离心泵及传热仿真

合集下载

化工单元操作仿真实习报告

化工单元操作仿真实习报告

化工单元操作仿真实习报告一、实习目的与意义随着我国化工产业的快速发展,化工单元操作在实际生产中的应用越来越广泛。

为了提高我对化工单元操作的理解和实际操作能力,本次实习我选择了化工单元操作仿真培训。

通过这次实习,我希望能够掌握常见的化工单元操作原理,熟悉仿真系统的操作方法,提高自己在化工生产过程中的实际操作能力。

二、实习内容与过程本次实习主要进行了离心泵单元、换热器单元、萃取塔单元、罐区单元等常见化工单元操作的仿真练习。

下面分别介绍各个单元的操作过程及注意事项。

1. 离心泵单元离心泵单元主要模拟了泵的启动、停止、切换以及泵的故障处理等操作。

在操作过程中,要掌握泵的进口阀门、出口阀门、旁通阀门的开关时机和顺序,确保泵的正常运行。

同时,要熟悉泵的故障类型及处理方法,以便在实际生产中能够迅速判断并解决问题。

2. 换热器单元换热器单元主要模拟了换热器的启动、停止、切换以及故障处理等操作。

在操作过程中,要掌握换热器的进出口阀门、旁通阀门的开关时机和顺序,确保换热器的正常运行。

此外,还要注意调整换热器的参数,如温度、压力等,以保证换热效果。

3. 萃取塔单元萃取塔单元主要模拟了萃取塔的启动、停止、切换以及故障处理等操作。

在操作过程中,要掌握萃取塔的进料阀门、出料阀门、塔底泵等设备的开关时机和顺序,确保萃取塔的正常运行。

同时,要熟悉萃取塔的故障类型及处理方法,以便在实际生产中能够迅速判断并解决问题。

4. 罐区单元罐区单元主要模拟了罐区液位的控制、物料的储存和输送等操作。

在操作过程中,要掌握液位控制阀门、罐区进出口阀门的开关时机和顺序,确保罐区单元的正常运行。

此外,还要注意罐区单元的安全问题,如防爆、防泄漏等。

三、实习收获与反思通过本次化工单元操作仿真实习,我对化工单元操作有了更深入的了解,掌握了一定的实际操作技能。

然而,仿真操作与实际操作还存在一定的差距,我在实际生产中还需要不断学习和积累经验。

在今后的工作中,我将不断提高自己的业务水平,为我国化工产业的发展贡献自己的力量。

离心泵单元仿真实训指导书

离心泵单元仿真实训指导书

离心泵单元仿真实训指导书阿拉善经济开发区中等职业学校化工组2011年4月目录一、工艺流程说明 (2)1、离心泵工作原理基础 (2)2、工艺流程简介 (3)3、控制方案 (4)4、设备一览 (4)二、离心泵单元操作规程 (5)1、开车操作规程 (5)2、正常操作规程 (6)3.停车操作规程 (6)4、仪表及报警一览表 (7)三、事故设置一览 (8)四、仿真界面 (9)附:思考题 (11)一、工艺流程说明1、离心泵工作原理基础在工业生产和国民经济的许多领域,常需对液体进行输送或加压,能完成此类任务的机械称为泵。

而其中靠离心作用的叫离心泵。

由于离心泵具有结构简单,性能稳定,检修方便,操作容易和适应性强等特点,在化工生产中应用十分广泛,据统计超过液体输送设备的80%。

所以,离心泵的操作是化工生产中的最基本的操作。

离心泵由吸入管,排出管和离心泵主体组成。

离心泵主体分为转动部分和固定部分。

转动部分由电机带动旋转,将能量传递给被输送的部分,主要包括叶轮和泵轴。

固定部分包括泵壳,导轮,密封装置等。

叶轮是离心泵中使液体接受外加能量的部件。

泵轴的作用是把电动机的能量传递给叶轮。

泵壳是通道截面积逐渐扩大的蜗形壳体,它将液体限定在一定的空间里,并将液体大部分动能转化为静压能。

导轮是一组与叶轮旋转方向相适应,且固定于泵壳上的叶片。

密封装置的作用是防止液体的泄漏或空气的倒吸入泵内。

启动灌满了被输送液体的离心泵后,在电机的作用下,泵轴带动叶轮一起旋转,叶轮的叶片推动其间的液体转动,在离心力的作用下,液体被甩向叶轮边缘并获得动能;在导轮的引领下沿流通截面积逐渐扩大的泵壳流向排出管,液体流速逐渐降低,而静压能增大。

排出管的增压液体经管路即可送往目的地。

与此同时,叶轮中心因为液体被甩出而形成一定的真空,因贮槽液面上方压强大于叶轮中心处,在压力差的作用下,液体不断从吸入管进入泵内,以填补被排出的液体位置。

因此,只要叶轮不断旋转,液体便不断的被吸入和排出。

Fluent离心泵仿真计算

Fluent离心泵仿真计算

Fluent离心泵仿真计算“ 一个人也可以是一个团队。

”仔细欣赏案例源文件,有惊喜。

01—简介在本教程中,您将设置一个通用流体流动模拟,以使用 Frozen Rotor 方法评估带有无叶片蜗壳的离心泵的性能。

本教程演示如何执行以下操作:·使用涡轮增压器设置无螺距-比例接口模型。

·描述壁运动和其他边界条件。

·指定适当的求解器设置。

02—问题描述要考虑的问题是带有蜗壳的离心泵的建模,如图 1 所示。

泵叶轮有 5 个叶片,以 1450 RPM 的速度旋转。

已知蜗壳出口处的质量流量为 90 kg/s。

在入口处使用 0 pa 的表压总压。

将执行模拟以确定泵产生的压头,代表流体的整体压力增加。

图1 离心泵网格模型03—仿真设置1、湍流模型的选择图2 湍流模型的选择在湍流模型方面,本文选择k-w SST湍流模型,这主要是因为与其他两方程模型相比,k-w SST 湍流模型可有效预测涡轮机械中的流动分离,从而可以准确评估泵性能。

2、流动介质的选择在流动介质方面,本文主要以水为传动介质,因此从Fluent自带的流动介质库里面选择液态水介质。

3、cell zone condition设置图3cell zone condition设置将默认的流动介质由空气改为水,同时勾选Frame Motion。

在旋转中心和旋转轴对话框分别输入(0,0,0)和(0,0,1)(这两个参数是根据自己几何模型的坐标和方向确定的,不要所有的模型都输入这样的参数),转速方面输入1450RPM(这是根据工况要求确定的),其余保持默认。

