株北牵引变电所系统主接线图

株北牵引变电所系统主接线图
株北牵引变电所系统主接线图

预留机务段下行到达场上行出发场渌口下行渌口上行株洲北开闭所湘潭上行湘潭下行

JDZ-10型电压互感器

JDZ 接线方式有三种

简介:JDZ 型电压互感器为单相环氧树脂浇注户内双线圈电压互感器。适用于交流50HZ 的电力系统中作电压、电能测量及继电保护用。

电流互感器在线路中常见的几种连接方式

电流互感器在线路中有四种常用的接法分别为一相式接线、两线式V形接线、两相电流差接线、三相星形接线四种

一相式接线两相V形接线

两相电流差式接线三相星形接线

LAJ-10Q 型电流互感器

电流互感器各字母的含义

第一位字母:L ——电流互感器 第二位字母:M ——母线式(穿心式);Q ——线圈式;Y ——低压式;D ——单匝式;F ——多匝式;A ——穿墙式;R ——装入式;C ——瓷箱式 第三位字母:K ——塑料外壳式;Z ——浇注式;W ——户外式;G ——改进型;C ——瓷绝缘;P ——中频 第四位字母:B ——过流保护;D ——差动保护;J ——接地保护或加大容量;S ——速饱和;Q ——加强型 第五位字母:设计序号

第六位字母:额定电压(kV ) 第七位字母:额定电流(A )

倒置式电流互感器

立U 型电容型电流互感器

1—一次绕组;

2—电容屏;

3—二次绕组及铁芯;

4—末屏

铝罩壳 一次接线

外壳

吊攀

绝缘子

铁芯 套管

互感器的试验项目

(1)二次绕组的直流电阻测量

(2)绕组及末屏的绝缘电阻测量

(3)极性检查

(4)变比检查

(5)励磁特性曲线

(6)主绝缘及末屏对地的tgδ及电容量测量

(7)交流耐压试验

(8)局部放电测试

1试验开始之前检查并记录试品的状态,有影响试验进行的异常状态时要研究、并向有关人员请示调整试验项目。

2详细记录试品的铭牌参数。

3试验后要将试品的各种接线、末屏、盖板等恢复。

4应根据交接或预试等不同的情况依据相关规程确定本次试验所需进行的试验项目和程序。

5一般应先进行低电压试验再进行高电压试验、应在绝缘电阻测量之后再进行介损及电容量测量,这两项试验数据正常的情况下方可进行交流耐压试验和局部放电测试;交流耐压试验后还应重复介损/电容量测量,以判断耐压试验前后试品的绝缘有无变化

电流互感器绝缘试验推荐程序

一、二次绕组的直流电阻测量

使用仪器

一般使用双臂直流电阻电桥,个别参数型号的二次绕组的直流电阻超过

10Ω,则使用单臂直流电阻电桥。

试验结果判断依据

与出厂值或初始值比较应无明显差别。

注意事项

试验时应记录环境温

二、绕组及末屏的绝缘电阻测量

使用仪器

2500V绝缘电阻测量仪(又称绝缘兆欧表,含绝缘摇表)

测量要求

测一次绕组(主绝缘)、各二次绕组、末屏。测量时非被试绕组(或末屏)、外壳应接地。500kV CT有二个一次绕组时,尚应测量一次绕组间的绝缘电阻。试验结果判断依据

绕组绝缘电阻不应低于出厂值或初始值的60%。电容型CT的末屏对地的绝阻一般不低于1000M 。

注意事项

试验时应记录环境湿度。测量二次绕组绝阻时非被试绕组及端子应接地,时间应持续60s,以替代二次绕组交流耐压试验。

三、极性检查

使用仪器

电池、指针式直流毫伏表(或指针式万用表直流毫伏档)

检查及判断方法

各二次绕组分别进行。

将指针式直流毫伏表的“+”、“-”输入端接在待检二次绕组的端子上,方向必须正确:“+”端接在s1,“-”端接在s2或s3上;将电池负极与CT一次绕组的L2端相连,从一次绕组L1端引一根电线,用它在电池正极进行突然连通动作,此时指针式直流毫伏表的指针应随之摆动,若向正方向摆动则表明被检二次绕组为“减极性”,极性正确。反之则极性不正确。

注意事项

接线本身的正负方向必需正确;检查时应先将毫伏表放在直流毫伏的一个较大档位,根据指针摆动的幅度对档位进行调整,使得即能观察到明确的摆动又不超量程打表。电池连通后立即断开以防电池放电过量。

四、变比检查

方法一:测量电流比

使用仪器设备

调压器、升流器、测量用CT、交流电流表(二块)

检查方法

由调压器及升流器等构成升流回路,待检CT一次绕组串入升流回路;同时用测量用CT和交流电流表测量加在一次绕组的电流I1、用另一块交流电流表测量待检二次绕组的电流I2,计算I1/I2的值,判断是否与铭牌上该绕组的额定电流比(I1n/I2n)相符。

注意事项

各二次绕组及其各分接头分别进行检查。测量某个二次绕组时,其余所有二次绕组均应短路、不得开路。

注意根据待检CT的额定电流和升流器的升流能力选择量程合适的测量用CT和电流表。

方法二:测量电压比

使用仪器设备

调压器、交流电压表、交流毫伏表

检查方法

待检CT一次及所有二次绕组均开路,将调压器输出接至待检二次绕组端子,缓慢升压,同时用交流电压表测量所加二次绕组的电压U2、用交流毫伏表测量一次绕组的开路感应电压U1,计算U2/U1的值,判断是否与铭牌上该绕组的额定电流比(I1n/I2n)相符。

注意事项

各二次绕组及其各分接头分别进行检查。二次绕组所施加的电压不宜过高,防止CT铁心饱和。

五、励磁特性曲线

检查对象:

在继电保护有要求时对P级绕组进行

使用仪器设备:

调压器、交流电压表、交流电流表、毫安表(均为1级以上),有时需小型试验变压器及测量用PT。

试验方法:

各二次绕组分别进行;待检CT一次及所有二次绕组均开路,将调压器或试验变压器的电压输出高压端接至待检二次绕组的一端,待检二次绕组另一端通过电流表(或毫安表)接地、试验变压器的高压尾接地,接好测量用PT、电压表,缓慢升压,同时读出并记录各测量点的电压、电流值。

