伺服电机的旋转方向
编制控制伺服电机定长正、反旋转的PLC程序

编制控制伺服电机定长正、反旋转的PLC程序上位机设定伺服电机旋转速度单位为(转/分),伺服电机设定为1000个脉冲转一圈.PLC输出脉冲频率=(速度设定值/6)*100(HZ)。
上位机设定伺服电机行走长度单位为(0.1mm),伺服电机每转一圈的行走长度10mm,伺服电机转一圈需要的脉冲数为1000,故PLC发出一个脉冲的行走长度为0.01mm(一个丝)。
PLC输出脉冲数=长度设定值*10。
上面两点的计算都是在伺服电机参数设定完的基础上得出的。
也就是说,在计算PLC发出脉冲频率与脉冲前,必须先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致方法如下:机械安装结束,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的行走精度为0.1mm(10个丝)。
为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。
此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。
松下PLC的CPU本体可以发脉冲频率为100K,完全可以满足要求。
如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000个脉冲,电机速度为1200转时所需要脉冲频率就是200K。
PLC的CPU本体就不够了。
需要加大成本,如增加脉冲输出专用模块等方式。
知道了频率与脉冲数的算法就简单了,只需应用PLC的相应脉冲指令发出脉冲即可,松下PLC的程序图如下:以松下Minas A4系列伺服驱动器为例,介绍PLC控制伺服电机的方法。
伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本章简要介绍位置模式的控制方法一、按照伺服电机驱动器说明书上的"位置控制模式控制信号接线图"连接导线来源于:528工控网3(PULS1),4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。
伺服电机原理

速度控制: 步进电机的运转速度会与输入的脉冲速度成等比例的关系,所以在脉冲的速度愈快时,步进电机的转速也会跟着加快;脉波速度愈慢时,电机的转速自然也跟着变慢。电机的运转速度(RPM)与脉冲速度(PPS,又称Hz)间的关系式如下:电机的运转速度(RPM)= 脉冲速度(PPS或 Hz) × 60 ÷ 步进电机分割数/圈分割数/圈说明:1.RPM为一般电机的速度单位,即 rev / min,为每分钟电机所转的圈数;PPS为步进、伺服电机的速度单位,即pulse per second,为每秒所送出的脉冲数。2.由于RPM与PPS的单位不同,所以于转换的过程中要先将PPS的秒钟乘以60变为分钟 。3.步进电机分割数/圈,又代表要3.步进电机分割数/圈,又代表要让电机转一圈所必须送出的脉冲数。4.上述公式拆解后之单位表示为→ rev/min = pulse/sec ×60 ×1/分割数实例:五相半步级角0.36°时(即1000分割/圈)(1)电机的运转速度600RPM时,即相当于脉冲速度10,000PPS。(2)脉冲速度3,000PPS,即相当于(2)脉冲速度3,000PPS,即相当于电机的运转速度180RPM。位置控制: 步进电机不需要位置传感器(SENSOR),就可依照输入的脉冲数决定移动量,并将负载顺利、正确的送达指定位置点上。而移动量的大小,是依照电机分辨率的大小与输入的脉冲数来决定。脉冲数(PULSE)与移动量间的关系式如下: 位置移动量( °)= 步进电机分辨率( °)× 输入的关系式如下: 位置移动量( °)= 步进电机分辨率( °)× 输入脉冲数实例:二相全步级角1.8°时*当输入1000个脉冲数(即1000PULSE),此时之移动量会是1800°,刚好为5圈
D:关于允许轴负载,请参阅“允许的轴负荷表”(使用说明书)。
伺服电动机

伺服电动机认知1.永磁交流伺服系统概述现代高性能的伺服系统,大多数采用永磁交流伺服系统,其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。
(1)交流伺服电动机的工作原理伺服电机内部的转子是永久磁铁,驱动器控制的u/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电动机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电动机的精度决定于编码器的精度(线数)。
伺服驱动器控制交流永磁伺服电动机(PMSM)时,可分别工作在电流(转矩)、速度、位置控制方式下。
系统的控制结构框图如图7-17所示。
系统基于测量电机的两相电流反馈(Ia、Ib)和电机位置。
将测得的相电流(Ia、Ib)结合位置信息,经坐标变化(从a,b,c坐标系转换到转子d,q坐标系),得到Ia、Ib分量,分别进入各自的电流调节器。
电流调节器的输出经过反向坐标变化(从d,q坐标系转换到a,b,c坐标系),得到三相电压指令。
控制芯片通过这三相电压指令,经过反向、延时后,得到6路PWM波输出到功率器件,控制电机运行。
伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,实现数字化、网络化和智能化。
功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入了软启动电路,以减小启动过程对驱动器的冲击。
智能功率模块(IPM)的主要拓扑结构是采用了三相桥式电路,原理图如图7-18所示。
利用了脉宽调制技术(Pulse width Modulation,PWM),通过改变功率晶体管交替导通的时间来改变逆变器输出波形的频率,改变每半周期内晶体管的通断时问比,即通过改变脉冲宽度来改变逆变器输出电压幅值的大小以达到调节功率的目的。
关于图7-17中的矢量控制原理,此处不予讨论。
松下伺服几个参数需要熟悉并掌握设置方法