4、边界条件设置图4 impeller-hub设置默认情况下,旋转壁相对于叶轮流体区域的速度为 0,只有在这种情况下才能更好的表征流体粘性引起的运动。

图4 inblock-shroud设置inblock-shroud相对于绝对参考系是静止的(速度等于 0)(与impeller-hub相比,一个是绝对速度为0,一个是相对速度为0,细细对照模型对比一下,一个绝对速度为0,那是真静止,一个相对速度为0,那是真运动)。

仿真实验操作手册上篇(学生版)

仿真实验操作手册上篇(学生版)

实验1、离心泵性能曲线测定 一、实验原理:离心泵的主要性能参数有流量Q (也叫送液能力)、扬程H(也叫压头)、轴功率 N 和效率η。

在一定的转速下,离心泵的扬程H 、轴功率N 和效率η均随实际流量Q 的大小而改变。

通常用水经过实验测出:Q-H 、Q-N 及Q-η之间的关系,并以三条曲线分别表示出来,这三条曲线就称之为离心泵的特性曲线。

离心泵的特性曲线是确定泵适宜的操作条件和选用离心泵的重要依据。

但是,离心泵的特性曲线目前还不能用解析方法进行精确计算,仅能通过实验来测定,而且离心泵的性能全都与转速有关;在实际应用过程中,大多数离心泵又是在恒定转速下运行,所以我们要学习离心泵恒定转速下特性曲线的测定方法。

泵的扬程用下式计算:He=H 压力表+H 真空表+H 0+(u 出2-u 入2)/2g式中:H 压力表——泵出口处压力H 真空表——泵入口处真空度 H 0——压力表和真空表测压口之间的垂直距离泵的总效率为:NaNe =η 其中,Ne 为泵的有效功率:Ne=ρ●g ●Q ●He式中:ρ——液体密度 g ——重力加速度常数Q ——泵的流量 Na 为输入离心泵的功率:Na=K ●N 电●η电●η转式中:K——用标准功率表校正功率表的校正系数,一般取1 N 电——电机的输入功率 η电——电机的效率 η转——传动装置的传动效率二、实验设备及流程: 设备参数:泵的转速:2900转/分 额定扬程:20m 电机效率:93% 传动效率:100%水温:25℃ 泵进口管内径:41mm泵出口管内径:35.78mm 两测压口之间的垂直距离:0.35m 涡轮流量计流量系数:75.78流量=涡轮流量计频率/涡轮流量计流量系数,再转换为立方米/秒三、实验操作: 第一步:灌泵因为离心泵的安装高度在液面以上,所以在启动离心泵之前必须进行灌泵。

如下图所示,打开灌泵阀。

在压力表上单击鼠标左键,即可放大读数(右键点击复原)。

当读数大于0时,说明泵壳内已经充满水,但由于泵壳上部还留有一小部分气体,所以需要放气。

离心泵数值仿真指导教程

离心泵数值仿真指导教程

1.离心泵数值仿真指导教程本章对离心泵数值仿流程和步骤进行详细说明。

PumpLinx算例文件目录下会生成几个重要文件,其中“.sgrd”文件为网格文件,记录网格信息;“.spro”文件为工程文件,记录模型及边界条件设置信息;如需打开一个完整的算例,工程文件和网格文件缺一不可。

“.stl”文件为PumpLinx支持的几何模型导入格式。

1.1离心泵几何模型导入►在CAD软件中将离心泵进口段、转子部分和蜗壳出口段分别以stl格式导出。

►注意:在导出几何模型之前,需要将进口段、转子部分和蜗壳出口段分成三个部分,以便在进行数值仿真时可以顺利生成动/静流体域之间的交互面。

如下图所示:►运行PumpLinx软件,新建一个工程文件,界面如下:►选择界面左边的Mesh窗口命令(一共4个窗口选项,分别是Mesh,Model,Simulation 和Result,分别代表各个步骤)。

►选择Import/Export Geometry or Grid命令,点击Import Surface From STL Triangulation File,选择事先从CAD文件中导出的stl文件,如图所示:►此步骤也可直接打开PumpLinx标准算例文件“centrifugal_s_intial_stl_surface_v3.4.spro”,其默认存储路径为:C: /Program Files/Simerics/Tutorials/Centrifugal。

1.2 切分离心泵边界面1.2.1 对离心泵流体域进行分区►点击Split/Combine Geometry or Grid命令,选择Split Disconnected命令对分块的几何模型进行切分。

►几何体被分为pump_1,pump_2和pump_3三部分,分别将对应部分命名为Inlet,Rotor和Volute,即进口、转子和蜗壳三部分。

►重命名pump_1为volute,即蜗壳出口部分;►重命名pump_2为rotor,即转子部分;►重命名pump_3为inlet,即进口部分。

离心泵数值模拟用ns方程

离心泵数值模拟用ns方程

离心泵数值模拟用ns 方程引言离心泵是一种被广泛应用于流体输送领域的设备,其工作原理是通过离心力将液体从低压区域抽离到高压区域。

为了更好地了解离心泵的性能以及优化设计,工程师们采用数值模拟方法来研究泵的内部流动。

其中,使用NS 方程模拟离心泵的内部流动是一种常用的方法。

本文将从理论公式的推导、数值模拟方法的介绍以及实例分析等方面全面、详细、完整地探讨离心泵数值模拟用NS 方程的相关内容。

NS 方程的推导运动量守恒方程运动量守恒方程是NS 方程的基础,用于描述流体的运动。

在液体流动中,运动量守恒方程可以写作:ρ(∂u ∂t+u ⋅∇u)=−∇p +μ∇2u +f 其中,u 表示流体的速度矢量,ρ表示流体的密度,p 表示流体的压力,μ表示液体的动力粘度,f 表示外力矢量。

质量守恒方程质量守恒方程用于描述流体的连续性。

对于不可压缩的流体,质量守恒方程可以写作:∇⋅u =0NS 方程的边界条件对于离心泵数值模拟来说,NS 方程的边界条件尤为重要。

常见的边界条件包括入口速度、出口压力以及壁面的无滑移等。

在数值模拟过程中,正确设置边界条件可以保证模拟结果的准确性和可靠性。

数值模拟方法介绍有限差分法(Finite Difference Method)有限差分法是数值模拟中常用的方法之一,其原理是将微分方程中的导数用有限差分近似替代,从而转化为代数方程组。

