考点05二次根式的估值---------------------------------------------------------------------------------------------------------15考点01 二次根式的概念一、考点01二次根式的概念1.(2024 )A .3BC .D .±2.(20241=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.3.(2022的结果是()A.B.3C.D.24.(2023)A B C D5.(2024 ,按以下方式进行排列:则第八行左起第1个数是()A.B.C D.【答案】C【分析】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.求出第七行共有28个数,从6.(2022= .考点02 二次根式有意义的条件二、考点02二次根式有意义的条件7.(2023a 的值可以是( )A .1-B .0C .2D .68.(2024在实数范围内有意义,则x 的取值范围是( )A .0x >B .0x ≥C .0x <D .0x ≤A .2x ≠B .0x ≥C .2x ≥D .0x ≥且2x ≠10.(2023·湖北黄石·中考真题)函数y =x 的取值范围是( )A .0x ≥B .1x ≠C .0x ≥且1x ≠D . 1x >11.(2022·江苏徐州·中考真题)使式子有意义的x 的取值范围是( )A .2x >B .2x ≥C .2x <D .2x ≤12.(2023有意义的整数x有()13.(2023有意义,则实数a的取值范围是.14.(2024x的取值范围是.x≥【答案】9【分析】根据二次根式有意义的条件,即可求解.x-≥,【详解】解:根据题意得90x≥.解得:9x≥故答案为:9【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数为非负数是解题的关键.15.(2023x 的取值范围是 .16.(2024·黑龙江齐齐哈尔·中考真题)在函数12y x =+中,自变量x 的取值范围是 .+【答案】3x ≥/3x≤【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.考点03二次根式的性质三、考点03二次根式的性质19.(2023=件是( )A .0,0a b >>B .0,0a b <<C .0,0a b ≤≤D .0,0a b ≥≥20.(2023·广东广州·中考真题)已知关于x 的方程()222210x k x k --+-=有两个实数根,则2的化简结果是( )A .1-B .1C .12k --D .23k -21.(2024·四川乐山·中考真题)已知12x <<2x +-的结果为( )A .1-B .1C .23x -D .32x-22.(2024·内蒙古呼伦贝尔·中考真题)实数,a b ()2b a --的化简结果是( )A .2B .22a -C .22b -D .-2【答案】A【分析】本题考查了实数与数轴的关系,二次根式的性质和绝对值的化简法则,根据数轴可得32a <<-,01b <<,,再利用二次根式的性质和绝对值的化简法则,化简计算即可.23.(2023·内蒙古·中考真题)实数m =.考点04 二次根式的运算四、考点04二次根式的运算24.(2024·安徽·中考真题)下列计算正确的是( )A .356a a a +=B .632a a a ÷=C .()22a a -=D a=【答案】C【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A 、3a 与5a 不是同类项,不能合并,选项错误,不符合题意;B 、633a a a ÷=,选项错误,不符合题意;25.(2024·湖南长沙·中考真题)下列计算正确的是( )A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+26.(2023·山东青岛·中考真题)下列计算正确的是( )A +=B .2-=C =D 32=27.(2024= .28.(2023·河北·中考真题)若a b==()A.2B.4C D29.(2023·上海·中考真题)下列运算正确的是()A.523a a a÷=B.336a a a+=C.()235a a=D a= 30.(2023=.11的结果为.31.(2024·天津·中考真题)计算)【答案】10【分析】利用平方差公式计算后再加减即可.=-=.【详解】解:原式11110故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.32.(2024的结果是.33.(2023·天津·中考真题)计算+-的结果为.34.(2023·江苏连云港·中考真题)计算:2=.故答案为:5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.35.(2023= .36.(2024·北京·中考真题)计算:()052sin 30π-+︒+-38.(2024·云南·中考真题)计算:2117sin3062⎛⎫++--- ⎪⎝⎭.【答案】2【分析】本题考查了实数的混合运算,掌握零指数幂,负整指数幂,特殊角的三角函数值,二次根式的性质,绝对值化简是解题的关键.根据相关运算法则分别进行计算,再进行加减运算,即可解题.41.(2023·山东淄博·中考真题)先化简,再求值:()()22254x y x y x y -+--,其中x ,y =.【点睛】此题主要考查了整式的混合运算二次根式的运算,正确合并同类项是解题关键.42.(2023·江苏宿迁·中考真题)先化简,再求值:21111x x x -⎛⎫-⋅⎪+,其中1x =43.(2023·内蒙古·中考真题)先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中1x =,1y =.考点05 二次根式的估值五、考点05二次根式的估值44.(2024 )A .B .C .14D故选:D45.(2024的值应在( )A .8和9之间B .9和10之间C .10和11之间D .11和12之间46.(2024,设其面积为2cm S ,则S 在哪两个连续整数之间( )A .1和2B .2和3C .3和4D .4和5A .5m <-B .54m -<<-C .43m -<<-D .3m >-。
2021年上海市16区中考数学一模考点分类汇编专题01 数与式、方程与不等式(逐题详解版)
2021年上海市16区中考数学一模汇编专题01 数与式、方程与不等式一、单选题1.(2021·上海静安区·九年级一模)如果0a ≠,那么下列计算正确的是( )A .0()0a =-B .0()1a -=-C .01a -=D .01a =--2.(2021·上海静安区·九年级一模)下列多项式中,是完全平方式的为( )A .214x x -+B .21124x x++C .21144x x +-D .21144x x -+ 二、填空题3.(2021·上海长宁区·九年级一模)已知12x y =,那么+-x y x y的值为_______________. 4.(2021·上海静安区·九年级一模)32的相反数是____. 5.(2021·上海松江区·九年级一模)计算sin30cot 60︒⋅︒=____.6.(2021·上海奉贤区·九年级一模)已知点Р是线段AB 上一点,且2BP AP AB =⋅,如果2AP =厘米,那么BP =________________ (厘米).7.(2021·上海浦东新区·九年级一模)如图,ABC 中,AB=10,BC=12,AC=8,点D 是边BC 上一点,且BD :CD=2:1,联结AD ,过AD 中点M 的直线将ABC 分成周长相等的两部分,这条直线分别与边BC 、AC 相交于点E 、F ,那么线段BE 的长为______.8.(20212x -的根为____.9.(2021·上海奉贤区·九年级一模)如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为17米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱筐长为x 米,可列出方程为________________________.10.(2021·上海宝山区·九年级一模)某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为0)x x >(,12月份的产值为y 万元,那么y 关于x 的函数解析式是______. 三、解答题11.(2021·上海闵行区·九年级一模)计算:24sin 452cos 60cot 30tan 601︒︒︒︒-+-12.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.13.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.2021年上海市16区中考数学一模汇编专题01 数与式、方程与不等式一、单选题1.(2021·上海静安区·九年级一模)如果0a ≠,那么下列计算正确的是( )A .0()0a =-B .0()1a -=-C .01a -=D .01a =--【答案】D【分析】利用零指数幂的定义分别得出结果即可求解【详解】A 选项0()a =1-,故错误,B 选项0()a =1-,故错误C 选项01a -=-,故错误,D 选项01a -=-,故正确,故选:D【点睛】熟记任何非零次幂的零次幂等于1是解决本题的关键2.(2021·上海静安区·九年级一模)下列多项式中,是完全平方式的为( )A .214x x -+B .21124x x++C .21144x x +-D .21144x x -+ 【答案】A【分析】利用配方法分别转化为完全平方式的形式即可求解.【详解】A 选项214x x -+=212x ⎛⎫- ⎪⎝⎭,故正确,B 选项21124x x++=213416x ⎛⎫++ ⎪⎝⎭,故错误 C 选项21144x x +-=216516256x ⎛⎫+- ⎪⎝⎭,故错误,D 选项21144x x -+=216316256x ⎛⎫-+ ⎪⎝⎭,故错误 故选:A【点睛】本题考查配方法的运用,熟练添加常数项,即一次项系数一半的平方是解决问题的关键,添加之后要注意再减去添加的常数项,进行等价转化.二、填空题3.(2021·上海长宁区·九年级一模)已知12x y =,那么+-x y x y的值为_______________. 【答案】3-【分析】根据已知得到2y x =,代入所求式子中计算即可. 【详解】解:∵12x y =,∴ 2y x =,∴2332x y x x x x y x x x ++===----:故答案为:-3. 【点睛】本题考查了求分式的值,利用已知得到2y x =后再整体代入是解题的关键.4.(2021·上海静安区·九年级一模)32的相反数是____. 【答案】32- 【分析】只有符号不同的两个数叫互为相反数,根据定义解答. 【详解】32的相反数是32-,故答案为:32-. 【点睛】此题考查互为相反数的定义,掌握定义是解题的关键.5.(2021·上海松江区·九年级一模)计算sin30cot 60︒⋅︒=____.【分析】先代入特殊角的三角函数值,然后再进行计算即可.【详解】1sin 30cot 60=236︒⋅︒=⨯,故答案为:6. 【点睛】本题考查了特殊角的三角函数值、实数乘法运算,熟记特殊角的三角函数值是解题关键.6.(2021·上海奉贤区·九年级一模)已知点Р是线段AB 上一点,且2BP AP AB =⋅,如果2AP =厘米,那么BP =________________ (厘米).【答案】1+【分析】设BP x =厘米,得2AB x =+厘米,根据题意得()222x x =⨯+,通过求解方程,即可得到答案. 【详解】设BP x =厘米,根据题意得:2AB AP BP x =+=+厘米∵2BP AP AB =⋅,∴()222x x =⨯+ ,∴1x =±10-,故舍去;∴15x ,即1BP =1+.