结果判别:

与同类型CT励磁特性曲线、制造厂的特性曲线以及自身的历史数据比较,应无明显差异。

注意事项:

试验时CT一次及所有二次绕组均开路;试验前先去磁,然后将电压逐渐升至励磁特性曲线的饱和点即可停止,如果该绕组励磁特性的饱和电压高于2kV,则现场试验时所施加的电压一般应在2kV截止。试验时记录点一般不应少于5

个记录点。

六、主绝缘及末屏对地的tg 及电容量测量

使用仪器

升压装置、电容/介损电桥(或自动测量仪)及标准电容器(有的自动介损测量仪内置10kV标准电容器和升压装置);

现场用测量仪应选择具有较好抗干扰能力的型号,并采用倒相、移相等抗干扰措施。

测量方法

测量电容型CT的主绝缘时,二次绕组、外壳等应接地,末屏(或专用测量端子)接测量仪信号端子,采用正接线测量,测量电压10kV;无专用测量端子,无法进行正接线测量则用反接线。

当末屏对地绝阻低于1000MΩ时应测量末屏对地的tgδ,测量电压2kV。

注意事项

试验时应记录环境温度、湿度。拆末屏接地线时要注意不要转动末屏结构;测量完成后恢复末屏接地及二次绕组各端子的正确连接状态,避免运行中CT二次绕组及末屏开路。

七、交流耐压试验

使用仪器

高电压试验变压器及测量装置(电压测量总不确定度±≤3%)

试验方法及试验结果判断依据:

一般采用50Hz交流耐压60s。应无内外绝缘闪络或击穿,一次绕组交流耐压值根据相应规程(见表2),二次绕组之间及对地交流耐压2kV(可用2500V 兆欧表代替)。全部更换绕组绝缘后应按出厂值进行耐压。对于110kV以上高电压等级的CT的主绝缘现场交接试验时,可随所连断路器进行变频(一般30~300Hz)耐压试验。

注意事项

试验时应记录环境湿度,相对湿度超过75%时不应进行本试验;

升压设备的容量应足够,试验前应确认升压等设备功能正常;

充油设备试验前应保证被试设备有足够的静置时间:500kV设备静置时间大于72h,220kV设备静置时间大于48h,110kV及以下设备静置时间大于24h。

耐压试验后宜重复进行局部放电测试、介损/电容量测量。

八、局部放电测试

使用仪器

无局放高电压试验变压器及测量装置(电压测量总不确定度±≤3%)、局部放电测量仪。

试验方法

局部放电试验可结合耐压试验进行,即在耐压60s后不将电压回零,直接将电压降至局放测量电压停留30s进行局放测量;如果单独进行局放试验,则先将电压升至预加电压,停留10s后,将电压降至局放测量电压停留30s进行局放测量。

局部放电预加电压、测量电压及局放量限值查表,必须正确地应用数据。区分不同的CT。

注意事项

试验时应记录环境湿度,相对湿度超过75%时不应进行本试验;

升压设备的容量应足够,试验前应确认高压升压等设备功能正常;

所用测量仪器、仪表在检定有效期内,局部放电测试仪及校准方波发生器应定期进行性能校核。

试验时CT一次绕组短接并接至试验变压器高压(采取适当的均压、屏蔽措施及扩径导线),二次绕组全部短接并接地或通过局放测量阻抗接地,末屏应通过局放测量阻抗可靠接地。

充油设备试验前也应保证试品足够的静置时间(同耐压)。

安全措施

1.为保证人身和设备安全,应严格遵守安全规程DL408-91《电业安全工作规程(发电厂和变电所电气部分)》中有关规定;

2.在进行绝缘电阻测量后应对试品放电;

3.在进行主绝缘及电容型套管末屏对地的tg 及电容量测量时应注意高压测试线对地绝缘问题;

4.进行交流耐压试验和局部放电测试等高电压试验时,要求必须在试验设备及被试品周围设围栏并有专人监护,负责升压的人要随时注意周围的情况,一旦发现异常应立刻断开电源停止试验,查明原因并排除后方可继续试验。

电流互感器试验报告电试-----04

工程名称:装置地点:试验日期:年月日

主回路名称:盘号:温度:℃湿度: %RH

高压三相四线有功电能表经电压互感器和电流互感器的接线

高压三相四线有功电能表经电压互感器和电流互感器的接线适用于110KV及以上电网(中性点有效接地电网)。

高压三相三线有功电能表经电压互感器和电流互感器的接线适用于10KV、35KV 电网(中性点非有效接地电网)。

低压三相四线有功电能表经电流互感器接线适用于计量低压大电流(电流大于50A)负荷。

上述三种正确接线

(1)高压三相四线有功电能表经电流互感器、电压互感器接线需接10根线:六根电流线、四根电压线。

(2)高压三相三线有功电能表经电流互感器、电压互感器接线需接7根线:四根电流线、三根电压线。

(3)低压三相四线有功电能表经电流互感器接线需接10根线:六根电流线、四根电压线。

牵引变电所的设计

第1章概论 1.1 课题研究的目的意义 牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 1.2 电气化铁路的国内外现状 变电所是对电能的电压和电流进行变换、集中和分配的场所。在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。现阶段我过主要是使用常规变电所。常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。这种模式有许多不足之处。我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。 国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。 1.3 牵引变电所 1.3.1 电力牵引的电流制 电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。 (1) 直流制 即牵引网供电电流为直流的电力牵引电流制。电力系统将三相交流电送到牵引变