对于离心泵数值模拟来说,可以将NS方程离散化成差分方程,然后通过迭代求解得到流场的数值解。

有限体积法(Finite Volume Method)有限体积法是一种广泛应用于流体力学数值模拟的方法,其思想是将流体力学方程在空间上分割成一系列有限体积。

对于离心泵数值模拟来说,可以将泵内的流场划分为一系列控制体积,并在每个体积内求解平衡方程,最终得到数值解。

有限元法(Finite Element Method)有限元法是一种常用的数值模拟方法,在求解粘性流体问题时也得到了广泛的应用。

化工仿真离心泵实训报告

化工仿真离心泵实训报告

一、实训背景随着我国经济的快速发展,化工行业在我国国民经济中的地位日益重要。

离心泵作为化工生产中不可或缺的设备,其在输送物料、提供动力等方面发挥着重要作用。

为了提高我国化工行业从业人员的操作技能和理论水平,我们开展了化工仿真离心泵实训。

本次实训旨在让学生了解离心泵的工作原理、结构特点、操作方法以及故障排除等知识,提高学生的实践能力和综合素质。

二、实训目的1. 熟悉离心泵的工作原理和结构特点;2. 掌握离心泵的操作方法和注意事项;3. 熟悉离心泵的故障现象及排除方法;4. 提高学生的实践能力和综合素质。

三、实训内容1. 离心泵工作原理及结构特点离心泵是一种利用离心力输送液体的机械设备,主要由叶轮、泵壳、泵轴、轴承、密封装置等组成。

离心泵的工作原理是:当叶轮高速旋转时,叶轮内的液体受到离心力的作用,从叶轮中心被甩向叶轮外沿,然后进入泵壳,在泵壳内形成一定的压力,最终将液体送至所需位置。

2. 离心泵的操作方法及注意事项(1)启动前检查:在启动离心泵前,应检查泵体、电机、管路等是否完好,并确保泵体内充满液体。

(2)启动步骤:打开进水阀,启动电机,观察泵体运行是否正常,如有异常情况,应立即停止泵体运行。

(3)运行监控:在离心泵运行过程中,应密切关注泵体运行状态,包括振动、温度、压力等参数,确保泵体在正常范围内运行。

(4)停泵步骤:关闭进水阀,停止电机,确保泵体冷却后再进行维护。

3. 离心泵的故障现象及排除方法(1)泵体振动过大:可能是泵体安装不当、轴承损坏、叶轮失衡等原因引起的。

解决方法:重新安装泵体,更换轴承或叶轮。

(2)泵体温度过高:可能是轴承磨损、密封不良、进口压力过低等原因引起的。

解决方法:检查轴承、密封装置,调整进口压力。

(3)泵体泄漏:可能是密封装置损坏、泵体焊接不良等原因引起的。

解决方法:更换密封装置,修复泵体。

四、实训心得体会通过本次化工仿真离心泵实训,我对离心泵有了更深入的了解,以下是我的一些心得体会:1. 理论与实践相结合:在实训过程中,我深刻体会到理论知识与实际操作相结合的重要性。

离心泵仿真

离心泵仿真

一、离心泵冷态开车1.检查各开关、手动阀门是否处于关闭状态。

2.将液位调节器LIC置手动,调节器输出为零。

3.将液位调节器FIC置手动,调节器输出为零。

4.进行离心泵充水和排气操作。

开离心泵入口阀V2。

开离心泵排气阀V5,直至排气口出现蓝色点表示排气完成。

关阀门V5。

5.为了防止离心泵开动后贮水槽液位下降至零,手动操作LIC的输出使液位上升到50%时投自动。

或先将LIC投自动,待离心泵启动后再将LIC给定值提升至50%。

6.在泵出口阀V3关闭的前提下,开离心泵电机开关PK1,低负荷起动电动机。

7.开离心泵出口阀V3,由于FIC的输出为零,离心泵输出流量为零。

8.手动调整FIC的输出,使流量逐渐上升至6公斤/秒且稳定不变时投自动。

9.当贮水槽入口流量FI与离心泵出口流量FIC达到动态平衡时,离心泵开车达到正常工况。

此时各检测点指示值如下:FIC 6.0 kg/sec FI 6.0 kg/secPI1 0.15 MPa PI2 0.44 MPaLIC 50.0 % H 29.4 mM 62.6 % N 2.76 kw二、离心泵停车操作1.首先关闭离心泵出口阀V3。

2.将LIC置手动,将输出逐步降为零。

3.关PK1(停电机)。

4.关离心泵进口阀V2。

5.开离心泵低点排液阀V7及高点排气阀V5,直到蓝色点消失,说明泵体中的水排干。

最后关V7。

三、事故设置及排除1.离心泵入口阀门堵塞(F2)事故现象:离心泵输送流量降为零。

离心泵功率降低。

流量超下限报警。

排除方法:首先关闭出口阀V3,再开旁路备用阀V2B,最后开V3阀恢复正常运转。

合格标准:根据事故现象能迅速作出合理判断。

能及时关泵并打开阀门V2B,没有出现贮水槽液位超上限报警,并且操作步骤的顺序正确为合格。

2.电机故障(F3)事故现象:电机突然停转。

离心泵流量、功率、扬程和出口压力均降为零。

贮水槽液位上升。

排除方法:立即启动备用泵。

步骤是,首先关闭离心泵出口阀V3,再开备用电机开关PK2,最后开泵出口阀V3。

流体机械声学仿真ACTRAN离心泵

流体机械声学仿真ACTRAN离心泵

流体机械声学仿真ACTRAN离心泵
ACTRAN离心泵仿真是一种流体机械声学仿真软件,用于研究离心泵的流体声学性能。

它可以预测离心泵的振动和噪声表现,进而改进流体机械的性能和可靠性。

ACTRA离心
泵仿真软件通过多种方法模拟离心泵系统的循环流体,其准确度能够在很大程度上表示泵系统中的振动和噪声特性。

ACTRAN离心泵仿真软件用于分析泵系统的特性、性能和可靠性,这些分析将直接影响
泵系统的有效性和可靠性。

通过使用该软件,我们可以根据实际环境和条件来模拟和可视化泵系统的声学和振动性能,这可以让我们更好的了解泵系统的性能。

此外,ACTRA离心泵仿真软件还可以预测泵系统的在现有操作条件下的振动和噪声输出。

这可以帮助我们更好的理解泵的性能,并通过改变设计参数以优化服务性能。

ACTRA离
心泵仿真软件还可以捕捉泵叶轮间的内部流动,帮助我们更详细的了解泵内部活动情况。

综上所述,ACTRA离心泵仿真软件是一种流体机械声学仿真软件,它可以帮助我们更好
的了解泵系统的性能,通过模拟泵系统的振动和噪声特性,使我们能够根据实际情况更好的设计泵系统,以改善离心泵的性能和可靠性。