【点睛】本题考查了一元二次方程、二次根式、线段的知识;解题的关键是熟练掌握一元二次方程、二次根式的性质,从而完成求解.7.(2021·上海浦东新区·九年级一模)如图,ABC 中,AB=10,BC=12,AC=8,点D 是边BC 上一点,且BD :CD=2:1,联结AD ,过AD 中点M 的直线将ABC 分成周长相等的两部分,这条直线分别与边BC 、AC 相交于点E 、F ,那么线段BE 的长为______.【答案】2【分析】如图,过A 作//AN BC 交EF 于N ,设,,BE a AF b == 由三角形的周长关系可得:5,a b +=再证明:,ANM DEM ∽利用相似三角形的性质求解8,AN a =-再证明:,ANF CEF ∽可得:10432,b a ab +-=再解方程组可得答案.【详解】解:如图,过A 作//AN BC 交EF 于N ,设,,BE a AF b ==()1,2AB BE AF AB BC AC ∴++=++ ()1101012815,2a b ∴++=++= 5,a b ∴+=:2:112BD CD BC ==,,84BD CD ∴==,, 8,DE a ∴=- M 为AD 的中点,,AM MD ∴= //AN BC ,,ANM DEM ∴∽ 1AN AM DE DM ∴==, 8,AN a ∴=- //AN BC ,,ANF CEF ∴∽ ,AN AF CE CF ∴= 即:8,848a b a b -=-+- ∴ 10432,b a ab +-= 510432a b b a ab +=⎧∴⎨+-=⎩解得:23a b =⎧⎨=⎩或94a b =⎧⎨=-⎩,经检验:94a b =⎧⎨=-⎩不合题意,舍去, 2.BE ∴= 故答案为:2.【点睛】本题考查的是三角形的相似的判定与性质,二元方程组的解法,一元二次方程的解法,掌握以上知识是解题的关键.8.(20212x =-的根为____.【答案】x 1=【分析】方程两边同时平方,得到一个一元二次方程,解出x 的值,再进行检验即可得出结果.【详解】解:方程两边同时平方得:()2322x x -=-,∴2210x x -+=,即()210x -=,∴x 1=x 2=1,经检验,x=1是原方程的根,故答案为:x=1.【点睛】本题考查了无理方程求解,先平方得到一元二次方程求解再验证根,掌握基本概念和解法是解题的关键.9.(2021·上海奉贤区·九年级一模)如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为17米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱筐长为x 米,可列出方程为________________________.【答案】()17324x x -=【分析】垂直于墙的一段篱筐长为x 米,共有三段垂直于墙的篱笆,所以垂直于墙的篱笆总长度为3x ,又因为篱笆总长为17米(恰好用完),所以大长方形花圃的长为()173x -米,最后根据长方形的面积公式即可求解.【详解】解:由题意可得:()17324x x -=.故答案为:()17324x x -=.【点睛】本题考查了一元二次方程的应用,解题的关键是注意大长方形花圃的宽有三段都是篱笆.10.(2021·上海宝山区·九年级一模)某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为0)x x >(,12月份的产值为y 万元,那么y 关于x 的函数解析式是______. 【答案】()21001y x =+; 【分析】根据:现有量=原有量×(1+增长率)n,即可列方程求解. 【详解】依题意得:()21001y x =+,故答案为:()21001y x =+【点睛】考查了一元二次方程的应用,可直接套公式:原有量×(1+增长率)n =现有量,n 表示增长的次数. 三、解答题11.(2021·上海闵行区·九年级一模)计算:24sin 452cos 60cot 30tan 601︒︒︒︒-+-【答案】2【分析】分别把特殊角的三角函数值代入,再分别计算,结合分母有理化,合并化简即可解题.【详解】解:原式14122⨯=⨯1= 2=.【点睛】本题考查特殊角的三角函数值,分母有理化等知识,是重要考点,难度较易,掌握相关知识是解题关键.12.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.. 【分析】利用比例性质化比例式化为整式,再移项两边同除以y 2,化为22310x x y y --=,然后解一元二次方程,即可求解.【详解】解:222xy y x xy +=-,2230x xy y --=.∵0y ≠,∴22310x x y y --=,∴x y = ∵x 、y表示线段,∴负值不符合题意,∴x y = 【点睛】本题考查比例的性质、解一元二次方程,利用整体换元的思想方法解方程是解答的关键,注意x 、y 的非负性.13.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-3. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ∴==142ADB S DB AC ∴=⋅=,12ADB S AB DH =⋅,DH ∴=AH ==1tan 3DH DAB AH ∴∠==; (2)过E 作EH ⊥CB 于H∵EDB ADC ∠=∠,90C EHD ∠=∠=︒,∴ACD EHD .∴AC EH CD DH = 即44EH x x EH =--.∴()444x EH x -=+ .∵EH ⊥CB ,90ACB ∠=︒,4AC BC ==,∴)44x EB x -==+ ,AB =∴)44x AE x -=+,∵EF AD ⊥,90C ∠=︒,∴AFG ADC ∠=∠ .∵EDB ADC ∠=∠,∴AFG EDB ∠=∠.∵45FAE B ∠=∠=︒,∴AFE BDE . ∴AF AE DB BE =即)4444x y x x --=-+.整理得,()2402y x x =-+<≤; (3)在Rt △MDB 中,DB=4-x,所以).x - 在Rt △ADM 中,AM=AB 一MB=)(4).22x x -=+ 所以tan ∠DAB=44DM x AM x-=⋅+按照点F 的位置,分两种情况讨论△CDF 与△AGE 相似: ①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan ∠FDC=tan ∠DAB,得44y x x x-=⋅+ 结合y=4-2x ,整理,得x2+8x+16=0.解得-4 或-4 (舍去),如果∠CFD=∠DAB ,由tan ∠CFD=tan ∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC的延长线上,此时y=2x-4如图如果∠FDC=∠DAB,由44y xx x-=+结合y=2x-4,整理,得23160.x-=解得或3-(舍去)如果∠CFD=∠DAB,44x xy x-=+与y=2x-4,整理,得238160.x x-+=此方程无解.综上,CD的值为、8-或3.【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.。
内蒙古包头市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
内蒙古包头市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.立方根(共1小题)1.(2021•包头)一个正数a的两个平方根是2b﹣1和b+4,则a+b的立方根为 .二.估算无理数的大小(共1小题)2.(2023•内蒙古)若a,b为两个连续整数,且a<<b,则a+b= .三.整式的加减(共1小题)3.(2022•包头)若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为 .四.提公因式法与公式法的综合运用(共1小题)4.(2021•包头)因式分解:+ax+a= .五.分式的加减法(共1小题)5.(2022•包头)计算:+= .六.分式的混合运算(共1小题)6.(2021•包头)化简:= .七.二次根式有意义的条件(共1小题)7.(2022•包头)若代数式+在实数范围内有意义,则x的取值范围是 .八.根与系数的关系(共1小题)8.(2023•内蒙古)若x1,x2是一元二次方程x2﹣2x﹣8=0的两个实数根,则= .九.反比例函数图象上点的坐标特征(共1小题)9.(2022•包头)如图,反比例函数y=(k>0)在第一象限的图象上有A(1,6),B(3,b)两点,直线AB与x轴相交于点C,D是线段OA上一点.若AD•BC=AB•DO,连接CD,记△ADC,△DOC的面积分别为S1,S2,则S1﹣S2的值为 .一十.二次函数的性质(共1小题)10.(2023•内蒙古)已知二次函数y=﹣ax2+2ax+3(a>0),若点P(m,3)在该函数的图象上,且m≠0,则m的值为 .一十一.抛物线与x轴的交点(共1小题)11.(2021•包头)已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE 的值最小时,△ACE的面积为 .一十二.全等三角形的判定与性质(共1小题)12.(2022•包头)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,D为AB边上一点,且BD=BC,连接CD,以点D为圆心,DC的长为半径作弧,交BC于点E(异于点C),连接DE,则BE的长为 .一十三.正方形的性质(共1小题)13.(2021•包头)如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,则∠BAF的度数为 .一十四.切线的性质(共1小题)14.(2021•包头)如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD的周长为 .一十五.弧长的计算(共1小题)15.(2022•包头)如图,已知⊙O的半径为2,AB是⊙O的弦.若AB=2,则劣弧的长为 .一十六.扇形面积的计算(共1小题)16.(2023•内蒙古)如图,正方形ABCD的边长为2,对角线AC,BD相交于点O,以点B 为圆心,对角线BD的长为半径画弧,交BC的延长线于点E,则图中阴影部分的面积为 .一十七.旋转的性质(共1小题)17.(2023•内蒙古)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=1,将△ABC绕点A逆时针方向旋转90°,得到△AB′C′.连接BB′,交AC于点D,则的值为 .一十八.相似三角形的判定与性质(共2小题)18.(2023•内蒙古)如图,AC,AD,CE是正五边形ABCDE的对角线,AD与CE相交于点F.下列结论:①CF平分∠ACD;②AF=2DF;③四边形ABCF是菱形;④AB2=AD •EF.其中正确的结论是 .(填写所有正确结论的序号)19.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为 .一十九.加权平均数(共1小题)20.(2022•包头)某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示:候选人通识知识专业知识实践能力甲809085乙808590根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2:5:3的比例确定每人的最终成绩,此时被录用的是 .(填“甲”或“乙”)二十.方差(共1小题)21.(2021•包头)某人5次射击命中的环数分别为5,10,7,x,10.若这组数据的中位数为8,则这组数据的方差为 .内蒙古包头市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.