小学奥数积最大及和最小的规律

合集下载

最新小学奥数 最大最小问题

最新小学奥数  最大最小问题

最新小学奥数最大最小问题同学们在学习中经常能碰到求最大最小或最多最少的问题,这一讲就来讲解这个问题。

例1两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?分析与解:将两个自然数的和为15的所有情况都列出来,考虑到加法与乘法都符合交换律,有下面7种情况:15=1+14,1×14=14;15=2+13,2×13=26;15=3+12,3×12=36;15=4+11,4×11=44;15=5+10,5×10=50;15=6+9,6×9=54;15=7+8,7×8=56。

由此可知把15分成7与8之和,这两数的乘积最大。

结论1如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。

特别地,当这两个数相等时,他们的乘积最大。

例2比较下面两个乘积的大小:a=57128463×87596512,b=57128460×87596515。

分析与解:对于a,b两个积,它们都是8位数乘以8位数,尽管两组对应因数很相似,但并不完全相同。

直接计算出这两个8位数的乘积是很繁的。

仔细观察两组对应因数的大小发现,因为57128463比57128460多3,87596512比87596515少3,所以它们的两因数之和相等,即57128463+87596512=57128460+87596515。

因为a的两个因数之差小于b的两个因数之差,根据结论1可得a >b。

例3用长36米的竹篱笆围成一个长方形菜园,围成菜园的最大面积是多少?分析与解:已知这个长方形的周长是36米,即四边之和是定数。

长方形的面积等于长乘以宽。

因为长+宽=36÷2=18(米),由结论知,围成长方形的最大的面积是9×9=81(米2)。

例3说明,周长一定的长方形中,正方形的面积最大。

例4两个自然数的积是48,这两个自然数是什么值时,它们的和最小?分析与解:48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。

小学五年级奥数关于最值问题的讲解

小学五年级奥数关于最值问题的讲解

【导语】“最⼩、最多最少、最长最短等问题”称之为“最值问题”,最值问题是普遍的应⽤类问题,主要解决有“最”字的描述的问题,涉及类⽬⼴泛,是数学、物理中常见的类型题⽬。

以下是整理的相关资料,希望对您有所帮助!【篇⼀】 最值问题 【含义】科学的发展观认为,国民经济的发展既要讲求效率,⼜要节约能源,要少花钱多办事,办好事,以最⼩的代价取得的效益。

这类应⽤题叫做最值问题。

【数量关系】⼀般是求值或最⼩值。

【解题思路和⽅法】按照题⽬的要求,求出值或最⼩值。

例1在⽕炉上烤饼,饼的两⾯都要烤,每烤⼀⾯需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟? 解先将两块饼同时放上烤,3分钟后都熟了⼀⾯,这时将第⼀块饼取出,放⼊第三块饼,翻过第⼆块饼。

再过3分钟取出熟了的第⼆块饼,翻过第三块饼,⼜放⼊第⼀块饼烤另⼀⾯,再烤3分钟即可。

这样做,⽤的时间最少,为9分钟。

答:最少需要9分钟。

例2在⼀条公路上有五个卸煤场,每相邻两个之间的距离都是10千⽶,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。

现在要把所有的煤集中到⼀个煤场⾥,每吨煤运1千⽶花费1元,集中到⼏号煤场花费最少? 解我们采⽤尝试⽐较的⽅法来解答。

集中到1号场总费⽤为1×200×10+1×400×40=18000(元) 集中到2号场总费⽤为1×100×10+1×400×30=13000(元) 集中到3号场总费⽤为1×100×20+1×200×10+1×400×10=12000(元) 集中到4号场总费⽤为1×100×30+1×200×20+1×400×10=11000(元) 集中到5号场总费⽤为1×100×40+1×200×30=10000(元) 经过⽐较,显然,集中到5号煤场费⽤最少。

小学五年级奥数第38讲 最大最小问题(含答案分析)

小学五年级奥数第38讲 最大最小问题(含答案分析)

第38讲最大最小问题一、专题简析:在日常生活中,人们常常会遇到“路程最近”、“费用最省”、“面积最大”、“损耗最少”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都可以归结成为:在一定范围内求最大值或最小值的问题,我们称这些问题为“最大最小问题”。