离心泵控制系统计算机仿真实验报告

离心泵控制系统计算机仿真实验报告

南京工业大学化学化工学院化工专业开放实验研究报告题目:离心泵控制系统计算机仿真实验班级、学号:姓名(签名):成绩:指导教师(签名):年月课题背景与研究现状1、化工自动控制概述。

自动控制是指在没有人直接参与的情况下,利用外加的设备或者装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律进行。

自动控制系统主要由控制器,被控对象,执行机构和变送器组成。

按照控制原理的不同,可以分为开环控制系统与闭环控制系统;按照给定信号的不同,可分为恒值控制系统,随动控制系统和程序控制系统。

自动控制过程通常可以用方块图来表示,从信号流的角度出发,将组成自动系统的各个环节用信号线相互连接起来的一种图形。

在已定的系统构成内,信号的作用都有方向性,不可逆置,信号的方向由连接方块之间的信号线箭头来表示。

2、本单元过程控制原理。

来自设备约40℃的带压液体经调节阀LV101进入带压罐V101,罐液位由液位控制器LIC101通过调节LV101的进料量来控制;罐内压力由PIC101分程控制,PV101A、PV101B分别调节进入V101和出V101的氮气量,从而保持罐压恒定在5.0atm(表)。

罐内液体由泵P101A/B抽出,泵出口流量在流量调节器FIC101的控制下输送到其它设备。

实验目的:1、了解离心泵的原理;掌握离心泵系统的正常开车、运行和停车的操作;学会处理离心泵的气缚、气蚀等故障。

2、学生通过仿真实验加深对相关理论知识的理解,熟悉相关工艺的操作,弥补工厂现场“只能看,不能动”的遗憾,加深对化工厂单元操作的集散控制系统的原理和操作方法的了解,为今后的学习和实践增加经验。

实验内容:本单元主要实验内容包括:系统冷态开车;系统正常操作;系统正常停车;A泵坏的故障处理;流量控制阀坏故障处理;泵的入口管线堵故障处理;泵的气蚀故障处理;泵的气缚故障处理。

工艺流程:来自某一设备约40℃的带压液体经调节阀进入带压罐,罐液位由液位控制器控制;罐内压力分程控制,从而保持罐压恒定在5.0atm(表)。

离心泵基础及其CFD仿真

离心泵基础及其CFD仿真
6—密封部件;7—中间支承;8—轴;9—悬架部件
离心泵的典型结构
托架式悬臂泵
离心泵的典型结构
S型双吸中开式泵 1—泵体;2—泵盖;3—叶轮;4—轴;5—密封环;6—轴套;7—联
轴器;8—轴承体;9—填料压盖;10—填料
离心泵的典型结构
D型多段式多级泵 1—吸入段;2—中段;3—压出段;4—轴;5—叶轮;6—导叶;7—密封环;
8—平衡盘;9—平衡圈;10—轴承部;11—螺栓
离心泵的主要性能参数
流量Q:指泵在单位时间内由泵出口排出液体的体积量; 扬程 H:指单位重量的液体通过泵后获得的能量,单位是m;
转速 n:指泵轴单位时间内的转数,单位是 r min
效率:泵效率 是泵的有效功率与轴功率之比,既 QH N
离心泵的比转速
借助ANSYS BladeModeler
• DesignModeler
– 自动创建流体域(Fluid Zone) – 创建其他 “non-turbo”部件
借助BladeEditor
ANSYS BladeGen的附加模块,用 于透平机械几何的创建于修改
–创建hub固体域 –添加几何细节,如导角 –部件组装 –添加平衡孔等
产生麻点和蜂窝状的破坏
离心泵的空化
离心泵的空化
轴流泵的空化
汽蚀余量
汽蚀余量(h)--是指泵入口处液体所具有的总水头与液体汽化时的压力头之差。
汽蚀余量又分有效汽蚀余量(ha)和必需汽蚀余量(hr).
– 有效汽蚀余量(ha)—指泵工作时实际所具有的汽蚀余量,取决于泵的吸人条件和液体的Ps,而与泵 无关
• 它表示液体在泵进口处水头超出汽化压力(Pv)的富裕能量(越大越好)
ha
ps
g

化工仿真实习软件之离心泵及液位

化工仿真实习软件之离心泵及液位

化工仿真实习软件之离心泵及液位随着科学技术的不断进步,化工行业也在不断发展。

化工仿真实习软件是一种重要的工具,它可以帮助学生更好地了解化工行业、加深对化工装置操作的理解。

在化工仿真实习软件中,离心泵及液位是两个核心的模块,在以下的文档中我们将使用这两个模块作为例子,深入了解化工仿真实习软件的应用。

离心泵,是制造业中常见的一种泵类,其主要工作原理是利用离心力将液体送出。

在化工中,离心泵有着非常广泛的应用,在输送高粘度、高温、高浓度的化学液体中表现出较高的可靠性和耐腐蚀性。

离心泵在功能上非常强大,不过不同型号的离心泵也有着不同的性能和使用限制。

化工仿真实习软件中的离心泵模块可以让学生更好的了解离心泵的工作原理和使用特点。

在仿真实习过程中,学生可以模拟不同离心泵的工作状态,比如在不同流量、压力、材质、转速下,离心泵所表现出的性能。

通过模拟操作可以让学生更好地理解离心泵的工作原理和性能,也可以用于离心泵的操作和故障排查。

液位也是化工中的重要指标之一,液位的稳定性和准确性对于化工工艺和产品质量有着至关重要的关系。

在化工厂中,液位的变化会影响到生产效率和产品质量,因此,对于化工工程师来说,液位的测量和控制是一项非常关键的工作。

液位模块是化工仿真实习软件中的另一重要模块,它可以用于模拟不同液位传感器和控制器的工作原理和性能。

通过模拟液位的测量和控制过程,学生可以更好地理解液位的测量原理、液位传感器的选择和液位控制的方式。

化工仿真实习软件中的离心泵和液位模块都有着非常重要的应用价值。

通过模拟操作这两个模块,可以让学生更好地了解化工设备的工作原理和性能,也可以在操作中加深对化工工程的理解。

同时,化工仿真实习软件也可以帮助学生加深对化工安全和操作规范的理解,降低操作风险和提高操作效率。

总之,化工仿真实习软件是化工行业中不可或缺的工具之一,通过模拟实验和操作,可以让学生更好地理解化工工艺和操作,在操作中研究和解决化工设备故障,从而提高化工行业的技术水平和服务质量。