松下伺服几个参数需要熟悉并掌握设置方法松下伺服参数共有200多个,但一般的控制场合只需要掌握少数几个即可。
伺服系统有位置控制、速度控制、转矩控制以及三者的组合等多种控制模式,但大多数场合都是将伺服系统用于精密定位,其次是转矩控制,速度控制则多使用变频器,因为变频器性能已经足够满足要求了,而价格比伺服低。
本项目即是用于定位控制。
松下伺服用于定位控制,下面几个参数需要熟悉并掌握设置方法:Pr0.00:伺服旋转方向切换。
常常有这样的情形,伺服驱动需要调换旋转方向,只需要将Pr0.00中的值由“1”改为“0”,或由“0”改为“1”(出厂值是“1”)。
Pr0.01:伺服控制模式的设置。
位置控制是缺省模式(Pr0.01=0),其他模式设置可参考如下:Pr0.07:伺服控制脉冲输入方式。
PLC发送高速脉冲给伺服驱动器,有几种方式,可以是正转一路脉冲,反转一路脉冲;也可以是只用一路脉冲,而增加一个方向控制信号(高低电平即可),当然也可以是90°相位差的2相脉冲,Pr0.07分别设置为“1”、“3”、“0”或“2”。
可以看出除了设置为“3”只需一路脉冲就可实现定位控制,其他三者都需要两路脉冲,对于一个轴控制(即一套伺服系统)三菱PLC都没有问题,如果是两个轴控制,则必须将Pr0.07设置为“3”,缺省值为“1”,因此此参数一般都需要设置。
当然此参数与Pr0.06配合设置,可选择输入的脉冲极性。
Pr0.08:电机每旋转一圈所需要的指令脉冲。
此参数涉及到PLC编程时,定位距离的精确控制,也就是PLC发多少个脉冲,伺服电机转一圈,电机带动丝杆旋转,丝杆的螺距假设是5mm,则PLC每发Pr0.08里设置的数值的脉冲(缺省为10000),丝杆带动运动平台将移动5mm。
参数Pr0.09和Pr0.10可实现同样的功能,适合于PLC脉冲数和移动距离不能整除的场合,其实掌握了Pr0.08,已经无往而不胜了。
Pr5.04:伺服定位,一般两端装有极限位的行程开关,如果装了,需要设置Pr5.04由“1”。
伺服电机原点,正负极限符号

伺服电机原点,正负极限符号【实用版】目录1.伺服电机的原点概念2.伺服电机的正负极限符号3.伺服电机的运用和注意事项正文1.伺服电机的原点概念伺服电机,又称为伺服马达,是一种将电脉冲转换为角位移或线位移的电机。
在工业自动化控制系统中,伺服电机被广泛应用,因为它可以精确地控制旋转角度或直线运动距离。
伺服电机的原点,是指电机在无电脉冲输入时,转子静止的位置,也就是电机的初始位置。
原点是伺服电机进行精确控制的基准点,确保控制系统的准确性。
2.伺服电机的正负极限符号伺服电机的正负极限符号是用来表示伺服电机旋转方向和最大旋转范围的标志。
正负极限符号一般用“+”和“-”表示。
在伺服电机上,正极通常表示电机旋转的方向,负极则表示电机旋转的反方向。
伺服电机的正负极限符号是控制系统中重要的参考依据,正确设置正负极限符号,有助于保证控制系统的稳定性和可靠性。
3.伺服电机的运用和注意事项伺服电机在工业自动化控制系统中有着广泛的应用,例如在数控机床、机器人、自动化装配线等领域。
在使用伺服电机时,需要注意以下几点:(1) 确保伺服电机与控制器之间的信号连接正确无误,避免由于接线错误导致的控制系统失灵。
(2) 根据实际应用需求,合理设置伺服电机的正负极限符号,避免由于符号设置不当导致的电机旋转方向错误。
(3) 在伺服电机运行过程中,避免过载或过热,定期检查电机的工作状态,确保电机的正常运行。
(4) 定期对伺服电机进行维护和保养,延长电机的使用寿命,保证控制系统的稳定性和可靠性。
总之,伺服电机的原点概念和正负极限符号对于控制系统的精确控制至关重要。
伺服电机_百度百科

⑸同功率下有较小的体积和重量。
自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧只瘮或抟旌鲜綌、撊只瘮理 历史 生活 社会 艺术 人物 经济 科学 体育 核心用户 NBA
伺服电机科技名词定义
中文名称:伺服电机 英文名称:servo motor
定义:转子转速受输入信号控制,并能快速反应,在自动控制系统中作执行元件,且具有机电时间常数小、线性度高、始动电压
以生产机床数控装置而著名的日本法那克(Fanuc)公司,在20世纪80年代中期也推出了S系列(13个规格)和L系列(5个规格)的永磁交流伺服电动机。L系列有较小的转动惯量和机械时间常数,适用于要求特别快速响应的位置伺服系统。
日本其他厂商,例如:三菱电动机(HC-KFS、HC-MFS、HC-SFS、HC-RFS和HC-UFS系列)、东芝精机(SM系列)、大隈铁工所(BL系列)、三洋电气(BL系列)、立石电机(S系列)等众多厂商也进入了永磁交流伺服系统的竞争行列。
六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的不同需要。
Maxsine EP100 系列 交流伺服驱动器 简明手册