牵引变电所接线方式

1WL 2WL 1WL 2WL 9QS 10QS 1QS 2QS 1QS 2QS 1QF 2QF 5QS 3QF 6QS 3QS 4QS 3QS 5QS 4QS 7QS 3QF 6QS 8QS T-1 T-2 T-1 T-2 1QF 2QF (a ) (b ) 图2-2 桥式接线 (a) 内桥带外跨 条接线 ;(b ) 外桥接线 两回 进线 (电源引入线)分别经断路器接入两台主变压器,若在两条电源引入线之间用带断路器的横向母线(汇流母线)将它们连接起来,即构成桥式接线。带断路器的横向母线通常称为连接桥。当桥式接线的两回电源引入线接入电力系统的环形电网中时,断路器经常处于闭合状态以便系统功率穿越。 根据连接桥的所在的位置不同,桥式接线又分为外桥式接线和内桥式接线。 (1)内桥带外跨条接线 如图2-2(a)所示,连接桥若设置在靠变压器侧,则构成了内桥式接线。为了提高内桥接线的供电的可靠性和运行的灵活性,一般在进线断路器外侧再设置一条带隔离开关的横向母线(称为外跨条)。内桥带外跨条接线在两条电源进线回路上均有断路器,任一电源线路故障不影响向牵引变电所的供电。 主接线正常运行时,如电源1WL 供电,2WL 备用;主变压器T-1运行,T-2备用。此时,除隔离开关9QS 、10QS 、8QS 断开,其他开关均闭合,使系统功率从桥断路器通过,如图2-2(a)中的箭头所指的方向所示。电源1WL 经1QS 、1QF 、3QS 、7QS 将电能传递给T-1,另一回电路冷备用。电源1WL 经1QS 、1QF 、3QS 、5QS 、3QF 、6QF 、4QS 、2QF 、2QS 将电能传递给周边变电所,完成系统功率穿越。 内桥带外跨条式主接线在两条电源进线上均设有断路器,如断路器1QF 、2QF 。若电源1WL 故障,需要退出检修时,反映该故障的继电器保护装置动作,断路器1QF 断开,电源1WL 退出运行,同时,电源2WL 测的电源断开点自动闭合,2WL 投入运行。若只是一般的倒换电源1WL ,只需断开1QF ,闭合电源2WL 测的

110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊 一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置 二次设备:综合自动化、. 、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等 其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等 好像有点说多了,也可能有少点的,存在差异吧 35KV高压开关柜上一般都设有哪些保护各作用是什么? 过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。 2.定时限电流保护:用于下一电压级别的短路保护。 3.反时限电流保护:作用与2相同,但灵敏度比2高。 4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。 5.纵联差动电流保护:专用于变压器内部故障保护。 6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。 零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。 2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。可以选择作用于跳闸或发信。 过电压保护:1.雷电过电压保护。 2.操作过电压保护。1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。

3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。 低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。俗称躲晃电。 非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。选择跳闸。 2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。 3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。 以上都是针对一次侧设计的保护。 二次侧的保护:1.直流失压保护,用于变电所直流设备故障时防止设备在保护失灵状况下运行。一般设备通常选择发信报警。重要设备选择跳闸。 2.临柜直流消失保护,用于监测相邻高压柜的直流电压状态,选择发信报警。 随着技术的发展,继电保护的内容越来越多,供人们在不同情况下选用。 目前使用的微机型综合保护器内都设计了各种保护功能,可以通过控制字的设定很方便地选择所需要的保护功能组合。

主接线图

V V GN6-10T/200LZZJB6-10Q 160/10A SN10-10I/630GN6-10T/200G G -1A (F )-07电缆进线 YJL22-10000-3×95LZZJB6-10Q 160/10A GN6-10T/200RN2-10/0.5JDZ-10G G -1A (J )-04 GN6-10T/200 JDZJ-10 GN6-10T/200RN2-10/0.5FS4-10G G -1A (F )-54 N o .101 N o .102Y 0Y 0 LMZJ1-0.52500/5A HD13-3000/30 HD13-3000/30DW15-2500S9-1250/10S9-1250/10 LMZJ1-0.52500/5A HD13-3000/30HD13-3000/30 DW15-2500HNF-50HD13-3000/30G DW15-2500 PGL-2-06A GN6-10T/200 GN6-10T/200 G G -1A (F )-07 LZZJB6-10Q 160/10A SN10-10I/630 GGJ1-01 GN6-10T/200LMZJ1-0.52500/5A RN2-10/0.5BWF10.5-100-1 BWF10.5-100-1 BWF10.5-40-1 P G L -2-06A 400A 1500A 400A 200A 200A 100A 100A 1500A 400A D Z X 10-400 400A D Z X 10-1250D Z X 10-400 D Z X 10-200 D Z X 10-200 D Z X 10-100 D Z X 10-100 D Z X 10-1250D Z X 10-400D Z X 10-400 400/51250/5300/5200/5200/560/5 60/5 1250/5300/5 400/5 LMY-3(40×4) YJL22-10000-3×95 LMY-3(100×8) BV-380-4×185 B V -3×150 B V -3×185 B V -3×185B V -3×150 B V -3×150 B V -3×150 B V -3×150 B V -3×150 B V -3×150 (备用) (备用)B V -3×150开关柜编号开关柜型号设备组编号计算电流/A PGL2-30 PGL2-30 PGL2-25 PGL2-25PGL2-26PGL2-26N o .103N o .104 N o .105同N o .104 N o .201 No.202 NO.204NO.205NO.206NO.207NO.208NO.209123456789 101112 线路去向#1#3#5#6#7#8#10#2备用 #4#91001.2 238.9 113.8 116.9 22.8 9.1 1083.1 -- 227.5 397.1 384.3 备用 --

牵引变电所电气主接线的设计

指导教师评语修改(40) 年月

1题目:牵引变电所电气主接线的设计 1.1选题背景 某牵引变电所位于大型编组站内,向两条复线电气化铁路干线的三个方向馈电区段供电,已知列车正常情况的计算容量为12000kV A(三相变压器),并以10kV 电压给车站电力照明机务段等地区负荷供电,容量计算为3850kV A。各电压侧馈出线数目及负荷情况如下: R 10kV回路(2路备):供电电源由系统区域变电所以双回路110KV输送线供电。算;各种方案主接线的技术经济性比较。) 这类牵引变电所的电源线路,按保证牵引符合供电的需求一般有两回,主要向牵引负荷和地区负荷供电,桥型结线的中间牵引变电所还有穿越功率通过母线,并向邻近牵引变电所或地区变电所供电。由题意知,本牵引变电所担负着重要的牵引负荷供电任务(一级负荷)、馈线数目多、影响范围广,应保证安全可靠持续性的供电。10千伏地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其自动装置等一部分为一级负荷、其他包括机务段在内的自用电和地区三相负载等均为二级负荷,也应满足有足够安全可靠供电的要求。本变电所为终端变电所,一次侧无通过功率。 2方案论证 因没有校核容量,只考虑计算容量来选择变压器,牵引变压器计算容量为12000kV A,故选择容量为12500kV A的变压器,而地区变压器选择6300kV A变压器。 根据原始资料和各种负荷对供电可靠性要求,主变压器容量与台数的选择,可能有以下两种方案:

110kV母线,(110千伏变压器最小容量为6300kV A)。 过15%,采用电压为110/25/10.5kV A,结线为Y//两台三绕组变压器同时3主接线设计 (2)可靠性:根据变电所的性质和在系统中的地位和作用不同,对变电所的主接线可靠性提出不同的要求。主接线的可靠性是接线方式和一次、二次设备可靠性的综合。对主接线可以作定量计算,但需要各种设备的可靠性指标、各级线路、母线故障率等原始数据。通常采用定性分析来比较各种接线的可靠性。 (3)经济性:经济性是在满足接线可靠性、灵活性要求的前提下,尽可能地减少与接线方式有关的投资。 (2)变电所在电力系统中的地位和作用:电力系统中的变电所有系统枢纽变电所、地区重要变电所和一般变电所三种类型。一般系统枢纽变电所汇集多个大电源,进行系统功率交换和以中压供电,电压为330—500kV;地区重要变电所,电压为220—330kV;一般变电所多为终端和分支变电所,电压为110kV,但也有220kV。 (3)负荷大小和重要性:对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电。 (4)系统备用容量大小:装有两台及以上主变压器的变电所,其中一台事故断

牵引变电所电气主接线设计教学教材

课程设计报告书 所属课程名称供变电技术课程设计 题目牵引变电所电气主接线设计分院 专业班级 学号 20 0210470 学生姓名 指导教师 20 年月日

课程设计任务书 专业电气工程及其自动化班级姓名 一、课程设计(论文)题目牵引变电所电气主接线设计 二、课程设计(论文)工作:自20年月日起至年月 1 日止。 三、课程设计(论文)的目的及内容要求: 1.设计课题:牵引变电所电气主接线设计 2.设计目的: ①通过该设计,使学生初步掌握交流电气化铁道牵引变电所电气主接线的设计步骤和方法; ②熟悉有关设计规范和设计手册的使用; ③基本掌握变电所主接线图的绘制方法; ④锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。 3.设计要求:

①按给定供电系统和给定条件,确定牵引变电所电气主接线。 ②选择牵引变电所电气主接线中的主要设备。如:母线、绝缘子、隔离开关、熔断器、断路器、互感器等。选择时应优先考虑采用国内经鉴定的新产品、新技术。 ③提交详细的课程设计说明书和牵引变电所电气主接线图。 学生签名:( ) 20年月日

课程设计(论文)评阅意见 评阅人职称 20 年月日

目录 第一章牵引变电所主接线设计原则及要求 (6) 1.1 概述 (6) 1.2 电气主接线基本要求 (6) 1.3电气主接线设计应遵循的主要原则与步骤 (7) 第二章牵引变电所电气主接线图设计说明 (8) 第三章短路计算 (9) 3.1短路点的选取 (9) 3.2短路计算 (9) 第四章设备及选型 (12) 4.1硬母线的选取 (12) 4.2支柱绝缘子和穿墙导管的选取 (14) 4.3高压断路器的选取 (16) 4.4高压熔断器的选取 (17) 4.5隔离开关的选取 (18) 4.6电压互感器的选取 (19) 4.7电流互感器的选取 (20) 4.8避雷器的选取 (21) 第五章参考文献 (22)

电气化铁路牵引变电所的主接线与变压器设计

电气化铁路牵引变电所的主接线与变压器设计 牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 标签:牵引变电所;铁路;牵引变压器 1 牵引变电所主结线的选择 牵引变电气主接线是变电所设计的首要部分,也是构成电力系统的重要环节。主接线的确定与电力系统整体及变电所本身运行的可靠性,灵活性和经济性是密切相关的,而且对电气设备的选择,配电装置布置,继电保护和控制方式的拟定有较大影响。因此必须合理的确定主接线。 电气主结线应满足的基本要求 ①首先保证电力牵引负荷,运输用动力,信号负荷安全,可靠供电的需要和电能质量。 ②具有必要的运行灵活性,使检修维护安全方便。 ③应有较好的经济性,力求减小投资和运行费用。 ④应力求接线简捷明了,并有发展和扩建的余地。 1.1 高压侧电气主结线的基本形式 1.1.1 单母线接线 如图1-1所示,单母线接线的的特点是整个的配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守以下操作顺序:对馈线送电时必须先和1QS和2QS在投入1QF;如欲停止对其供电必须先断开1QF然后断开1QS和2QS。 单母线结线的特点是:(1)结线简单、设备少、配电装置费用低、经济性好并能满足一定的可靠性。(2)每回路断路器切断负荷电流和故障电流。检修任一回路及其断路器时,仅该回路停电,其他回路不受影响。(3)检修母线和与母线相连的隔离开关时,将造成全部停电。母线发生故障时,将是全部电源断开,待修复后才能恢复供电。

牵引变电所电气主接线设计

精品文档 课程设计报告书 所属课程名称供变电技术课程设计 题目牵引变电所电气主接线设计分院 专业班级 学号 20 0210470 学生姓名 指导教师 20 年月日

课程设计任务书 专业电气工程及其自动化班级姓名 一、课程设计(论文)题目牵引变电所电气主接线设计 二、课程设计(论文)工作:自20年月日起至年月 1 日止。 三、课程设计(论文)的目的及内容要求: 1.设计课题:牵引变电所电气主接线设计 2.设计目的: ①通过该设计,使学生初步掌握交流电气化铁道牵引变电所电气主接线的设计步骤和方法; ②熟悉有关设计规范和设计手册的使用; ③基本掌握变电所主接线图的绘制方法; ④锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。 3.设计要求:

①按给定供电系统和给定条件,确定牵引变电所电气主接线。 ②选择牵引变电所电气主接线中的主要设备。如:母线、绝缘子、隔离开关、熔断器、断路器、互感器等。选择时应优先考虑采用国内经鉴定的新产品、新技术。 ③提交详细的课程设计说明书和牵引变电所电气主接线图。 学生签名: ( ) 20 年月日

课程设计(论文)评阅意见 评阅人职称 20 年月日

目录 第一章牵引变电所主接线设计原则及要求 (6) 1.1 概述 (6) 1.2 电气主接线基本要求 (6) 1.3 电气主接线设计应遵循的主要原则与步骤 (7) 第二章牵引变电所电气主接线图设计说明 (8) 第三章短路计算 (9) 3.1短路点的选取 (9) 3.2短路计算 (9) 第四章设备及选型 (12) 4.1硬母线的选取 (12) 4.2支柱绝缘子和穿墙导管的选取 (14) 4.3高压断路器的选取 (16) 4.4高压熔断器的选取 (17) 4.5隔离开关的选取 (18) 4.6电压互感器的选取 (19) 4.7电流互感器的选取 (20) 4.8避雷器的选取 (21) 第五章参考文献 (22)

高速铁路牵引变电所电气主接线的设计课程设计

高速铁路牵引变电所电气主接线的设计 摘要:牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。 1.2 电气化铁路的国内外现状 变电所是对电能的电压和电流进行变换、集中和分配的场所。在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。现阶段我过主要是使用常规变电所。常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。这种模式有许多不足之处。我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。 国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。 1.3 牵引变电所 1.3.1 电力牵引的电流制 电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。 (1) 直流制 即牵引网供电电流为直流的电力牵引电流制。电力系统将三相交流电送到牵引变电所一次侧,经过牵引变电所降压并整流变成直流电,再通过牵引网供给电力机车使用。直流制发展最早,目前有些国家的电气化铁路仍在应用。我国仅工矿、城市电车和地下铁道采用。牵引网电压有1200V,1500V,3000V和600V,750V等,后两种分别用于城市电车、地下铁道。直流制存在

牵引变电所的设计原则及其要求

目录 第1章牵引变电所设计基础 (1) 1.1 概述 (1) 1.2 电气主接线设计的基本要求 (1) 1.3 电气主接线的设计依据 (2) 1.4 主变压器型式、台数及容量的选择 (3) 第2章 F所牵引变电所电气主接线图设计说明 (3) 第3章短路计算 (4) 第4章高压电气设备选择及校验 (5) 4.1 高压电气设备选择的原则 (5) 4.2 高压电气设备的选择方法及校验 (7) 4.2.1 高压断路器和隔离开关的选择 (11) 4.2.2 高压熔断器的选择和校验 (13) 4.2.3 电流互感器的选择和校验 (14) 4.2.4 电压互感器 (14) 4.2.5 支柱绝缘子及穿墙套管的选择和校验 (15) 4.2.6 母线的选择和校验 (16) 4.2.7 限流电抗器选择 (16) 4.2.8 避雷器的选择 (17) 后记 (19) 参考资料 (20) 附图 (21)

第1章牵引变电所设计原则及要求 1.1概述 变电所电气主接线设计是依据变电所的最高电压等级和变电所的性质,选择出一种与变电所在系统中的地位和作用相适应的接线方式。变电所的电气主接线是电力系统接线的重要组成部分,它表明变电所内的变压器、各电压等级的线路、无功补偿设备以最优化的接线方式与电力系统连接,同时也表明在变电所内各种电气设备之间的连接方式。一个变电所的电气主接线包括高压侧、中压侧、低压侧以及变压器的接线。因各侧所接的系统情况不同,进出线回路数不同,其接线方式也不同。电气主结线的基本结线形式有但母线结线,双母线结线,桥形结线和简单分支结线。牵引负荷侧电气结线特点主要有:1.每路馈线设有备用断路器的单母线结线;2.具有公共备用断路器的结线;3.但母线分段带旁路母线结线。 1.2 电气主接线基本要求 电气主接线应满足可靠性、经济性和灵活性三项基本要求: 1、灵活性 主接线的灵活性主要表现在正常运行或故障情况下都能迅速改变接线方式,具体情况如下: ①满足调度正常操作灵活的要求,调度员根据系统正常运行的需要,能方便、 灵活地切除或投入线路、变压器或无功补偿装置,使电力系统处于最经济、最安全的运行状态。 ②满足输电线路、变压器、开关设备停电检修或设备更换方便灵活的要求。 设备停电检修引起的操作,包括本站内的设备检修和系统相关的厂、站设备检修引起的站内的操作是否方便灵活。 ③满足接线过渡的灵活性。一般变电站都是分期建设的,从初期接线到最终 接线的形成,中间要经过多次扩建。主接线设计要考虑接线过渡过程中停电范围最少,停电时间最短,一次、二次设备接线的改动最少,设备的搬迁最少或不进行设备搬迁。 ④满足处理事故的灵活性。变电所内部或系统发生故障后,能迅速地隔离故 障部分,尽快恢复供电操作的方便和灵活性,保障电网的安全稳定。

牵引变电所G电气主接线的课程设计报告

牵引供电课程设计报告书 题 目 牵引变电所G 电气主接线的设计 院/系(部) 电气工程系 班 级 学 号 姓 名 指导教师 ※ ※※※※※※※※ ※※ ※※ ※ ※ ※※※※※※※※※ 2010级 牵引供电课程设计

完成时间

摘要 牵引供电系统是电气化铁路的核心部分。本次设计的课题是牵引变电所G电气主接线的设计,其设计的意义在于为电气化铁路设计合理实用的牵引供电技术,主要任务是牵引变电所主接线设计、选择牵引变压器、断路器、隔离开关和电压、电流互感器等,进而确定电气主接线。在认真分析题目的基础上,按照一定的顺序进行设计。首先,分析比较几种牵引变压器的接线形式,根据要求选出了一种最佳的接线形式,即YN,d11接线形式。然后,根据给定的数据并考虑一定的裕量来计算牵引变压器的安装容量。最后,计算高压和低压母线的短路电流,通过短路电流来选择相应的一次设备并进行校验,最终基本完成了牵引变电所电气主接线,实现了牵引供电系统的基本要求。 关键字:牵引变压器一次设备