离心泵开车仿真实习报告

离心泵开车仿真实习报告

一、实习背景为了提高我对离心泵操作技能的掌握,培养实际操作经验,我参加了为期一周的离心泵开车仿真实习。

通过模拟实际操作过程,我对离心泵的启动、运行、维护等方面有了更加深入的了解。

二、实习内容1. 离心泵工作原理及结构离心泵是一种常见的流体输送设备,主要由叶轮、泵壳、泵轴、轴承、密封等部件组成。

叶轮在泵轴的带动下高速旋转,使流体获得能量,从而实现流体输送。

泵壳汇集流体,并将能量传递给流体。

轴承支承泵轴,保证泵轴的稳定运行。

密封结构防止流体泄漏。

2. 离心泵开车步骤(1)检查设备:首先检查离心泵各部件是否完好,如叶轮、泵壳、泵轴、轴承等,确保无损坏或磨损现象。

(2)启动电机:启动电机前,检查电源是否正常,确认电机转向与泵的旋转方向一致。

启动电机,使泵开始运转。

(3)检查泵的运行状态:启动泵后,观察泵的运行状态,如振动、噪音、温度等,确保泵运行正常。

(4)调整流量:根据实际需求,通过调节出口阀门开度,调整泵的流量。

注意观察泵的运行状态,防止超负荷运行。

(5)检查密封:检查泵的密封装置,确保无泄漏现象。

如发现泄漏,应及时处理。

(6)检查管道:检查管道连接处,确保无松动、泄漏现象。

(7)记录数据:记录泵的运行参数,如流量、压力、电流、振动等,以便分析泵的运行状态。

3. 离心泵维护与保养(1)定期检查:定期检查离心泵各部件,如叶轮、泵壳、泵轴、轴承等,发现磨损、损坏等问题,及时更换。

(2)清洁泵体:定期清洁泵体,清除泵内的污垢和杂物,保证泵的正常运行。

(3)润滑轴承:定期给轴承加润滑油,保证轴承的润滑和冷却。

(4)检查管道:定期检查管道,确保管道无损坏、泄漏现象。

三、实习体会1. 通过本次仿真实习,我对离心泵的操作流程有了更加深入的了解,掌握了离心泵的启动、运行、维护等技能。

2. 仿真实习使我认识到,实际操作过程中,安全第一,必须严格按照操作规程进行操作,确保设备安全运行。

3. 在实习过程中,我学会了如何观察泵的运行状态,判断泵是否存在故障,为今后的工作打下了基础。

离心泵叶轮流动特性的仿真与实验研究

离心泵叶轮流动特性的仿真与实验研究

离心泵叶轮流动特性的仿真与实验研究离心泵叶轮是离心泵的核心部件,其流动特性的仿真与实验研究对于离心泵的性能优化和设计改进具有重要意义。

本文将从理论和实验两个方面探讨离心泵叶轮的流动特性。

一、离心泵叶轮流动特性的理论仿真离心泵叶轮的理论仿真基于流体力学的基本原理和相关方程进行建模和求解。

其中,雷诺平均N-S方程和可压缩流动的动能方程是求解离心泵叶轮流动特性的基本方程。

通过建立离心泵叶轮内部流场的网格模型,并采用有限体积法对方程进行离散求解,可以获得离心泵叶轮的速度分布、压力分布和涡量等流动特性参数。

离心泵叶轮的流动特性仿真研究可以通过改变叶轮的叶片数目、叶片形状、叶片出口角度等参数,来分析和优化离心泵叶轮的性能。

例如,通过仿真可以得出在一定转速下,叶片数目增加会提高离心泵的扬程和效率,但叶片出口角度的变化对扬程和效率的影响较小。

通过理论仿真可以得出具体的数值结果,并为实验研究提供参考和指导。

二、离心泵叶轮流动特性的实验研究离心泵叶轮的实验研究可以通过建立物理实验平台来进行。

实验平台通常由电机、离心泵、测量设备和数据采集系统组成。

通过改变离心泵叶轮的工况参数,例如转速、流量和进口压力等,可以获得离心泵叶轮的性能曲线和流动特性。

在离心泵叶轮实验过程中,常常需要测量叶轮内部的流速、压力和涡量等参数。

通过在叶轮内部设置传感器或者使用PIV技术进行测量,可以获得准确的实验数据。

实验研究可以直观地观察到叶轮内部的流动情况,验证理论仿真结果的准确性,并且为离心泵叶轮的设计和优化提供实验依据。

三、仿真与实验结果的对比与分析将理论仿真和实验研究得到的数据进行对比和分析,可以评价仿真模型的准确性并验证实验结果。

通过对比不同工况下的扬程、效率和压力分布等参数,可以得出仿真与实验之间的差异和误差。

进一步分析差异的原因,有助于优化仿真模型和改进实验方法,提高研究可靠性和准确性。

离心泵叶轮流动特性的仿真与实验研究对离心泵的设计与优化具有重要意义。

离心泵H—Q特性曲线的仿真测定

离心泵H—Q特性曲线的仿真测定

离心泵H—Q特性曲线的仿真测定摘要:研究了分别在两个不同的电机转速下,测定一系列流量条件下的离心泵的进、出口压力和电机的电功率,计算出相应的离心泵压头H,标绘出两个转速下的H-Q图,取得了比较好的结果。

关键词:电机转速压头流量H-Q图离心泵的H、N,η 与Q之间的关系曲线,称为特性曲线。

其数值通常是指额定转数与标准状态下的数值,可用实验测得。

H-Q曲线表示H与Q的关系,通常H随Q的增大而减小。

不同型号的离心泵,H-Q曲线的形状有所不同。

有的离心泵H-Q曲线较平坦,其特点是流量变化较大而压头变化不大;而有的离心泵H-Q曲线陡降,当流量变动很小时,扬程变化很的大,适用于扬程变化大而流量变化小的情况。