MaxsineEP100系列交流伺服驱动器简明手册第1章产品检查与安装1.3 伺服电机安装1.3.1 安装环境条件●工作环境温度:0~40℃;工作环境湿度:80%以下(无结露)。
●贮存环境温度:-40~50℃;贮存环境湿度:80%以下(无结露)。
●振动:0.5G以下。
●通风良好、少湿气及灰尘之场所。
●无腐蚀性、引火性气体、油气、切削液、切削粉、铁粉等环境。
●无水汽及阳光直射的场所。
1.3.2 安装方法●水平安装:为避免水、油等液体自电机出线端流入电机内部,请将电缆出口置于下方。
●垂直安装:若电机轴朝上安装且附有减速机时,须注意并防止减速机内的油渍经由电机轴渗入电机内部。
●电机轴的伸出量需充分,若伸出量不足时将容易使电机运动时产生振动。
●安装及拆卸电机时,请勿用榔头敲击电机,否则容易造成电机轴及编码器损坏。
1.4 电机旋转方向定义本手册描述的电机旋转方向定义:面对电机轴伸,转动轴逆时针旋转(CCW)为正转,转动轴顺时针旋转(CW)为反转。
图1.2 电机旋转方向定义第2章接线2.1 配线规格●线径:R、S、T、PE、U、V、W端子线径≥1.5mm2(AWG14-16),r、t端子线径≥0.75mm2(AWG18);●端子采用预绝缘冷压端子,务必连接牢固;●建议采用三相隔离变压器供电;2.2 配线方法●输入输出信号线和编码器信号线,请使用推荐的电缆或相似的屏蔽线,配线长度为:输入输出信号线3m以下,编码器信号线20m以下。
接线时按最短距离连接,越短越好,主电路接线与信号线要分离。
●接地线要粗壮,作成一点接地,伺服电机的接地端子与伺服驱动器的接地端子PE务必相连。
●为防止干扰引起误动作,建议安装噪声滤波器,并注意:1) 噪声滤波器、伺服驱动器和上位控制器尽量近距离安装。
2) 继电器、电磁接触器、制动器等线圈中务必安装浪涌抑制器。
3) 主电路和信号线不要在同一管道中通过及不要扎在一起。
●在附近用强烈干扰源时(如电焊机、电火花机床等),输入电源上使用隔离变压器可以防止干扰引起误动作。
之山伺服器说明书

目录安全事项 (1)第一章产品检查与型号说明 (3)第二章安装 (4)第三章信号和接线 (8)第四章参数说明 (15)第五章面板显示及操作 (25)第六章运行 (28)安全事项欢迎您使用杭州之山科技有限公司生产的纺机专用伺服控制系统。
在产品存放、安装、配线、运行、检查或维修前,用户必需熟悉并遵守以下重要事项,以确保安全地使用本产品。
错误操作可能会引起危险并导致人身伤亡。
错误操作可能会引起危险,导致人身伤害,并可能使设备损坏。
严格禁止行为,否则会导致设备损坏或不能使用。
● 禁止将产品暴露在有水气、腐蚀性气体、可燃性气体的场合使用。
否则会导致触电或火灾。
● 禁止将产品用于阳光直射,灰尘、盐分及金属粉露末较多的场所。
● 禁止将产品用于有水、油及药品滴落的场所。
● 请将接地端子可靠接地,接地不良可能会造成触电或火灾。
● 请勿将220V驱动器电源接入380V电源,否则会造成设备损坏及触电或火灾。
● 请勿将U、V、W电机输出端子连接到三相电源,否则会造成人员伤亡或火灾。
● 必须将U、V、W电机输出端子和电机接线端子U、V、W一一对应连接,否则电机可能超速飞车造成设备损失与人员伤亡。
● 请紧固电源和电机输出端子,否则可能造成火灾。
● 配线请参考线材选择配线,否则可能造成火灾。
● 当机械设备开始运转前,必须配合合适的参数设定值。
若未调整到合适的设定值,可能会导致机械设备失去控制或发生故障。
● 开始运转前,请确认是否可以随时启动紧急开关停机。
● 请先在无负载情况下,测试伺服电机是否正常运行,之后再负载接上,以避免不必要的损失。
● 请勿频繁接通、关闭电源,否则会造成驱动器内部过热。
● 当电机运转时,禁止接触任何旋转中的零件,否则会造成人员伤亡。
● 设备运行时,禁止触摸驱动器和电机,否则会造成触电或烫伤。
● 设备运行时,禁止移动连接电缆,否则会造成人员受伤或设备损坏。
● 禁止接触驱动器及其电机内部,否则会造成触电。
● 电源启动时,禁止拆卸驱动器面板,否则会造成触电。
伺服的脉冲和方向控制原理

伺服的脉冲和方向控制原理
伺服的脉冲和方向控制原理如下:
伺服驱动器有方向+、方向-和脉冲+、脉冲-四个端子。
当上位机给定信号时,控制驱动器上方向、脉冲这两路光藕的通断,来控制伺服驱动器的正转与反转、运行与停止。
伺服电机的工作原理是伺服主要靠脉冲来定位。
当伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移。
伺服电机本身具备发出脉冲的功能,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到。
以上内容仅供参考,建议查阅伺服电机相关的专业书籍或咨询专业技术人员,以获取更准确的信息。
伺服方向脉冲符号

伺服方向脉冲符号全文共四篇示例,供读者参考第一篇示例:伺服方向脉冲符号是控制伺服电机旋转方向的一种信号,它是通过控制器发送给伺服驱动器的脉冲信号来实现的。
在现代工业领域中,伺服电机被广泛应用于各种自动化设备和机器人系统中,能够精确控制运动的速度和位置,提高生产效率和质量。
在伺服系统中,方向脉冲信号是决定伺服电机旋转方向的关键因素之一。
通常来说,方向脉冲信号由两个脉冲信号组成,一个是脉冲信号(通常用P表示),另一个是方向信号(通常用D表示)。
当控制器发送脉冲信号给伺服驱动器时,通过改变方向信号的状态来控制电机的旋转方向。
在实际应用中,伺服方向脉冲符号通常有两种不同的表示方式,一种是正脉冲、负脉冲方式,另一种是CW、CCW方式。
在正负脉冲方式中,当方向信号为高电平时,电机顺时针旋转,当方向信号为低电平时,电机逆时针旋转。
而在CW、CCW方式中,CW表示电机顺时针旋转,CCW表示电机逆时针旋转。
在实际应用中,根据具体的控制要求和系统设计,可以根据需要选择合适的伺服方向脉冲符号表示方式。
通过合理的控制和调节,可以确保伺服电机在工作过程中能够准确地实现旋转方向的控制,保证设备和机器系统的稳定运行。
第二篇示例:伺服方向脉冲符号是一种在自动控制系统中常用的一种符号,用于表示伺服电机的旋转方向。
在工业自动化领域,伺服电机常被用于控制机器人、数控机床和其他精密设备的运动,因此伺服方向脉冲符号的正确理解和使用对于机器的正常运行至关重要。
伺服方向脉冲符号通常表示为一个脉冲信号,可以分为正向脉冲和负向脉冲两种。
正向脉冲信号通常用于指示伺服电机顺时针旋转,而负向脉冲信号则用于指示逆时针旋转。
在控制系统中,通过发送不同的脉冲信号,可以实现对伺服电机旋转方向的精确控制。
伺服方向脉冲符号的生成通常依赖于编码器或者解码器。
编码器是一种能够将旋转运动转换为电信号的装置,通过监测编码器输出的脉冲信号,控制系统可以实时获取伺服电机的运动状态。
华兴数控SP500B DM500 ADM500全数字式交流伺服驱动器安装操作手册说明书

