高中数学一对一讲义——函数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数知识点总结

8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

()()

例:函数的定义域是

y x x x =

--432

lg

()()()(答:,,,)022334

函数定义域求法:

● 分式中的分母不为零;

● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一;

数式的底数大于零且不等于一,真数大于零。 ●

正切函数

x y tan = ⎪⎭⎫

⎝⎛∈+≠∈Z ππk k x R x ,2,且

● 余切函数

x y cot = ()Z π∈≠∈k k x R x ,,且

反三角函数的定义域

函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,

函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) .

当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

10. 如何求复合函数的定义域?

[]

如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0

义域是_____________。

[]

(答:,)a a -

复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解

出x 的范围,即为

[])(x g f y =的定义域。

例 若函数

)(x f y =的定义域为⎥⎦

⎢⎣⎡2,21,则)(log 2x f 的定义域为 。

11、函数值域的求法

1、直接观察法

对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=

x

1的值域

2、配方法

配方法是求二次函数值域最基本的方法之一。

例、求函数y=2

x -2x+5,x ∈[-1,2]的值域。 3、判别式法

对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面

下面,我把这一类型的详细写出来,希望大家能够看懂

.1

12..2

22

2

2222

b

a y 型:直接用不等式性质

k+x bx

b. y 型,先化简,再用均值不等式

x mx n

x 1 例:y 1+x

x+

x

x m x n c y 型 通常用判别式

x mx n x mx n

d. y 型

x n

法一:用判别式 法二:用换元法,把分母替换掉

x x 1(x+1)(x+1)+1 1

例:y (x+1)1211

x 1x 1x 1

=

=++==≤''

++=++++=+++-===+-≥-=+++

4、反函数法

直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例 求函数y=6

54

3++x x 值域。

5、函数有界性法

直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。

例 求函数y=11+-x x e e ,2sin 11sin y θθ-=+,2sin 1

1cos y θθ

-=+的值域。

6、函数单调性法

通常和导数结合,是最近高考考的较多的一个内容 例求函数y=+-2

5

x log

3

1-x (2≤x ≤10)的值域

7、换元法

通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。

例 求函数y=x+1-x 的值域。

8 数形结合法

其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。

例:已知点P (x.y )在圆x 2+y 2

=1上,

2

,(2),2

(,20, (1)

的取值范围 (2)y-2的取值范围

解:(1)令则是一条过(-2,0)的直线. d 为圆心到直线的距离,R 为半径)

(2)令y-2即也是直线d d

y

x x y

k y k x x R d x b y x b R +==+-≤=--=≤

例求函数y=)

2(2

-x +

)

8(2

+x 的值域。

例求函数y=

1362

+-x x

+ 542

++x x

的值域

注:求两距离之和时,要将函数 9 、不等式法

利用基本不等式a+b ≥2

ab ,a+b+c ≥3abc 3(a ,b ,c ∈

R

+

),求函数的最值,其题型特征解析式是

和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。

例:

3

3

(

)1

3

()32x (3-2x)(0

x x+3-2x =x x (3-2x) (应用公式abc 时,应注意使3者之和变成常数)

a b c +⋅⋅≤=++≤ 倒数法

有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况

例 求函数y=

3

2

++x x 的值域

多种方法综合运用

总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错

误,与到手的满分失之交臂

(

)

如:,求f

x e x f x x +=+1().

13. 反函数存在的条件是什么?

2

(0)113322x =x (应用公式a+b+c 者的乘积变成常数)

x x

x x +

>+

+≥=≥

相关文档
最新文档