一、实验研究1.实验原理离心泵是化工生产中应用最为广泛的液体输送机械.对于一定型号的离心泵,当叶轮直径D和转速n一定的情况下,离心泵的压头H,轴功率N和效率η随泵的输送液体量Q的大小而变化,其变化关系可以用曲线表征,称为离心泵的特性曲线。

在工程实际应用中,根据H-Q曲线可以确定离心泵在给定管路条件下的输送能力.因此离心泵的特性曲线是表征离心泵技术性能的基础资料.离心泵的特性曲线目前还不能用解析方法进行准确计算,只能通过实验来测定。

如果用以下的函数关系表示离心泵的特殊曲线:H=f(Q)(1.1)则运用本装置实验测定这些函数关系的方法如下。

1.1流量Q的测定测定流量的方法很多,如可以用孔板流量计,文丘里流量计,转子流量计等,而在本实验中采用倒U形管差压计测量一段管路中的总压力损失hf 来计算管路中的流量。

根据流动阻力表达式和流体静力学原理,总压头损失hf 与流量Q和压差计读数R之间存在以下关系:(1.2)由于上式中的总阻力系数亦是流量Q的函数,式(1.2)所代表的Q-R关系相当复杂,难以用简单的解析函数式表达,因而采用由实验室预先通过实验方法标定出Q与R的一系列对应数值,在用最小二乘法拟合为以下幂函数关系式供实验者使用:Q=ARn (1.3)式中R-测a-b段的倒U形管差压计读数,cmH2O;A,n-装置参数,其具体数值取决于各套装置的实际结构,由实验室提供。

离心泵单元仿真课件

离心泵单元仿真课件
返回
叶轮是离心泵的核心部分, 它转速高,叶轮上的叶片起 到主要作用,叶轮上的内外 表面要求光滑,以减少水流 的摩擦损失。
泵体也称泵壳,它是水 泵的主体。起到支撑固定 作用,并与安装轴承的托 架相连接。
泵轴的作用是借联轴器和电 动机相连接,将电动机的转 距传给叶轮,所以它是传递 机械能的主要部件。
P101A
FIC 101
PI 104 PI 103
P101B
WATER

离心泵,供输送液体之用


(清水及性质相似于清水)。

广泛适用于:冶金、化工、纺织、

造纸以及宾馆饭店等锅炉热水增

压循环输送及城市采暖系统,使

用温度

T≤80℃。
返回
一 、
一 离心泵的工作原理

心 二 离心泵的结构


三 离心泵的பைடு நூலகம்类
返回离心泵的工作原理离心泵的结构离心泵的工作原理离心泵的结构离的分类一离心泵一二离心泵的分类离心泵单元仿真工艺元单元三四一离心泵工的工作原理驱动机带动叶轮高速旋转叶轮带动液体高速旋转产生离心力的一离心泵的液体甩出叶轮中心形成低压液体获得能量静压能动压能增加吸入罐与泵之间产生压差吸入液体实现连续工作输送液体工的工作原理1主要部件叶轮泵体泵轴二离心泵返回1
出口压 力
返回
v10 1
A
分程控制
B
0-50 PIC101A(充)
50-100 PIC101B(泄)
一、检查 (1)泵的各连接螺栓及地脚螺栓有无松动现象,

车 (2)轴承的润滑油是否充足;
前 准
(3)润滑、冷却系统做到畅通无阻、不滴不漏;

技能训练三 离心泵操作仿真训练

技能训练三  离心泵操作仿真训练

技能训练三离心泵操作仿真训练●训练目标1.了解离心泵结构与特性,学会离心泵的操作。

2.掌握离心泵操作中故障的分析、判断及排除。

●训练准备1.了解离心泵结构与特性及基本原理。

2.掌握计算机控制系统的基本操作。

●训练步骤(要领)1.工艺流程简介:离心泵是化工生产过程中输送液体的常用设备之一,其工作原理是靠离心泵内外压差不断的吸入液体,靠叶轮的高速旋转使液体获得动能,靠扩压管或导叶将动能转化为压力能,从而达到输送液体的目的。

来自某一设备约40℃的带压液体经调节阀LV101进入带压罐V101,罐液位由液位控制器LIC101通过调节V101的进料量来控制;罐内压力由PIC101分程控制,PV101A、PV101B分别调节进入V101和出V101的氮气量,从而保持罐压恒定在5.0atm(表)。

罐内液体由泵P101A/B抽出,泵出口流量在流量调节器FIC101的控制下输送到其它设备。

2.工艺流程(参考流程仿真界面)如图1-34。

图1-34 工艺流程图3.培训方案(见表1-13)表1-13 离心泵培训方案4.操作(1)准备工作①盘车;②核对吸入条件;③调整填料或机械密封装置。

(2)启动泵前准备工作①灌泵;②排气(3)启动离心泵①启动离心泵;②流体输送;③调整操作参数(4)负荷调整可任意改变泵、按键的开关状态,手操阀的开度及液位调节阀、流量调节阀、分程压力调节阀的开度,观察其现象。

(5)停车操作规程①V101罐停进料;②停泵;③泵P101A泄液●思考与分析1.泵P101A和泵P101B在进行切换时,应如何调节其出口阀VD04和VD08,为什么要这样做?2.一台离心泵在正常运行一段时间后,流量开始下降,可能会有哪些原因导致?3.离心泵出口压力过高或过低应如何调节?4.离心泵入口压力过高或过低应如何调节?●拓展型训练(见表1-14)表1-14 离心泵事故处理。

离心泵串联仿真实验日志

离心泵串联仿真实验日志

离心泵串联仿真实验日志
一、实验目的
(1)增进对离心泵并、串联运行工况及其特点的感性认识。

(2)绘制单泵的工作曲线和两泵并、串联总特性曲线。

二、实验原理
在实际生产中,有时单台泵无法满足生产要求,需要几点组合运行。

组合方式可以有串联和并联两种方式。

下面讨论的内容限于多台性能相同的泵的组合操作。

基本思路是:多台泵无论怎样组合,都可以看作是一台泵,因而需要找出组合泵的特性曲线。

当用单泵不能满足工作需要的流量时,可采用两台泵(或两台以上〉的并联工作方式,离心泵Ⅰ和泵II并联后,在同一扬程(压头)下,其流量Qw是这两台泵的流量之和,s-Q.+Qw。