版本:V1.0全数字式交流伺服驱动器适用机型:SP500B/DM500/ADM500安装操作手册 全数字式交流伺服系统目录目录 (1)第一章产品概述 (3)1.1SP500B、DM500、ADM500系列交流伺服驱动器 (3)1.2SJT系列交流伺服电机 (3)第二章产品规格 (4)2.1SP500B、DM500、ADM500伺服驱动器规格 (4)2.1.1 型号说明 (4)2.1.2 规格与性能参数 (5)2.1.3 伺服驱动器安装尺寸图 (6)2.2SJT系列交流伺服电机规格 (8)2.2.1 型号说明 (8)2.2.2 规格与性能参数 (8)2.2.3 安装尺寸图 (10)2.3隔离变压器规格 (13)第三章接线 (14)3.1配线规格要求 (14)3.1.1 电源端子TB (14)3.1.2 编码器接口CN1 (14)3.1.3 控制信号接口CN2 (14)3.2标准接线 (15)3.3SP500B、DM500、DM500A系列伺服驱动器端子信号与功能 (22)3.3.1 电源端子TB (22)3.3.2 编码器接口CN1和控制信号接口CN2 (22)3.4SP500B、DM500、DM500A系列伺服驱动器信号接口电路 (31)3.4.1 开关量NPN型输入接口 (31)3.4.2 开关量单端输出接口 (32)3.4.3 开关量双端输出接口 (33)3.4.4 脉冲量输入接口 (34)3.4.5 增量式光电编码器输入接口 (35)3.4.6 位置反馈输出接口 (36)3.5SJT系列伺服电机端子信号与功能 (36)第四章操作与显示 (37)4.1键盘操作 (37)4.2参数设置(PA-) (37)4.3参数监视(D P-) (38)4.4参数管理(EE-) (39)4.5速度试运行(S R-) (40)4.6JOG点动运行(J R-) (40)第五章参数 (41)5.1参数简介 (41)5.2参数内容及意义 (43)第六章功能应用 (47)6.1基本性能参数的调试 (47)6.2伺服电机旋转方向的切换 (49)6.3电子齿轮的设置 (49)6.4启停特性的调整 (50)6.5驱动器更换配套伺服电机 (50)6.6控制方式的应用 (51)6.6.1 脉冲位置控制方式(PA3=0)与脉冲速度控制方式(PA3=4) (51)6.6.2 内部速度控制方式(PA3=1) (51)6.6.3 主轴控制方式(PA3=5) (52)6.6.4 速度/位置控制方式(PA3=6) (54)6.7使能与报警时序图 (56)6.8抱闸应用 (57)6.8.1 松闸流程 (58)6.8.2 抱闸流程 (58)第七章故障诊断 (61)7.1保护诊断功能 (61)7.2故障分析 (62)7.3驱动器故障解决 (64)第八章保养与维护 (65)第一章产品概述1.1 SP500B、DM500、ADM500系列交流伺服驱动器SP500B、DM500、ADM500系列全数字式交流伺服驱动器为本公司自主研发生产,具有集成度高、体积小、响应速度快、保护完善、可靠性高、易于安装等一系列优点。
永磁交流伺服电机的旋转方向与电机电角度增加方向之间的关系(波恩)

永磁交流伺服电机的旋转方向与电机电角度增加方向之间的关系首先定义流经电机绕组的相电流的正方向、相电流矢量的正方向、以及电机电角度的增加方向:1,流经电机绕组的相电流的正方向是以电流流入电机为正,例如:Ia>0,表示该时刻的电流Ia流向是从驱动器a或U相端子流入电机a相,在电机内部是由a相接线端流入中线,Ib,Ic<0,表示该时刻的电流Ib,ic 的流向是从电机内部的中线是经由b,c相接线端流出到驱动器的b,c或V,W相端子,如图1中黑色箭头所示;图 12,相电流矢量与电流方向的关联关系为:各相电流为正时,则a,b,c相电流产生的磁场矢量的正方向如图1中红色箭头所示;3,电机电角度的定义为当a,b,c三相反电势波形的相位关系为a相领先于b相120度、b相领先于c相120度时a相反电势波形的相位角,如图2所示。
通常是面向电机法兰安装面和电机轴,逆时针旋转电机轴,以观察三相反电势波形的相序关系,故在此默认电机电角度的增加方向为逆时针方向,在图1和后续图示中亦然。
图 21.电机电角度初始相位错位180 度电机旋转方向互反有一段时间,自行安装编码器的两台试验电机在相同的程序控制下,转向却不同,开始只是觉得奇怪,后来就干脆将其当作“灵异”事件不了了之了。
终于有一天,借机深究了一下这个貌似奇怪的问题。
两台电机的相位对齐结果都是增量编码器的Z信号与UV线反电势波形的过零点基本对齐,默认的对齐原则上都是Z信号对齐于-30度电角度。
逆时针方向旋转其中一台电机的轴,UV线反电势波形在Z信号处(即U信号上升沿)由低到高过零,如图3中ε(a-b)曲线在-30度电角度处所示:图 3顺时针方向旋转该电机轴,UV线反电势波形在Z信号处(即U信号下降沿)同样是由低到高过零,如图4中ε(a-b)曲线在Z 处所示:图4这一现象乍一看有些出乎预料,仔细分析下来不难发觉其实这完全符合反电势的生成机理。
虽然逆时针和顺时针转动时,UV线反电势波形在Z信号处的过零方向相同,但是逆时针和顺时针转动时正如图3和图4所示的相序那样UV线反电势波形与编码器U信号的相位关系或正负关系恰好相反。
埃斯顿伺服电机技术解答