解答最大最小问题通常要用下面的方法:1、枚举比较法。

当题中给定的范围较小时,我们可以将可能出现的情形一一举出再比较;2、着眼于极端情形,即充分运动已有知识和生活常识,一下子从“极端”情形入手,缩短解题过程。

二、精讲精练例题1把1、2、3、…、16分别填进图中16个三角形里,使每边上7个小三角形内数的和相等。

问这个和最大值是多少?练习一1、将5、6、7、8、9、10六个数分别填入圆圈内,使三角形每条边上的和相等,这个和最大是多少?2、把2——9分别填入下图圆圈内,使每个大圆上的五个数的和相等,并且最大。

例题2 有8个西瓜,它们的重量分别是2千克、3千克、4千克、4千克、5千克、6千克、8.5千克、10千克。

把它们分成三堆,要使最重的一堆西瓜尽可能轻些,那么,最重的一堆应是多少千克?练习二1、一把钥匙只能开一把锁。

现有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁。

最多要试开多少次才能配好全部钥匙和锁?2、如果四个人的平均年龄是25岁,其中没有小于17岁的,且四人年龄都不相同。

那么年龄最大的最多是几岁?例题3 一次数学考试满分100分,6位同学平均分为91分,且6人分数互不相同,其中得分最少的同学仅得65分,那么排第三名的同学至少得多少分?(分数取整数)练习三1、一个三位数除以43,商a余数是b(a、b都是整数),求a+b的最大值。

2、如下图,有两条垂直相交的线段AB、CD,交点为E。

已知DE=2CE,BE=3AE。

在AB和CD取3个点画三角形,问:怎样取三个点,画出的三角形面积最大?例题4一个农场里收的庄稼有大豆、谷子、高梁、小米,每一种庄稼需要先收割好、捆好,然后往回运输。

四年级数学A班奥数专题“最大与最小”问题

四年级数学A班奥数专题“最大与最小”问题

->“最大与最小”问题在应用数学知识解决日常生活中的一些实际问题时,经常会出现解决方案不止一种,有时还会有无数种的情况。

在这种情况下,我们往往需要找最大量或最小量。

例1试求乘积为36,和为最小的两个自然数。

分析与解不考虑因数顺序,乘积是36的两个自然数有以下五种情况:1×36、2×18、3×12、4×9、6×6。

相应的两个乘数的和是:1+36=37、2+18=20、3+12=15、4+9=13、6+6=12。

显然,乘积是36,和为最小的两个自然数是6与6。

例2试求乘积是80,和为最小的三个自然数。

分析与解不考虑因数顺序,乘积是80的三个自然数有以下八种情况:1×2×40、1×4×20、1×5×16、1×8×10、2×2×20、2×4×10、2×5×8、4×4×5。

经过计算,容易得知,乘积是80,和为最小的三个自然数是4、4、5。

结论一:从上述两例可见,m个自然数的乘积是一个常数,则当这m 个乘数相等或最相近时,其和最小。

例3试求和为8,积为最大的两个自然数。

分析与解不考虑加数顺序,和为8的两个自然数有以下四种情况:1+7、2+6、3+5、4+4。

相对应的两个加数的积是:1×7=7、2×6=12、3×5=15、4×4=16。

显然,和为8,积为最大的两个自然数是4和4。

例4试求和为13,积为最大的两个自然数。

分析与解不考虑加数顺序,和为13的两个自然数有以下六种情况:1+12、2+11、3+10、4+9、5+8、6+7。

经过计算,不难发现,和为13,积为最大的两个结论二:从上述两例可知,m个自然数的和是一个常数,则当这m个数相等或最相近时,其积最大。

小学奥数分类型讲解(60种)

小学奥数分类型讲解(60种)

小学奥数类型集锦1、最值问题【最小值问题】例1 外宾由甲地经乙地、丙地去丁地参观。

甲、乙、丙、丁四地和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。

为了保证安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都相等。

现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。

(《中华电力杯》少年数学竞赛决赛第一试试题)讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。

他们将上面的线段分为了2个2500米,2个4000米,2个2000米。

现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。

由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数是(5000+8000+4000)÷500+1=35(名)。

例2 在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图5.92所示,它们爬行的速度相等。

若要求它们同时出发会面,那么,应选择哪点会面最省时?(湖南怀化地区小学数学奥林匹克预赛试题)讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须三者同时到达,即各自行的路程相等。