立方根(共1小题)1.(2021•包头)一个正数a的两个平方根是2b﹣1和b+4,则a+b的立方根为 2 .【答案】见试题解答内容【解答】解:∵一个正数a的两个平方根是2b﹣1和b+4,∴2b﹣1+b+4=0,∴b=﹣1.∴b+4=﹣1+4=3,∴a=9.∴a+b=9+(﹣1)=8,∵8的立方根为2,∴a+b的立方根为2.故答案为:2.二.估算无理数的大小(共1小题)2.(2023•内蒙古)若a,b为两个连续整数,且a<<b,则a+b= 3 .【答案】3.【解答】解:∵1<3<4,∴1<<2,∴a=1,b=2,则a+b=1+2=3,故答案为:3.三.整式的加减(共1小题)3.(2022•包头)若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为 y2﹣xy+3 .【答案】y2﹣xy+3.【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.四.提公因式法与公式法的综合运用(共1小题)4.(2021•包头)因式分解:+ax+a= a(x+1)2 .【答案】a(x+1)2.【解答】解:原式=a(x2+x+1)=a(x+1)2,故答案为:a(x+1)2.五.分式的加减法(共1小题)5.(2022•包头)计算:+= a﹣b .【答案】a﹣b.【解答】解:原式===a﹣b,故答案为:a﹣b.六.分式的混合运算(共1小题)6.(2021•包头)化简:= 1 .【答案】1.【解答】解:原式=•(m+2)==1.故答案为1.七.二次根式有意义的条件(共1小题)7.(2022•包头)若代数式+在实数范围内有意义,则x的取值范围是 x≥﹣1且x≠0 .【答案】见试题解答内容【解答】解:根据题意,得,解得x≥﹣1且x≠0,故答案为:x≥﹣1且x≠0.八.根与系数的关系(共1小题)8.(2023•内蒙古)若x1,x2是一元二次方程x2﹣2x﹣8=0的两个实数根,则= ﹣ .【答案】﹣.【解答】解:根据题意得x1+x2=2,x1x2=﹣8,则==﹣.故答案为:﹣.九.反比例函数图象上点的坐标特征(共1小题)9.(2022•包头)如图,反比例函数y=(k>0)在第一象限的图象上有A(1,6),B(3,b)两点,直线AB与x轴相交于点C,D是线段OA上一点.若AD•BC=AB•DO,连接CD,记△ADC,△DOC的面积分别为S1,S2,则S1﹣S2的值为 4 .【答案】4.【解答】解:∵反比例函数y=(k>0)在第一象限的图象上有A(1,6),B(3,b)两点,∴1×6=3b,∴b=2,∴B(3,2),设直线AB的解析式为y=mx+n,,解得:,∴y=﹣2x+8,令y=0,﹣2x+8=0,解得:x=4,∴C(4,0),∵AB==2,BC==,AD•BC=AB•DO,∴AD•=2•DO,∴AD=2DO,∴S1=2S2,∴S1﹣S2=S2,∵S1+S2=S△AOC,∴S1﹣S2=S2=S△AOC=××4×6=4.故答案为:4.一十.二次函数的性质(共1小题)10.(2023•内蒙古)已知二次函数y=﹣ax2+2ax+3(a>0),若点P(m,3)在该函数的图象上,且m≠0,则m的值为 2 .【答案】2.【解答】解:∵点P(m,3)在二次函数y=﹣ax2+2ax+3(a>0)的图象上,∴3=﹣am2+2am+3,∴﹣am(m﹣2)=0,解得m=2或m=0(舍去),故答案为:2.一十一.抛物线与x轴的交点(共1小题)11.(2021•包头)已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE 的值最小时,△ACE的面积为 4 .【答案】4.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),抛物线的对称轴为直线x=1,当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3),当x=4时,y=x2﹣2x﹣3=5,则D(4,5),连接AD交直线x=1于E,交y轴于F点,如图,∵BE+DE=EA+DE=AD,∴此时BE+DE的值最小,设直线AD的解析式为y=kx+b,把A(﹣1,0),D(4,5)代入得,解得,∴直线AD的解析式为y=x+1,当x=1时,y=x+1=2,则E(1,2),当x=0时,y=x+1=1,则F(0,1),∴S△ACE=S△ACF+S△ECF=×4×1+×4×1=4.故答案为4.一十二.全等三角形的判定与性质(共1小题)12.(2022•包头)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,D为AB边上一点,且BD=BC,连接CD,以点D为圆心,DC的长为半径作弧,交BC于点E(异于点C),连接DE,则BE的长为 3﹣3 .【答案】3﹣3.【解答】解:∵∠ACB=90°,AC=BC=3,∴AB=AC=3,∠A=∠B=45°,∵BD=BC=3,AC=BC,∴BD=AC,AD=3﹣3.∵DC=DE,∴∠DCE=∠DEC.∵BD=BC,∴∠DCE=∠CDB,∴∠CED=∠CDB,∵∠CDB=∠CDE+∠EDB,∠CED=∠B+∠EDB,∴∠CDE=∠B=45°.∴∠ADC+∠EDB=180°﹣∠CDE=135°.∵∠ADC+∠ACD=180°﹣∠A=135°,∴∠ACD=∠EDB.在△ADC和△BED中,,∴△ADC≌△BED(SAS).∴BE=AD=3﹣3.故答案为:3﹣3.一十三.正方形的性质(共1小题)13.(2021•包头)如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,则∠BAF的度数为 22.5° .【答案】22.5°.【解答】解:如图,连接AE,∵BD为正方形ABCD的对角线,∴∠BDC=45°,∵DE=DC=AD,∴∠DEC=∠DCE==67.5°,∵∠DCB=90°,∴∠BCE=90°﹣∠DCE=90°﹣67.5°=22.5°,∵EF=EC,∴∠FEC=180°﹣∠EFC﹣∠ECF=180°﹣22.5°﹣22.5°=135°,∵∠BEC=180°﹣∠DEC=180°﹣67.5°=112.5°,∴∠BEF=135°﹣112.5°=22.5°,∵AD=DE,∠ADE=45°,∴∠AED==67.5°,∴∠BEF+∠AED=22.5°+67.5°=90°,∴∠AEF=180°﹣90°=90°,在△ADE和△EDC中,,∴△ADE≌△EDC(SAS),∴AE=EC,∴AE=EF,即△AEF为等腰直角三角形,∴∠AFE=45°,∵EF=EC,∴∠BFE=∠BCE=22.5°,∴∠AFB=∠AFE+∠BFE=45°+22.5°=67.5°,∵∠ABF=90°,∴∠BAF=90°﹣∠AFB=90°﹣67.5°=22.5°,故答案为:22.5°.一十四.切线的性质(共1小题)14.(2021•包头)如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD的周长为 24+6 .【答案】24+6.【解答】解:连接OE,过点C作CF⊥AD交AD于点F,∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠EOD+∠OEC=180°,∵⊙O与BC相切于点E,∴OE⊥BC,∴∠OEC=90°∴∠EOD=90°,∵CF⊥AD,∴∠CFO=90°,∴四边形OECF为矩形,∴FC=OE,∵AD为直径,AD=12,∴FC=OE=OD=AD=6,∵OC=AB,CF⊥AD,∴OF=OD=3,在Rt△OFC中,由勾股定理得,OC2=OF2+FC2=32+62=45,∴AB=OC=3,∴▱ABCD的周长为12+12+3+3=24+6,故答案为:24+6.一十五.弧长的计算(共1小题)15.(2022•包头)如图,已知⊙O的半径为2,AB是⊙O的弦.若AB=2,则劣弧的长为 π .【答案】见试题解答内容【解答】解:∵⊙O的半径为2,∴AO=BO=2,∵AB=2,∴AO2+BO2=22+22==AB2,∴△AOB是等腰直角三角形,∴∠AOB=90°,∴的长==π.故答案为:π.一十六.扇形面积的计算(共1小题)16.(2023•内蒙古)如图,正方形ABCD的边长为2,对角线AC,BD相交于点O,以点B 为圆心,对角线BD的长为半径画弧,交BC的延长线于点E,则图中阴影部分的面积为 π .【答案】π.【解答】解:∵四边形ABCD是正方形,∴AO=CO,BO=DO,AD=CD,∠DBE=45°,∴△AOD≌△COB(SSS),∵正方形ABCD的边长为2,∴BD==2,∴阴影部分的面积为扇形BED的面积,即,故答案为:π.一十七.旋转的性质(共1小题)17.(2023•内蒙古)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=1,将△ABC绕点A逆时针方向旋转90°,得到△AB′C′.连接BB′,交AC于点D,则的值为 5 .【答案】5.【解答】解:过点D作DF⊥AB于点F,,∵∠ACB=90°,AC=3,BC=1,,∵将△ABC绕点A逆时针方向旋转90°得到△AB'C',,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴∠ABB'=45°∵DF⊥AB,∠DFB=45°,∴△DFB是等腰直角三角形,∴DF=BF,S△DBA=×BC×AD=×DF×AB,即,∵∠C=∠AFD=90°,∠CAB=∠FAD,∴△AFD∽△ACB,∴,即AF=3DF,又∵,∴,∴,∴,∴==5,故答案为:5.一十八.相似三角形的判定与性质(共2小题)18.(2023•内蒙古)如图,AC,AD,CE是正五边形ABCDE的对角线,AD与CE相交于点F.下列结论:①CF平分∠ACD;②AF=2DF;③四边形ABCF是菱形;④AB2=AD •EF.其中正确的结论是 ①③④ .(填写所有正确结论的序号)【答案】①③④.【解答】解:①∵五边形ABCDE是正五边形,∴AB=BC=CD=DE=EA,∠ABC=∠BCD=∠CDE=∠DEA=EAB=,在△ABC中,∠ABC=108°,AB=BC,∴∠BAC=∠BCA=,同理可得,∠DCE=∠DEC=∠EAD=∠EDA=36°,∴∠ACE=∠BCD﹣∠BCA﹣∠DCE=108°﹣36°﹣36°=36°,∴∠ACE=∠DCE,即CF平分∠ACD,故①正确;②∵∠ACE=∠DEC=36°,∠AFC=∠DFE,∴,∵,∴,即AF≠2DF,故②错误;③∵∠BAC=∠ACE=36°,∴AB∥FC,∵∠EAB=108°,∠EAD=36°,∴∠DAB=∠EAB﹣∠EAD=108°﹣36°=72°,∵∠ABC=108°,∴∠ABC+∠DAB=108°+72°=180°,∴AF∥BC,∴四边形ABCF是平行四边形,又∵AB=BC,∴四边形ABCF是菱形,故③正确;④∵∠DEF=∠DAE=36°,∠EDF=∠ADE,∴△DEF∽△DAE,∴,∵DE=AE=AB,∴,即AB2=AD•EF,故④正确;综上,正确的结论是:①③④;故答案为:①③④.19.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为 .【答案】见试题解答内容【解答】解:∵∠ACB=90°,BD⊥CB,MN⊥CB,∴AC∥MN∥BD,∠CNM=∠CBD,∴∠MAC=∠MBD,∠MCA=∠MDB=∠CMN,∴△MAC∽△MBD,△CMN∽△CDB,∴,,∴,∴,∴MN=.故答案为:.一十九.加权平均数(共1小题)20.(2022•包头)某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示:候选人通识知识专业知识实践能力甲809085乙808590根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2:5:3的比例确定每人的最终成绩,此时被录用的是 甲 .(填“甲”或“乙”)【答案】甲.【解答】解:甲的测试成绩为:(80×2+90×5+85×3)÷(2+5+3)=86.5(分),乙的测试成绩为:(80×2+85×5+90×3)÷(2+5+3)=85.5(分),∵86.5>85.5,∴甲将被录用.故答案为:甲.二十.方差(共1小题)21.(2021•包头)某人5次射击命中的环数分别为5,10,7,x,10.若这组数据的中位数为8,则这组数据的方差为 3.6 .【答案】3.6.【解答】解:根据题意,数据5,10,7,x,10的中位数为8,则有x=8,这组数据的平均数为(5+10+7+8+10)=8,则这组数据的方差S2=[(5﹣8)2+(10﹣8)2+(7﹣8)2+(8﹣8)2+(10﹣8)2]=3.6,故答案为:3.6.。