伺服电机技术解答三相交流永磁同步伺服电机简称交流伺服电机(AC server motor)或伺服电机,由于它具有高响应、高精度、运行平稳、恒转矩输出、能过载、低噪声、结构简介、可靠性高、免维护等优点,是目前旋转电机中最佳的控制电机。
本章以EDB驱动器和其配套伺服电机为例,简述伺服电机在应用中的有关问题及注意事宜,其原则和方法同样适用于其它型号的驱动器配伺服电机。
伺服电机选型:伺服电机的选型是多个因素综合考虑、合理选择的过程,一般应着重注意这几个参数的选择:电机的额定转矩、电机运行的最高转速、负载惯量及电机转子惯量、加减速时所需要的过载能力、电机起停频率等。
通过机械传动机构加在电机上的负载有二种,即负载转矩和负载惯量。
负载转矩如由下图运动方式形成:则:图中Ta为因加速时间t1形成的加速转矩,Tb为由于减速时间t3形成的制动转矩,Tf为在t2时间内产生的负载转矩,T0为在停止时间t4产生的锁定转矩,n为工作时电机的转速。
Ta、Tb、Tf、T0、n均为通过机械传动装置折算到电机轴上的参数。
Ta、Tb可参见下式确定:式中:Jm—电机转子惯量(),Jl—折算到电机轴上的负载惯量(),t单位:sec,n单位:rpm,Ta、Tf单位:Nm。
由下式确定一个周期电机转矩的均方根值:确定预选电机的额定转矩大于Trms值;确定预选电机的额定转速大于实际运行的最高转转速;其过载转矩大于Ta、Tb中最大值,即可选定伺服电机。
加在电机轴上的负载惯量,对伺服电机的灵敏度及快速移动、精确定位有很大的影响。
较大的负载惯量,当指令速度发生变化时,电机达到指令速度的时间会较长;多轴同时运动时,会使形成的轨迹偏离指令轨迹过大,造成较大的误差。
所以,选择机械传动机械,使折算到电机轴上的负载惯量合适,是伺服电机选型中重要的过程。
机械传动不仅要满足脉冲当量、转矩(功率)放大等技术要求,更要注重负载惯量与电机的适配。
负载惯量是否与电机相适配的标准,是指负载惯量折算到电机轴上的负载惯量Jl,其数值与电机转子惯量的倍数关系。
伺服电机的控制方法【精华】

伺服电机控制方式有脉冲、模拟量和通讯控制这三种,在不同的应用场景下,该如何确定选择伺服电机控制方式?1、伺服电机脉冲控制方式在一些小型单机设备,选用脉冲控制实现电机的定位,应该是最常见的应用方式,这种控制方式简单,易于理解。
基本的控制思路:脉冲总量确定电机位移,脉冲频率确定电机速度。
选用了脉冲来实现伺服电机的控制,翻开伺服电机的使用手册,一般会有如下这样的表格:都是脉冲控制,但是实现方式并不一样:第一种,驱动器接收两路(A、B路)高速脉冲,通过两路脉冲的相位差,确定电机的旋转方向。
如上图中,如果B 相比A相快90度,为正转;那么B相比A相慢90度,则为反转。
运行时,这种控制的两相脉冲为交替状,因此我们也叫这样的控制方式为差分控制。
具有差分的特点,那也说明了这种控制方式,控制脉冲具有更高的抗干扰能力,在一些干扰较强的应用场景,优先选用这种方式。
但是这种方式一个电机轴需要占用两路高速脉冲端口,对高速脉冲口紧张的情况,比较尴尬。
第二种,驱动器依然接收两路高速脉冲,但是两路高速脉冲并不同时存在,一路脉冲处于输出状态时,另一路必须处于无效状态。
选用这种控制方式时,一定要确保在同一时刻只有一路脉冲的输出。
两路脉冲,一路输出为正方向运行,另一路为负方向运行。
和上面的情况一样,这种方式也是一个电机轴需要占用两路高速脉冲端口。
第三种,只需要给驱动器一路脉冲信号,电机正反向运行由一路方向IO信号确定。
这种控制方式控制更加简单,高速脉冲口资源占用也最少。
在一般的小型系统中,可以优先选用这种方式。
2、伺服电机模拟量控制方式在需要使用伺服电机实现速度控制的应用场景,我们可以选用模拟量来实现电机的速度控制,模拟量的值决定了电机的运行速度。
模拟量有两种方式可以选择,电流或电压。
电压方式,只需要在控制信号端加入一定大小的电压即可。
实现简单,在有些场景使用一个电位器即可实现控制。
但选用电压作为控制信号,在环境复杂的场景,电压容易被干扰,造成控制不稳定;电流方式,需要对应的电流输出模块。
伺服电机结构和工作原理