我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。

这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。

所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB。

故,O点即为三只蚂蚁会面之处。

【最大值问题】例1 有三条线段a、b、c,并且a<b<c。

判断:图5.94的三个梯形中,第几个图形面积最大?(全国第二届“华杯赛”初赛试题)讲析:三个图的面积分别是:三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。

小学奥数常用数据和规律(2)

小学奥数常用数据和规律(2)

奥数常用数据和规律小学奥数公式和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 植树问题的公式1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)常用数据①1×9+2=1112×9+3=111123×9+4=11111234×9+5=1111112345×9+6=111111123456×9+7=11111111234567×9+8=1111111112345678×9+9=111111111②9×9+7=8898×9+6=888987×9+5=88889876×9+4=8888898765×9+3=888888987654×9+2=88888889876543×9+1=88888888③19+9×9=100118+98×9=10001117+987×9=1000011116+9876×9=100000111115+98765×9=10000001111114+987654×9=1000000011111113+9876543×9=100000000111111112+98765432×9=10000000001111111111+987654321×9=100000000001×1=111×11=121111×111=123211111×1111=123432111111×11111=123454321111111×111111=123456543211111111×1111111=123456765432111111111×11111111=123456787654321111111111×111111111=12345678876543211111111111×1111111111=12345678987654321==225=625=1225=2025=3025=4225=5625=7225=9025 142857×2=285714142857×3=428571142857×4=571428142857×5=714285142857×6=857142142857×7=99999912345679×9=111111111加法中的速算(1)加法交换律(2)加法结合律(3)互补数如果两个数的和是整十、整百、整千…那么这样的两个数叫做互为补数。

小学奥数最大值最小值问题汇总

小学奥数最大值最小值问题汇总

小学奥数最大值最小值问题汇总1. _____________________________________________________ 三个自然数的和为15,这三个自然数的乘积最大可能是 _______________ 。

3. _________________________________________________ —个长方形周长为24厘米,当它的长和宽分别是_____________________ 厘米、_______ 厘米时面积最大,面积最大是__________ 平方厘米。

4. 现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应是_________ 米,宽应是 _________ 米。

5 .将16拆成若干个自然数的和,要使和最大,应将16拆成__________ 。

6 .从1, 2 , 3,…,2003这些自然数中最多可以取 ____________ 个数,才能使其中任意两个数之差都不等于5。

7. __________________________________________________ —个两位小数保留整数是6,这个两位小数最大是____________________ ,最小是________ O8. 用1克、2克、4克、8克、16克的砝码各一个和一架天平,最多可以称出________ 种不同的整数的重量。

9. 有一架天平,左右都可以放砝码,要称出1〜80克之间所有整克数的重量,如果使砝码个数尽可能少,应该用__________ 的砝码。

10 .如下图,将1〜9这9个数填入圆圈中,使每条线上的和相等,使和为A,A最大是_______ 。

二、解答题(30分)1. 把19分成若干个自然数的和,如何分才能使它们的积最大?2. 把1〜6这六个数分别填在下图中三角形三条边的六个圆圈内,使每条边上三个圆圈内的数的和相等,求这个和的最大值与最小值。

(完整版)最大和最小问题

(完整版)最大和最小问题

华西英语培训学校——四年级奥数第三讲最大和最小问题1、最短的时间内完成作业,有更多时间去发展自己的业余爱好2、怎样乘车路程最短,话费时间最少3、怎样做可以使原材料最省4、大桥在什么位置,才能方便附件可能多数居民例1:幼儿园老师要把100根小棒分给小朋友做数学游戏,每个小朋友分的小棒根数不同。

那么,最多能分给几个小朋友?例2:把自然数1、2、3……19依次排列,1234567891011……1819,划去24个数字后得到一个多位数,这个数最大是多少?练习:1、先从0、1、2、4、6、8、9这七个数字中,选出5个数字组成一个能被5整除并且尽可能大的五位数,这个五位数是多少?2、小明看一本90页的童话故事,每天看的页数不同,而且一天中最少看3页,那么小明看完这本说最多需要几天?3、把自然数1、2、3……39、40依次排列,1234567891011……3940,划去65个数字后得到一个多位数,这个数最大是多少?观察下面两组算式的结果怎样变化,由此得出什么规律10=1+9 1×9=910=2+8 2×8=1610=3+7 3×7=2110=4+6 4×6=2410=5+5 5×5=25规律1:两个数的,这两个数和一定时,这两个数越接近,它们的乘积越大;当两个数相等时,它们的乘积最大。