2024年中考数学真题分类汇编(全国通用)(第一期)专题06 二次根式(24题)(解析版)
专题06二次根式(24题)一、单选题1.(2024·湖南·27)A .7B .72C .14D 14【答案】D【分析】此题主要考查了二次根式的乘法,正确计算是解题关键.直接利用二次根式的乘法运算法则计算得出答案.【详解】解:2714⨯=,故选:D2.(2024·内蒙古包头·2296-所得结果是()A .3B 6C .35D .35±【答案】C【分析】本题考查化简二次根式,根据二次根式的性质,化简即可.【详解】解:229681364535-=-==;故选C .3.(2024·云南·x x 的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤【答案】B【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:∵式子x 在实数范围内有意义,∴x 的取值范围是0x ≥.故选:B4.(2024·黑龙江绥化·23m -有意义,则m 的取值范围是()A .23m ≤B .32m ≥-C .32m ≥D .23m ≤-【答案】C【分析】本题考查了二次根式有意义的条件,根据题意可得230m -≥,即可求解.5.(2024·四川乐山·中考真题)已知12x <<2x +-的结果为()A .1-B .1C .23x -D .32x-6.(2024·重庆·中考真题)已知m =m 的范围是()A .23m <<B .34m <<C .45m <<D .56m <<7.(2024·江苏盐城·,设其面积为2cm S ,则S 在哪两个连续整数之间()A .1和2B .2和3C .3和4D .4和5【答案】C【分析】本题主要考查无理数的估算,二次根式的乘法,先计算出矩形的面积S ,再利用放缩法估算无理数大小即可.【详解】解:2510S =⨯=,91016<<,∴91016<<,∴3104<<,即S 在3和4之间,故选:C .8.(2024·安徽·中考真题)下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=D 2a a=【答案】C【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可【详解】解:A 、3a 与5a 不是同类项,不能合并,选项错误,不符合题意;B 、633a a a ÷=,选项错误,不符合题意;C 、()22a a -=,选项正确,符合题意;D 、当0a ≥时,2a a =,当0a <时,2a a =-,选项错误,不符合题意;故选:C9.(2024·重庆·1223的值应在()A .8和9之间B .9和10之间C .10和11之间D .11和12之间【答案】C【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.【详解】解:∵()1223266+=+,而424265<=<,∴1026611<+<,故答案为:C10.(2024·四川德阳·,按以下方式进行排列:则第八行左起第1个数是()A .B .CD .二、填空题11.(2024·江苏连云港·x 的取值范围是.12.(2024·江苏扬州·有意义,则x 的取值范围是.13.(2024·贵州·23的结果是.【答案】6【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式=23⨯=6,故答案为:6.【点睛】本题考查二次根式的乘法运算,掌握二次根式乘法的运算法则a b ab ⋅=(a ≥0,b >0)是解题关键.14.(2024·北京·9x -x 的取值范围是.【答案】9x ≥【分析】根据二次根式有意义的条件,即可求解.【详解】解:根据题意得90x -≥,解得:9x ≥.故答案为:9x ≥【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数为非负数是解题的关键.15.(2024·天津·中考真题)计算()111111-+的结果为.【答案】10【分析】利用平方差公式计算后再加减即可.【详解】解:原式11110=-=.故答案为:10.【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则及平方差公式是解题的关键.16.(2024·四川德阳·()23-=.【答案】3【分析】根据二次根式的性质“2a a =”进行计算即可得.【详解】解:()2333-=-=,故答案为:3.【点睛】本题考查了化简二次根式,解题的关键是掌握二次根式的性质.17.(2024·黑龙江大兴安岭地·中考真题)在函数32y x =+中,自变量x 的取值范围是.【答案】3x ≥/3x≤【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.18.(2024·山东烟台·x 的取值范围为.【答案】1x >/1x<【分析】本题考查代数式有意义,根据分式的分母不为0,二次根式的被开方数为非负数,进行求解即可.【详解】解:由题意,得:10x ->,解得:1x >;故答案为:1x >.19.(2024·山东威海·=.20.(2024·黑龙江齐齐哈尔·中考真题)在函数2y x =+中,自变量x 的取值范围是.【答案】3x >-且2x ≠-【分析】本题考查了求自变量的取值范围,根据二次根式有意义的条件和分式有意义的条件列出不等式组解答即可求解,掌握二次根式有意义的条件和分式有意义的条件是解题的关键.【详解】解:由题意可得,3020x x +>⎧⎨+≠⎩,解得3x >-且2x ≠-,故答案为:3x >-且2x ≠-.三、解答题21.(2024·内蒙古包头·中考真题)(1)先化简,再求值:()()2121x x +-+,其中22x =(2)解方程:2244x xx x --=.【答案】(1)21x -,7;(2)3x =【分析】本题考查了整式的运算,二次根式的运算,解分式方程等知识,解题的关键是:(1)先利用完全平方公式、去括号法则化简,然后把x 的值代入计算即可;(2)先去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:(1)()()2121x x +-+22122x x x =++--21x =-,当22x =时,原式()22217=-=;(2)2244x x x x --=--去分母,得()224x x x ---=,解得3x =,把3x =代入43410x -=-=-≠,∴3x =是原方程的解.22.(2024·上海·中考真题)计算:1021|13|24(13)23-++--+.【答案】26【分析】本题考查了绝对值,二次根式,零指数幂等,掌握化简法则是解题的关键.先化简绝对值,二次根式,零指数幂,再根据实数的运算法则进行计算.【详解】解:121|13|24(13)23-++--+2331261(23)(23)-=-++-+-3126231=-++--26=.23.(2024·甘肃·318122【答案】0【分析】根据二次根式的混合运算法则计算即可.24.(2024·河南·中考真题)(1(01;(2)化简:231124a a a +⎛⎫+÷ ⎪.。
云南省2021-2023三年中考数学真题分类汇编-01选择题知识点分类
云南省2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.正数和负数(共2小题)1.(2023•云南)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作( )A.﹣80米B.0米C.80米D.140米2.(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作( )A.10℃B.0℃C.﹣10℃D.﹣20℃二.有理数的减法(共1小题)3.(2021•云南)某地区2021年元旦的最高气温为9℃,最低气温为﹣2℃,那么该地区这天的最低气温比最高气温低( )A.7℃B.﹣7℃C.11℃D.﹣11℃三.科学记数法—表示较大的数(共2小题)4.(2023•云南)云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为( )A.340×104B.34×105C.3.4×105D.0.34×106 5.(2022•云南)赤道长约为40000000m,用科学记数法可以把数字40000000表示为( )A.4×107B.40×106C.400×105D.40000×103四.算术平方根(共1小题)6.(2023•云南)按一定规律排列的单项式:a,,,,,…,第n个单项式是( )A.B.C.D.五.规律型:数字的变化类(共2小题)7.(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是( )A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n8.(2021•云南)按一定规律排列的单项式:a 2,4a 3,9a 4,16a 5,25a 6,…,第n 个单项式是( )A .n 2a n +1B .n 2a n ﹣1C .n n a n +1D .(n +1)2a n六.同底数幂的除法(共1小题)9.(2023•云南)下列计算正确的是( )A .a 2•a 3=a 6B .(3a )2=6a 2C .a 6÷a 3=a 2D .3a 2﹣a 2=2a 2七.二次根式的加减法(共1小题)10.(2022•云南)下列运算正确的是( )A .+=B .30=0C .(﹣2a )3=﹣8a 3D .a 6÷a 3=a 2八.根的判别式(共1小题)11.(2021•云南)若一元二次方程ax 2+2x +1=0有两个不相等的实数根,则实数a 的取值范围是( )A .a <1B .a ≤1C .a ≤1且a ≠0D .a <1且a ≠0九.由实际问题抽象出分式方程(共2小题)12.(2023•云南)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( )A .B .C .D .13.(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵,则下列方程正确的是( )A .=B .=C .=D .=一十.反比例函数的性质(共1小题)14.(2022•云南)反比例函数y=的图象分别位于( )A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限一十一.反比例函数图象上点的坐标特征(共1小题)15.(2023•云南)若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为( )A.3B.﹣3C.D.一十二.平行线的性质(共3小题)16.(2023•云南)如图,直线c与直线a、b都相交.若a∥b,∠1=35°,则∠2=( )A.145°B.65°C.55°D.35°17.(2022•云南)如图,已知直线c与直线a、b都相交.若a∥b,∠1=85°,则∠2=( )A.110°B.105°C.100°D.95°18.(2021•云南)如图,直线c与直线a、b都相交.若a∥b,∠1=55°,则∠2=( )A.60°B.55°C.50°D.45°一十三.