(2)相位控制 保持控制电压旳幅值不变,仅变化控制电压与 励磁电压间旳相位差。
(3)幅-相控制 同步变化控制电压旳幅值和相位。
二、直流伺服电动机
1.基本构造
老式旳直流伺服电动机动实质是容量较小旳 一般直流电动机,有他励式和永磁式两种,其构 造与一般直流电动机旳构造基本相同。
三、交直流伺服电动机旳区别
直流伺服电动机旳缺陷: ① 电刷和换向器易磨损,换向时产生火花,限制转速 ② 构造复杂,制造困难,成本高 交流伺服电动机旳优点: ① 构造简朴,成本低廉,转子惯量较直流电机小 ② 交流电动机旳容量不小于直流电动机
伺服系统旳性能要求
一、基本要求
1、位移精度高 位移精度:指指令脉冲要求机床工作台旳位移量和该指令脉
1、构造(永磁同步电机) 主要由:定子1、转子5和检测元件8等几部分构成。
1 2
3
4
1
56
7
8
9
2.工作原理
交流伺服电动机在没有控制电压时,气隙中 只有励磁绕组产生旳脉动磁场,转子上没有开启 转矩而静止不动。当有控制电压且控制绕组电流 和励磁绕组电流不同相时,则在气隙中产生一种 旋转磁场并产生电磁转矩,使转子沿旋转磁场旳 方向旋转。但是对伺服电动机要求不但是在控制 电压作用下就能开启,且电压消失后电动机应能 立即停转。假如伺服电动机控制电压消失后像一 般单相异步电动机那样继续转动,则出现失控现 象,我们把这种因失控而自行旋转旳现象称为自 转。
为消除交流伺服电动机旳自转
现象,必须加大转子电阻r2,这是 因为当控制电压消失后,伺服电动
机处于单相运营状态,若转子电阻
很大,使临界转差率sm>1,这时正 负序旋转磁场与转子作用所产生旳
伺服驱动器8大参数设置

伺服驱动器8大参数设置伺服驱动器是一种用于控制伺服电机的装置,通过调节驱动器的参数来实现对电机运行的控制。
不同的参数设置对于电机的性能和运行效果有着直接的影响,因此了解并正确设置这些参数十分重要。
以下是伺服驱动器的八大参数设置。
1.角度标定参数:这些参数用于标定伺服电机的转动角度,通常包括电机的旋转方向、偏移和零点位置等信息。
正确设置这些参数可以保证电机的运行方向和精确度。
2.速度参数:这些参数用于控制伺服电机的运行速度,包括最大速度、加速度和减速度等信息。
通过正确设置这些参数,可以实现电机在不同速度下的稳定运行和高效控制。
3.位置参数:这些参数用于控制伺服电机的位置控制,包括位置偏移、位置误差和位置补偿等信息。
正确设置这些参数可以实现电机的准确定位和稳定控制。
4.力矩参数:这些参数用于控制伺服电机的输出力矩,包括最大力矩、力矩响应和力矩误差等信息。
通过正确设置这些参数,可以实现电机对外部负载的稳定输出和精确控制。
5.反馈参数:这些参数用于控制伺服电机的反馈信号,包括位置反馈、速度反馈和力矩反馈等信息。
正确设置这些参数可以实现电机的闭环控制和精确的运动控制。
6.控制参数:这些参数用于控制伺服电机的控制模式和控制策略,包括位置控制、速度控制和力矩控制等信息。
通过正确设置这些参数,可以实现不同的控制方式和控制策略。
7.过流参数:这些参数用于控制伺服电机的过流保护和限流功能,包括过流保护电流、过流保护时间和限流系数等信息。
正确设置这些参数可以保护电机免受过流损坏,并提高电机的使用寿命。
8.报警参数:这些参数用于控制伺服电机的报警功能,包括故障报警、过载报警和过热报警等信息。
通过正确设置这些参数,可以及时检测和处理电机的故障和异常情况,保证电机的安全和可靠运行。
在设置伺服驱动器的参数时,需要根据具体的应用需求和电机的性能要求来进行调整。
同时,还需要注意参数设置的合理性和稳定性,避免出现意外的故障和不稳定的运行情况。
汇川伺服驱动正反方向参数

汇川伺服驱动正反方向参数汇川伺服驱动的正反方向参数可以通过以下几个角度来回答:
1. 定义和原理,正反方向参数是指在汇川伺服驱动器中设置的用于控制电机旋转方向的参数。
伺服驱动器通过调整正反方向参数来确定电机是顺时针旋转还是逆时针旋转。
2. 设置方法,通常,正反方向参数可以通过伺服驱动器的参数设置界面或者专用的设置软件来进行配置。
具体的设置方法可能因不同型号的伺服驱动器而有所不同,一般需要按照驱动器的说明书或者用户手册进行操作。
3. 参数取值,正反方向参数的取值通常是一个布尔值,表示电机的旋转方向。
例如,可以将正方向参数设置为True表示电机顺时针旋转,将反方向参数设置为False表示电机逆时针旋转。
有些伺服驱动器还提供了更多的选项,例如可以通过数字输入来设置电机的旋转方向。
4. 调试和验证,在设置正反方向参数之后,需要进行调试和验证以确保电机的旋转方向符合预期。
可以通过手动操作或者使用专
门的测试设备来验证电机的旋转方向是否正确。
如果发现电机的旋转方向与预期不符,可以重新调整正反方向参数并进行验证,直到达到所需的旋转方向。
总结起来,汇川伺服驱动的正反方向参数是用于控制电机旋转方向的设置参数,可以通过驱动器的参数设置界面或者专用的设置软件进行配置。
设置方法和参数取值可能因不同型号的伺服驱动器而有所不同。
在设置完成后,需要进行调试和验证以确保电机的旋转方向符合预期。
伺服电机反电动势