目录 第1章设计目的和任务要求 (1) 1.1 设计目的 (1) 1.2 任务要求 (1) 1.3 设计的依据 (1) 1.4 任务分析 (3) 第2章主接线方案的设计 (3) 2.1 牵引变电所110kV侧主接线 (4) 2.1.1 主接线的确定 (6) 2.1.2 牵引变电所的倒闸操作 (6) 2.2 牵引27.5kV侧电气主接线 (7) 2.2.1 电气主接线特点 (7) 2.2.2 27.5kV侧馈线接线方式 (7) 2.2.3 27.5kV侧母线接线方式 (9) 第3章牵引变压器选择 (9) 3.1 牵引变压器的备用方式 (9) 3.2 牵引变压器的接线型式 (9)

牵引变电所D电气主接线图设计

年 牵引供电课程设计报告书 题 目 牵引变电所D 电气主接线图设计 院/系(部) 电气工程系 班 级 学 号 姓 名 指导教师 完成时间 2013年12月20日 ※ ※※※※※※※※ ※ ※ ※ ※ ※※ ※※※※※ ※※※※ 2010级 牵引供电课程设计

摘要 牵引变电所的电气主接线,是指由主变压器、高压电器和设备等各种电器元件和连接导线所组成的接受和分配电能的电路。用规定的设备,文字符号和图形代表上述电气设备、导线,并根据他们的作用和运行操作顺序,按一定要求连接的单线或三线接线图,称为电气主接线图。 牵引变电所是对电压和电流进行变换、集中和分配的场所。变电所的好与坏直接关系到电气化铁道的发展,决定着我国进行的输变电建设和城乡电网的建设与改造。 本次设计是通过对牵引变电所110kV主接线和馈线侧主接线的分析,进一步确定牵引变电所的主接线方案,根据提供的数据对牵引变电所的核心元件牵引变压器容量的选择,对牵引变电所进行短路计算,根据短路计算的结果选择变电所中的其他电器元件。 关键词:牵引变电所牵引变压器容量计算

目录 第1章课程设计的目的和任务要求 (1) 1.1 设计目的 (1) 1.2 任务要求 (1) 1.3设计依据 (1) 1.4问题分析及解决方案 (2) 第2章牵引变压器的选择 (3) 2.1 牵引变压器联结分析 (3) 2.1.1 单相联结牵引变电所 (3) 2.1.2 单相V,v牵引变电所 (3) 2.1.3 三相V,v联结牵引变电所 (3) 2.1.4 三相联结牵引变压器 (4) 2.2变压器计算容量 (4) 2.3变压器校核容量 (4) 2.4变压器安装容量及型号选择 (5) 2.5变压器电压、电能损失计算 (5) 2.5.1 变压器电压损失计算 (5) 2.5.2 变压器电能损失计算 (6) 第3章主接线图设计 (7) 3.1线路分析 (7) 3.1.1单母线接线 (7) 3.1.2单母线分段接线 (7) 3.1.3 采用桥形接线 (8) 3.2高压侧主接线设计 (9) 3.3低压侧主接线设计 (10) 3.3.1馈线断路器100%备用接线 (10) 3.3.2馈线断路器50%备用接线 (10) 3.3.3带旁路母线和旁路断路器接线 (11) 第4章短路计算 (11) 4.1 短路点的选取 (11) 4.2 短路计算 (11) 4.2.1 最大运行方式下短路计算 (12) 4.2.2 最小运行方式下短路计算 (13)

电力系统主接线

第1章前言 1.1电气主接线系统设计的意义 电气主接线主要指发电厂、变电所及电力系统中传送电能的通路, 这些通路中有发电机、变压器、母线、断路器、隔离开关、电抗器、线路等设备。它们的连接方式, 对供电可靠、运行灵活、检修方便以及经济合理等起着决定性的作用,它反映出电厂的整个供电系统全貌和其所选用的电气设备、元件型号规格和数量以及它们之间的相互关系。它不仅是初步设计审查的重要内容之一, 同时也是将来电气值班运行人员进行各种操作的重要依据。电气主接线的设计是否合理, 将直接影响到电厂基本建设投资效益和今后的安全及可靠运行,同时也是做好发电厂电气设计的关键。同时,电气主接线的设计也是变电所电气设计的主体。它与电力系统、电厂功能参数、基本原始资料以及电厂的运行可靠性、经济性的要求等密切相关,并对电器选择和布置,继电保护和控制方式等都有较大的影响。因此,主接线的设计显得尤为重要。 针对发电厂而言,电气主接线已经成为电气设计最为关键的环节,关系着电能的安全输送,关系着居民用电的可靠保障和自身运行的安全性、稳定性。合理的设计能够有效节省基建投资,方便以后的操作和检修,减少机组因电气原因造成停机等。本文依托某2×30MW公用热电厂进行设计主接线,通过技术经济比较,达到技术先进、经济合理、安全适用的目的。 1.2厂用电系统设计的意义 厂用电系统是火力发电厂的重要组成部分,厂用电系统的任何故障都会影响正常生产,严重的会直接造成停产。火力发电厂有大量的辅机设备,大部分辅机

均由电动机拖动,厂用电量巨大,一般热电厂的厂用电率为8%~10%甚至更高,且对电源的可靠性要求高,一般情况不允许突然中断。 厂用电供电的可靠性和经济性不仅与发电厂的运行操作、维护检修和设备质量等有着密切的关系,其很大程度上取决于厂用电接线设计是否正确、合理,厂用电的电压等级和厂用电源的引接方式是否合适,备用电源与工作电源切换是否灵活可靠等。由此可见,厂用电系统的设计直接关系到整个电厂以后运行的安全、可靠性,它的确定就代表着电厂基本轮廓的确定,基本组成设备的确定,投资成本的确定,因此合理的厂用电接线,适当的电压等级,对于保证机组的安全连续满发、降低厂用电率、方便操作和维护、节约投资、缩短建设工期、控制造价等有着重要的意义。 1.3 本文的主要工作 1.3.1 学习关于电气主接线和厂用电接线的设计方法和流程。 1.3.2 根据各设计规范选择各主要设备、导体的型式,并了解校核方法。 1.3.3 通过设计和探讨,加深对所学知识的掌握,为以后运用于实践中打好基础。 第2章电气主接线设计要求及方案确定 2.1电气主接线设计的要求 发电厂的主接线设计要求非常严格,在设计时不仅要按照国家相关的法律法规严格执行外,其经济性、合理性、可靠性等都直接关系到以后的运行安全和经济效益。所以,对发电厂电气主接线设计一般应满足以下几点:

牵引变电所主接线设计论

北京交通大学 毕业设计(论文)任务书 本任务书下达给:2007级电气工程及自动化专业学生 设计(论文)题目:牵引变电所主接线设计 一、设计(论文)内容: 二、基本要求: 三、重点研究的问题: 四、主要技术指标: 五、其他要说明的问题 下达任务日期:年月日 要求完成日期:年月日 答辩日期:年月日 指导老师:

开题报告 题目:牵引变电所电气主接线设计 报告人:电气工程及其自动化李倩 2009年8月25日 一、文献综述 随着经济的发展,工业水平的进步,人民生活水平的逐渐提高,电力系统在整个行业中占的比例逐渐增大。现代电力系统是一个巨大的严密的整体,各类发电厂、变电站分工完成整个电力系统的发电、变电和配电的任务,电力系统是国民经济的主要能源部门,而变电站的设计是电力工业建设中必不可少的一个项目。 由于变电站的设计内容多、范围广,逻辑性强,不同电压等级、不同类型、不同性质负荷的变电站设计侧重点不一样的,设计过程中要根据变电所的规模和形式,具体问题具体分析。 电气主接线是牵引变电所设计的首要部分,也是构成电气化电力系统的主要环节,它反映了变电所基本结构和功能。在运行中,它表明本变电所与高压电网、馈电线的连接方式以及相关一次设备的运行方式,成为调度控制和设备实际操作的依据;同时,电气主接线对牵引供电和铁路电力供电系统运行的可能性、电能质量、经济性和操作灵活性起着决定性作用;在设计中,电气主接线对变电所电气设备选择、配电装置布置、继电保护方式及其配置与整定计算、自动装置和控制方式选择都有重大影响。 二、选题的目的、意义 随着铁路的高速建设和既有线路电气化的大面积改造,电气化铁路在国民经济中占有越来越重要的位置,牵引变电所是电气化系统的重要组成部分。电气主接线是发电厂、变电所、电力系统中传送电能的通路。主接线是发电厂、变电所电气部分的主体。变电所一次主接线直接决定着电力网的电压变换和电能分配;短路电流计算及设备选择校验保证了变电设备应用的安全稳定性及经济性。 主接线的设计是否正确、对供电可靠性、运行灵活、检修方便以及经济合理等起着决定性的作用。 三、研究方案

最新电气主接线讲义演示教学

第五章电气主接线讲义 第一节电气主接线概述 一、电气主系统与电气主接线图 (一)电气主接线 电气主接线是由多种电气设备通过连接线,按其功能要求组成的汇聚和分配电能的电路,也称电气一次接线或电气主系统。 (二)电气主接线图 用规定的设备文字和图形符号将各电气设备,按连接顺序排列,详细表示电气设备的组成和连接关系的接线图,称为电气主接线图。 电气主接线图一般画成单线图。 二、电气主接线中的电气设备和主接线方式 (一)电气主接线中的电气设备 电气主接线中的主要电气设备包括:电力变压器、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及各种无功补偿装置等。(二)主接线方式 常用的主接线方式有:单母线接线、单母线分段接线、单母线分段带旁路母线接线、双母线接线、双母线带旁路母线接线、双母线分段接线、双母线分段带旁路母线接线、内桥接线、外桥接线、一台半断路器接线、单元接线、和角形接线等。 三、电气主接线的基本要求 电气主接线的选择正确与否对电力系统的安全、经济运行,对电力系统的稳

定和调度的灵活性,以及对电气设备的选择,配电装置的布置,继电保护及控制方式的拟定等都有重大的影响。在选择电气主接线时,应满足下列基本要求。 1. 保证必要的供电可靠性和电能的质量; 2. 具有一定的运行灵活性; 3. 操作应尽可能简单、方便; 4. 应具有扩建的可能性; 5. 技术上先进,经济上合理。 第二节电气主接线的基本接线形式

一、单母线接线 (一)单母线接线的优点 简单、清晰、设备少、投资小、运行操作方便,有利于扩建和采用成套配电装置。 (二)单母线接线的主要缺点 母线或母线隔离开关检修时,连接在母线上的所有回路都将停止工作;当母线或母线隔离开关上发生短路故障,装设母差保护时,所有断路器都将自动断开,造成全部停电;检修任一电源或出线断路器时,该回路必须停电。 二、单母线分段接线 出线回路数增多时,可用断路器或隔离开关将母线分段,成为单母线分段接线,如图所示。根据电源的数目和功率,母线可分为2~3段。

牵引变电所I电气主接线设计

目录 第1章设计思路 (2) 1.1 设计的目的 (2) 1.2 设计的要求 (2) 1.3 设计的依据 (2) 1.4 设计方案 (3) 1.4.1 设计方案比较 (3) 1.4.2 备用的选择 (4) 第2章牵引变压器的选择 (5) 2.1 参数的定义 (5) 2.2 牵引变压器容量计算 (5) 2.3 中期变压器容量估算 (5) 2.4 牵引变压器的电压损失计算 (6) 第3章牵引变电所主接线设计 (7) 3.1主接线要求 (7) 3.2变电所110kV侧主接线设计 (8) 3.3变电所27.5kV侧主接线设计 (9) 第4章短路电流的计算 (9) 第5章设备的选择 (12) 5.1 110kV侧进线的选择 (12) 5.2 27.5kV侧母线的选择 (13) 5.3 开关设备的选择 (13) 5.3.1 110kV侧开关设备的选择 (13) 5.3.2 27.5kV侧开关设备的选择 (15) 5.4 电流互感器的选取 (16) 第6章继电保护拟定 (18) 6.1 继电保护的任务 (18) 6.2 继电保护的要求 (18) 6.3 继电保护配置 (19) 第7章并联无功补偿装置 (19) 第8章变电所防雷设计 (21) 第9章设计结论 (22) 参考文献 (23)