并联后的系统特性曲线,就是在各相同扬程下,将两台泵特性曲线(o- H),和(o -H) 上的对应的流量相加,得到并联后的各相应合成流量Qs。

两根虚线为两台泵各自的特性曲线(@-H),和(o-H)m﹔实线为并联后的总特性曲线(o-H)并,根据以上所述,在(o-H)并曲线上任一点M,其相应的流量Q是对应具有相同扬程的两台泵相应流量Q和4之和,即Q=Q.+Q。

三、注意事项
(1)先开进水阀,再打开泵,否则会发生气缚现象;
(2)当出口阀全开的情况下启动泵,可能会发生烧泵事故。

四、试验数据记录和处理
将实验中所测得的数据H、Q记入记录表中,并以Q为横座标,H 为纵座标,由实验数据在座标系中绘出一系列实验点,再将这些点光滑地分别连成单泵Ⅰ和II 的(@-H),和(o- H),特性曲线,再分别合成为并联和串联的总特性曲线(o- H);和(o-H)s如图所示。

最后,再把并联和串联工况下实际测出的一些工作点在合成的总特性曲线周围标出,以示比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工单元仿真实训实训一离心泵单元一. 工作原理简述在工业生产和国民经济的许多领域,常需对液体进行输送或加压,能完成此类任务的机械设备称为泵,而其中靠离心作用工作的叫离心泵。

由于离心泵具有结构简单、性能稳定、检修方便、操作容易和适应性强等特点,在化工生产中应用十分广泛,据统计超过液体输送设备的80%。

所以,离心泵的操作是化工生产中最基本的操作。

离心泵由吸入管、排出管和离心泵主体组成。

离心泵主体分为转动部分和固定部分。

转动部分由电机带动旋转,将能量传递给被输送的部分,主要包括叶轮和泵轴。

固定部分包括泵壳、导轮、密封装置等部分,叶轮是离心泵中使液体接受外加能量的部件。

泵轴的作用是把电动机的能量传递给叶轮。

泵壳是通道截面逐渐扩大的蜗壳形体,它将液体限定在一定的空间里,并能将液体大部分动能转化为静压能。

导轮是一组与叶轮旋转方向相适应,且固定在泵壳上的叶片。

密封装置的作用是防止液体的泄漏或空气体倒吸入泵内。

启动灌满了被输送液体的离心泵后,在电机的作用下,泵轴带动叶轮一起旋转,叶轮的叶片推动期间的液体转动,在离心力的作用下,液体被甩向叶轮边缘并获得动能;在导轮的引导下沿流通截面积逐渐扩大的泵壳流向排出管,液体流速逐渐降抵,而静压能增大。

排出管的增压液体经管路即可往各目的地。

与此同时,叶轮中心处因液体被甩出而形成一定的真空,因贮槽液面上方压强大于叶轮中心处,在压力差的作用下,液体不断地从吸入管进入泵内,以填补被排出液体的位置。

因此,只要叶轮不断旋转,液体便不断地被吸入和排出。

由此可见,离心泵之所以能输送液体,主要是依靠高速旋转的叶轮。

离心泵的操作中有两种现象是应该避免的:气缚和气蚀。

“气缚”是指在启动泵前没有灌满被输送液体或在运转过程中渗入了空气,因气体的密度远小于液体,产生的离心力小,无法把空气甩出去,导致叶轮中心所形成的真空度不足以将液体吸入泵内,尽管此时叶轮在不停地旋转,却由于离心泵失去了自吸能力而无法输送液体,这种现象就称为“气缚”。

“气蚀”指的是当贮槽液面上的压力一定时,如叶轮中心的压力降低到等于被输送液体当前温度下的饱和蒸气压时,叶轮进口处的液体会出现大量气泡,这些气泡随液体进入高压区后又迅速被压碎而凝结,致使气泡所在空间形成真空,周围液体质点以极大速度冲向气泡中心,造成冲击点上有瞬间局部冲击压力,从而使叶轮等部分很快损坏,同时伴有泵体震动,并发出噪音,泵的流量、扬程和效率明显下降。

这种现象就叫“气蚀”。

化工单元仿真实训化工单元仿真实训2化工单元仿真实训二.工艺流程说明本工艺为单独培训离心泵而设计,其工艺流程如下:来自某一设备约40℃的带压液体经调节阀LV101进入带压罐V101,罐液位由液位控制器LIC101通过调节V101的进料量来控制;罐内压力由PIC101分程控制,PV101A、PV101B分别调节进入V101和出V101的氮气量,从而保持罐压恒定在5.0atm(表)。

罐内液体由泵P101A/B抽出,泵出口流量在流量调节器FIC101的控制下输送到其它设备。

本工艺流程主要包括以下设备:V101 :离心泵前罐P101A :离心泵AP101B :离心泵B(备用泵)补充说明:本单元现场图中现场阀旁边的实心红色圆点代表高点排气和低点排液的指示标志,当完成高点排气和低点排液时实心红色圆点变为绿色。

此标志在换热器单元的现场图中也有。

三.离心泵单元操作规程1.开车操作规程1.1准备工作(1)盘车(2)核对吸入条件(3)调整填料或机械密封装置1.2罐V101充液、充压(1)向罐V101充液* 打开LIC101调节阀,开度约为30%,向V101罐充液;* 当LIC101达到50%时,LIC101设定50%,投自动.(2)罐V101充压* 待V101罐液位>5%后,缓慢打开分程压力调节阀PV101A向V101罐充压;*当压力升高到5.0atm时,PIC101设定5.0 atm,投自动.1.3启动泵前准备工作(1)灌泵* 待V101罐充压充到正常值5.0atm后,打开P101A泵入口阀VD01,向离心泵充液.观察VD01出口标志变为绿色后,说明灌泵完毕。

(2)排气* 打开P101A泵后排气阀VD03排放泵内不凝性气体;* 观察P101A泵后排空阀VD03的出口,当有液体溢出时,显示标志变为绿色,标志着P101A泵已无不凝性气体,关闭P101A泵后排空阀VD03,启动离心泵的准备工作已经就绪.1.4启动离心泵(1)启动离心泵* 然后启动P101A(或B)泵.(2)流体输送*待PI102指示比入口压力大1.5-2.0倍后,打开P101A泵出口阀(VD04);*将FIC101调节阀的前阀、后阀打开;* 逐渐开大调节阀FIC101的开度,使PI101、PI102趋于正常值;(3)调整操作参数* 微调FV101调节阀,在测量值与给定值相对误差5%范围内且较稳定时,FIC101设定到正常值,投自动.2.正常操作规程2.1正常工况操作参数:(1)P101A泵出口压力(PI102):12.0ATM(2)V101罐液位LIC101:50.0%(3)V101罐内压力PIC101: 5.0ATM(4)泵出口流量FIC101:20000KG/H2.2负荷调整可任意改变泵、按键的开关状态,手操阀的开度及液位调节阀、流量调节阀、分程压力调节阀的开度,观察其现象。