伺服电机的反电动势是指在电机运行时,由于电机的旋转产生的电磁感应现象,产生的电动势与电源电压相反的现象。
当伺服电机运行时,电机的转子在磁场的作用下旋转,由于转子的旋转会改变磁场的强度和方向,从而在电机的定子线圈中产生感应电动势。
这个感应电动势的方向与电源电压相反,因为它是由电机的旋转运动产生的。
伺服电机的反电动势的大小与电机的转速成正比,即转速越快,反电动势越大。
当电机的转速达到稳定状态时,反电动势与电源电压相等,电机的电流将趋近于零。
这是因为反电动势与电源电压相等时,两者之间的电压差为零,电流不再流动。
伺服电机的反电动势是电机运行的重要特性之一。
它可以用来控制电机的转速和位置。
通过测量反电动势的大小,可以了解电机的转速,并根据需要调整电源电压,以控制电机的运行状态。
这在自动控制系统中非常重要,例如机器人、数控机床等应用中常常使用伺服电机来实现精确的位置和速度控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永磁交流伺服电机的旋转方向与电机电角度增加方向之间的关系[原创]
近半年前,一位业内工程师结合其在研项目和本人在论坛发表的《永磁交流伺服电机位置反馈传感器检测相位与电机磁极相位的对齐方式【原创】》一帖来email与本人探讨电机电角度零点的问题,由于该问题涉及电角度相位和电机转动方向之间的关系,而这一点又恰恰是本人在那个贴子中并未完全理清楚的遗留问题,所以一搁就是半年,直到前一阵子才借故终于把这一问题理清了一些头绪,其实本人一直觉得在电角度问题上总是或多或少地存在着常理常清,不常理则常不清的痼疾,因此觉得确实有必要将这些许心得整理出来。
首先定义流经电机绕组的相电流的正方向、相电流矢量的正方向、以及电机电角度的增加方向:
1,流经电机绕组的相电流的正方向是以电流流入电机为正,例如:Ia>0,表示该时刻的电流Ia流向是从驱动器a或U相端子流入电机a相,在电机内部是由a相接线端流入中线,Ib,Ic<0,表示该时刻的电流Ib,ic 的流向是从电机内部的中线是经由b,c相接线端流出到驱动器的b,c或V,W相端子,如图1中黑色箭头所示;
2,相电流矢量与电流方向的关联关系为:各相电流为正时,则a,b,c相电流产生的磁场矢量的正方向如图
1中红色箭头所示;
3,电机电角度的定义为当a,b,c三相反电势波形的相位关系为a相领先于b相120度、b相领先于c相120度时a相反电势波形的相位角,如图2所示。
通常是面向电机法兰安装面和电机轴,逆时针旋转电机轴,以观察三相反电势波形的相序关系,故在此默认电机电角度的增加方向为逆时针方向,在图1和后续图示
中亦然。
图 2
1.电机电角度初始相位错位180 度电机旋转方向互反
有一段时间,自行安装编码器的两台试验电机在相同的程序控制下,转向却不同,开始只是觉得奇怪,后来就干脆将其当作“灵异”事件不了了之了。
终于有一天,借机深究了一下这个貌似奇怪的问题。
两台电机的相位对齐结果都是增量编码器的Z信号与UV线反电势波形的过零点基本对齐,默认的对齐原则上都是Z信号对齐于-30度电角度。
逆时针方向旋转其中一台电机的轴,UV线反电势波形在Z信号处(即U信号上升沿)由低到高过零,如图3中ε(a-b)曲线在-30度电角度处所示:
顺时针方向旋转该电机轴,UV线反电势波形在Z信号处(即U信号下降沿)同样是由低到高过零,如图4中ε(a-b)曲线在Z 处所示:
图4
这一现象乍一看有些出乎预料,仔细分析下来不难发觉其实这完全符合反电势的生成机理。
虽然逆时针和顺时针转动时,UV线反电势波形在Z信号处的过零方向相同,但是逆时针和顺时针转动时正如图3和图4所示的相序那样UV线反电势波形与编码器U信号的相位关系或正负关系恰好相反。
而且三相线反电势波形之间的领先滞后关系也有所不同,逆时针转动时,三相线反电势相序的领先滞后关系如图3所示,a-b
领先于b-c,b-c领先于c-a;顺时针转动时,相序的领先滞后关系则如图4所示,a-b领先于c-a,c-a领先于b-c。
也就是说,转动方向不同,三相反电势波形波形并不是简单的反向,而是改变了相序间的领先滞后关系。
旋转另一台电机轴时发现,逆时针转动,UV线反电势波形在Z信号处(即U信号下降沿)由高到低过零,如图3中150度电角度处所示;顺时针转动,UV线反电势波形在Z信号处(即U信号上升沿)同样是由高到低过零,如图4中Z‟ 处所示。
由此可见两台电机的对齐的结果是电角度相位刚好互差180度。
两台电机的反电势相序互差180度的结果表明最初对齐电角度相位时,通入两台电机UV相的转子定向电流方向应该是正好搞反了,一台电机的转子定向电流是V(b)入U(a)出,如图5中左图所示,转子的d轴定向于-30 度电角度,如图5中右图示意,此图中d轴落在S极上,而不是N极,这一点与本人一直以来认为的d轴须落在N极上的观点恰好相悖(欢迎斧正!)。
图 5
而另一台电机的转子定向电流经U(a)入V(b)出,如图6中左图所示,转子的d轴定向于150度电角度,如图6中右图示意,本帖将在后面的讨论中统一把d轴标在S极上。
图 6
将编码器Z信号对齐在转子定向电流经V入U出的电机的定向点处,即将Z信号对齐于电机的-30度电角度,对齐后旋转电机轴,可见UV线反电势波形在Z 信号处由低到高过零,如图3中-30 度电角度处和图4中Z 点处所示。