例3:周长为36米的竹篱笆围成一个长方形菜园,要使菜园的面积最大,它的长和宽应该是多少?这时的最大面积是多少?观察下面两组算式的结果怎样变化,由此得出什么规律?16=1×16 1+16=1716=2×8 2+8=1016=4×4 4+4=8规律2:两数的积一定时,这两个数越接近,它们的和越小;当两个数相等时,它们的和最小。

例4:用竹篱笆围一个面积为25平方米的长方形菜园。

这个长方形的长、宽各是多少米时,最省材料?练习:1、a,b是两个自然数,a+b=16,那么a×b最大是多少?2、a,b是两个自然数,a×b=49,那么a+b最小是多少?3、用40厘米长的铁丝围成的长方形(不计接头长度)中,最大一个的面积是多少平方米?4、教室一个窗户的面积是225平方分米,怎样设计窗户的形状和尺寸最省材料?5、把14拆成两个数的和。

(完整版)奥数最大和最小

(完整版)奥数最大和最小

第2讲最大和最小最大最小问题涉及的知识多,灵活性强,解题时要善于运用所学综合运用所学的各种知识。

例1从1~9这9个自然数中选出8个填在下面8个○内,使算式的结果尽可能大。

这个最大的结果是()。

[○÷○×(○+○)]-(○×○+○-○)例2从多位数123456789101112…100中划出100个数字,使剩下的数字(顺序不变)组成的多位数最大,剩下的数是多少?例3有47位小朋友,老师要给每人发1支红笔和1支蓝笔。

商店中每种笔都是5支一包或3支一包,不能打开包零售。

5支一包的红笔61元,蓝笔70元;3支一包的红笔40元,蓝笔47元。

那么,老师买所需的笔至少要花多少钱?例4把14分成几个自然数的和,怎样分才能使它们的乘积最大?最大的乘积是多少?例5将5、6、7、8、9、0这6个数字填入下面算式中,怎样才能使乘积最大?□□□×□□□使图中3个“2×2”的正方形中4个数的和相等。

求这个和的最小值并填写完整。

练习1. 有3个数字,能组成6个不相同的三位数,这6个三位数之和等于2886,那么其中最小的三位数是多少?2. 若干连续自然数1,2,3,…的乘积的最末13位都是0,其中最大的一个自然数是多少?3. 从多位数123456789101112…484950中划去80个数字,使剩下的数字(先后顺序不变)组成的多位数最大。

这个最大的多位数是多少?4. 用2、3、4、5、6这5个数字组成一个两位数和一个三位数,要使乘积最大,应该是()×(),请试着说说这样组数的理由。

(见四年级期末试卷填空第12题)5.有两个同心圆,一个半径5米,另一个半径为12米。

有两只小虫分别沿着这两个圆爬,它们之间距离最远时是多少米?它们之间距离最近时又是多少米?6.把一根32厘米的铁丝折成一个直角,将它的两端靠在直尺上,得到一个直角三角形(如右图所示)。

怎样折得到的直角三角形面积最大?最大的面积是多少?7.如图,用30米的篱笆围成一个一面靠墙的长方形养鸡场,长方形的长和宽分别为多少时,长方形养鸡场面积最大?8.把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数。

(完整版)小学奥数最值问题

(完整版)小学奥数最值问题

最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

小学六年级奥数 第十五章 最值问题

小学六年级奥数 第十五章 最值问题

小学六年级奥数第十五章最值问题第十五章最值问题知识要点1.如果两个整数的和一定,那么这两个整数的差越小,它们的乘积越大。

当两个数相等时,它们的乘积最大。

2.两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。

3.把一个数拆分成假设干个自然数之和,如果要使这假设干个自然数的乘积最大,那么这些自然数应全是2或3,且2的个数不超过2个。

典例巧解例1 两个自然数的和是13,要使两个整数的乘积最大,这两个整数是多少?点拨将两个自然数的和为13的所有情况都列出来,有以下7种情况: 13=0+13, 0×13=0; 13=1+12, 1×12=12; 13=2+11, 11×2=22; 13=3+10, 3×10=30; 13=4+9, 4×9=36; 13=5+8, 5×8=40; 13=6+7, 6×7=42。