同时可修改如下参数:P101A泵功率正常值:15KW 修改范围:10-20FIC101量程正常值:20吨/h 修改范围:10-403.停车操作规程(1)V101罐停进料* LIC101置手动,并手动关闭调节阀LV101,停V101罐进料.(2)停泵* 待罐V101液位小于10%时,关闭P101A(或B)泵的出口阀(VD04);* 停P101A泵;* 关闭P101A泵前阀VD01;* FIC101置手动并关闭调节阀FV101及其前、后阀(VB03、VB04)。

(3)泵P101A泄液* 打开泵P101A泄液阀VD02,观察P101A泵泄液阀VD02的出口,当不再有液体泄出时,显示标志变为红色,关闭P101A泵泄液阀VD02。

(4)V101罐泄压、泄液* 待罐V101液位小于10%时,打开V101罐泄液阀VD10* 待V101罐液位小于5%时,打开PIC101泄压阀* 观察V101罐泄液阀VD10的出口,当不再有液体泄出时,显示标志变为红色,待罐V101液体排净后,关闭泄液阀VD10。

化工单元仿真实训4.仪表及报警一览表4化工单元仿真实训四.事故设置一览表1.P101A泵坏主要现象: 1)P101A泵出口压力急骤下降;2)FIC101流量急骤减小到零;处理方案:按泵的操作步骤切换备用泵P101B泵。

2.FIC101阀卡主要现象: 1)FIC101流量减小;2)P101A泵出口压力升高;处理方案:打开FIC101的旁路阀(VD09),调节流量使其达到正常值。

3.P101A泵入口管线堵主要现象: 1)P101A泵入口、出口压力急骤下降;2)FIC101流量急骤减小到零;处理方案:按泵的操作步骤切换备用泵P101B泵。

4.P101A泵气蚀主要现象: 1)P101A泵入口压力、出口压力上下波动;2)P101A泵出口流量波动(大部分时间达不到正常值)。

处理方案: 1)不严重的气蚀可通过提高入口压力解决;2)严重的气蚀按泵的操作步骤切换备用泵P101B泵。

5.P101A泵气缚主要现象: 1)P101A泵出口压力急骤下降;2)FIC101流量急骤下降。

处理方案:按泵的操作步骤停P101A泵,然后排气,最后再按泵的操作开P101A泵。

附:思考题1. 请简述离心泵的工作原理和结构。

2. 请举例说出除离心泵以外你所知道的其它类型的泵。

3. 什么叫气蚀现象?气蚀现象有什么破坏作用?4. 发生气蚀现象的原因有那些?如何防止气蚀现象的发生?5. 为什么启动前一定要将离心泵灌满被输送液体?6. 离心泵在启动和停止运行时泵的出口阀应处于什么状态?为什么?7. 泵P101A和泵P101B在进行切换时,应如何调节其出口阀VD04和VD08,为什么要这样做?8. 一台离心泵在正常运行一段时间后,流量开始下降,可能会有哪些原因导致?9. 离心泵出口压力过高或过低应如何调节?10. 离心泵入口压力过高或过低应如何调节?11. 若两台性能相同的离心泵串联操作,其输送流量和扬程较单台离心泵相比有什么变化?若两台性能相同的离心泵并联操作,其输送流量和扬程较单台离心泵相比有什么变化?实训二换热器单元一. 工作原理简述在化工、能源、动力、冶金、机械、建筑等工业部门中,常常涉及到换热问题。

特别是在化工生产过程中的许多过程和单元操作,都需要进行加热或冷却,所以,对化工等行业的人员来说,换热的操作技术培训是很重要的基本单元操作训练.热的传递有:传导、对流和辐射三种基本方式,热传导是无物质宏观位移的传热方式,发生于静止物质内;对流传热是指流体中质点发生相对位移引起的热交换,常伴生有热传导;由热的原因产生电磁波在空间的热传递是辐射传热,它不需要有传递介质。

化工生产中所指的换热器,常指间壁式换热器,它利用金属壁将冷、热两种流体间隔开,热流体将热传到壁面的一侧(对流传热),通过间壁内的热传导,再由间壁的另一侧将热传给冷流体,从而使热物流被冷却,冷物流被加热,满足化工生产中对冷物流或热物流温度的控制要求。

本单元选用的是双程列管式换热器,冷物流被加热后有相变化。

在对流传热中。

传递的热量除与传热推动力(温度差)有关外,还与传热面积和传热系数成正比。

传热面积减少时,传热量减少;如果间壁上有气膜或污垢层,都会降低传热系数,减少传热量。

所以,开车时要排不凝气;发生管堵或严重结垢时,必须停车检修或清洗。

另外, 考虑到金属的热胀冷缩特性,尽量减小温差应力和局部过热等问题,开车时应先进冷物料后进热物料;停车时则先停热物料后停冷物料。

二.工艺流程说明本单元设计采用管壳式换热器。

来自界外的92℃冷物流(沸点:198.25℃)由泵P101A/B 送至换热器E101的壳程被流经管程的热物流加热至145℃,并有20%被汽化。

冷物流流量由流量控制器FIC101控制,正常流量为12000kg/h。

来自另一设备的225℃热物流经泵P102A/B送至换热器E101与注经壳程的冷物流进行热交换,热物流出口温度由TIC101控制(177℃)。

为保证热物流的流量稳定,TIC101采用分程控制,TV101A和TV101B分别调节流经E101和副线的流量,TIC101输出0%~100%分别对应TV101A开度0%~100%,TV101B开度100~0%。

化工单元仿真实训1化工单元仿真实训2化工单元仿真实训本单元复杂控制方案说明: TIC101的分程控制线:0.0%100%0.0%100.0%TV101ATV101B调节器输出位阀该单元包括以下设备:P101A/B :冷物流进料泵 P102A/B :热物流进料泵 E101:列管式换热器。

相关文档
最新文档