将将编码器Z信号对齐在转子定向电流经U入V出的电机的定向点处,即将Z信号
对齐于电机的150度电角度处,对齐后旋转电机轴,可见UV线反电势波形在Z 信号处由高到低过零,如图3中150度电角度处和图4中Z… 点处所示。
可见相位对齐后,两台电机的电角度相位刚好互错180度。
以图2中电角度0点对应的相电流施加于对齐方式如图5所示的对齐到-30度电角度(V入U出定向)的电机的定子绕组,经矢量变换得到的Iq电流矢量的方向处于q轴的负方向,如图7所示,这一点必须引起注意!
图7
由于此时定子绕组产生的电场矢量方向在逆时针方向正交于转子永场矢量方向,因而会吸引转子沿逆时针旋转,由此可见,当电机的电角度增加方向如图2和图1约定的那样逆时针增长,则给对齐方式如图5所示对齐到-30度电角度(V入U出定向)的电机施加相序关系如图2所示的三相电流波形时,电机的转动
方向将顺着电角度的增量方向逆时针旋转。
同样,以图2中电角度0点对应的三相电流施加于施加于对齐方式如图6所示的对齐到150度电角度(U 入V出定向)的电机的定子绕组,虽然经矢量变换得到的Iq电流矢量的方向仍旧处于q轴的负方向,但此
时转子的真实q轴却位于矢量变换计算所用的q轴的反方向上,如图8所示,位于180度电角度方向上,即图中所示的D… 方向。
图8
此时定子绕组产生的电场矢量方向在顺时针方向正交于转子永场矢量方向,因而会吸引转子沿顺时针旋转。
由此可见,当电机的电角度增加方向逆时针增长,以图2所示的三相电流波形施加于对齐方式如图6所示的对齐到150度电角度(U入V出定向)的电机,电机的转动方向不是沿着电角度的增量方向逆时针旋转,而是会和电角度的增加方向相反,即顺时针旋转。
2. 给定电流相序错位180度电机旋转方向互反
如果将图2所示的三相电流在幅值上直接取反,则可以得到如图9所示的三相电流相序。
对比图2和图9可知,两图中的三相电流相序的领先滞后关系完全一致,但在三相电流波形的幅值上,图9与图2恰好互
反,而在相位上图9中的波形相序等价于图2中以180度电角度为起点的相序循环,也就是说图9和图2中的三相电流波形恰好在相位上互差了180度。
图 9
以图9所示的三相电流相序中电角度0点对应的三相电流施加于对齐方式如图5所示的对齐到-30度电角度(V入U出定向)的电机的定子绕组,经矢量变换得到的Iq电流的方向处于q轴的正方向,如图10所
示:
图 10
此时定子电磁矢量方向在顺时针方向正交于转子永磁矢量,会吸引转子朝着顺时针方向旋转。
由于图9所示的电流相序映射到图10中对应的电机电角度时,其电角度依然是沿着逆时针方向增加,在此种情况下,电机的转动方向却是逆着电角度的增加方向,即顺时针旋转。
由于图2和图9两图中的三相电流相序的领先滞后关系完全一致,但是两者的三相电流波形相位上互差了180度,施加于对齐方式相同的电机或者同一台电机时,会导致电机的旋转方向也恰好互反,正如图7和
图10所示意的那样。
3. 电流采样方向颠倒未必会引起电机旋转方向变化
目前在伺服驱动器设计中广泛采用磁平衡式霍尔元件或者毫欧级大功率精密电阻作为电流传感器,此类传感器的电流采样方向搞反了会直接影响绕组相电流瞬时反馈值的正负方向,正如图2和图9中标识的相同电角度处的电流值的正负互反关系所表示的那样,并进而造成三相连续反馈电流波形在相位上互差180度,不过并不会影响三相电流相序间的领先滞后关系。
在矢量变换环节,由于相电流反馈值符号翻转,会造成Iq和Id电流的符号反转,为实现Iq和Id电流的负反馈闭环控制,就必须在Iq和Id反馈电流与指令电流的符号上寻求统一。
例如,以图2中所示相序的三相电流施加到如图5所示的对齐到-30度电角度(V入U出定向)的电机上,电机会逆时针方向旋转。
如果电流采样方向与电流流向一致,则经过矢量变换后得到的Iq反馈电流矢量始终处于q轴的负方向,如图7所示,也就是Iq反馈电流为负值;如果电流采样方向与电流流向不一致,则经过矢量变换后得到的Iq反馈电流矢量会始终处于q轴的正方向,可参看图10中所示的那样,即Iq电流为正值。
在上述情况下,为取得指令电流符号与反馈电流符号的一致,须将电流采样方向与电流流向一致情况下的反馈电流在符号上取反,而电流采样方向与电流流向不一致情况下的反馈电流则可以直接使用,无需在符号上取反。
在这两种情况下,给定正电流指令,电机都会沿逆时针方向旋转。
因此,电流采样方向与电流流向颠倒时,虽然反馈电流波形会在总体相位上错位180度,但实际施加给电机的电磁矢量还是一样的,因此只要在算法上妥善处置Iq和Id反馈电流的符号,保持反馈电流与指令电流的符号相一致,就不会影响电机的实际旋转方向。
总结
影响电机旋转方向与电机电角度增加方向间关系的因素有:
1. 电机电角度对齐方式导致的电角度相位反转;
2. 电机驱动电流相序的相位反转;
需要注意的是驱动器的电流采样方向反转,也就是反馈电流相序反转未必会引起电机旋转方向变化。
以上是本人关于电机旋转方向与电机电角度增加方向之间的关系和影响因素的一点看法和体会,一方面可以起到帮助自己整理思路的作用,另一方面,也希望与业内同行共同切磋探讨。