第1章设计思路 1.1 设计的目的 通过对牵引变电所I电气主接线的设计,可以初步掌握电气化铁道牵引变电所电气主接线的设计步骤和方法。基本掌握变电所主接线图的绘制方法,锻炼自己综合运用所学知识的能力,熟悉有关设计规范,将所学的理论知识与实际设计相结合,建立一个对牵引变电所的供电系统的概念模型,为今后进行工程设计奠定良好基础。 1.2 设计的要求 (1)确定该牵引变电所高压侧的电气主接线的形式,并分析其正常运行时的运行方式。 (2)确定牵引变压器的容量、台数及接线方式。 (3)确定牵引负荷侧电气主接线的形式。 (4)对变电所进行短路计算,并进行电气设备选择。 (5)设置合适的过电压保护装置、防雷装置以及提高接触网功率因数的装置。 (6)用CAD画出整个牵引变电所的电气主接线图。 1.3 设计的依据 包含有H、I两牵引变电所的供电系统示意图如图1所示。 图1 牵引供电系统示意图

110kv牵引变电所设计

110kv牵引变电所设计

课程设计报告 课程电气化铁道供电系统与设计 题目牵引变电所B主接线及变压器容量计算学院电气工程学院 年级专业电气工程及其自动化 班级学号 学生姓名 指导教师

1 概述 (1) 2 设计方案简述 (2) 3 牵引变压器容量计算 (2) 3.1牵引变压器容量的计算 (2) 3.1.1牵引变压器计算容量 (3) 3.1.2牵引变压器过负荷能力校验 (3) 3.2牵引变压器功率损耗计算 (3) 3.3牵引变电所电压不平衡度计算 (4) X(-) (4) 3.3.1计算电网最小运行方式下的负序电抗 s 3.3.2计算牵引变电所在紧密运行工况下注入110kV电网的负序电流 (4) 3.3.3构造归算到110kV的等值负序网络 (5) 3.3.4牵引变电所110kV母线电压不平衡度计算及校验 (5) 4 导线选择 (5) 4.1软母线选择 (5) 4.1.1室外110kV进线侧的母线选择 (6) 4.1.2室外27.5kV侧的母线选型及校验 (7) 4.1.3室外10kV馈线侧的母线选型及校验。 (8) 5 主接线选择 (8) 总结 (10) 附录一牵引变压器主要技术数据表 (11) 附录二牵引变电所B主接线图 (13) 参考文献 (14)

包含有A、B两牵引变电所的供电系统示意图如图1-1所示: L3 L2 L1 B A SYSTEM 1 SYSTEM 2 图1-1牵引供电系统示意图表1-1 设计基本数据

图1-1牵引变电所中的两台牵引变压器为一台工作,另一台备用。 电力系统1、2均为火电厂。其中,电力系统容量分别为250MV A 和200MV A 。选取基准容量j S 为200MV A ,在最大运行方式下,电力系统1、2的综合电抗标幺值分别为0.13和0.15;在最小运行方式下,电力系统的综合标幺值分别为0.15和0.17。 对每个牵引变电所而言,110kV 线路为一主一备。图1-1中,1L 、2L 、3L 长度为25km 、40km 、20km.线路平均正序电抗1X 为0.4Ω/km,平均零序电抗0X 为1.2Ω/km 。 2 设计方案简述 本课程设计较系统的阐明了牵引变电B 设计的基本方法和步骤。重点在于对牵引变压器的选择、牵引变压器的容量计算、运行技术指标的计算;牵引变电所电压不平衡度计算;电气主接线的设计;导线的选择。分章节进行阐述,经过多方面的校验,从经济实用的角度出发,力求设计出一套较优的方案。 3 牵引变压器容量计算 牵引变压器是牵引供电系统的重要设备,担负着将电力系统供给的110KV 或220KV 三相电源变换成适合电力机车使用的27.5KV 的单相电。由于牵引负荷具有极度不稳定、短路故障多、谐波含量大等特点,运行环境比一般电力负荷恶劣的多,因此要求牵引变压器过负荷和抗短路冲击的能力要强。本设计综合考虑这些因素,选择了三相YN /d11牵引变压器。 3.1牵引变压器容量的计算 变压器的容量大小关系到能否完成国家交给的运输任务并节约运营成本。容量过小会使牵引变压器长期过载,将造成其寿命缩短,甚至烧损;容量过大将使牵引变压器长期不能满载运行,从而造成其容量浪费,损耗增加,使运营费用增大。所以通过变压器容量的计算,能更好的选择一个安全经济的设计方案。

【精品】牵引变电所I电气主接线设计

目录 第1章设计思路........................................ 错误!未指定书签。 1.1设计的目的........................................ 错误!未指定书签。 1.2设计的要求........................................ 错误!未指定书签。1。3设计的依据....................................... 错误!未指定书签。 1.4设计方案.......................................... 错误!未指定书签。 1.4。1设计方案比较................................... 错误!未指定书签。 1.4。2备用的选择..................................... 错误!未指定书签。第2章牵引变压器的选择................................ 错误!未指定书签。2。1参数的定义....................................... 错误!未指定书签。2。2牵引变压器容量计算............................... 错误!未指定书签。 2.3中期变压器容量估算................................ 错误!未指定书签。

2。4牵引变压器的电压损失计算......................... 错误!未指定书签。第3章牵引变电所主接线设计............................ 错误!未指定书签。3。1 主接线要求...................................... 错误!未指定书签。3。2 变电所110kV侧主接线设计........................ 错误!未指定书签。 3.3 变电所27。5kV侧主接线设计....................... 错误!未指定书签。第4章短路电流的计算.................................. 错误!未指定书签。第5章设备的选择...................................... 错误!未指定书签。 5.1110kV侧进线的选择................................. 错误!未指定书签。5。227.5kV侧母线的选择............................... 错误!未指定书签。5。3开关设备的选择................................... 错误!未指定书签。5。3。1110kV侧开关设备的选择......................... 错误!未指定书签。5。3.227。5kV侧开关设备的选择........................ 错误!未指定书签。 5.4电流互感器的选取.................................. 错误!未指定书签。

相关文档
最新文档