由此可见,两个整数的和一定时,两个整数的差越小,它们的乘积越大。

解13÷2=6??1, 6×(6+1)=42。

答:这两个整数分别为6和7。

例2 比拟下面两个乘积的大小。

A=57128463×87596512 B=57128470×87596505点拨要比拟A与B的大小,用计算的方法求积会很麻烦。

仔细观察两组对应因数的大小,我们不难发现,两个因数的和是一定的,只要比拟每组两个因数差的大小就可以了,差大的积反而小,差小的积反而大。

解 A组两个因数的差:87596512-57128463=30468049, B组两个因数的差:87596505-57128470=30468035。

因为30468049>30468035,所以B>A。

例3 两个自然数的积是50,这两个自然数是什么值时,它们的和最小?点拨两个自然数乘积是50的,共有三种情况: 50=50×1,50+1=51; 50=25×2,25+2=27; 50=10×5,10+5=15。

四年级奥数最大最小值

四年级奥数最大最小值

最大最小值知识框架一、知识点概述:这类问题涉及的知识面广,没有固定的模式,方法多样,解答时要认真审题,根据题目的特点,灵活地选择解法.在日常生活和工作中,经常会遇到这样一类问题:怎样安排时间最省、怎样行走路线最短、怎样管理费用最低、怎样设计面积最大、怎样合作效率最高、怎样加工利用率最大等等,它们都可以归结为在一定条件下的最大值或最小值方面的数学问题.例题精讲模块一、数论中的极端思想【例 1】如果10个互不相同的两位单数之和等于898,那么这10个单数中最小的一个是多少?【例 2】有两个整数A和B,它们的和是8,当A和B各是多少时,A×B的积最大?【例 3】103除以一个一位数,余数最大是多少?【例 4】商店进玩具熊若干,每三个一数则余下一只,若每五个一数则还差4个。

问商店至少进了多少只玩具熊?【例 5】1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。

那么这两个四位数各是多少?【巩固】两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?【巩固】两个自然数的积是48,这两个自然数是什么值时,它们的和最小?【例 6】有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数中最大的自然数是多少?【例 7】有一类自然数,它的各个数位上的数字之和为2003,那么这类自然数中最小的是几?【例 8】将前100个自然数依次无间隔地写成一个192位数:1 2 3 4 5 6 7 8 9 10 11 12 (9899100)从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?【例 9】把17分成几个自然数的和,怎样分才能使它们的乘积最大?【巩固】把14拆成几个自然数的和,再求出这些数的乘积,如何拆可以使乘积最大?【例 10】某国家的货币中有1元、3元、5元、7元、9元五种,为了能支付1元、2元 (100)元的钱数(整数元),那么至少需要准备货币多少张?【例 11】在五位数 22576的某一位数码后面再插入一个该数码,能得到的六位数中最大的是几?【例 12】在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式。

小学奥数模块教程最大最小值

小学奥数模块教程最大最小值

最大最小值知识框架一、知识点概述:这类问题涉及的知识面广,没有固定的模式,方法多样,解答时要认真审题,根据题目的特点,灵活地选择解法.在日常生活和工作中,经常会遇到这样一类问题:怎样安排时间最省、怎样行走路线最短、怎样管理费用最低、怎样设计面积最大、怎样合作效率最高、怎样加工利用率最大等等,它们都可以归结为在一定条件下的最大值或最小值方面的数学问题.例题精讲模块一、数论中的极端思想【例 1】如果10个互不相同的两位单数之和等于898,那么这10个单数中最小的一个是多少?【例 2】有两个整数A和B,它们的和是8,当A和B各是多少时,A×B的积最大?【例 3】103除以一个一位数,余数最大是多少?【例 4】商店进玩具熊若干,每三个一数则余下一只,若每五个一数则还差4个。

问商店至少进了多少只玩具熊?【例 5】1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。

那么这两个四位数各是多少?【巩固】两个自然数的和是15,要使两个整数的乘积最大,这两个整数各是多少?【巩固】两个自然数的积是48,这两个自然数是什么值时,它们的和最小?【例 6】有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数中最大的自然数是多少?【例 7】有一类自然数,它的各个数位上的数字之和为2003,那么这类自然数中最小的是几?【例 8】将前100个自然数依次无间隔地写成一个192位数:1 2 3 4 5 6 7 8 9 10 11 12 (9899100)从中划去100个数字,那么剩下的92位数最大是多少?最小是多少?【例 9】把17分成几个自然数的和,怎样分才能使它们的乘积最大?【巩固】把14拆成几个自然数的和,再求出这些数的乘积,如何拆可以使乘积最大?【例 10】某国家的货币中有1元、3元、5元、7元、9元五种,为了能支付1元、2元 (100)元的钱数(整数元),那么至少需要准备货币多少张?【例 11】在五位数 22576的某一位数码后面再插入一个该数码,能得到的六位数中最大的是几?【例 12】在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式。