全等三角形的判定(共1小题)19.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是( )A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 一十四.三角形中位线定理(共1小题)20.(2023•云南)如图,A、B两点被池塘隔开,A、B、C三点不共线.设AC、BC的中点分别为M、N.若MN=3米,则AB=( )A.4米B.6米C.8米D.10米一十五.多边形内角与外角(共1小题)21.(2021•云南)一个十边形的内角和等于( )A.1800°B.1660°C.1440°D.1200°一十六.垂径定理(共1小题)22.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为( )A.B.C.D.一十七.圆周角定理(共1小题)23.(2023•云南)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=( )A.66°B.33°C.24°D.30°一十八.三角形的外接圆与外心(共1小题)24.(2021•云南)如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是( )A.B.πC.D.2π一十九.轴对称图形(共1小题)25.(2023•云南)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )A.B.C.D.二十.相似三角形的判定与性质(共1小题)26.(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=( )A.B.C.D.二十一.锐角三角函数的定义(共1小题)27.(2021•云南)在△ABC中,∠ABC=90°.若AC=100,sin A=,则AB的长是( )A.B.C.60D.80二十二.由三视图判断几何体(共2小题)28.(2023•云南)某班同学用几个几何体组合成一个装饰品美化校园,其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )A.球B.圆柱C.长方体D.圆锥29.(2022•云南)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )A.三棱柱B.三棱锥C.圆柱D.圆锥二十三.条形统计图(共1小题)30.(2021•云南)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援.某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.每天单独生产C型帐篷的数量最多二十四.中位数(共1小题)31.(2022•云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1评委2评委3评委4评委59.99.79.6109.8数据9.9,9.7,9.6,10,9.8的中位数是( )A.9.6B.9.7C.9.8D.9.9二十五.众数(共1小题)32.(2023•云南)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为( )A.65B.60C.75D.80云南省2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.正数和负数(共2小题)1.(2023•云南)中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作+60米,则向西走80米可记作( )A.﹣80米B.0米C.80米D.140米【答案】A【解答】解:∵向东走60米记作+60米,∴向西走80米可记作﹣80米,故选:A.2.(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作( )A.10℃B.0℃C.﹣10℃D.﹣20℃【答案】C【解答】解:∵零上10℃记作+10℃,∴零下10℃记作:﹣10℃,故选:C.二.有理数的减法(共1小题)3.(2021•云南)某地区2021年元旦的最高气温为9℃,最低气温为﹣2℃,那么该地区这天的最低气温比最高气温低( )A.7℃B.﹣7℃C.11℃D.﹣11℃【答案】C【解答】解:9﹣(﹣2)=9+2=11(℃),故选:C.三.科学记数法—表示较大的数(共2小题)4.(2023•云南)云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为( )A.340×104B.34×105C.3.4×105D.0.34×106【答案】C【解答】解:将340000用科学记数法表示为:3.4×105.故选:C.5.(2022•云南)赤道长约为40000000m,用科学记数法可以把数字40000000表示为( )A.4×107B.40×106C.400×105D.40000×103【答案】A【解答】解:40000000用科学记数法可表示为4×107,故选:A.四.算术平方根(共1小题)6.(2023•云南)按一定规律排列的单项式:a,,,,,…,第n个单项式是( )A.B.C.D.【答案】C【解答】解:第1个单项式为a,即a1,第2个单项式为a2,第3个单项式为a3,...第n个单项式为a n,故选:C.五.规律型:数字的变化类(共2小题)7.(2022•云南)按一定规律排列的单项式:x,3x2,5x3,7x4,9x5,……,第n个单项式是( )A.(2n﹣1)x n B.(2n+1)x n C.(n﹣1)x n D.(n+1)x n【答案】A【解答】解:∵单项式:x,3x2,5x3,7x4,9x5,…,∴第n个单项式为(2n﹣1)x n,故选:A.8.(2021•云南)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是( )A.n2a n+1B.n2a n﹣1C.n n a n+1D.(n+1)2a n【答案】A【解答】解:∵第1个单项式a2=12•a1+1,第2个单项式4a3=22•a2+1,第3个单项式9a4=32•a3+1,第4个单项式16a5=42•a4+1,……∴第n(n为正整数)个单项式为n2a n+1,故选:A.六.同底数幂的除法(共1小题)9.(2023•云南)下列计算正确的是( )A.a2•a3=a6B.(3a)2=6a2C.a6÷a3=a2D.3a2﹣a2=2a2【答案】D【解答】解:A、a2•a3=a2+3=a5,原式计算错误,故选项不符合题意;B、(3a)2=9a2,原式计算错误,故选项不符合题意;C、a6÷a3=a6﹣3=a3,原式计算错误,故选项不符合题意;D、3a2﹣a2=2a2,计算正确,故选项符合题意.故选:D.七.二次根式的加减法(共1小题)10.(2022•云南)下列运算正确的是( )A.+=B.30=0C.(﹣2a)3=﹣8a3D.a6÷a3=a2【答案】C【解答】解:A选项,和不是同类二次根式,不能合并,故该选项不符合题意;B选项,原式=1,故该选项不符合题意;C选项,原式=﹣8a3,故该选项符合题意;D选项,原式=a3,故该选项不符合题意;故选:C.八.根的判别式(共1小题)11.(2021•云南)若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是( )A.a<1B.a≤1C.a≤1且a≠0D.a<1且a≠0【答案】D【解答】解:∵一元二次方程ax2+2x+1=0有两个不相等的实数根,∴a≠0,Δ=b2﹣4ac=22﹣4×a×1=4﹣4a>0,解得:a<1且a≠0,故选:D.九.由实际问题抽象出分式方程(共2小题)12.(2023•云南)阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x米/分,则下列方程正确的是( )A.B.C.D.【答案】D【解答】解:∵乙同学的速度是x米/分,则甲同学的速度是1.2x米/分,由题意得:,故选:D.13.(2022•云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是( )A.=B.=C.=D.=【答案】B【解答】解:由题意可得,,故选:B.一十.反比例函数的性质(共1小题)14.(2022•云南)反比例函数y=的图象分别位于( )A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限【答案】A【解答】解:反比例函数y=,k=6>0,∴该反比例函数图象位于第一、三象限,故选:A.一十一.反比例函数图象上点的坐标特征(共1小题)15.(2023•云南)若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为( )A.3B.﹣3C.D.【答案】A【解答】解:∵点A(1,3)在反比例函数y=(k≠0)图象上,∴k=1×3=3,故选:A.一十二.平行线的性质(共3小题)16.(2023•云南)如图,直线c与直线a、b都相交.若a∥b,∠1=35°,则∠2=( )A.145°B.65°C.55°D.35°【答案】D【解答】解:如图,∵∠1=35°,∴∠3=∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:D.17.(2022•云南)如图,已知直线c与直线a、b都相交.若a∥b,∠1=85°,则∠2=( )A.110°B.105°C.100°D.95°【答案】D【解答】解:∵∠1=85°,1=∠3,∴∠3=85°,∵a∥b,∴∠3+∠2=180°,∴∠2=180°﹣85°=95°.故选:D.18.(2021•云南)如图,直线c与直线a、b都相交.若a∥b,∠1=55°,则∠2=( )A.60°B.55°C.50°D.45°【答案】B【解答】解:如图,∵∠1=55°,∠1和∠3是对顶角,∴∠3=∠1=55°,∵a∥b,∴∠2=∠3=55°.故选:B.一十三.全等三角形的判定(共1小题)19.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是( )A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 【答案】D【解答】解:∵OB平分∠AOC,∴∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意,故选:D.一十四.三角形中位线定理(共1小题)20.(2023•云南)如图,A、B两点被池塘隔开,A、B、C三点不共线.设AC、BC的中点分别为M、N.若MN=3米,则AB=( )A.4米B.6米C.8米D.10米【答案】B【解答】解:∵点M,N分别是AC和BC的中点,∴AB=2MN=6(m),故选:B.一十五.多边形内角与外角(共1小题)21.(2021•云南)一个十边形的内角和等于( )A.1800°B.1660°C.1440°D.1200°【答案】C【解答】解:根据多边形内角和公式得,十边形的内角和等于:(10﹣2)×180°=8×180°=1440°,故选:C.一十六.垂径定理(共1小题)22.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为( )A.B.C.D.【答案】B【解答】解:∵AB是⊙O的直径,AB⊥CD,∴CE=DE=CD=12,∵AB=26,∴OC=13.∴cos∠OCE=.故选:B.一十七.圆周角定理(共1小题)23.(2023•云南)如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°,则∠A=( )A.66°B.33°C.24°D.30°【答案】B【解答】解:∵∠A=∠BOC,∠BOC=66°,∴∠A=33°.故选:B.一十八.三角形的外接圆与外心(共1小题)24.