六年级上册奥数试题:第4讲 最大与最小 全国通用(含答案)

六年级上册奥数试题:第4讲 最大与最小 全国通用(含答案)

第4讲最大与最小知识网络人们经常考虑有关“最”的问题,如最大、最小、最多、最少、最快、最慢等。

这类求最大值、最小值的问题是一类重要典型的问题,我们在实际生产和生活中经常遇到。

在本书的学习中我们经常要用到以下几个重要结论:(1)两个数的和一定,那么当这两个数的差最小时,它们的积最大。

(2)三个数a、b、c,如果a+b+c一定,只有当a=b=c时,a×b×c的积才能最大。

(3)两个数的积一定,那么当两个数的差最小时,它们的和最小。

(4)在所有周长相等的n边形中,以正n边形的面积最大。

(5)在周长相等的封闭平面图形中,以圆的面积为最大。

(6)在棱长的和一定的长方体中,以长、宽、高都相等的长方体,即正方体的体积最大。

(7)在所有表面积一定的几何体中,球体体积最大。

重点·难点本节所涉及的题型较多,但一般都要求根据一个不变量来确定另一变量的最大值或最小值。

如何根据题意,灵活运用不同的方法来求出表达式,再求最值,或直接求最值是本讲的重点。

这就要求我们不能太急于入手,不妨从一些比较简单的现象或数字开始,找出规律,进而解决问题。

学法指导解决本节问题的方法和策略常常因题而异,归纳起来有以下几种常用的方法:(1)从极端情形入手。

(2)枚举比较。

(3)分析推理。

(4)构造。

[例1]不能写成两个不同的奇合数之和的最大偶数为多少?思路剖析两个最小的不同的奇合数为9和15,9+15=24,因此小于24的偶数都不能写成两个不同的奇合数之和。

下面我们只需要考虑大于24的偶数即可。

15后面的一个奇合数为21,9+21=30,所以比24大比30小的偶数也不能写成两个不同的奇合数之和。

32也不能,34=9+25,36=9+27,38不能,40=15+25,42=15=27,44=9+35,…此时初步确定不能写成两个不同的奇合数之和的最大偶数为38。

解答根据以上分析,我们初步确定所求的最大偶数为38,下面我们给予证明。

六年级奥数--最大最小问题

六年级奥数--最大最小问题

六年级奥数——最大最小问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。

最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。

二、精讲精练【例题1】a 和b 是小于100的两个不同的自然数,求a -b a+b的最大值。

根据题意,应使分子尽可能大,使分母尽可能小。

所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950答:a -b a+b 的最大值是4950。

练习1:1、设x 和y 是选自前100个自然数的两个不同的数,求x -y x+y的最大值。

2、a 和b 是小于50的两个不同的自然数,且a >b ,求a -b a+b的最小值。

3、设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+y x -y的最大值;②求x+y x -y的最小值。

有甲、乙两个两位数,甲数27等于乙数的23。

这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。

由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56答:这两个两位数的差最多是56。

练习2:1、有甲、乙两个两位数,甲数的310等于乙数的45。

这两个两位数的差最多是多少?2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。

这两个两位数的和最小是多少?3、加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?【例题3】如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。

问:这样的数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。

小学奥数积最大及和最小的规律

小学奥数积最大及和最小的规律

积最大规律总结
多个数的和一定(为一个不变的常 数),当这几个数均相等时,它们的 积最大,用字母表示,就是
(b为一常数),

时,有最大值Fra bibliotek实际问题结论一:周长相等的长方形中,以正方形的面积最大 结论二:棱长总和相等的长方体中,以正方体的体积最大
例1:用长为24厘米的铁丝,围成一个长方形,长宽如何分配时,它 的面积最大?
小学奥数—— 积最大及和最小规律
PART
积最大规律
1+9=10 → 2+8=10 → 3+7=10 → 4+6=10 → 4.5+5.5=10 → 5+5=10 → 5.5+4.5=10 → ……
1×9=9 2×8=16 3×7=21 4×6=24 4.5 ×5.5=24.75 5×5=25 5.5 ×4.5=24.75
例2:用12米长的铁丝焊接成一个长方体,长、宽、高如何分配, 它的体积最大?
PART
和最小规律
由上述各式可见,当两数差越 小时,它们的和也就越小;当 两数的差为0时,即两数相等 时,它们的和最小