(2021•云南)如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是( )A.B.πC.D.2π【答案】B【解答】解:连接OB、BD,如图:∵△ABC为等边三角形,∴∠C=60°,∴∠D=∠C=60°,∵OB=OD,∴△BOD是等边三角形,∴∠BOD=60°,∵半径OA=3,∴劣弧BD的长为=π,故选:B.一十九.轴对称图形(共1小题)25.(2023•云南)中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )A.B.C.D.【答案】C【解答】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.二十.相似三角形的判定与性质(共1小题)26.(2022•云南)如图,在△ABC中,D、E分别为线段BC、BA的中点,设△ABC的面积为S1,△EBD的面积为S2,则=( )A.B.C.D.【答案】B【解答】解:在△ABC中,D、E分别为线段BC、BA的中点,∴DE为△ABC的中位线,∴DE∥AC,DE=AC,∴△BED∽△BAC,∵=,∴=,即=,故选:B.二十一.锐角三角函数的定义(共1小题)27.(2021•云南)在△ABC中,∠ABC=90°.若AC=100,sin A=,则AB的长是( )A.B.C.60D.80【答案】D【解答】解:∵AC=100,sin A=,∴BC=60,∴AB==80,故选:D.二十二.由三视图判断几何体(共2小题)28.(2023•云南)某班同学用几个几何体组合成一个装饰品美化校园,其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )A.球B.圆柱C.长方体D.圆锥【答案】A【解答】解:根据主视图和左视图、俯视图都为圆形判断出是球.故选:A.29.(2022•云南)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是( )A.三棱柱B.三棱锥C.圆柱D.圆锥【答案】C【解答】解:此几何体为一个圆柱,故选:C.二十三.条形统计图(共1小题)30.(2021•云南)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援.某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是( )A.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍B.单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.每天单独生产C型帐篷的数量最多【答案】C【解答】解:A、单独生产B帐篷所需天数为=4(天),单独生产C帐篷所需天数为=1(天),∴单独生产B型帐篷的天数是单独生产C型帐篷天数的4倍,此选项错误;B、单独生产A帐篷所需天数为=2(天),∴单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍,此选项错误;C、单独生产D帐篷所需天数为=2(天),∴单独生产A型帐篷与单独生产D型帐篷的天数相等,此选项正确;D、单由条形统计图可得每天单独生产A型帐篷的数量最多,此选项错误;故选:C.二十四.中位数(共1小题)31.(2022•云南)为庆祝中国共产主义青年团建团100周年,某校团委组织以“扬爱国精神,展青春风采”为主题的合唱活动,下表是九年级一班的得分情况:评委1评委2评委3评委4评委59.99.79.6109.8数据9.9,9.7,9.6,10,9.8的中位数是( )A.9.6B.9.7C.9.8D.9.9【答案】C【解答】解:将数据从小到大排序为:9.6,9.7,9.8,9.9,10,中位数为9.8,故选:C.二十五.众数(共1小题)32.(2023•云南)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为( )A.65B.60C.75D.80【答案】B【解答】解:这组数据中,60出现的次数最多,故这组数据的众数为60.故选:B.。
湖南省永州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
湖南省永州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.有理数大小比较(共1小题)1.(2023•永州)﹣0.5,3,﹣2三个数中最小的数为 .二.无理数(共1小题)2.(2021•永州)在0,,﹣0.101001,π,中无理数的个数是 个.三.估算无理数的大小(共1小题)3.(2022•永州)请写出一个比大且比10小的无理数: .四.同类项(共1小题)4.(2022•永州)若单项式3x m y与﹣2x6y是同类项,则m= .五.幂的乘方与积的乘方(共1小题)5.(2021•永州)若x,y均为实数,43x=2021,47y=2021,则:(1)43xy•47xy=( )x+y;(2)+= .六.公因式(共1小题)6.(2023•永州)2a2与4ab的公因式为 .七.二次根式有意义的条件(共2小题)7.(2023•永州)已知x为正整数,写出一个使在实数范围内没有意义的x值是 .8.(2021•永州)已知二次根式有意义,则x的取值范围是 .八.解分式方程(共1小题)9.(2022•永州)解分式方程﹣=0去分母时,方程两边同乘的最简公分母是 .九.分式方程的增根(共1小题)10.(2023•永州)若关于x的分式方程(m为常数)有增根,则增根是 .一十.分段函数(共1小题)11.(2021•永州)已知函数y=,若y=2,则x= .一十一.一次函数图象上点的坐标特征(共1小题)12.(2022•永州)已知一次函数y=x+1的图象经过点(m,2),则m= .一十二.反比例函数的性质(共1小题)13.(2021•永州)请写出一个图象在第二、四象限的反比例函数的表达式: .一十三.线段的性质:两点之间线段最短(共1小题)14.(2021•永州)如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段PA+PB的值最小,则点P的坐标是 .一十四.平行线的性质(共1小题)15.(2023•永州)如图,AB∥CD,BC∥ED,∠B=80,则∠D= 度.一十五.勾股定理的证明(共1小题)16.(2022•永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是25,小正方形的面积是1,则AE= .一十六.垂径定理的应用(共1小题)17.(2023•永州)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm,水的最深处到水面AB的距离为4cm,则水面AB的宽度为 cm.一十七.圆周角定理(共1小题)18.(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC= 度.一十八.扇形面积的计算(共1小题)19.(2023•永州)已知扇形的半径为6,面积为6π,则扇形圆心角的度数为 度.一十九.圆锥的计算(共1小题)20.(2021•永州)某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为 .二十.旋转的性质(共1小题)21.(2022•永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O顺时针旋转90°后,端点A的坐标变为 .二十一.折线统计图(共1小题)22.(2021•永州)某初级中学坚持开展阳光体育活动,七年级至九年级每学期均进行体育技能测试.其中A班甲、乙两位同学6个学期的投篮技能测试成绩(投篮命中个数)折线图如图所示.为参加学校举行的毕业篮球友谊赛,A班需从甲、乙两位同学中选1人进入班球队,从两人成绩的稳定性考虑,请你决策A班应该选择的同学是 .二十二.众数(共1小题)23.(2022•永州)“闪电足球队”参加市中小学生足球比赛,在五场小组赛中,该足球队的进球数分别为:2,0,1,2,3,则此组数据的众数是 .二十三.方差(共1小题)24.(2023•永州)甲、乙两队学生参加学校拉拉队选拔,两队队员的平均身高均为1.72m,甲队队员的身高的方差为1.2,乙队队员身高的方差为5.6.若要求拉拉队身高比较整齐,应选择 队较好.湖南省永州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.有理数大小比较(共1小题)1.(2023•永州)﹣0.5,3,﹣2三个数中最小的数为 ﹣2 .【答案】﹣2.【解答】解:﹣2<﹣0.5<3,∴最小的数是﹣2,故答案为:﹣2.二.无理数(共1小题)2.(2021•永州)在0,,﹣0.101001,π,中无理数的个数是 1 个.【答案】见试题解答内容【解答】解:0,,是整数,属于有理数;是分数,属于有理数;﹣0.101001是有限小数,属于有理数;无理数有π,共1个.故答案为:1.三.估算无理数的大小(共1小题)3.(2022•永州)请写出一个比大且比10小的无理数: (答案不唯一) .【答案】(答案不唯一).【解答】解:∵4<5<7<9,∴2<<<3,∴比大且比10小的无理数是(答案不唯一).故答案为:(答案不唯一).四.同类项(共1小题)4.(2022•永州)若单项式3x m y与﹣2x6y是同类项,则m= 6 .【答案】6.【解答】解:∵3x m y与﹣2x6y是同类项,∴m=6.故答案为:6.五.幂的乘方与积的乘方(共1小题)5.(2021•永州)若x,y均为实数,43x=2021,47y=2021,则:(1)43xy•47xy=( 2021 )x+y;(2)+= 1 .【答案】(1)2021;(2)1.【解答】解:(1)43xy•47xy=(43x)y•(47y)x=2021y×2021x=2021x+y,故答案为:2021;(2)由(1)知,43xy•47xy=2021(x+y),∵43xy•47xy=(43×47)xy=2021xy,∴xy=x+y,∴+==1,故答案为:1.六.公因式(共1小题)6.(2023•永州)2a2与4ab的公因式为 2a .【答案】2a.【解答】解:2a2与4ab的公因式是2a.故答案为:2a.七.二次根式有意义的条件(共2小题)7.(2023•永州)已知x为正整数,写出一个使在实数范围内没有意义的x值是 1(答案也可以是2) .【答案】1(答案也可以是2).【解答】解:要使在实数范围内没有意义,则x﹣3<0,∴x<3,∵x为正整数,∴x的值是1(答案也可以是2).故答案为:1(答案也可以是2).8.(2021•永州)已知二次根式有意义,则x的取值范围是 x≥﹣3 .【答案】x≥﹣3.【解答】解:根据二次根式的意义,得x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.八.解分式方程(共1小题)9.(2022•永州)解分式方程﹣=0去分母时,方程两边同乘的最简公分母是 x (x+1) .【答案】x(x+1).【解答】解:去分母时,方程两边同乘的最简公分母是x(x+1).故答案为:x(x+1).九.分式方程的增根(共1小题)10.(2023•永州)若关于x的分式方程(m为常数)有增根,则增根是 x=4 .【答案】x=4.【解答】解:∵关于x的分式方程(m为常数)有增根,∴x﹣4=0,∴x=4,故答案为:x=4.一十.分段函数(共1小题)11.(2021•永州)已知函数y=,若y=2,则x= 2 .【答案】2.【解答】解:∵y=2.∴当x2=2时,x=.∵0≤x<1.∴x=(舍去).当2x﹣2=2时,x=2.故答案为:2.一十一.一次函数图象上点的坐标特征(共1小题)12.(2022•永州)已知一次函数y=x+1的图象经过点(m,2),则m= 1 .【答案】1.【解答】解:∵一次函数y=x+1的图象经过点(m,2),∴2=m+1,∴m=1.故答案为:1.