六年级下册奥数试题最大与最小全国通用(含答案)

六年级下册奥数试题最大与最小全国通用(含答案)

第八讲最大与最小在实际生活与生产实践中,人们总是想用最少的财力、物力、人力以及时间等在可能的范围内取得最佳效益。

况且,在许多现实问题中有时很难确定或者就不需要具体的每个数值,有时只关心最大、最小等极值。

这一讲就来研究某个量在一定条件下取得最大值或最小值问题。

这类问题题目中经常出现“最小”、“至少”、“至多”等术语。

经常只能根据具体问题,综合运用所学知识进行求解。

例1某校六年级一班准备用100元钱买圣诞树装饰品。

在花店这样的装饰品成束出售,由20朵花组成的花束每束价值4元,由35朵花组成的花束每束价值6元,由50朵花组成的花束每束价值9元,请问每种花束各买多少才能买到最多的花朵?分析:想用100元钱买到最多的花朵,题目中有三种花束:A种:由20朵花组成的花束价值4元B种:由35朵花组成的花束价值6元C种:由50朵花组成的花束每束价值9元平均1元钱可买A种花朵5朵或B种花朵5.8朵或C种花朵5.5朵,为了买到最多的花朵,应该多买B种花束解:经分析可知由35朵花组成的B种花束中的花朵最便宜,宜多买。

由于每束6元,故100元钱可买16束,还剩4元钱,这4元钱恰好买一束由20朵花组成的A种花束,这时共买花朵:16×35+20=580(朵),若B种花束少买几束,增加A种或C种花束的数量,都不能使花朵数达到580朵。

因此,应买由35朵花组成的花束16束和由20朵花组成的花束1束,可使花朵数量最多:580朵。

说明:此题也可设A种、B种、C种花束各买x束、y束、z束时,可使花朵最多,列方程:4x+6y+9z=100,x,y,z是自然数可以先缩小字母的取值范围。

例如12元能买3束A种花束或2束B种花束,分别得到60朵花和70朵花,于是很清楚在最优解中A种花束不应超过2束。

同理,比较B种花束和C种花束,发现要使花朵最多,C种花束不应超过1束,即x≦2,z≦1,下面只有很少的几种情况了,可以一一列举,同样可以求得x=1,z=0,y=16例2有一类自然数,从第三个数字开始,每个数字恰好是它前面两个数字之和,如134,1459等等,求这类数中最大的自然数和最小的自然数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PART
和最ห้องสมุดไป่ตู้规律
由上述各式可见,当两数差越
小时,它们的和也就越小;当
两数的差为0时,即两数相等 时,它们的和最小
和最小规律总结
多个数的积一定,当这几个数均相等 时,它们的和最小
实际问题结论一:面积不变的长方形中,以正方形的周长最小
推论:在所有面积相等的封闭图形中,以圆的周长最小
例1:用铁丝围成一个面积为16平方分米的长方形,如何下料,材料 最省?
……
积最大规律总结
多个数的和一定(为一个不变的常 数),当这几个数均相等时,它们的 积最大,用字母表示,就是 (b为一常数),

时,
有最大值
实际问题结论一:周长相等的长方形中,以正方形的面积最大 结论二:棱长总和相等的长方体中,以正方体的体积最大 例1:用长为24厘米的铁丝,围成一个长方形,长宽如何分配时,它 的面积最大? 例2:用12米长的铁丝焊接成一个长方体,长、宽、高如何分配, 它的体积最大?
小学奥数—— 积最大及和最小规律
PART
积最大规律
1+9=10 2+8=10 3+7=10 4+6=10 5+5=10
→ → → → →
1×9=9 2×8=16 3×7=21 4×6=24 5×5=25 5.5×4.5=24.75
4.5+5.5=10 → 4.5×5.5=24.75
5.5+4.5=10 →
相关文档
最新文档