一十二.反比例函数的性质(共1小题)13.(2021•永州)请写出一个图象在第二、四象限的反比例函数的表达式: y=﹣ .【答案】见试题解答内容【解答】解:∵图象在第二、四象限,∴y=﹣,故答案为:y=﹣.一十三.线段的性质:两点之间线段最短(共1小题)14.(2021•永州)如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段PA+PB的值最小,则点P的坐标是 (2,0) .【答案】(2,0).【解答】解:如图,连接AB交x轴于点P',根据两点之间,线段最短可知:P'即为所求,设直线AB的关系式为:y=kx+b,,解得,∴y=,当y=0时,x=2,∴P'(2,0),故答案为:(2,0).一十四.平行线的性质(共1小题)15.(2023•永州)如图,AB∥CD,BC∥ED,∠B=80,则∠D= 100 度.【答案】100.【解答】解:∵AB∥CD,∠B=80,∴∠BCD=∠B=80°,∵BC∥ED,∴∠D+∠BCD=180°,∴∠D=100°.故答案为:100.一十五.勾股定理的证明(共1小题)16.(2022•永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是25,小正方形的面积是1,则AE= 3 .【答案】3.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,∴(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),∴x﹣1=3,故答案为:3.一十六.垂径定理的应用(共1小题)17.(2023•永州)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm,水的最深处到水面AB的距离为4cm,则水面AB的宽度为 16 cm.【答案】16.【解答】解:如图,过点O作OD⊥AB于点C,交⊙O于点D,连接OA,∴,由题意知,OA=10cm,CD=4cm,∴OC=6cm,在Rt△AOC中,cm,∴AB=2AC=16cm,故答案为:16.一十七.圆周角定理(共1小题)18.(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC= 120 度.【答案】120.【解答】解:∵∠ADC是所对的圆周角,∴∠AOC=2∠ADC=2×30°=60°,∴∠BOC=180°﹣∠AOC=180°﹣60°=120°.故答案为:120.一十八.扇形面积的计算(共1小题)19.(2023•永州)已知扇形的半径为6,面积为6π,则扇形圆心角的度数为 60 度.【答案】60.【解答】解:设扇形圆心角的度数为n°,则=6π,解得:n=60,即扇形圆心角的度数为60°,故答案为:60.一十九.圆锥的计算(共1小题)20.(2021•永州)某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为 10 .【答案】10.【解答】解:设此圆锥的母线长为l,根据题意得×2π×6×l=60π,解得l=10,所以此圆锥的母线长为10.故答案为10.二十.旋转的性质(共1小题)21.(2022•永州)如图,图中网格由边长为1的小正方形组成,点A为网格线的交点.若线段OA绕原点O顺时针旋转90°后,端点A的坐标变为 (2,﹣2) .【答案】(2,﹣2).【解答】解:线段OA绕原点O顺时针旋转90°如图所示,则A'(2,﹣2),则旋转后A点坐标变为:(2,﹣2),故答案为:(2,﹣2).二十一.折线统计图(共1小题)22.(2021•永州)某初级中学坚持开展阳光体育活动,七年级至九年级每学期均进行体育技能测试.其中A班甲、乙两位同学6个学期的投篮技能测试成绩(投篮命中个数)折线图如图所示.为参加学校举行的毕业篮球友谊赛,A班需从甲、乙两位同学中选1人进入班球队,从两人成绩的稳定性考虑,请你决策A班应该选择的同学是 甲 .【答案】甲.【解答】解:根据折线统计图可得,甲的投篮技能测试成绩起伏小,比较平稳,乙的投篮技能测试成绩起伏大,不稳定,因此A班应该选择的同学是甲.故答案为:甲.二十二.众数(共1小题)23.(2022•永州)“闪电足球队”参加市中小学生足球比赛,在五场小组赛中,该足球队的进球数分别为:2,0,1,2,3,则此组数据的众数是 2 .【答案】2.【解答】解:此组数据2出现2次,次数最多,所以众数是2.故答案为:2.二十三.方差(共1小题)24.(2023•永州)甲、乙两队学生参加学校拉拉队选拔,两队队员的平均身高均为1.72m,甲队队员的身高的方差为1.2,乙队队员身高的方差为5.6.若要求拉拉队身高比较整齐,应选择 甲 队较好.【答案】甲.【解答】解:∵S甲2=1.2,S乙2=5.6,∴S甲2<S乙2,∴若要求拉拉队身高比较整齐,应选择甲队较好.故答案为:甲.。
湖南省湘潭市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
湖南省湘潭市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.非负数的性质:偶次方(共1小题)1.(2023•湘潭)已知实数a,b满足(a﹣2)2+|b+1|=0,则a b= .二.科学记数法—表示较大的数(共1小题)2.(2022•湘潭)2022年6月5日,神舟十四号载人飞船在酒泉卫星发射中心发射成功,飞船入轨后将按照预定程序与离地面约400000米的天宫空间站进行对接.请将400000米用科学记数法表示为 米.三.无理数(共1小题)3.(2022•湘潭)四个数﹣1,0,,中,为无理数的是 .四.估算无理数的大小(共1小题)4.(2023•湘潭)数轴上到原点的距离小于的点所表示的整数有 .(写出一个即可)五.单项式(共1小题)5.(2021•湘潭)单项式3x2y的系数为 .六.二次根式有意义的条件(共1小题)6.(2021•湘潭)若二次根式有意义,则x的取值范围是 .七.一次函数的性质(共1小题)7.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式 .八.角的计算(共1小题)8.(2022•湘潭)如图,一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,已知∠AOB=120°,∠CDB=20°,则∠AEF= .九.平行线的性质(共1小题)9.(2021•湘潭)如图,直线a,b被直线c所截,已知a∥b,∠1=130°,则∠2为 度.一十.平行四边形的性质(共1小题)10.(2021•湘潭)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知BC=10,则OE= .一十一.正方形的性质(共1小题)11.(2023•湘潭)七巧板是我国民间广为流传的一种益智玩具.某同学用边长为4dm的正方形纸板制作了一副七巧板(见图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为 dm2.一十二.作图—基本作图(共1小题)12.(2023•湘潭)如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,在∠BAC内两弧交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则CD的长为 .一十三.推理与论证(共1小题)13.(2021•湘潭)天干地支纪年法是上古文明的产物,又称节气历或中国阳历.有十天干与十二地支,如下表:天干甲乙丙丁戊己庚辛壬癸4567890123地支子丑寅卯辰巳午未申酉戌亥456789*********算法如下:先用年份的尾数查出天干,再用年份除以12的余数查出地支.如2008年,尾数8为戊,2008除以12余数为4,4为子,那么2008年就是戊子年.2021年是伟大、光荣、正确的中国共产党成立100周年,则2021年是 年.(用天干地支纪年法表示)一十四.坐标与图形变化-平移(共1小题)14.(2021•湘潭)在平面直角坐标系中,把点A(﹣2,1)向右平移5个单位得到点A′,则点A′的坐标为 .一十五.相似三角形的判定(共1小题)15.(2021•湘潭)如图,在△ABC中,点D,E分别为边AB,AC上的点,试添加一个条件: ,使得△ADE与△ABC相似.(任意写出一个满足条件的即可)一十六.方差(共1小题)16.(2021•湘潭)“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风…)不同的6块试验田中同时播种并核定亩产,统计结果为:=1042kg/亩,s 甲2=6.5,=1042kg/亩,s2=1.2,则 品种更适合在该村推广.(填“甲”或“乙”)乙湖南省湘潭市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.非负数的性质:偶次方(共1小题)1.(2023•湘潭)已知实数a,b满足(a﹣2)2+|b+1|=0,则a b= .【答案】.【解答】解:∵(a﹣2)2+|b+1|=0,(a﹣2)2≥0,|b+1|≥0,∴a﹣2=0,b+1=0,∴a=2,b=﹣1,则a b=2﹣1=,故答案为:.二.科学记数法—表示较大的数(共1小题)2.(2022•湘潭)2022年6月5日,神舟十四号载人飞船在酒泉卫星发射中心发射成功,飞船入轨后将按照预定程序与离地面约400000米的天宫空间站进行对接.请将400000米用科学记数法表示为 4×105 米.【答案】4×105.【解答】解:400000米用科学记数法表示为4×105米,故答案为:4×105.三.无理数(共1小题)3.(2022•湘潭)四个数﹣1,0,,中,为无理数的是 .【答案】.【解答】解:四个数﹣1,0,,中,为无理数的是.故答案为:.四.估算无理数的大小(共1小题)4.(2023•湘潭)数轴上到原点的距离小于的点所表示的整数有 0(答案不唯一) .(写出一个即可)【答案】0(答案不唯一).【解答】解:数轴上到原点的距离小于的点所表示的数为﹣与之间的所有数,则其中的整数为0(答案不唯一),故答案为:0(答案不唯一).五.单项式(共1小题)5.(2021•湘潭)单项式3x2y的系数为 3 .【答案】见试题解答内容【解答】解:3x2y=3•x2y,其中数字因式为3,则单项式的系数为3.故答案为:3.六.二次根式有意义的条件(共1小题)6.(2021•湘潭)若二次根式有意义,则x的取值范围是 x≥2 .【答案】见试题解答内容【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.七.一次函数的性质(共1小题)7.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式 y=x﹣2(答案不唯一) .【答案】y=x﹣2(答案不唯一).【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).八.角的计算(共1小题)8.(2022•湘潭)如图,一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,已知∠AOB=120°,∠CDB=20°,则∠AEF= 40° .【答案】40°.【解答】解:∵一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,∴∠EDO=∠CDB=20°,∠AEF=∠OED,在△ODE中,∠OED=180°﹣∠AOB﹣∠EDO=180°﹣120°﹣20°=40°,∴∠AEF=∠OED=40°.故答案为:40°.九.平行线的性质(共1小题)9.(2021•湘潭)如图,直线a,b被直线c所截,已知a∥b,∠1=130°,则∠2为 50 度.【答案】50.【解答】解:∵∠1=130°,∴∠3=180°﹣130°=50°,∵a∥b,∴∠2=∠3=50°,故答案为:50.一十.平行四边形的性质(共1小题)10.(2021•湘潭)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知BC=10,则OE= 5 .【答案】5.【解答】解:在▱ABCD中,对角线AC,BD相交于点O,∴点O是AC的中点,∵点E是边AB的中点,∴OE是△ABC的中位线,∴OE=BC=5.故答案为:5.一十一.正方形的性质(共1小题)11.(2023•湘潭)七巧板是我国民间广为流传的一种益智玩具.某同学用边长为4dm的正方形纸板制作了一副七巧板(见图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为 2 dm2.【答案】2.【解答】解:如图所示,依题意,OD=AD=2,OE=OD=,∴图中阴影部分的面积为OE2=()2=2(dm2),故答案为:2.一十二.作图—基本作图(共1小题)12.(2023•湘潭)如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,在∠BAC内两弧交于点O;③作射线AO,交BC于点D.若点D 到AB的距离为1,则CD的长为 1 .【答案】1.【解答】解:由作图知AD平分∠BAC,∵∠C=90°,点D到AB的距离为1,∴CD=1.故答案为:1.一十三.推理与论证(共1小题)13.(2021•湘潭)天干地支纪年法是上古文明的产物,又称节气历或中国阳历.有十天干与十二地支,如下表:天干甲乙丙丁戊己庚辛壬癸4567890123地支子丑寅卯辰巳午未申酉戌亥456789*********算法如下:先用年份的尾数查出天干,再用年份除以12的余数查出地支.如2008年,尾数8为戊,2008除以12余数为4,4为子,那么2008年就是戊子年.2021年是伟大、光荣、正确的中国共产党成立100周年,则2021年是 辛丑 年.(用天干地支纪年法表示)【答案】辛丑.【解答】解:2021年,尾数1为辛,2021除以12余数为5,5为丑,那么2021年就是辛丑年.故答案为:辛丑.一十四.坐标与图形变化-平移(共1小题)14.(2021•湘潭)在平面直角坐标系中,把点A(﹣2,1)向右平移5个单位得到点A′,则点A′的坐标为 (3,1) .【答案】(3,1).【解答】解:∵点A(﹣2,1)向右平移5个单位得到点A′,∴A′(3,1),故答案为(3,1).一十五.相似三角形的判定(共1小题)15.(2021•湘潭)如图,在△ABC中,点D,E分别为边AB,AC上的点,试添加一个条件: ∠ADE=∠C(答案不唯一) ,使得△ADE与△ABC相似.(任意写出一个满足条件的即可)【答案】∠ADE=∠C(答案不唯一).【解答】解:添加∠ADE=∠C,又∵∠A=∠A,∴△ADE∽△ACB,故答案为:∠ADE=∠C(答案不唯一).一十六.方差(共1小题)16.(2021•湘潭)“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引第11页(共11页)进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风…)不同的6块试验田中同时播种并核定亩产,统计结果为:=1042kg /亩,s 甲2=6.5,=1042kg /亩,s 乙2=1.2,则 乙 品种更适合在该村推广.(填“甲”或“乙”)【答案】乙.【解答】解:∵=1042kg /亩,=1042kg /亩,s 甲2=6.5,s 乙2=1.2,∴=,S 甲2>S 乙2,∴产量稳定,适合推广的品种为乙,故答案为:乙.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考数学模拟试题分类汇编无理数及二次根式
一、选择题
1.(2010年杭州月考)在实数中02)33(,)3(,...,45678.2,7
1
,2,
3,0---ππ,无理数的个数为( )
A. 3 个 B.4个 C.5个 D. 6个 答案:B
2.(2010年河南模拟)下列等式一定成立的是( )
A.916916+=+ B.22a b a b -=- C.44ππ⨯=⨯ D.2()a b a b +=+ 答案:C
3.(2010年河南模拟)若式子
1
32
x --有意义,则x 的取值范畴是 ( )
A.3x ≠ B.x >3 C. x 3 ≥且7x ≠ D.2x ≠ 答案:C
4.(2010年武汉市中考拟)函数y=
1
2
-+x x 中,自变量x 的取值范畴是( ) A.x >-2且x≠1 B.x≥2且x≠1 C.x ≥-2且x≠1 D.x≠1 答案:A
5.(2010年武汉市中考拟)25的算术平方根是( )
A .5
B . 5
C .–5
D .±5
答案:A
6.(2010年济宁师专附中一模)下列函数中,自变量x 的取值范畴是2x >的函数是( ) A .2y x =- B .1
2y x =
-
C .21y x =-
D .1
21
y x =
- 答案:B
7.(2010年济宁师专附中一模)如图,数轴上A B ,两点表示的数分别为1-和3, 点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23-- B .13--
C .23-+
D .13+
答案:A
8.(2010年江西南昌一模)化简)22(28+-
得( ).
A.-2
B.22-
C.2 D .224-
C
A O
B (第7题图)
答案:A
9.(2010年江西南昌一模)估量68的立方根的大小在 ( ) A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间 答案:C
10.(2010年浙江永嘉)下列四个数中,比0小的数是………………………………( ) A .
2
3
B .3
C .π
D .1-
答案:D
11.(2010年黑龙江一模)在实数3
2
-,0,2,π,9中,无理数有( ) A .1个 B .2个 C .3个 D .4个
答案:B
12.(2010年辽宁铁岭加速度辅导学校)下列函数中,自变量x 的取值范畴是2x >的函数是( ) A .2y x =-
B .1
2
y x =
- C .21y x =-
D .1
21
y x =
- 答案:B
13.(2010年江西省统一考试样卷)在数轴上,与-3最接近的整数是( ) A .-3 B .-2 C .-1 D .0 答案:B
14.( 2010年山东菏泽全真模拟1)关于x 的一元二次方程21
(1)420m m x x ++++=的解为( )
A .11x =,21x =-
B .121x x ==
C .121x x ==-
D .无解
答案:C
15.(2010年河南中考模拟题1)2(3)--的值为( ) A .3 B .-3 C .±3 D.-9 答案:B
16.(2010年河南中考模拟题2)如图,数轴上表示1、2两数的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 所表示的 数是( )
A .2-1
B .1-2
C .2-2
D .2-2 答案:C
17.(2010年河南中考模拟题6)若02sin 30x =,则x 的平方根为 ( )
A 、1
B 、1±
C 3±、
D 、3 答案:B
18.(2010年江苏省泰州市济川实验初中中考模拟题) 在下列二次根式中,与3是同类二次根式的是 ( ) A .18
B .24
C .27
D .30
答案:C
二、填空题
1. (2010年杭州月考)化简 .
16的平方根为 。
答案:4, 2
2.(2010年湖南模拟)函数y=3x -中,自变量x 的取值范畴是_________. 答案:x ≥3
3.(2010年广东省中考拟)函数1
1-=x y 的自变量x 的取值范畴是__.;
答案.1 x ;
4.(2010年济宁师专附中一模)函数y=1
1
-+x x 的自变量x 的取值为 . 答案:1x 1x ≠-≥且
5.(2010年湖里区 二次适应性考试)函数3-=x y 中自变量x 的取值范畴是 。
答案:x ≥3
6.(2010年中考模拟2)在实数范畴内因式分解44
-x = _____________________ .
答案:)2)(2)(2(2
-+
+x x x
7.(2010年甘肃天水模拟)函数y=1
1
-+x x 的自变量x 的取值范畴是 . 答案:x ≥-1且x ≠1
8.(2010年福建模拟)9= . 答案:3.
9.(2010年广州中考数学模拟试题一) 函数函数2
1
x y x +=-中自变量x 的取值范畴 是_______. 答:x ≥-2且x ≠1
10.(2010年河南省南阳市中考模拟数学试题)函数y=12x
x
-中自变量x 的取值范畴 是__________. 答:x ≤
1
2
且x ≠0 11.( 2010年山东菏泽全真模拟1)函数12y x =-的自变量x 的取值范畴是 . 答案:2
1≤
x 12.( 2010年山东菏泽全真模拟1).运算:
1
01(1)527232-⎛⎫
π-+-+-- ⎪⎝⎭= .
答案:63-
13.(2010年河南中考模拟题6)若x 、y 为实数,且20x y y ++
-=,
则2010
x y ⎛⎫
⎪⎝⎭
的值为 。
答案:1
三、解答题
1. (黑龙江一模)运算:90327
38(1)2cos 60(2)2----++⨯.
答案:解:原式6
72(1)122-=---++
7
6122
=
2=.
2.(2010年厦门湖里模拟)(1)运算:2sin60°-
13
+(13)-1+(-1)2010
答案:(1)解:原式=1333232++-⨯
=3
3
2+4 …
3.(2010年福建模拟)(1
)运算:()︒+-----30cos 22)
3
1(320
1
π
答案:(1)解:原式3233122=---+⨯2343=--+=-2
4.(2010年杭州月考) 运算:2
03112()2cos 45(31)82
-︒----+-+
答案:-2
5.(2010年山东新泰)运算题:()()00
2007
30tan 6200721⨯--+---π .(至少要有两步运算过
程)
答案:原式=2121-+--……4分 =22- …… 5分(结果为近似值亦可) 6.(2010年浙江杭州)运算: 10)3
1
()145(sin 313---︒+⨯- 答案:解:原式=-1+1-3
7.(2010年广西桂林适应训练)运算:0
)3(45cos 218π-+-
答案:解:原式=1223+- =122+
8.(2010年江西省统一考试样卷)化简求值:2()()y
y
x xy x x y
-⋅--,其中x =sin45°,y =tan60 解:原式=()
()()
y x y x x x y x x y ---⋅
-
=-y 2
. 当x =sin45°=
2
2
,y =tan60°=3时, 原式=-(3)2
=-3.
9.(2010年山东宁阳一模)运算:200931)1(22
28)31(-+⨯+--
答案:解:原式=11123=-+-
10.(2010年吉林中考模拟题)在数轴上画出表示下列各数的点:0π,22-,4.
答案:如图所示:
11.(2010年河南中考模拟题3)运算:(12
)-2-(32-)0
+2sin30°+3-
答案:原式=4-1+1+3=7
· · ·
0π 22-
4
12.(2010年河南中考模拟题4)运算:01
272sin 60(π2)2-++--
答案:解:原式=33+2×
32+1-12=43+12
13.(2010年河南中考模拟题5)运算: 10)3
1
()145(sin 313---︒+⨯- 答案:原式=-1+1-3 =-3
14.(2010年江苏省泰州市济川实验初中中考模拟题)运算:
23cos30π+︒-︒-20
1(-)(-tan60)3
答案:解:原式=9+1-22
3
3⋅
=9+1-3=7 15.(2010年河南中考模拟题1)运算:1
0182sin 45(2)3-⎛⎫
-+-π- ⎪⎝⎭.(6分)
答案:解:1
182sin 45(2π)3-⎛⎫
-+-- ⎪⎝⎭
2
222132
=-⨯
+- 22=-。